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Abstract
A model of a generalized third order negative feedback
system with three finite poles, all zeros at infinity and a
nonlinear gain function is driven with a sinusoidal input.
The response of the system is studied for different initial
open loop pole placement locations and gain coefficients.
Under a wide range of parameter values, the system is
observed to exhibit periodic, multi-periodic and chaotic
behavior with unique fractal patterns embedded in some of
the bifurcation diagrams. The Poincar6 sections of the
chaotic regions are also atypical since they trace finite
curves rather than fill enclosed regions.

lntroduction
It is proposed that unpredictable behavior wil l occur in a
closed loop, negative feedback, third order system which is
amplified by a nonlinear gain function. Since unpredictable
behavior is most likely if a system is lightly damped and
near instability, the excitation, gain and system parameters
must be chosen suitably to induce the behavior.

System Definition
Third order systems have either three real poles or one real
pole and two complex conjugates. The root locus interprets
both to be special cases of the same_qy;fem with different
gains. A generalized system can therefore be defined as in
Figure l Note that the system is simplified by placing all
zeros at infinitv.

a  =  2 a + F

b = a2 + o2 + 2crp

6 = p1cr2+al2)

Figure L - Generalized Third Order System

Nonlinear Gain Function
A saturat ing gain funct ion is  appl ied to the system.
Saturat ion is  a property  that  ex is ts  in  many real  l i fe
components such as transistors and transformers so its
effect on an otherwise well behaved system is of interest.
Since saturation can not be represented analytically, it is

approximated using the natural log function. The function
is shown in Figure 2.

G = Ksgn(x)ln(abs(x)+l)

Figure 2 - Nonlinear Gain Function

The approximation always has non-zero gain for finite
inputs and has no discontinuities. It is not only analytic, but
is also more representative of real device behavior than the
perfect saturation function and, therefore, serves as a valid
model.

Parameter Selection
The system has five variables: ct, F, c,.l signal amplitude (A)
and gain (n. K is kept independent since it can be used to
place the open-loop complex poles with respect to the j0)
axis which directly affects system stability. The remaining
four parameters are chosen such that the system becomes
unstable as slowly as possible to maximize the range of K
where the system is lightly damped but stable.

This is done by maximizing the angle of the complex
pole paths in the root locus so that the angle of 'Erpproach

between the complex poles andTco axis is minimized. Since
the asymptote angle is fixed by the number of poles, only
the departure angle can be tuned by the design parameters:

departure angle = atan((p - a)/a)

The departure angle increases when either p is increased
or when o or o) are decreased. Since only the relationship
between the parameters is important, d is normalized to .1.
Compromises are necessary for p and o since a very large p
places the real pole close to a zero and approximates a
second order system and a very small ol approximates a DC
input. A value of I = 2 is chosen (keeping p > cr simplifies
the path of the root locus) while a value for <o is sought
experimentally.

Signal amplitude (A) does not affect the root locus but it
must be large enough such that the system is sufficiently
disturbed. A value ofA = 30 is chosen.

Effect of Varying Input Frequency
Bifurcation diagrams for ct, = I, $ = 2, A= 30 and a = I, 2,
5 and I0 are presented in Figure 3. When o = 1 the solution
is always periodic except when 0.95 < K < 0.99 where the
solution period doubles and when 0.99 < K < 1.03 where
the solution appears chaotic. In the apparently chaotic
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Figure 3 - Bifurcation Diagrams for Different Values of ro

regions, this disordered behavior is extremely sensitive to
init ial conditions. For example, at K = 1.02 the basin of
attraction to the multi-periodic solution set extends barely
beyond the solution set itself. Any significant deviation
results in a solution that is periodic (period three) and
centredabout  j=3.2.

When <i  = 2 or  o)  = 5 there are two qual i ta t ive
differences with respect to when o = ,1. First, the system
bifurcates from single-periodic to chaotic and back to
single-periodic more than once. Second, the basins of
attraction are almost infinitely large since the post-transient
solutions remain unchansed for all init ial conditions that
maintain stability.

When <o = I0 the system behavior once again becomes
similar to when o) = 1. Although the basin of attraction
remains large, there is once again only one region of multi-
per iodic  solut ions that  is  del imi ted on e i ther  s ide by a
single-periodic solution. The system appears to fade in and
out of chaos when either K or <o are varied.

There appears to be a direct relationship between <o and
the value of K required before the first bifurcation occurs.
Employing the Routh-Hurwi tz  cr i ter ion (Phi l l ips and
Harbor 1991) on the transfer function shows that the system
becomes unstable when:

K > 2a.{a(a + 2p) + ro2 + F2 }

As to increases, a larger gain is required to make the
system unstable. Since chaotic behavior is only expected in
systems which are near instabil ity, the gain required to
invoke chaos should experience a similar dependence on oL
This is consistent with the observations in Figure 3. Table I
shows approximate values of K where the first period
doubl ing occurs,  the range where chaot ic  behavior  is
observed,  and the boundary value where the system
becomes unstable.

Verifying Chaotic Behavior

It is important to verify that the behavior that is assumed to
be chaot ic  is  in  fact  so.  One way is  to  ver i fy  that
bifurcations occur abruptly and simultaneously. A second
test is to see if the Poincar6 sections and trajectories
continue to reappear in their entirety if they are periodically

Table 1: Gain Boundary Values

ot

Gain K

First Bif. Chaotic Reg. Instability

I 0.95 0.99 - r.03 2.@

2 0.82 l.6l  -  2.83 2.97

) 7.86 7.93 - 13.37 13.37

t0 2r.0 24.6 - 26.4 5 1 . 5

erased. If not then it is likely that only transients are being
observed. The frequency spectrum can also be analyzed
since chaotic behavior incorporates many tightly spaced
frequency components. Finally the Lyapunov exponents
and dimension can be checked since a positive Lyapunov
exponen t  o r  a  non - i n tege r  Lyapunov  d imens ion  i s
indicative of chaotic behavior.

For the purpose of verification, or is fixed at 5. Close
inspection of the first set of bifurcations show that the
system has a single-periodic solution at K = 7.8448 and a
double-per iodic  solut ion at  K = 7.8449.  The double-
periodic solution continues up to K = 7.9064 where a
quadruple- periodic solution is observed at K = 7.9065.
Period doubiing occurs within AK = I0'4 for both of these
transitions.

A Poincar6 sect ion and t ra jectory for  K = 7.94 is
presented in Figure 4. Since the Poincar6 section forms a
line which completely fills in no matter how many times it
is erased, it is proposed to contain an infinite number of
frequencies. It should also be pointed out that the trajectory
does not fill in from the outside in or from the inside out.
Individual solution cycles that are neighbors in proximity
are not neighbors in time so this trajectory can also be
erased continually and similar ones reappeil.

---4/'

Figure 4 - Poincard Section & Trajectory (K = 7.94)

The f requency spectra are compared for  a s ingle-
periodic (K = 7.8448) and a potentially chaotic solution (K
= 7.94) in Figure 5. The periodic case has well defrned
humps representing the dominant frequency harmonics
whereas the proposed chaotic spectrum is highly disordered
indicating many tightly spaced frequency components.

Finally, the Lyapunov exponents for K = 7.94 arelul =
0.0755418,luz = -0.949809 and Ls = -2.0795J and the
Lyapunov d imension is  2.07953.  The f i rs t  Lyapunov
exponent (1,1) is greater than zero by about 0.08 and the
Lyapunov dimension is non-integer by about 0.08. This
margin is  much larger  than what  can be reasonably
expected from calculation error.

As a final precaution the entire analysis is repeated
using a different integration method (Araujo et al. 1993).
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Periodic Chaotic
Figure 5 - Frequency Spectra (K=7.8448,7..94)

All of the previous simulations employed the Runge-Kutta-

flnlb:fg-OS integration merhod. They are repeated using
BSODE, a stiffly stable integration procedure which ii
based on Gear's algorithm (Parker and Chua 1989). The
resulting bifurcation diagram, Poincar6 section, trajectory
and frequency spectra are all similar in form to thosl
presented in Figure 3 through Figure 5 but are somewhat
noisier- The first Lyapunov exponent is also positive by
about 0.05 and the Lyapunov dimension is non-integer by
about 0.05. It is therefore concluded that the solutions that
were proposed to be periodic, multi-periodic and chaotic
are in fact so. The Runge-Kutta-Fehlberg-45 integration
procedure can therefore be used with confidence for further
study. Because of its unique characteristics, <o is fixed at 2
for this purpose.

Chaotic Behavior when a = 2
One of the most unique traits of the system emerges at
values of  K which f i rs t  make the system chaot ic .  A
magnified view of this region is presented in Figure 6. The
system starts out periodic ofperiod-2 and goes chaotic for a
short time. It then returns to being periodic, but of period-3
and then goes chaot ic  again.  I t  then returns tb beine
periodic, but of period-4 and then goes chaotic again. Eacf,
time the system ceases to be chaotic, it becomes periodic of
an order one higher than that before it was chaotic. The
chaotic regions become thinner and more densely spaced as
gain increases and the pattern repeats ad infinitum (which
can be supported by further magnifications). The pattern
has fractal qualit ies since it repeats infinitely wlthin a
bounded area and must  be magni f ied to observe each
successive level  of  deta i l  whi le  reta in ing an uncanny
sirni-larity to the unmagnified version. Fractals are not
commonly identified in bifurcation diagrams. This does not
occur elsewhere in the bifurcation diagram nor does it
occur at all when <l is increased to 5. It does, however.
reappearwheno=,10.

Another unusual trait of this system manifests itself in
the Poincard sections. Poincar6 sections for K = L6I and K
= 2.776 are presented in Figure 7. What is unusual is that
they trace ouf curves rather than define filled areas. The
Poincar6 sections also seem to be skewed segments of a
common curve which tends to get longer as K increases.
The fact that the Poincar6 sections are curves rather than
areas, although uncommon, is not unique. It has been
previously shown in the Henon man (Moon 1987).

Some Poincar6 sect ions ( i .e .  K = 2.776,  F igure 7)
appear to almost close on themselves which would lead one
to suspect periodicity. It should, however, be pointed out
that since the system is third order, the Poincard sections
are actually three dimensional and have been projected onto

t . r  t .a t  1 .7  t . t t  t .a  I  t !  |  . t
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Figure 6 - Magnified Bifurcation Diagram

K=2.776. . . ' ' \ .
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Figure 7 - Poincar6 Secrions

the f plane. When viewed in three-space it is clear that the
Poincard sections do not actually approach closure.

Something that  is  not  obvious f rom looking at  the
Poincard sections in their entirety is their actual complexity.
Magnification of the (-5.6, -3.6) end point of the K = 2.766
case shows that the curve does not simply end. It actually
consists of three l ine segments, one which ends-and two
which join in a loop. Further magnifications do not produce
any fractal-like recurrence of this pattern. A magnification
ofthe end point is presented in Figure 8.

. l .a
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Figure 8 - End-Point Magnification of poincar6 Section

A final observation about the Poincard sections is how
they relate to their associated trajectories. A trajectory for K
1 2.766 is presented in Figure 9. What is unexpected is that
the range of the trajectory far exceeds that oflhe poincar6
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scction. In the Poincard section.r ranges betweeni/-8, 6l
and i ranges between (-20, I5l but in the trajectory .r
rang6 between {-55, I0} and i ranges between (-25, 35}.
Thc bulging left hand side ofthe trajectory is unrepresented
in the Poincar6 section. The Poincar€ section comes
entirely from points extracted from the curly region in the
lower right hand corner. This is a by-product of the timing
by which points are extracted from the trajectory and are
applied to the Poincar€ section.

or dominant frequency harmonics and the Lyapunov
exponents and dimension. All of this is checked using both
the Runge-Kutta-Fehlberg-45 and BSODE integration
procedures.

Some unusual patterns are identified in the analyses. A
fractal pattern appears in bifurcation diagrams and a line is
always produced rather than an area in Poincar6 sections
which also tend to retain their shape but become extended
with higher gain values. Trajectories are also noted to
engulf a larger range on the phase plane than do the
Poincar6 sections.

Finally it is important to point out that chaotic behavior
appears over a wide range of parameters (not limited to
only gain and frequency as focussed on in this paper),
parameter values and initial conditions. Designers of third
order systems with saturating gains should therefore factor
in appropriate safety factors to avoid the extensive range of
problematic parameter values that have been shown to
produce unpredictable and potentially chaotic results. In
these systems stability and predictability are not necessarily
one in the same.
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Figure 9 - Trajectory (K = 2.776)

Once again, as a safety check, the Lyapunov dimensions
and exponent are calculated for the gains that were studied
to ensure that there is a positive exponent and a non-integer
dimension. They are presented in Table 2.

Table 2: Lyapunov Exponents and Dimensions for ol = 2

Gain

K

Lyapunov Exponent Lyapunov

Dimensionl.r ),r2 x4
L6 l 3.70016

x 10-2
-1.43155-2.60546 2.02585

2.766 4.39809
x l0-2

r.654 -2.389982.026s9

Summary / Conclusion
Utilizing gain as a bifurcation pruameter is a good way to
identify chaotic regions in a third order closed loop system
with nonlinear gain. A transition in the system behavior
occurs when the frequency (crr) is increased from I to 2.
When to = 1 the basin of attraction to chaotic behavior is
small making system response very sensitive to init ial
conditions. When ot is greater than 1 the basin of attraction
increases without bound and sensitivity to initial conditions
becomes negligible. As <o is increased, the gain that is
needed to cause chaos also increases. The Routh-Hurwitz
criterion shows a direct relationship between <rr and the gain
required for marginal stability. Since chaos is expected to
occur near marginal stability, the observed relationship
between the onset  of  chaos.  K and ( , )  is  in tu i t ive lv
satisfying.

After fixing the system parameters, the existence of
c h a o s  i s  v e r i f i e d  b y  c r i t i c a l l y  a s s e s s i n g  t h e
simultaneousness of bifurcations. the absence of transients
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