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Abstract

To meet the high performance demands of modern robot applications, design variables such as materials,

geometry, actuators and sensors must be chosen for optimum performance. This thesis presents a new way

of choosing design variables to tune the capabilities of a robot to the needs of an application. The

associated proposals are demonstrated through the design of a haptic interface.

It is argued that isotropy over a given workspace is a good measure of design quality for many high

performance applications. A new measure of isotropy, the Global Isotropy Index or GII, is presented which

is computed from the singular values of a design matrix. To ensure that the singular values are meaningful,

a technique is presented which normalizes and scales the design matrix. The technique removes all

physical units from the design matrix and scales it to accommodate an application-dependent performance

specification and non-homogeneous actuator capabilities. An algorithm has also been developed that

solves for the design parameters that result in the optimum GII. It is so efficient that it can be used to

compare the relative isotropies of different robot configurations.

Performance specifications for a haptic interface are taken from the literature and are augmented by two

biomechanical studies. The values obtained are used by the proposed design procedure to select the best of

three robots to be used as a haptic pen. The preferred candidate is a novel hybrid design that uses two 3-

DOF pantographs to position the ends of a pen shaped end-effector. A prototype with passive roll about the

pen axis is built and controlled to simulate three virtual environments including a virtual pencil, a virtual

scalpel and a virtual excavator. Its performance characteristics are measured and are used to draw

conclusions about the effectiveness of the design procedure.

Finally, a further performance improvement is sought via redundant actuation. It is shown that the motion

range and force capabilities of a coarse-stage robot can be combined with the precision and high-

acceleration of a fine-stage robot by connecting them in series and joining their end-effectors by a flexible

coupling. A coarse-fine system such as this is expected to narrow the gap between achievable and ideal

haptic interface performance.
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Chapter 1

1Introduction

Modern robot applications such as haptic interfaces and surgical assistants make performance demands far

beyond those of the assembly and repetitive task devices of the past. Specifications are no longer limited to

just workspace, resolution and payload requirements but now include acceleration [64], mass [25] and

stiffness [15] requirements, to name a few. Designing a robot to uphold a set of performance standards is

complicated by the fact that the relationship between a robot’s actuators and its end-effector varies with

both position and direction. Only after minimizing this variation, or in other words maximizing isotropy,

can one choose suitable components and design a controller. The greatest opportunity for improving

isotropy is through geometric and actuator design parameter selection but making the best choice is no

small task. A function must be defined that evaluates the performance of a device over a range of positions

and directions and handles mixed physical units in a meaningful fashion. Many functions have been

proposed to do this [37] but they are often inconclusive and handle mixed physical units somewhat

arbitrarily [16]. Once a function has been defined, it can be used by an optimization algorithm to compare

the performance of different robots and select design parameter values. The search space can be made

finite through discretization but the order of the optimization problem is compounded by each geometric

parameter and by each degree-of-freedom so even low dimensional problems can be extremely

computationally demanding. While many efficient search methods exist, most are incompatible with

minimax robot design problems whose objective functions are often non-linear, non-differentiable, non-

convex and/or discontinuous. Descent algorithms [20] become trapped in local minima, stochastic

approaches [68] have uncertain stopping criteria and the results of a global search become increasingly

suspicious as the search resolution is decreased.

This thesis addresses many of the difficulties associated with robot design and demonstrates its proposals

with haptic interface design examples. Its contributions include a condition index for evaluating robot

isotropy, a method for normalizing physical units and scaling a design matrix to account for a task-

dependent performance specification and non-homogeneous actuator capabilities, an optimization

algorithm and design philosophy for improving isotropy through design parameter selection, a new hybrid

manipulator and a proposal for a dual-stage coarse-fine system. All proposals are substantiated by design

examples which include serial, parallel and hybrid manipulators with between two and six degrees of

freedom.
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The proposed condition index, the Global Isotropy Index or GII, summarizes the global performance of a

robot throughout a pre-defined workspace by a scalar value. Unlike most global measures which compute

the mean of a local measure, the GII computes worst-case performance so intermittent displays of poor

performance are not tolerated. Since the GII is computed from the singular values of a design matrix, it

becomes meaningless if the design matrix contains mixed physical units. To address this, a technique for

scaling the design matrix is also proposed. The technique removes all physical units from the design

matrix and introduces parameters into the condition index for specifying non-homogeneous task-space

requirements and actuator capabilities. By fixing task-space requirements to match the direction dependent

needs of the applications and treating the actuator scale factors as design variables, the method allows one

to determine the geometry and actuators which best satisfy the needs of the application.

The proposed optimization algorithm, the culling algorithm, is a discrete branch-and-bound algorithm that

is specifically designed to handle minimax problems such as those involving the GII. It is unaffected by

nonlinear, non-differentiable, discontinuous, non-convex or unbounded objective functions and guarantees

the same result as a global search but arrives at the solution orders of magnitude faster. It requires no

estimation or integration of the objective function and is insensitive to initial conditions.

The above proposals are applied to the design of a haptic interface. An appropriate design criteria is

motivated from the literature ([9] and [42] for example) and from a model of a human hand interacting

with a haptic device. Biomechanical studies are also conducted to provide the target values required to

normalize and scale the design matrix.

A new hybrid manipulator, the Twin-Pantograph, is introduced that provides six-degree-of-freedom

motion with all but one actuator in the base. It has a larger workspace than a comparably sized parallel

robot with similar stiffness and mass characteristics. It has a redundant actuator which eliminates a

singular configuration and allows the controller to be decoupled to simplify computations and enable a

higher control rate. The proposed design procedure is used to compare the Twin-Pantograph to two parallel

robots in terms of their static force isotropy. Due to the superior results of the Twin-Pantograph, it is

implemented as a haptic pen. The capabilities of the haptic pen are measured and the device is controlled

to simulate three diverse virtual environments.

Although the prototype haptic pen satisfies many of the requirements that define ideal haptic performance

[42], it does not have the low mass and high acceleration required for ideal free motion. These

specifications can only be satisfied by a specialized device such as a maglev joystick [26]. Proposals have

been made to extend the workspace of a high-fidelity but limited motion range device by mounting it on a

coarse motion stage [36], [66]. Unfortunately, dual-stage systems such as this retain the static force
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limitations of the fine-stage. It is proposed here that a coarse-fine system can be made to inherit both the

large workspace and static force capabilities of the coarse stage and the high bandwidth of the fine stage by

placing a flexible coupling in parallel with the coarse and fine stages.

This thesis is organized as follows. In Chapter 2, existing condition indices, normalization techniques,

optimization algorithms, haptic interface performance specifications, haptic interface designs and coarse-

fine systems are surveyed. A new condition index, presented in Chapter 3, is normalized and scaled in

Chapter 4 and a new optimization algorithm is presented in Chapter 5. The design techniques are then

applied to the design of a 6-DOF haptic pen. It starts in Chapter 6 with a discussion of haptic interface

performance requirements and a description of biomechanical studies that were conducted to provide

target values. In Chapter 7, a new hybrid manipulator called the Twin-Pantograph is introduced and is

compared to two parallel platform manipulators in terms of their workspace sizes and static force isotropy.

Chapter 8 describes the implementation of a haptic pen based on the Twin-Pantograph, records its

capabilities and describes how it is controlled to simulate a variety of virtual environments. In Chapter 9, a

proposal is made to further improve performance by redundantly connecting two manipulators in series via

a flexible coupling. This is followed by conclusions and proposals for future work in Chapter 10. Appendix

A contains the analytic equations of motion for the various robots that are used in the design examples

throughout this thesis and Appendix B discusses discretization issues related to workspaces with mixed

translational and rotational components.

The contributions made by this thesis are summarized as follows:

• a new condition index called the Global Isotropy Index which evaluates the isotropy of a design

matrix throughout a pre-defined workspace.

• a method which removes all of the physical units from a design matrix by introducing parameters

that describe maximum actuator and end-effector capabilities.

• a new optimization algorithm called the culling algorithm that solves discrete minimax or GII based

design problems significantly faster than a global search.

• experimental data describing the force and velocity capabilities of the human hand which can be

used to establish a design criteria for a haptic interface.

• a new hybrid robot design called the Twin-Pantograph.
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• a design example that uses the described design techniques to compare two existing parallel

platform robots to the Twin-Pantograph for use as a haptic pen. A prototype based on the Twin-

Pantograph is built and controlled to simulate three diverse virtual environments.

• A proposal for combining the high bandwidth of a fine-stage robot with the large workspace and

forces of a coarse-stage robot by connecting the two in series and joining their end-effectors with a

flexible coupling.

Portions of this work have been presented at The IEEE International Conference on Robotics and

Automation [74] [76], The Winter Annual Meeting of the ASME, Sixth Annual Symposium on Haptic

Interfaces for Virtual Environment and Teleoperator Systems [77], have been published in Robotica,

International Journal of Information, Education and Research in Robotics and Artificial Intelligence [75],

The IEEE Transactions on Robotics and Automation [78] and are under review by The IEEE/ASME

Transactions on Mechatronics.
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Chapter 2

2Background

This chapter describes past proposals and past results related to robot design and haptic interfaces. The

topics include condition indices in Section 2.1, normalization techniques in Section 2.2, optimization

algorithms in Section 2.3, haptic interface performance specifications in Section 2.4, haptic interface

designs in Section 2.5 and coarse-fine systems in Section 2.6.

2.1 Condition Indices

Most condition indices are computed from a design matrix such as the Jacobian [39] or mass matrix [47] to

evaluate a performance attribute such as kinematic or inertial isotropy. Some of the more common

condition indices are surveyed by Kim and Khosla in [37]. They include the manipulability measure M

shown in equation (2.1) and the condition number k shown in equation (2.2) where G(x,p) is the design

matrix (e.g. Jacobian, mass matrix, etc.) evaluated at a position x for a design parameter p, λmin and λmax

are the minimum and maximum eigenvalues of G(x,p) and σmin and σmax are the minimum and maximum

singular values of G(x,p). The manipulability measure, originally proposed by Yoshikawa [90], is

equivalent to the product of all singular values of G(x,p) and is, therefore, proportional to the volume of the

manipulability ellipsoid. The condition number k measures the variation in singular values (i.e. the

roundness of the manipulability ellipsoid) at a position x. The larger the condition number, the greater the

variation.

Kim and Khosla [37] propose an isotropy measure  (2.3) which is the ratio between the manipulability

measure and the average of all eigenvalues. The isotropy measure is a scale independent version of the

manipulability measure.

M det G x p,( )G
T

x p,( )( )=

k
λmax G x p,( )G

T
x p,( )( )

λmin G x p,( )G
T

x p,( )( )
---------------------------------------------------------

σmax G x p,( )( )
σmin G x p,( )( )
-----------------------------------= =

(2.1)

(2.2)

∆

∆ M
mean λ( )
----------------------= (2.3)
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Ma and Angeles [47] describe the dynamic condition index (DCI)  (2.4) where W is a diagonal

weighting matrix and d is a vector containing the upper triangular components of a difference matrix that is

computed by subtracting the inertia matrix from its nearest isotropic neighbor (i.e a scaled identity matrix).

The DCI measures both conditioning and decoupling of the manipulator dynamics.

Other condition indices proposed by van den Doel and Pai [15] include the generalized Yoshikawa index Y

(2.5) and the nonlinearity measure R (2.6) where  is a metric that measures the difference in position and

orientation of the end-effector, g is a tensor valued performance field,  is an element from the metric

tensor on the joint space and  is an element from the Riemann tensor on the joint space. The

generalized Yoshikawa index measures the amount of necessary robot motion for a given end-effector

motion while the nonlinearity measure is a measure of error that would occur if a linear function were used

to compute the kinematics of the device. Similar measures are also defined for constrained systems in [14].

The measures described in (2.1) through (2.6) are all local measures (i.e. evaluated at a single position) and

one is usually interested in behaviour throughout a workspace. Various proposals have been made to

remove configuration dependence from these measures. Ma and Angeles [47] design a Stewart Platform by

solving for both the geometry and position that minimize the DCI. Their device is optimally conditioned at

one position but arbitrarily conditioned at all others. This approach is best suited to a device that is only

expected to navigate a small working volume.

Hayward et al. [25] plot the condition index of a planar 5-bar linkage over its workspace. This brute-force

approach is difficult to automate and severely limits the range of design parameters that can be explored.

Plotting is also impractical when a device has more than two degrees of freedom (see [41]).

The “Global Condition Index” (GCI) is proposed by Gosselin and Angeles [22] to overcome these

problems. It is the integral of a local performance measure such as the condition number k over a

workspace W scaled by the size of W. Because the GCI is an average value, it tolerates small regions of

µ

µ 1
2
---d

T
Wd= (2.4)

η
h

ij

Rijk
k

Y
det η( )
det g( )
----------------= (2.5)

(2.6)R h
ij

Rijk
k=
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poor behaviour and, therefore, may overrate a design that is unacceptable in practice. Computing the

integral may also be difficult and time consuming for certain condition indices.

Global measures that are derived from local measures also have another problem. Information is often lost

when a local measure is computed. For example, scale information is discarded when the condition

number is computed so changes in the magnitudes of singular values at different positions go undetected

by a plotting or an averaging approach. Hayward et al. [25] deal with this problem by following up a

condition number optimization with a manipulability check but iterative strategies such as this do not

always lead to the global optimum.

Park [55] proposes a measure of global dexterity that computes the average distortion between two

Riemannian manifolds with curvatures representing the joint-space and task-space volumes of the robot.

Although this does not depend on any local measure, it is an average value and, therefore, tolerates

intermittent displays of poor behaviour.

2.2 Normalization Techniques

Methods for handling non-uniform workspace dimensions have been suggested by Gosselin [21], Tandirci

et al. [82], Zanganeh and Angeles [92], Ma and Angeles [46], Ranjbaran et al. [61] and Doty et al. [16].

They address the problem pointed out by Lipkin and Duffy [44] that a measure such as the condition

number of the Jacobian matrix is of little practical significance in the presence of non-uniform physical

units. This occurs when a robot can both translate and rotate its end-effector or when it contains both rotary

and prismatic actuators. To accommodate this, Gosselin [21] defines a new Jacobian that transforms

actuator velocities into the linear velocities of two points on the end-effector but it is not discussed how

one should choose these points. Tandirci et al. [82] normalize the Jacobian by scaling all translational

elements by a Characteristic Length or CL. The CL that produces the best performance measure is dubbed

the “Natural Length” (NL) by Ma and Angeles [46] and is used for design optimization. When the NL of a

platform manipulator is not derivable, it is approximated by the average platform radius. Angeles [3]

calculates the NL for a serial manipulator by averaging the distances between the operating point and all

active joint axes while Ranjbaran et al. [61] find a serial manipulator’s NL by making it a free design

parameter. Doty et al. [16] propose a method of inverting non-square matrices with mixed physical units so

that the solution is both unit and frame invariant. The method achieves physical unit consistency but does

not differentiate between quantities with similar units but dissimilar magnitudes.

GCI
1
k
--- Wd

W
∫ Wd

W
∫⁄= (2.7)
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2.3 Optimization Algorithms

Maximizing a condition index inside a workspace is a minimax optimization problem. There are many

existing optimization algorithms that can be nested to solve minimax problems. They include iterative

approaches such as the Newton-Raphson method [20], gradient descents such as the Fletcher-Reeves

method of conjugate gradients [19], non-gradient methods such as Powell’s method of conjugate directions

[59] and quasi-gradient/direction methods such as the Davidon-Fletcher-Powell method of the variable

metric [12]. These methods are local methods and are only useful for finding local minima. To obtain the

global minimum, methods have been developed that repeatedly invoke a local routine to find all local

minima inside a constraint boundary. Examples include Torn’s clustering method [79], systematic methods

[7] which look for both local minima and decomposition points that may lead to other local minima, Multi-

start [57] which randomly selects initial conditions until the quantity of identified local minima exceeds a

Bayesian estimate, Rock and Roll [45] which rocks the landscape (objective function) and rolls the

solution into the nearest valley and a tunneling algorithm [88] which tunnels horizontally through the

landscape in search of a valley where it can descend to the local minima and continue tunnelling from

there.

Other global search methods do not rely on local minimization techniques but look for the global

minimum directly. Branch-and-Bound algorithms recursively subdivide the search space and formulate

upper and lower bounding functions for each region. When the lower bound of one region is above the

upper bound of another, that first region is discarded. Many proposals ([57] for example) have been made

regarding ways of subdividing search spaces (branching) and bounding objective functions with various

properties (i.e. concavity, continuity, smoothness) to improve convergence time.

Statistical or Bayesian/sampling methods perform sequential objective function evaluations using the

parameter with the greatest probability of improving the result. There are many versions including Direct,

Stuckman’s, Mockus’s, Perttunen’s, Zilinskas’s, Shaltenis’s and Dzemyda’s which are discussed in [32]

[79] [80]. Other methods emulate natural processes such as simulated annealing [68] [79] which emulates

how a metal cools (i.e. anneals) to reach a state of minimum energy, simulated diffusion [38] which

emulates the diffusion of particles in a cooling metal and genetic algorithms [23] [73] which treat

parameters as members of an evolving species where only the strongest (most favourable) survive and

generate offspring which undergo random probabilistic mutation. Both statistical and natural process

algorithms traverse the feasible region with the intent of improving the objective function until a stopping

criteria is satisfied. They offer no guarantee of global optimality but rather a measure of confidence that a

better function value does not exist elsewhere in the search domain.
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Monte-Carlo [79] [93] methods perform uniform random searches with a known probability of

convergence to a global optimum. Due to their probabilistic nature, a global optimum is not guaranteed.

Neural networks [53] describe an optimization problem using a physical analog circuit. Parameters are

adjusted using variable resistors, discrete switches and controlled source gains and the solution appears as

a node voltage in the circuit. Neural networks can solve optimization problems in real time since the

settling time of the analog components is very short but they are very difficult to implement, particularly

when the objective function is complicated.

Some algorithms perform minimax optimization directly such as linear and nonlinear programming

approaches which use discrete semi-infinite parameter spaces and gradients [54], methods which solve the

unconstrained concave dual to the problem using descents [83], methods which integrate the objective

function over the semi-infinite parameters and optimize the average value [31] and tree-searches such as

game theory [5]. It is not always possible to apply these algorithms to robot design due to the properties of

the objective functions (i.e. nonlinear, discontinuous, non-differentiable, etc.). Some that have been

applied to robot design include the complex method [22], DBCOMF (IMSLTM) [47], least squares [46],

Pattern Search [71], Rosen’s gradient projection method [56], DEMOCRAT [49], and global searches [25].

2.4 Haptic Interface Performance Specifications

A haptic interface is a device that enables the exchange of tactile or kinesthetic information between a

human and a computer. It is accomplished through the use of a robot that acts as both an input and an

output device [24].

It has been argued that the range of impedances that can be emulated by a teleoperation master only needs

to span what can be felt by a human hand [4], [18], [25], [70], [89]. This range is still being defined by

ongoing human-factors and biomechanical studies [28], [42], [70], [89]. Meanwhile, specifications for a

“universal” force-reflecting hand controller have been suggested by Brooks [4], Fischer [18], Hayward

[24] and Sharpe [70] who base their recommendations on surveys of telerobotic experts and literature, the

relative merits of existing teleoperation systems, mathematical models and human biomechanical

experiments. The quantitative capabilities of the human hand are defined to some extent from prior work.

Specifications from experience with existing haptic interfaces and biomechanical studies directed at

defining human motor capabilities are summarized in Table 2.1 for the hand motions shown in Figure 2.1.
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Lawrence and Chapel [42] define ideal haptic behaviour by an upper and a lower bound on the available

impedance range of a device. The high impedance lower bound corresponds to the minimum stiffness

required to counteract a reasonable maximum hand force while the low impedance upper bound

corresponds to the maximum impedance that is too small for a human to detect. Both bounds are constant

A. Based on human factors study.
B. Based on practical experience with an existing haptic interface.
C. Reported capability of an existing haptic interface.

Table 2.1: Cited Haptic Interface Performance Specifications

Characteristic Cited Specification

Translation Range (mm) [18] : 6.7 (x, y, z) A,B

[29] : 300 (x, y, z) C

[34] : 17 (x, y) C

[34] : 40 (x, y) B

[40] : 200 (x, y, z) C

[48] : 250 x 170 x 80 (x, y, z) C

[51] : 200 x 200 x 850 (x, y, z) C

[60] : 160 x 100 (x, y) C

[65][66]: 9 (x, y, z) C

[84] : 130-195 x 100-150 (x, y) A

Rotation Range (deg) [6] : +99˚/ -90˚ (x) A

[6] : +113˚/ -77˚ (y) A

[6] : +47˚/ -27˚ (z) A

[17] : ±84˚ x ±30˚ (x, z) A

[18] : ±30˚ (x, y, z) A,B

[40] : ±86̊  (z) C

[51] : ±45˚ (z) C

[65][66]: ±7˚ (x, y, z) C

Position Bandwidth (Hz) [4] : 3.9-9.7 B [18] : 50 A,B [70] : 5-10 A [89] : 70 A

Force Capability (N) [18] : 100 A,B

[29] : 22.6 C

[30] : 0.5 C

[34] : 6.3 C

[40] : 12 C

[48] : 10 C

[51] : 44.48 A

[60] : 10 C
[65][66]: 60 C

[87] : 151-463 A

Torque Capability (Nm) [1] : 1.26 A

[2] : 9.925 A
[29] : 0.294 C

[40] : 0.4 C
[51] : 1.356 A

[65][66]: 6 C
[87] : 0.658 A

Force/Torque Bandwidth
(Hz)

[4] : 320 A

[25] : 300 B
[28] : 450 A

[34]: 1000 C
[65][66]: >1000 C

[70] : 300 A
[85] : 100 A

Max. Velocity (m/s) [4] : 1.1 B [18] : 1 A,B

Max. Acceleration (m/s2) [4] : 12.2 B [18] : 9.81 A,B [65][66]: 90 C

Min. Natural Freq. (Hz) [51] : 100 C

x (right / left)

y (forward / backward)

z (up / down)

Figure 2.1: Directions of Human Hand Motion
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up until 20 rad/s where the low frequency upper bound increases by 40 dB/decade corresponding to the

typical response of a system with significant mass such as a human hand (see Figure 2.2) where impedance

is defined in equation (2.8) as a function of force F and position X(jω). Any haptic devices that meet these

standards are said to be ideal and are, therefore, equivalent since any capabilities outside of those defined

are beyond the scope of human perception.

There have been many proposals on how to widen a device’s impedance range. Lawrence and Chapel [42]

propose lowering effective mass while Hayward et al. [25], Massie and Salisbury [48] and Ma and Angeles

[47] make an argument for reducing variations in mass. Kurtz and Hayward [41] and Zanganeh and

Angeles [92] argue the merits of an isotropic Jacobian while Colgate and Schenkel [9] suggest increasing

stability by adding physical damping.

2.5 Haptic Interface Designs

Many attempts have been made to design a realistic force-reflecting master hand controller. In [8] a 6-DOF

device combining three 2-DOF linkages is presented. Iwata [29] built a 9-DOF device that provides 6-DOF

motion to the hand and 1-DOF motion to 3 sets of fingers as well as a 6-DOF haptic pen [30] positioned by

two 3-DOF manipulators. In [10] a 6-DOF joystick with three parallel pantograph linkages is described

while in [89] a hand controller using three prismatic actuators for translation and three rotary actuators for

orientation is presented. In [48] a haptic probe with three active translational degrees of freedom and three

passive rotational degrees of freedom is described while a 4-DOF device using only rotary actuators is

Figure 2.2: Practical Haptic Interface Impedance Range
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presented in [40]. A 4-DOF (3 translational, 1 rotational) joystick is described in [51] and a 2-DOF five-bar

linkage with a horizontal planar workspace is optimized in [25]. A 2-DOF planar positioning device with

linear coil/magnet actuators is presented in [34] while Vertut [85] provides a historical survey of earlier

hand controllers, articulated arms, and exoskeletons.

Although each of the large motion range devices mentioned above can satisfy some of the requirements

defined in Table 2.1, none are able to provide a sufficient force/torque bandwidth. There is, however, a less

conventional device that can. It uses Lorentz magnetic levitation (maglev) [26] to eliminate all physical

connections between the end-effector and ground. The advantages of using such a device in the design of a

force-feedback hand controller have been shown in [65]. They include small mass, high frequency

response, backdriveability, and low friction. Preliminary results with a teleoperation system using maglev

wrists for the master and slave have shown good transparency for small motions [66]. The main drawback

of the device is its small motion range. It was, therefore, suggested that the maglev device be mounted on a

conventional 6-DOF motion stage to provide coarse positioning [66], [86].

2.6 Coarse-Fine Systems

Dual-stage, coarse-fine motion devices have been proposed before as a means of improving dynamic

performance [35] and stability [69] for demanding robotic applications. Examples include the ARTISAN

robot of Khatib and Roth [36] which combines a coarse stage 7-DOF serial arm with a fine-stage 3-DOF

parallel wrist and the 2-DOF planar device of Yoshikawa et al. [91] which combines a flexible elbow

manipulator with a rigid micro-manipulator. The problem with series coupled coarse-fine systems is that

they are force limited to the capabilities of the fine-stage device. Morrell and Salisbury overcome this

problem by connecting the devices in parallel via a flexible coupling [52]. This is shown to combine the

high bandwidth performance of the fine-stage with the static force capabilities of the coarse-stage but

limits the motion range of the device to that of the fine-stage. In Chapter 9, a series coarse-fine system with

a flexible coupling is proposed to combine the force magnitude and motion range of the coarse stage with

the high frequency performance of the fine stage.
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Chapter 3

3The Global Isotropy Index (GII)

3.1 Introduction

Isotropy is defined in [3] to represent equal properties in all directions. Much past work has focussed on

improving the isotropy of the Jacobian or mass matrix to minimize wasted energy [3], to improve accuracy

(i.e. invertability of the kinematic equations for control) [21], [22], [39], to optimally utilize the actuators

[25] and to provide robust state-space representation, decoupled inertia torques and weak joint coupling

for advanced control and dynamic simulation [47]. Existing isotropy indices can be classified as either

local (e.g. the condition number [37]) or global measures (e.g. the GCI [22]). Local measures are position

dependent whereas global measures are workspace inclusive. Manipulators that are designed to be locally

isotropic may not exhibit similar levels of isotropy throughout their workspaces. Global measures are

much more rigorous but they are often computed from either the average value [22] or the variation [25] of

a local measure. This can produce misleading information since local measures often discard scale

information [25] and average values hide intermittent displays of poor performance. In this chapter a new

global measure called the Global Isotropy Index (GII) is introduced. Unlike most existing global measures,

the GII is a worst-case performance measure. It retains scale information and is intolerant of poor

performance anywhere in the workspace.

This chapter is organized as follows. In Section 3.2 shortcomings with existing condition indices are used

to motivate the definition of a new global performance measure. In Section 3.3 the global isotropy index is

described. In Section 3.4 some concluding remarks are made.

3.2 Shortcomings of Existing Condition Indices

Many relationships have been used in the past to quantify robot performance. They include, but are not

limited to, the Jacobian J(x) (3.1) that relates actuator rates  to end-effector velocity v at a workspace

point x, its transpose (3.2) which relates end-effector force/torque f to actuator force/torque τ and the

impedance Z(s,x) (3.3) present at a robot’s end-effector which may contain mass, stiffness and damping

terms and is a function of the Laplace transform variable, s.

q̇
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Relationships (3.1) to (3.3) are matrix transformations that are functions of x (i.e. position dependent) and

are non-diagonal (i.e. direction dependent) in general. Minimizing the non-uniformity of these

dependencies is often the primary goal in robot design optimizations. An argument is made later in this

thesis (see Chapter 6) that supports maximizing the isotropy of the Jacobian matrix (3.2) for a haptic

interface. For consistency, the Jacobian is also used in the examples presented in this chapter but the

concepts are not limited in any way to the Jacobian. They can be applied to any design matrix such as the

mass matrix which is demonstrated in Chapter 5.

While there are many ways to measure isotropy, a number of which are discussed in [37], perhaps the most

common is the condition number which describes worst-case behaviour at a position. Using the force /

torque transformation in (3.2) for example, if one were to plot all actuator torques that produce an end-

effector force of unit magnitude and arbitrary direction, a joint-space ellipse would result. The lengths of

the major and minor axis of the ellipse correspond to the maximum  and minimum

singular values of JT(x) which is a function of both position x and geometry p. This relationship is shown

in Figure 3.2 for the planar elbow manipulator in Figure 3.1. The robot has the geometry (l1=5, l2=4) and

can apply forces in all directions but its workspace is limited to the horizontal trajectory x∈ {-xmax, xmax}

at y=2.

(3.1)

(3.2)

(3.3)

τ J
T

x( ) f=

v J x( )q̇=

f Z s x,( )v=

σ̃ J p x,( )( ) σ
˜

J p x,( )( )

Figure 3.1: Constrained Planar Elbow Manipulator
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y
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l2

q2

q1
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The condition number of the Jacobian κ(p, x) (3.4) compares the highest and lowest effective transmission

ratios occurring in all directions by the minimum and maximum singular values of the Jacobian. For

consistency, accuracy, direction independence and maximum distance from kinematic singularities, this

ratio should be as close as possible to unity. The condition number approaches infinity as the robot nears a

singular position and has a value of one when the robot is perfectly isotropic.

Because the Jacobian is computed at a position x, the condition number is a local measure and

manipulators that are designed to be isotropic at individual positions may not exhibit similar levels of

isotropy throughout their workspaces. The condition number also only measures the shape (roundness) of

the ellipse but discards information related to size. Since the shape represents directional isotropy and the

size represents the average transmission ratio or positional isotropy, both are important. In Figure 3.3,

torque ellipses are computed for the robot in Figure 3.1 at three different positions. Notice that the ellipses

at x=0 and x=±5 are similar in shape (i.e. 20% difference in the condition numbers) but are much different

in size (i.e. 54% difference in the average singular values). Therefore, the manipulator is capable of

producing forces that are an average of 54% larger at x=0 than it can at x=±5. This is hardly uniform

behaviour but it results in deceptively favourable condition numbers.

Figure 3.2: Torque Ellipse at x=5
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In the past [25], configuration dependence has been checked by consulting the products of singular values

(3.5) throughout the workspace as a secondary criteria.

3.3 Description of the Global Isotropy Index

Here, a secondary, local measure is made to be unnecessary by introducing the Global Isotropy Index or

GII which compares the largest and smallest singular values in the entire workspace (3.6). The GII is

essentially a global or workspace inclusive version of the condition number. However, for convenience it is

defined as the minimum singular value over the maximum singular value rather than the other way around

so that perfect isotropy is assigned a value of 1 and singular behaviour is assigned a value of 0 (not ∞).

Since the GII evaluates a robot design by the bounds on its singular values and not by an average value, it

does not tolerate intermittent displays of poor performance. It also takes into account scale information

since this information is reflected by the singular value bounds.

Consider again the elbow manipulator in Figure 3.1. Local actuator torque ellipses are computed at all

values of x ranging from -5 to +5 and are superimposed upon one another in Figure 3.4. The GII is the

ratio of the radius of the largest circle contained in all of these ellipses to the radius of the smallest circle

containing all of these ellipses. The thinner the resulting torus is, the larger (i.e more favourable) the GII

will be.

Figure 3.3: Force/Torque Transformation
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A GII of 1 indicates that all singular values are identical throughout the workspace and that the mechanism

is not only directionally isotropic at each position in its workspace, but also that its behaviour is consistent

among all positions in its workspace. An optimally isotropic robot design parameter p* is, therefore, one

that maximizes the value of the GII as in (3.7).

Although the GII is presented in (3.6) using a Jacobian matrix, it can be similarly applied to any design

matrix. For example, the GII of a mass matrix D(p,x) is shown in (3.8).

3.4 Concluding Remarks

A new global measure called the GII has been described which compares the bounds on all singular values

in the workspace. It can be used to measure the isotropy of the Jacobian matrix, the mass matrix, or any

other design matrix of interest. A mechanism with a favourable GII will behave consistently in all

directions and that behaviour will not change as the mechanism is moved around its workspace. The GII

assigns a value of 1 to a device which is perfectly isotropic and a value of 0 to a device that is singular

anywhere in its workspace.

Figure 3.4: Force/Torque Ellipses and GII
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In the following chapter, a method is proposed that removes the physical units from the design matrix that

is used to compute the GII. It introduces task-space parameters into the GII so that it reflects the needs of

an application and it introduces actuator design parameters into the GII to improve the performance of a

design based on GII maximization.
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Chapter 4

4A Task-Dependent Design Matrix Normalizing Technique

4.1 Introduction

The GII, presented in Chapter 3, uses the singular values of a design matrix to evaluate robot isotropy. For

singular values to be meaningful, the physical units of all matrix elements must be uniform [44]. This is

not the case with robots that are capable of both linear and angular motion and/or combine rotary and

prismatic actuators. These devices have a Jacobian (mass matrix, Coriolis matrix, etc.) that contains mixed

physical units. Scale factors such as the characteristic length [82] and natural length [46] have been used in

the past to deal with mixed physical units but the values assigned are somewhat arbitrary [16].

Furthermore, isotropy, as it is traditionally defined (see [3]), may not be an appropriate goal for some robot

applications. Although it may be desirable for a robot’s behaviour to be consistent over a range of

positions, it may not be desirable for that performance to be homogeneous in all directions. For example, a

legged robot can support its own weight with minimal energy when its legs are near singular positions.

In this chapter, a method is proposed for normalizing a design matrix so that all physical units are

eliminated. A physical interpretation of the scale factors shows that they represent relative task-space and

joint-space performance values. Task-space values are fixed to assign non-homogeneous performance

goals for different directions of motion and joint-space values are used as design parameters to select

actuator sizes for improved isotropy. The technique is demonstrated by a number of design examples

which are carried out using the optimization algorithm described in Chapter 5.

This chapter is organized as follows. In Section 4.2 the design matrix normalization technique is described.

In Section 4.3 the ability of the task-space scaling matrix to assign a direction-dependent performance

specification to the design matrix is demonstrated using robot design examples. In Section 4.4 the ability

of the joint-space scaling matrix to improve performance through actuator scaling is demonstrated using

robot design examples. In Section 4.5 some concluding remarks are made.

4.2 Specifying a Direction-Dependent Performance Objective

Lipkin and Duffy [44] point out that the condition number of a design matrix has little meaning when the

matrix has non-uniform physical units. This occurs when a robot can both translate and rotate its end-

effector or when it contains both rotary and prismatic actuators. Furthermore, even if physical units are
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uniform, the singular values only evaluate the uniformity of actuator responsibilities for a task-space event

of unit magnitude and arbitrary direction. They do not address the more general case of non-uniform

actuator capabilities and/or task-space responsibilities. To remove this limitation, a more general

description of desired robot performance is formulated and a conformity measure is derived.

A common robot design criteria is isotropy of end-point forces. For the sake of simplicity, consider a robot

example where only forces f (i.e. no torques) are produced at the end-effector and only torques τ are

generated by the actuators (i.e. all rotary actuators) so that physical units are homogeneous. The more

general case will be considered later. A robot is said to have an isotropic force profile at a position if the

length of the joint-space torque vector (RMS value of all joint torques) is constant for any task-space force

of unit magnitude. A perfectly isotropic force profile is, therefore, illustrated by the mapping shown in

Figure 4.1a. The ratio of singular values of a robot’s Jacobian J(x) at a position x describes how closely

J(x) approximates the transformation shown in Figure 4.1a.

Figure 4.1a represents an ideal isotropic mapping only if the intended use of the manipulator demands

forces of equal magnitude in all directions. For some applications, it may be preferable that the robot be

capable of larger forces along one axis than it is along another (e.g. a device affected by gravity). The ideal

force/torque transformation for a device with non-homogeneous task-space force requirements would map

an ellipse in task-space into a circle in joint-space. A mapping such as this would suggest that the

kinematic chain has a mechanical advantage along the direction corresponding to the major axis of the

task-space ellipse. Of course, the axes of the desired task-space force ellipse may not align with the

coordinate system of the design matrix task-space variables resulting in a desired transformation shown in

Figure 4.1b.

Figure 4.1b is represents an ideal isotropic mapping only if the actuators have uniform torque capabilities.

If the actuators have different torque capabilities, the stronger of the two would be under-utilized. Figure

4.1b would, therefore, be undesirable for most serial manipulators since they typically use actuators of

various sizes. Full actuator utilization would require that the task-space ellipse be mapped into a joint-

space ellipse as shown in Figure 4.1c, where the major axis of the joint-space ellipse aligns with the axis of

the stronger actuator. Note that as long as there is no cross-coupling between actuators, the axes of the

joint-space torque ellipse always align with the joint-space coordinate frame. Figure 4.1c, therefore,

illustrates a general representation of an ideal task-space to joint-space mapping given variations in both

task-space requirements along different directions and individual actuator capabilities. Note that a similar

argument is easily applied to non-uniform velocity, acceleration, resolution, and other task and joint-space

quantities.
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Conformance of a robot’s Jacobian to a desired mapping between two ellipsoids such as that shown in

Figure 4.1c cannot be determined by singular values alone. If, however, a new transformation matrix

 is derived that transforms fractions of maximum values (i.e. ∆f, ∆τ) rather than the actual values

themselves (i.e. f, τ), even the more general representation of desired isotropic behaviour such as that

shown in Figure 4.1c takes on the familiar form shown in Figure 4.1d since fractions of maximum values

are always unity bounded. The GII of the transformation in Figure 4.1d is easily computed from the

minimum and maximum singular values in the workspace of the scaled Jacobian .

The normalized transformation matrix  is computed for a parallel manipulator by representing task-

space force f and joint-space torque τ as fractions of their maximum values. This is shown in (4.2) and

(4.3) where S´T and SJ are diagonal scaling matrices with maximum values along the diagonal, S´R is a

task-space rotation matrix which rotates the desired force ellipse’s axes into the design matrix’s task-space

coordinate frame, and ∆f and ∆τ are vectors of unity bounded fractions of maximum values. Equations

(4.2) and (4.3) are substituted into equation (4.1) in (4.4) which is rearranged in (4.5) and (4.6) to arrive at

the normalized transformation matrix  in (4.7). Because all scaling matrices are extracted from the

task and joint-space vectors (f and τ), S´R, S´T and ST are n × n matrices where n is the number of active

degrees of freedom and SJ is an m × m matrix where m is the number of actuators. This holds regardless of

whether J(x) is square or whether the device is over or under-actuated.

Ĵ T– x( )

Ĵ T– x( )

Figure 4.1: Desired Force/Torque Transformations
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For a two dimensional robot example, S´R, S´T, SJ, ∆f and ∆τ are expanded in (4.8) through (4.12) where

 and  are the maximum desired forces along the  and  axes which define a reference frame

rotated α radians from the  and  axes,  and  are the maximum torque capabilities of actuators 1

and 2,  and  are the fractions of maximum force along the  and  axes and ∆τ1 and ∆τ2 are the

fractions of maximum torque of actuators 1 and 2.

Note that S´R may not be static as shown in (4.8). For example, it is configuration dependent if the task-

space performance specifications are specified in end-effector coordinates. On the other hand, if the

performance specifications are specified in base coordinates and α = 0, S´R is the identity and ST is equal to

S´T (4.13) since  and  are equal to  and  (4.14):

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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∆f i ∆f j i' j'

(4.8)

(4.9)

(4.10)
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Since the homogeneous Jacobian  (4.6) transforms fractions of maximum actuator force/torque values

into fractions of maximum end-effector force/torque values, it is unit-free and easily adapted to the more

general case where mixed physical units are originally present. Consider, for example, a 6-DOF

manipulator with rotary odd numbered joints and prismatic even numbered joints. S´R, S´T, SJ, ∆f and ∆τ

are shown in equations (4.15) through (4.19) where R is the 3 × 3 rotation matrix which rotates the desired

force ellipse axes into the design matrix task-space coordinate frame. Note that desired torques specified

about a point non-collocated with the reference end-point results in off-diagonal terms in S´R (4.15).

Although the Jacobian is used for design examples presented here, the S´R, S´T and SJ matrices can be used

to normalize and scale any transformation matrix such as (3.1) or (3.3) but S´T and SJ will contain

quantities other than forces and torques. For example, to normalize a mass matrix D(x) (4.20) (i.e.

(4.21)), SJ contains maximum end-effector forces/torques and S´T contains maximum end-effector

accelerations (4.22). Note that in (4.22), SJ contains maximum end-effector forces which are task-space

quantities. Therefore, SJ is really a second task-space matrix. Its notation is maintained for the sake of

simplicity. Similarly, to normalize the velocity Jacobian  (3.1), SJ contains maximum joint rates while

S´T contains maximum end-effector velocities.

Note that scalar multiples do not affect ratios of singular values so one element of S´T and SJ can be

factored out with the remaining elements representing relative values. Also note that these matrices are

easily adapted to serial manipulators by rearranging their order (4.25) to account for the way the Jacobian

is normally defined for a serial mechanism (4.23):

Ĵ x( )

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

S'T Diag f '˜
i f '˜

j f '˜
k τ'˜

i τ'˜
j τ'˜

k
=

SJ Diag τ̃1 f̃ 2 τ̃3 f̃ 4 τ̃5 f̃ 6
=

∆f ∆ f 'i ∆ f ' j ∆ f 'k ∆τ'i ∆τ' j ∆τ'k
T

=

∆τ ∆τ1 ∆f 2 ∆τ3 ∆f 4 ∆τ5 ∆f 6

T
=

S'R
R 0

0 R
=

D̂ x( )
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4.3 A Method for Defining a Non-Homogeneous Performance Goal

By definition, the values along the diagonal of the task-space scaling matrix ST describe the maximum

capabilities of the robot end-effector along each direction of motion. By assigning these values to

correspond to the requirements of the intended application, the scaled, normalized design matrix (e.g.

) will not be isotropic unless the requirements specified in the ST matrix are met. Therefore,

optimizing the GII of this design matrix will result in a robot design that is optimally suited to the specified

non-homogeneous task-space performance goal.

Consider, for example, the three degree-of-freedom (3-DOF) parallel planar manipulator shown in Figure

4.2. This manipulator belongs to a large class of planar parallel manipulators that has been described by

Merlet in [50]. The geometry of the device is described by five design parameters, l1 through l4 and θ0 and

the workspace of the device is constrained by two translational, <x>, <y> and one rotational limit <θ>.

Although additional geometric parameters exist for this robot, they are fixed (i.e. 120˚ separation between

actuators on the platform and the base) to make parameter optimization more manageable. Computation of

the Jacobian matrix (4.26) is shown in Appendix A.6.
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Figure 4.2: 3-DOF Planar Parallel Manipulator
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Since isotropy always improves when the radius of the base is increased, l4 is fixed at 20cm. The robot

parameters l1 through l3 and θ0 are found to optimize the GII inside a square workspace (<x>, <y> =

±5cm, <θ> = ±30˚). To observe the effect of different task-space requirements on the optimum geometry,

the optimization is carried out many times using different values inside the ST matrix. In all cases, the force

requirements are kept equal in both directions while the torque requirements are varied. Since equal force

requirements make S´R inconsequential, it is set to the identity. Substituting  into the

maximum force/torque vector  in (4.27) and dividing through by  (ratios of singular values are

invariant to scalar multiples) produces the ST matrix shown in (4.28). For  varied between 0.1cm

and 10.0cm, the optimum geometries and GIIs are shown in Figure 4.3.

The optimum platform offset angle θ0 stays relatively constant at approximately 90˚ and the platform is

nearly equilateral in all cases. Its size increases linearly with  which is, on average, 1.27 times the

mean platform radius. This is expected since a larger platform radius provides the actuators with additional

leverage on the platform centre and increases the task-space torque capabilities . Figure 4.3,
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Figure 4.3: Optimum Parallel Manipulator Parameters
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therefore, confirms that assigning values to the ST matrix in accordance with a desired task-space

performance specification produces a device that is particularly well suited to that performance

specification.

Note that since ST (4.28) places equal weighting upon all translational elements and all rotational elements,

it is a special case that is mathematically equivalent to scaling by a Characteristic Length (CL) [82] equal

to . If one was to disregard the value of the scale factor (i.e. the CL or ), as done in the

past, one would be led to conclude that the platform radius corresponding to the Natural Length or NL (CL

of 0.7cm which maximizes the GII in Figure 4.3) represents a globally optimum solution and that any two

designs with similar GIIs should have similar performance characteristics. This obviously cannot be true

since a platform radius of 5.3cm is clearly capable of higher torques than a platform radius of 0.4cm, but

both produce the same GII. Thus, as expected, the optimum mechanism design varies significantly with the

performance specification that is described by the scale factor(s) which, therefore, must not be ignored.

Since the ST matrix contains a performance goal for every direction of motion, it can be used to assign

dissimilar performance goals along all motion axes, not just those with dissimilar physical units. Consider,

for example, an assembly robot that lifts a part onto a shaft and locks it in place. Translational force

requirements are not homogeneous since horizontal positioning forces need only address the mass of the

payload while vertical positioning forces must also overcome gravity. The torque requirements are

different still and correspond to the torque needed to lock the part into place. An example S´R matrix that

accounts for an angle of α = 30˚ between the manipulator’s  axis and the real world’s vertical ( ) axis is

shown in (4.29) and an example S´T matrix for the requirements in (4.30) through (4.32) is shown in (4.33)

which are used to re-optimize the robot in Figure 4.2. Note that the ST matrix (4.34) produced from S´R

(4.29) and S´T (4.33) scales both translational and rotational elements and is not mathematically equivalent

to multiplication by a CL.

τ̃k f̃ i j,⁄ τ̃k f̃ i j,⁄

j j
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The optimum robot geometry has l1 = 4.75, l2 = 1.75, l3 = 7.75 and θ0 = 77˚ with a GII of 0.158. Unlike

the devices described in Figure 4.3, the optimum geometry for this application (shown in Figure 4.4a) has

asymmetric platform dimensions. This solution is not obvious and illustrates the power of the proposed

technique to tailor robot design parameters toward satisfying non-homogeneous task-space requirements.

Note from Figure 4.4b that if the task-space requirements are mirrored across the manipulator’s  axis

( ), the optimum geometry l1 = 4.75, l2 = 7.75, l3 = 1.75 and θ0 = -77˚ produces an identical GII

(0.158). This is the mirror image of the original solution, just as one would expect. Any other rotation

angle, however, produces a completely different optimum geometry (e.g. l1 = 3.25, l2 = 8.5, l3 = 7.75 and

θ0 = 97˚, GII = 0.155 for α = 0˚) as shown in Figure 4.4c.

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

f '˜
i 5N=

f '˜
j 25N=

τ'˜
k 50Ncm=

S'T Diag 1 f '˜
j f '˜

i⁄ τ'˜
k f '˜

i⁄ Diag 1 5 10cm= =

S'R

0.866 0.5 0

0.5– 0.866 0

0 0 1

for α 30°= =

ST

0.866 2.5 0

0.5– 4.33 0

0 0 10cm

=

j

α 30– °=



28

4.4 A Method for Selecting Non-Homogeneous Actuators

By definition, the values along the diagonal of the joint-space scaling matrix SJ describe the maximum

capabilities of the robot actuators. By making these values design variables, they can be chosen by the

optimization algorithm to maximize isotropy.

To illustrate this, the robot design of Figure 4.2 is re-visited using the ST matrix in (4.34) with SJ derived

from the maximum actuator force vector  shown in (4.35) where  through  are the maximum force

capabilities of actuators 1 through 3. Dividing by a constant  produces the SJ matrix in (4.36). With

 and  treated as free design parameters, an optimum geometry with l1 = 4.5, l2 = 1.0, l3 =

14.5 and θ0 = 64˚, optimum actuator scale factors of  and , and a GII of 0.22 is

obtained. Recall that the optimum GII was only 0.158 when the SJ matrix was not included (i.e.

homogeneous actuators). A diagram of the optimized device with the proposed actuator scaling is shown

in Figure 4.4d.

Although non-homogeneous actuation improved the GII of the parallel manipulator by a substantial 39%,

Figure 4.4: Asymmetric 3-DOF Planar Parallel Manipulators

a b

c d

τ̃ f̃ 1 f̃ 3

f̃ 1

f̃ 2 f̃ 1⁄ f̃ 3 f̃ 1⁄

f̃ 2 f̃ 1⁄ 0.9= f̃ 3 f̃ 1⁄ 0.5=

(4.35)

(4.36)

τ̃ f̃ 1 f̃ 2 f̃ 3

T
=

SJ Diag 1 f̃ 2 f̃ 1⁄ f̃ 3 f̃ 1⁄=
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it is even more effective with serial manipulators. In practice, serial manipulators rarely have identical

actuators throughout because torque requirements tend to diminish for actuators distal to the base. It is for

this same reason that they often produce very poor condition numbers since computing a condition index

using a design matrix that has not been scaled by an SJ matrix evaluates the device as though it is fitted

with homogeneous actuators. Consider, for example, the 3-DOF planar serial manipulator shown in Figure

4.5 which has three design parameters, l1 through l3. Computation of the Jacobian matrix (4.37) is shown

in Appendix A.9.

The workspace is centred a fixed distance y0 of 5cm above the base actuator q1 and the robot parameters l1

through l3 are found to optimize the GII inside a square workspace (<x>, <y> = ±5cm) at any angle (<θ>

= ±180˚). The force requirements along the  and  axes are kept equal ( ) while the

torque requirements  are varied using the ST matrix in (4.28). The results are shown in Figure 4.6.

Figure 4.5: 3-DOF Planar RRR Serial Manipulator

i

j

k l3

l1

l2

y〈 〉

x〈 〉

y0
q1

θ〈 〉

q3

q2

(4.37)τ1 τ2 τ3

T
J

T
f i f j τk

T
=

i j f̃ i f̃ j f̃ i j,= =

τ̃k
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The GII in Figure 4.6 peaks at 0.163 and drops to 0.006 at low  ratios. These results suggest that

the serial device is unsuitable for applications with low torque requirements regardless of its geometry.

These poor results, however, are not due to an intrinsic deficiency of the device but are largely due to

inappropriate actuation. Performance is significantly improved by including the SJ matrix with free

variables along the diagonal as shown in (4.38). Note that the SJ matrix in (4.38) is normalized with respect

to  since q3 is likely to have the lowest torque requirements since it is farthest from the base.

Re-optimizing the serial robot with the two additional free parameters in (4.38) results in the designs

presented in Figure 4.7. Notice the improvement in GII values which now vary from 0.17 to 0.28 with

stronger actuators at the q1 and q2 joints. The non-homogeneously actuated device actually turns in its best

results at low  ratios with an up to 46-fold improvement in its GII over its homogeneously

actuated counterpart.

Figure 4.6: Optimum Parameters with Homogeneous Actuation

GII
Link Length (cm)

l2( )

GII ( )

l1( )

l3( )

 (cm)τ̃k f̃ i j,⁄

τ̃k f̃ i j,⁄

τ̃3

(4.38)SJ Diag τ̃1 τ̃3⁄ τ̃2 τ̃3⁄ 1=

τ̃k f̃ i j,⁄
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Actuator scaling can cause physical dimensions (i.e. l1 and l2) to grow without bound since this is

analogous to shrinking the workspace size which has a favourable effect on isotropy. This can be avoided

by imposing physical constraints. In Figure 4.7, physical dimensions are limited to 10cm so that a fair

comparison can be made with Figure 4.6. In practice, one might choose to fix the actuator ratios in

accordance with practical considerations such as availability, size or weight. For example,  is fixed at

twice  and  is fixed at twice  by using the SJ matrix shown in (4.40). Using the non-homogenous

task-space requirements described by the ST matrix in (4.39), the optimum geometry has l1 = 9.6, l2 = 6.6,

l3 = 0 with a GII of 0.104.

One might also fix both ST and SJ when optimizing an impedance (3.3) or mass matrix (4.20) since both

sides of the equation contain task-space quantities. Consider, for example, the 2-DOF planar serial

manipulator shown in Figure 4.8 which has two design parameters, l1 and l2. The mass matrix D(x) is

computed in Appendix A.8 and is scaled using (4.41) and (4.42).

Figure 4.7: Optimum Parameters with Non-Homogeneous Actuation

GII
Torque Ratio
Link Length (cm)

 (cm)τ̃k f̃ i j,⁄
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τ̃1
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-----( )
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-----( ),
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(4.39)

(4.40)
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By assigning SJ to the identity, the desired effective masses along  and  can be specified by assigning ST

to the desired acceleration for an applied unit force. The results of three example optimizations are shown

in Table 4.1 with <x>, <y> = ±5cm and y0=5cm. A linkage mass of 10 g/cm and an actuator mass of 50 g

are used to compute D.

The resulting GIIs suggest that the device can be designed to present uniform inertia or to present a smaller

inertia along  than along  but is not easily designed to present a smaller inertia along  than along .

Since the non-homogeneous actuation technique also removes the physical units from joint-space, it

ensures a meaningful result even when a manipulator combines rotary and prismatic actuators. Consider,

for example, the 3-DOF serial manipulator shown in Figure 4.9 which has only one geometric design

parameter l1. Since q2 applies a force rather than a torque, it is optimized using the SJ matrix shown in

(4.43). Computation of the Jacobian matrix (4.44) is shown in Appendix A.10.

Table 4.1: Inertial Optimization Results for the Planar RR Manipulator

Desired Acceleration Optimum

i axis j axis l1 l2 GII

1.0 1.0 7.9 8.7 0.096

1.5 1.0 7.5 8.9 0.069

1.0 1.5 8.7 8.3 0.082

Figure 4.8: 2-DOF Planar RR Serial Manipulator
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For <x>, <y> = ±5cm, <θ> = ±180˚, y0=5cm and the force/torque requirements in (4.39), the optimum

robot has l1 = 0cm,  and  with a GII of 0.203. This robot shows a

significantly (95%) better GII than the homogeneous serial arm (Figure 4.5) but in practice may suffer

from larger inertia due to its prismatic upper-arm.

4.5 Concluding Remarks

A method has been described that contradicts the claim that scaling matrices possess an arbitrary quality

when used to address the unit inconsistency problem (i.e. Doty et al. [16]). It is shown that scaling is not

arbitrary if the intended use is not arbitrary. When a specific performance goal exists, the choice of scale

factors greatly affects the performance measure and, if chosen properly, can result in a drastic

improvement in performance. The technique proposed here removes all physical units and allows one to

specify a non-homogeneous performance goal for a device and solve for its optimum actuator sizes. This

method is the first of its kind to simultaneously consider both geometric and actuator parameters in robot

design optimization and tailor the design to a non-uniform performance specification. It can be applied to

the GII or any other condition index that uses the singular values of a design matrix.

In the following chapter, a new optimization algorithm is presented. It is a discrete branch-and-bound

optimization algorithm that is specifically designed to handle minimax and GII optimization problems.

Figure 4.9: 3-DOF Planar RPR Serial Manipulator
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Chapter 5

5The Culling Optimization Algorithm

5.1 Introduction

The GII proposed in Chapter 3 and Chapter 4 describes how well a device and design parameter satisfies a

performance criteria. Maximizing the GII, however, is a minimax optimization problem and few existing

algorithms are equipped to solve minimax problems, especially ones that involves non-linear, non-

differentiable, discontinuous and/or unbounded objective functions such as the condition number or GII.

Descent algorithms [20] become trapped in local minima, stochastic approaches [68] have uncertain

stopping criteria and the results of a global search become increasingly suspicious as the search resolution

is decreased. In this chapter, a new optimization algorithm, the culling algorithm, is described which is

specifically designed to handle minimax and GII optimization problems. It is a discrete optimization

algorithm which guarantees the same result as a global search but arrives at it orders of magnitude faster.

Unlike most optimization algorithms which look for parameters that improve the objective function, the

culling algorithm looks for parameters with sub-optimal performance values and culls them from the

search space until only the global optimum remains.

This chapter is organized as follows. In Section 5.2, two versions of the optimization algorithm are

described, one for GII and another for minimax optimization problems. In Section 5.3 the algorithm is

used to optimize and draw general conclusions regarding the kinematic and dynamic isotropy of a 2-DOF

pantograph manipulator. In Section 5.4 the algorithm is used to kinematically optimize a 6-DOF Stewart

platform. In Section 5.5 the efficiency and sensitivity to initial conditions of the algorithm are measured. In

Section 5.7 some concluding remarks are made.

5.2 Description of the Culling Algorithm

The culling algorithm is a discrete optimization algorithm that belongs to the branch-and-bound family of

optimization algorithms. It identifies non-optimal parameters and culls them from the search space until

only the optimum remains. Two versions are presented for solving GII and minimax optimization

problems. The GII culling algorithm optimizes the GII which is defined between 0 and 1 corresponding to

poor and ideal performance respectively, over a workspace W which is a constrained set of configurations x

for a parameter p. The optimization goal (3.7) is to find the parameter p* with the best “worst-case”
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behavior throughout the workspace W. The algorithm is described in (5.1) through (5.10) and uses the

following notation:

i

pi

Pi

p̂i

x

W

x
˜
x̃

σ
˜
σ̃

Σ
˜ i : Pi ℜ→

s

Σ̃i : Pi ℜ→

ŝ

List of Symbols

= looping index

= set of all parameters in parameter space

= design parameter

= best known design parameter

= set of all positions in the workspace

= end-effector position

= position with the smallest singular value

= position with the largest singular value

= minimum singular value at a position

= maximum singular value at a position

= minimum singular value upper bounding function

= maximum singular value lower bounding function

= performance measure; either GII or k-1 as defined in equation (2.2)

= performance measure of best known design parameter



36

The algorithm starts with a looping index and best known performance measure of zero (5.1), optimistic

bounding functions (5.2) and an initial p0 that is chosen arbitrarily from P0 (5.3). Minimum and maximum

singular values are calculated for pi at each x in W (5.4). If pi produces a better GII than the best known

parameter , pi becomes the new best known parameter  and a new best known performance

measure  is calculated (5.5). Singular values are calculated for each p in Pi at  and  and the

corresponding upper  and lower  bounds are updated (5.6). Note that since all singular values

are known for  and  from (5.4), bounding may be improved by replacing (5.6) with (5.11).

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
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--------------------∈
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Although any improvement from using (5.11) is attributable to good fortune, the computational cost is

negligible and is, therefore, worthwhile. Also note that one or both updates in steps (5.6), (5.11) can be

omitted for all p whose ratio of upper and lower bounds is already less (i.e. worse) than  since those p

will be culled from Pi in (5.7). The p with the largest ratio of upper and lower bounds is chosen as the next

candidate pi+1 (5.8). (5.4) through (5.9) are repeated until  is the only parameter left in Pi which

conclusively identifies  as the global optimum (5.10).

Since a parameter is only removed from the search space after it has produced singular values with a ratio

worse than that of another parameter  for which all singular values have been rigorously computed, the

global optimum is guaranteed. Computational savings result from strategically exploring configurations

which are likely to identify many parameters as sub-optimal. Expected efficiency, however, relies on the

presumption that within a continuous, bounded range of parameters, many of them, particularly those in

close proximity to each other, will exhibit similarly favourable or poor behaviour at common

configurations. This is a presumption that holds well in robot design problems. Consider, for example, a

robot that stretches to its reachable limit when visiting a position in the pre-defined workspace resulting in

a minimum singular value of 0. A small adjustment to one geometric parameter will usually only slightly

affect the robot’s reachable limit and it will continue to produce very large and/or small singular values at

that position. It and all other neighbors of the original parameter are, therefore, likely candidates for being

culled from the parameter space when evaluated at that position.

The GII culling algorithm is specifically designed for optimizing the GII but some design problems involve

local measures and are of the form shown in (5.12). For example, Hayward et al. [25] use the objective

function  to optimize the mass matrix D(p,x) of a planar pantograph

haptic interface. Problems of this form can be solved using the minimax culling algorithm described in

(5.13) through (5.22). Note that in the minimax version of the culling algorithm,  is an upper bound on

the worst-case performance function s(p,x) and does not contain singular values explicitly.

ŝi 1+

p̂i

p̂i

p̂

s p x,( ) σ
˜

D p x,( )( ) σ̃ D p x,( )( )⁄=

Σ
˜ i

p∗ marg ax
p P0∈

min
x W∈

s p x,( )= (5.12)
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The minimax culling algorithm is illustrated by a step-by-step example using the planar elbow manipulator

of Figure 3.1. The performance index is the ratio of singular values of the Jacobian matrix

 and the parameter space is reduced to a single dimension by

calculating the minimum forearm length l2 from (5.23) which ensures that the boundaries of the usable and

reachable workspaces shown in Figure 5.1 are separated by a minimum safety margin of length K. In other

words, l2 is chosen such that {k1, k2} ≥ K.

Set Pi 1+ p Pi∈ Σ
˜ i 1+ p( ) ŝi 1+>{ }=

REPEAT

UNTIL p̂i pi=

i i 1+=

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

Minimax Culling Algorithm
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˜ i p( ) s p x
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2

y
2+ l1– y l1–,( ) K+= (5.23)
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The performance index is non-linear, non-differentiable and contains local minima and maxima in both its

operation and parameter spaces which, in this case, can be verified by brute force since the problem has

only one workspace dimension (x) and one design parameter (l1). The performance index s(l1,x) is plotted

against x and l1 in Figure 5.2 with xmax=5, y=2, K = 0.4 and 2 ≤ l1 ≤ 8.

An intermediate value of l1=6 is picked as the initial best known parameter  (5.15). The workspace of

l1=6 is searched to find that x0=0 minimizes s(l1,x) with a value of s(6,0)=0.28 (5.16) and the condition

index of the best known parameter is updated (5.17). The parameter space at x0=0 is searched, the upper

bound  is updated for each parameter (5.18), (5.24) and all sub-optimal parameters are culled (shaded

regions in Figure 5.3) from the parameter space (5.19). l1=3.3has the largest upper bound and is the next

candidate p1 (5.20).

Reachable Workspace

k1

k2

k1

Figure 5.1: Workspace of a Planar Elbow Manipulator
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The workspace of l1=3.3 is searched to find that x1=−5 minimizes s(l1,x) with a value of s(3.3,-5)=0.16

(5.16) so l1=6 is still the best known parameter (5.17). The parameter space P1={2.3...5.9} at x1=−5 is

searched, the upper bound  is updated for each parameter (5.18), (5.25) and all sub-optimal parameters

are culled from the parameter space (5.19). l1=4.5has the largest upper bound and is the next candidate p2

(5.20) (see Figure 5.4).

The workspace of l1=4.5 is searched to find that x2=0 minimizes s(l1,x) with a value of s(4.5,0)=0.4 (5.16)

making it the new best known parameter (5.17). All remaining parameters left in the parameter space

P2={4.1...5.9} have upper bounds that are below this value and are culled from the parameter space (5.18),

(5.19). Only l1=4.5 remains and is, therefore, the global optimum p* (5.22). This is verified by performing

Figure 5.3: First Culling of Non-Optimal Geometries
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an exhaustive search and plotting the worst-case performance of each geometry. The optimum geometry is

shown to be l1=4.5 in Figure 5.5.

The culling algorithm belongs to the branch-and-bound family of optimization algorithms but is

unconventional in that it is strictly geared toward solving minimax problems. It performs all of its

bounding through explicit function evaluations and, therefore, does not require any worst-case estimates of

the objective function. Each time the condition index of a candidate parameter is rigorously computed, the

value is used to push up the lower bound on the performance index of the optimum parameter and each

time the condition index is computed for a parameter at a new position, the value is used to push down the

upper bound on the performance index of that parameter. If the lower bound on the optimal performance

index exceeds the upper bound on the performance index of any parameter, that parameter is culled from

the parameter space. This is how the culling algorithm performs bounding. It performs branching by

alternating between workspace searches for a single parameter and parameter space searches for a single

position with the parameter and position chosen from the results of the previous iteration.

5.3 Design of a Planar Five-Bar Linkage

Karidis et al. [33] design a dynamically balanced five-bar linkage for micro-probing while Hayward et al.

[25] optimize a five-bar linkage for use as a planar haptic interface. The culling algorithm and new

definition of global isotropy are used to re-examine the five-bar linkage based haptic interface for both

kinematic and dynamic conditioning. Since the performance of a robot is affected by many factors that

include robot geometry, workspace size and workspace position, a general representation of a five-bar

linkage with a square workspace is used which is shown in Figure 5.6. It contains design parameters for

both the geometry of the robot and the position and orientation of the robot’s workspace so that symmetry

Figure 5.5: Final Culling and the Optimum Solution
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and positioning guidelines can be determined to simplify future design optimizations involving a similar

device and workspace. Computation of the Jacobian matrix (5.26) is shown in Appendix A.4.

The kinematic GII is optimized with seven free design parameters (l1 through l5, γ and η) and with r and w

fixed to avoid a trivial result since isotropy improves when r→∞ or as w→0. For r=w=10 and ∆w=0.1 (∆w

is the discrete sample spacing in the workspace) the search space and solution obtained by the GII culling

algorithm are shown in Table 5.1.

The global optimum has left/right symmetry of both the robot and workspace. Future optimizations,

therefore, need only consider three parameters (l1, l2,5=l2=l5 and l3,4=l3=l4) and half of the workspace

(x≥0). This simplifies the problem sufficiently to allow further generalization. Varying r while constraining

the elbow angles θ3,θ5∈ {0...π} shows the optimum posture for a range of r values where a negative value

Table 5.1: Design Parameter Search Space and Kinematic Optimum

Parameter Min. Val. Max. Val. Resolution Optimum

l1 0 3 0.5 1.5

l2 4 10 0.5 7.5

l3 7 14 0.5 9.5

l4 7 14 0.5 9.5

l5 4 10 0.5 7.5

γ 0 π/2 π/20 π/2

η 0 π/2 π/20 0

Figure 5.6: Five-Bar Linkage
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of r corresponds to a workspace positioned below the line connecting joints {q1, q2}. Figure 5.7 shows the

optimum geometry, GII and posture for r∈ {-25...25}, γ=η=π/2 and the parameter space shown in Table

5.2. Note that the search space constrains the robot and workspace to a 30x30 square area.

The GII curve is non-smooth and the optimal parameter curves (l1, l2,5 & l3,4) are discontinuous in r.

Parametric discontinuities occur at the intersections of optimum GII curves for different postures. Consider

the region around r=10. The optimum GII of the “M” posture is relatively level while the optimum GII of

the elbow-out posture increases with r. When the curves intersect, the optimum posture switches from “M”

to elbow-out and the parametric curves experience a jump. There are clearly two viable ranges for r. Values

of r∈ {-3...1} are acceptable in which case the “M” posture is best with the workspace positioned between

the actuators. Magnitudes greater than 10 are also acceptable in which case the elbow-out posture is

preferred. While elbow-in achieves GIIs similar to elbow-out for similar magnitudes of r it requires longer

Table 5.2: Reduced Design Parameter Search Space

Parameter Min. Val. Max. Val. Resolution

l1 0 15 0.2

l2,5 5 30 0.2

l3,4 5 30 0.2

Figure 5.7: Optimum Parameters and Postures of a Five-Bar Linkage
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physical link lengths (l2,5 & l3,4). The inertial implications of this distinguish elbow-out as the better

posture. For all other values (i.e. r∈ {{-12...-3},{1...10}}), the optimal postures combine long link lengths

with poor GIIs and should be avoided.

For an inertial optimization, it is assumed that the device is held with a light fingertip grip so hand inertia is

neglected. It is also assumed that inertia is dominated by the linkages which are made from circular cross-

section 2024-T4 aluminum tubing. The mass matrix is computed as shown in Appendix A.5. It is debatable

whether it is preferable to optimize the mass matrix for isotropy or scale. Since isotropic mass is not

particularly important if the magnitude is small, maximum mass is minimized by considering the

normalized performance index involving only the maximum singular value of the mass matrix shown in

(5.27). Since this measure can be computed locally, the minimax culling algorithm is used.

It was observed that the culling algorithm becomes significantly less efficient when the value obtained

from the objective function does not change throughout large, connected portions of the workspace. This

occurs when the desired workspace extends beyond the reachable workspace where s(p,x) is equal to 0.

Efficiency is improved by augmenting the condition index with a different function for unreachable points

s´(p,x) which assigns a value of 0 to a position on the boundary of the reachable workspace and a value of

-1 to a position infinitely far from it (5.28). The augmented condition index s´´(p,x) (5.29) is still a

normalized index since its magnitude is less than or equal to unity (5.30) with positive values (5.27) for

reachable positions and negative values (5.28) for unreachable positions.

Since s´´(p,x) can have either a positive or a negative value, the initialization step (5.13) must be replaced

with (5.31) but the remainder of the algorithm is compatible.

Two optimizations are performed, both with w=10, ∆w=0.1 and ω=200π (100 Hz) but searching two

different parameter spaces. The first optimization (parameter space A) attempts to find a design that is both

s p x,( ) 1
1 σ̃ D p x,( )( )+
-------------------------------------= (5.27)

s'' p x,( ) 1…1–{ }∈

(5.28)

(5.29)

(5.30)

s' p x,( ) 1
1 distance from w/s+
---------------------------------------------------- 1–=

s'' p x,( )
s p x,( ) if position is reachable

s' p x,( ) otherwise



=

(5.31)Set i 0= ŝ0 1–=,
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dynamically and kinematically favourable by picking the dynamic optimum from the kinematic optima

described in Figure 5.7. There is only one free parameter r while all other geometric parameters (l1, l2,5 &

l3,4) are chosen as a function of r from Figure 5.7. Although this parameter space is very small, it ensures a

kinematic GII that is no less that 0.3. The second optimization (parameter space B) includes all geometric

combinations searched during the kinematic optimizations so all four geometric design parameters l1, l2,5,

l3,4 and r are free. Note that although a trivial result is obtained when r is free during kinematic

optimization, this does not occur during dynamic optimization. The two parameter spaces and optimum

solutions are shown in Table 5.3.

Parameter space A has a narrow scope but guarantees a kinematically favourable solution. Parameter space

B ignores kinematic conditioning but results in the dynamic global optimum. In order to decide which

solution is most favourable overall, the two are compared by the sensitivity analysis in Table 5.4. Since

both solutions have similar dynamic performance but solution A has significantly better kinematic

performance, solution A (l1=1.6, l2,5=7.6, l3,4=9.8, r=10.4) is concluded to be the best overall design.

Table 5.3: Design Parameter Search Space and Inertial Optimum

Parameter Space A

Parameter Min. Val. Max. Val. Resolution Optimum

l1 from Figure 5.7 1.6

l2,5 from Figure 5.7 7.6

l3,4 from Figure 5.7 9.8

r -25 25 0.2 10.4

Parameter Space B

Parameter Min. Val. Max. Val. Resolution Optimum

l1 0 15 0.2 0.4

l2,5 5 30 0.2 7.2

l3,4 5 30 0.2 8.2

r -25 25 0.2 -8.6

Table 5.4: Sensitivity Analysis of Kinematic and Inertial Conditioning

Kinematic GII Maximum Inertia Index

Value % Drop Value % Drop

Solution A 0.366 n/a 0.896 -3.6%

Solution B 0.246 -32.8% 0.929 n/a
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Special purpose robots such as haptic interfaces are hampered by large changes is singular values as well

as by sudden changes in singular values. Smoothness is checked as a secondary measure for the optimal

design by plotting the minimum and maximum singular values of both the Jacobian and mass matrix over

the workspace. As seen in Figure 5.8, they are both smooth and even have regions of perfect local isotropy

(i.e. intersection of minimum and maximum singular values).

5.4 Design of a 6-DOF Stewart Platform

The GII culling algorithm is next used to attempt a higher dimensional design optimization involving the

6-DOF Stewart Platform manipulator shown in Figure 5.9.

The manipulator is designed by exploring combinations of the design parameters l1, l6, l7, η1=η2=η and

the ratio l6/l8=l7/l9=L. The workspace is a cubic volume with all sides of length 10 cm centred 25 cm above

the centre of the base. The range of orientations includes a solid angle of 30˚ traced by the  axis of the

platform coordinate frame combined with all rotations of up to 30˚ about that axis (see Appendix B).

Figure 5.8: Singular Value Plots for the Jacobian and Mass Matrix
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Symmetry of the workspace about the  plane is used to reduce the number of geometric robot

parameters by imposing the same symmetry upon the robot. The distances between the centre of the

platform and the left and right pairs of actuators are equal (l7) and the platform is shaped similarly to the

base but is scaled by the ratio L. For the purposes of this example, the physical units of the Jacobian are

normalized using a reasonable task-space torque/force scale factor of 12cm in the ST matrix. The kinematic

GII is optimized using the discrete parameter space shown in Table 5.5 and the discrete workspace shown

in Table 5.6.

The optimum parameters shown in Table 5.5 produce a GII value of 0.281. To see if the result is sensitive

to sample spacing, the discretization resolution is halved for all parameters and workspace dimensions and

the optimization is repeated. A GII of 0.285 results from the parameters l1=17, l6=l7=10, η=120˚ and

L=0.7. Since the GII fluctuates by only 1.4% and the optimum parameters differ by a maximum of only

3%, it is concluded that the original resolution is adequate and that little improvement can be expected in

terms of a better (parameter space resolution) or more trustworthy (workspace resolution) solution from

reducing the sample spacing.

Table 5.5: Design Parameter Search Space for the Stewart Platform

Parameter Minimum Maximum Resolution Optimum

l1 1 20 0.5 16.5

l6 1 20 0.5 10.0

l7 1 20 0.5 10.0

L 0.5 1.5 0.1 0.7

η 110° 130° 1° 118

Table 5.6: Workspace of the Stewart Platform

Dimension Minimum Maximum Resolution Total

Translation

i axis 0 5 0.625 9

j axis -5 5 0.625 17

k axis -5 5 0.625 17

Rotation

i, j axes Uniformly Sampled Solid Angle 168

k axis -30˚ 30˚ 5 13

jk
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5.5 Efficiency of the Culling Algorithm

The culling algorithm belongs to the branch and bound family of optimization algorithms where all bounds

are determined by explicit function evaluations. It avoids redundant evaluations by eliminating parameters

that are shown to be sub-optimal and, therefore, always converges to a global optimum within the

discretized parameter space. Each loop iteration removes at least one parameter from contention so the

number of potential loop iterations is bounded by the dimension of the parameter space and the stopping

criterion is always satisfied in finite time. A worst case scenario of no culling whatsoever results in an

exhaustive global search. As with most optimization algorithms, efficiency depends on the objective

function and initial conditions. While the algorithm makes no efficiency guarantees, experience with robot

design problems has consistently shown dramatic improvement over a global search with low sensitivity to

initial conditions. Table 5.7 compares the number of objective function evaluations performed by the

culling algorithm to those required by a global search for the optimizations described in this paper. Notice

that efficiency tends to increase with larger parameter spaces.

The algorithm is demonstrated to be effective at solving both modest (i.e. few dimensions) and complex

(i.e. many dimensions) problems. An example involving the Stewart Platform with a workspace containing

over 5 million elements and a parameter space containing over 13 million elements resulted in an effort

reduction of over 6 orders of magnitude over a global search. This calculation which took less than 6 hours

to solve on a Silicon Graphics O2 workstation using culling is estimated to require over 1,200 years to

solve by a global search using a similar machine. By looking at the severity of culling during each loop

iteration, we can identify where most of the computation effort takes place. The Stewart Platform

optimization described in Table 5.5 and Table 5.6 was solved in 5 loop iterations. Table 5.8 shows for each

loop iteration the number of parameters initially present, the number of parameters culled, the maximum

number of objective function evaluations required to update the singular value upper and lower bounds of

all remaining parameters and the number of objective function evaluations required to search all

A. Typical ratio for each r value

Table 5.7: Comparison of Computational Effort for Culling and Global Search

Optimization Workspace
Size

Param Space
Size

Global Search :
Culling Ratio

Table 5.1 1.02×104 2.66×107 3670 : 1

Table 5.2 5151 1.21×106 1910 : 1A

Table 5.3 A 5151 251 82 : 1

Table 5.3 B 5151 3.03×108 4440 : 1

Table 5.5 5.68×106 1.37×107 1.79×106 : 1
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workspace locations of the candidate parameter. Note that because the GII culling algorithm was used, up

to two parameter evaluations (two different workspace locations for each parameter) can occur during each

loop iteration.

It is, however, possible to skip equations (5.6) and/or (5.18) so the number of total parameter space

evaluations are bounded from below by the number of parameters in parameter space P0. The minimum,

maximum and actual number of calculations that took place are shown in Table 5.9.

Computational effort is shared evenly between parameter space and workspace searches. Parameter space

searches leave little room for improvement since an average of only one or two positions are visited for

each parameter but workspace searches might benefit from a different, perhaps stochastic, searching

strategy. For example, workspace positions could be visited in steps (5.4) and (5.16) in a random order,

stopping when  which identifies pi as suboptimal. If, however, this condition is never met, the

workspace search can only be terminated after an exhaustive search has been completed so that the

guarantee of global optimality is not compromised. Since the  and/or  produced from a truncated

search are not expected to be as good as those produced by an exhaustive search, culling is likely to be less

severe after the subsequent parameter space search but the net gain from truncating the workspace search

may exceed the net loss from the reduction in parameter culling.

Table 5.8: Computational Effort in Each Culling Loop

Loop
Number

Number of
Parameters

Parameters
Culled

Parameter
Evaluations

Workspace
Evaluations

Total
Evaluations

0 13,702,689 12,498,014 27,405,378 5,680,584 33,085,962

1 1,204,675 1,204,049 2,409,350 5,680,584 8,089,934

2 626 353 1,252 5,680,584 5,681,836

3 273 271 546 5,680,584 5,681,130

4 2 1 4 5,680,584 5,680,588

5 1 0 0 0 0

Total n/a 13,702,688 29,816,530 28,402,920 58,219,450

Table 5.9: Number of Objective Function Evaluations

Parameter
Evaluations

Workspace
Evaluations

Total
Evaluations

Minimum 1.37×107 2.84×107 4.21×107

Maximum 2.98×107 2.84×107 5.82×107

Actual 1.52×107 2.84×107 4.36×107

ŝi 1+ ŝi<

x̃i x
˜ i
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To determine sensitivity to initial conditions, the Stewart Platform optimization was repeated two more

times, once with the initial condition set to the optimum solution from Table 5.5 and again with the initial

condition set to the parameter farthest from the optimal solution (i.e. l1=1.0, l6=l7=20.0, η=130˚ and

L=1.5). The number of function evaluations resulting from each of the three trials is presented in Table

5.10 and shows that a good first guess reduced computational effort by 12.7% over the mean value. One

way of obtaining a good first guess is to increase the sample spacing and perform a coarse optimization of

the device. The optimization of the Stewart Platform with double the original sample spacing that was

described earlier required 8.77×105 function evaluations to complete. Adding this initial investment to the

required computational effort when starting from the optimal solution reduces its 12.7% gross effort

reduction to a 9.9% net effort reduction over the mean value. Since the effort reduction from having a good

starting point is only expected to be in the neighborhood of 10%, it is only practical to pursue when the

problem is very large and is expected to take a long time to complete. Otherwise, it may be more practical

to choose the starting point by making an educated guess at a favourable design parameter value.

Due to the low computational overhead of the culling algorithm, almost all of the processing power is

consumed by objective function evaluations. The effort required to calculate a Jacobian and its singular

values overwhelms the few conditional checks and assignment statements associated with the algorithm

itself, especially in the case of a 6-DOF device. Since the culling algorithm performs blocks of function

evaluations for large sets of parameters and positions where the order of evaluations is of no importance,

the algorithm is easily adapted to machines with parallel processing capabilities. One could reasonably

expect a near linear relationship between completion time and the number of available processors.

5.6 Assumptions and Limitations of the Culling Algorithm

Although the culling algorithm demonstrates high levels of efficiency when used to solve robot design

problems, it is not without its limitations. As pointed out earlier, it does not make any performance

guarantees. Its efficiency depends on the assumption that many design parameters will behave similarly at

common configurations. For example, if one design parameter is known to perform poorly at a given

Table 5.10: Sensitivity to Initial Conditions

Initial Conditions Number of
Evaluations

% Change
From Mean

Arbitrary 4.36×107 +4.6%

Optimum 3.64×107 -12.7%

Farthest from Optimum 4.52×107 +8.4%

Mean 4.17×107 0%
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position in the workspace, it is expect that other parameters in the search domain will also behave poorly at

that same position. This assumption tends to hold in robot design problems. A further assumption is that

the performance associated with a design parameter is not expected to be uniform over a large continuous

range of positions. As pointed out in Section 5.3, this is an assumption that breaks down when the desired

workspace extends beyond the reachable limit of the robot and design parameter. However, this limitation

is overcome by defining a piecewise objective function such as s´´(p,x) in equation (5.29) which uses

different measures for evaluating reachable and unreachable (singular) positions. Note that both of these

assumptions are necessary for the culling algorithm to be efficient but neither are necessary for it to work.

Another limitation of the culling algorithm is that it is only applicable to minimax design problems. It is

not useful for designing a device with a degenerate workspace (i.e. comprised of just one position) since

this reduces the culling algorithm to a global search. A further limitation of the culling algorithm is that it

is a discrete algorithm so the real global optimum could be overlooked if the parameters and/or workspace

are discretized too coarsely. Of course, the severity of this limitation is dependent on the number of

parameters and the computing resources that are available.

5.7 Concluding Remarks

An optimization algorithm has been described which belongs to the branch-and-bound family of

optimization algorithms and is specifically designed for GII and minimax optimization problems. It

repeatedly uses the worst configuration of one parameter to eliminate others from contention until only the

optimum remains. The approach guarantees convergence, finite time termination and a global result and

can be used with objective functions that are nonlinear, non-differentiable, discontinuous, non-convex, or

unbounded. Although it could theoretically perform the equivalent of a global search, it has consistently

demonstrated substantial performance improvements over a global search when applied to practical robot

design problems. One design example that took just under 6 hours to solve on a Silicon Graphics O2

workstation using the culling algorithm is estimated to require over 1,200 years to solve by a global search

on a similar machine. The culling algorithm, therefore, allows unsophisticated computer hardware to solve

high dimensional problems that would otherwise be too computationally demanding to attempt.

The GII and culling algorithm have been presented as a means of optimizing a robot design for a given

application. These tools are applied to the design of a haptic interface. In the following chapter, an

appropriate design criteria for a haptic interface is established and tangible performance specifications are

obtained through biomechanical studies.
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Chapter 6

6Haptic Interface Performance Requirements

6.1 Introduction

Haptic interfaces present a difficult mechanical design problem. It is just as important for a haptic device to

be light and backdriveable as it is for it to be stiff and unyielding. This has led to much debate over what

the most effective performance goal for a haptic interface is. Arguments have been made for kinematic

[25] and inertial [48] isotropy, impedance [42], acceleration [64], stability [9] and so on. In this chapter, a

number of performance objectives are discussed. Models describing the interaction between a human hand

and a haptic device are used to motivate a design criteria for an impedance type haptic interface and

biomechanical studies are conducted to obtain target values. These values are used in Chapter 7 to carry

out a practical design example.

This chapter is organized as follows. In Section 6.2 system models are used to motivate a haptic interface

design criteria. In Section 6.3 biomechanical experiments are conducted to obtain the static force and

velocity capabilities of the human hand. In Section 6.4 some concluding remarks are made.

6.2 Performance Objectives

Many design specifications are relevant to the performance of a haptic interface. They include workspace

size, position bandwidth, force magnitude, force bandwidth, velocity, acceleration, effective mass,

accuracy, and so on. A survey of proposed values for many of these design specifications can be found in

Section 2.4. Most of these values are derived from the inherent capabilities of a human hand since this is

the environment of a haptic interface.

Physically, a human hand is comprised of a skeletal structure which presents a position dependent

impedance Zs and muscles which can either contract to apply a force fh or stiffen to present an impedance

Zm to its environment. In Figure 6.1, the total hand impedance Zh is the combination of voluntary muscular

impedance Zm and non-voluntary skeletal impedance Zs. Its combined behaviour is adapted by the nervous

system to simulate a force source when interacting with a stiff environment (e.g. an open-circuit), a

velocity source when navigating a compliant environment (e.g. a short-circuit) and an impedance when

restraining a non-passive environment (e.g. an active source).
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A haptic interface displays tactile information by presenting an impedance to the human hand. Of course,

impedance must be varied in an intelligent fashion so the device includes active sources but to ensure

stability, these sources can only be used to dissipate energy and must not supply any. Two types of devices

can be used to implement an intelligent variable impedance, an impedance device and an admittance

device. An impedance device is easily backdriveable in its passive state and typically uses direct drive or

moderately geared actuators to adjust its effective impedance by applying a force based on position and

velocity. An admittance device is the dual of an impedance device. It is not backdriveable in its passive

state and typically uses highly geared actuators to adjusts its effective impedance by inducing motion

based on applied force.

An impedance device senses position s-1va, velocity va and possibly acceleration sva and responds with a

force fa comprised of an active force fr from the motors and a passive force from the mechanical

impedance Zr(s) of the device. The effective impedance experienced by the hand Ze(s) (6.1) may contain

effective mass Me, damping Be and stiffness Ke terms (6.3) which are contributed in part by the mass Mr

and damping Br of the robot mechanism (6.2).

An admittance device senses applied force fa and responds by inducing a velocity va which is comprised of

both active velocity vr from the motors and passive velocity due to the robot’s non-zero mechanical

admittance Yr(s). The total effective admittance experienced by the hand Ye(s) is shown in (6.4).

Figure 6.1: Human Hand Model
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Combining the human hand model with the haptic device models results in the haptic systems shown in

Figure 6.2 where Zc(s) in (6.5) and Yc(s) in (6.6) are the impedance and admittance simulated through

active control.

The high inertia and friction that exists in a highly geared admittance device inhibits high frequency

transitions (i.e. switching between free motion and hard contact) and is difficult to actively compensate

resulting in low transparency and sluggish free motion that can be tiring during prolonged use. Therefore,

we are more interested here in design issues related to impedance devices.

As discussed by Colgate and Schenkel [9], it is difficult to actively compensate for the physical dynamics

of a mechanical system without compromising stability. Therefore, a haptic device’s minimum impedance

is decreased by a reduction in mechanical impedance. Salcudean and Vlaar [64] also show that even when

high static forces are not available, high stiffnesses can be simulated by inducing high acceleration.

Therefore, it follows that both high and low impedance emulation are improved and the impedance range

is widened when mechanical impedance is reduced. Reducing mechanical impedance can be done in a

number of ways that do not necessarily involve kinematic design and the mass matrix. It may in fact be

sufficient to use a parallel device, light weight materials, low friction joints and counterbalances so that

kinematic design can be focussed on other criteria such as force.

From Figure 6.2, it is apparent that if Zr is sufficiently small, an impedance device’s performance is

dictated by its force capabilities. Since actuators can always be scaled to meet any force magnitude

requirements, it does not make much sense to maximize force through kinematic design. It is more

Zc s( ) vr f a⁄=

Y c s( ) f r va⁄=

(6.5)

(6.6)

Figure 6.2: Haptic Systems
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practical to focus instead on isotropy. Since a device is only as good as its worst-case performance inside

its workspace, improving isotropy strengthens its weaknesses and allows smaller actuators to be used. This

results in lower rotor inertia, consistently stiff virtual environments, improved compactness and lower cost.

Force isotropy is achieved by making the Jacobian transpose JT(x) isotropic.

A similar argument can be made for measurement accuracy. Sensor resolution can always be increased to

meet minimum standards but a device that is kinematically isotropic will tolerate coarser sensors and

exhibit greater consistency with a smaller price tag and footprint. Since the Jacobian matrix J(x) is a

velocity transformation that also indicates proximity to singular positions, both position and velocity

measurements are improved by making J(x) isotropic, thereby improving both virtual stiffness and

damping. Note that an isotropic Jacobian J(x) does not imply an isotropic Jacobian transpose JT(x) since

they are not scaled in the same way (see Chapter 4).

For the impedance device designed here, static force isotropy is used as the criteria for selecting geometric

and actuator design parameters, kinematic isotropy is used as the criteria for selecting sensor resolutions

and mechanical impedance is minimized by considering devices with primarily base mounted actuators

and by using low impedance components as described above.

6.3 Biomechanical Experiments

For tangible static force requirements, the maximum force/torque capabilities of the human hand are

needed. While existing data on maximum sustainable force is available in human-factors and haptic

interface literature, it is not easily applied to haptics design. For example, in [1], [2] and [87] maximum

forces and torques are measured using a hammer grip. This type of grip enables larger force capabilities

but less precision than the pencil grip preferred for a desktop haptic device. Other maximum hand

force/torque values can be found in [4] and [51] but they do not distinguish between capabilities in

different directions. To obtain this information, a biomechanical experiment was conducted.

The experiment involved 20 participants (12 males, 8 females) ranging between 20-60 years and 45-90 Kg.

Subjects included right and left handed people from a variety of disciplines including students, professors,

engineers, secretaries and athletes. The test apparatus was an aluminum rod with the same diameter as a

standard wooden pencil (0.63cm) fixed at each end to a 6-axis force/torque sensor. The rod was oriented

vertically, covered with athletic tape to improve traction and mounted in front of an armrest to reduce the

force contribution of the arm and shoulder. A photograph of the test apparatus is shown in Figure 6.3.
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Subjects grasped the rod using a pencil grip and were instructed to push, pull and twist the rod in all six

directions using a consistent amount of effort. They alternately applied static (push and hold) force/torque

in both the positive and negative directions and dynamic (back and forth) force/torque along each of the 6

axes. A typical data set obtained from the force/torque sensors is shown in Figure 6.4 where F and M are

forces and moments about axes ,  and .

The task was performed twice by each subject, the first time with high exertion and the second time with

medium exertion. Forces and torques were averaged by calculating the RMS values of a one second

sampling period with forces measured in N and moments measured in Ncm. The highest and lowest 10% of

Figure 6.3: Force/Torque Test Apparatus
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the RMS values were removed to account for experimental error and the remaining 80% were averaged.

The mean and standard deviation for both the static and dynamic trials are shown in Figure 6.5.

Since the relative results (normalized with respect to force about the  axis, ) of the static and dynamic

tests differ by less than 10% and have reasonable standard deviations, the data is assumed to be reliable.

Averaging the static and dynamic values produces the relative values shown in Table 6.1. Note that the

forces and torque that were measured during the medium exertion trials were approximately 50% smaller

than those measured during the high exertion trials.

To obtain tangible position/velocity sensing requirements, the maximum velocity capabilities of the human

hand were also identified. This involved a biomechanical experiment that measured the maximum

achievable frequencies of periodic linear and angular motions of different amplitudes. Each experiment

involved 10 participants (5 males, 5 females) from a distribution of ages, weights and professions similar

to in the force/torque experiment. The test apparatus for the translational experiment was a pencil and

paper with six rectangles drawn on it. The rectangles were 6cm high and ranged in width from 0.15cm to

16cm. Subjects were asked to shade in the rectangles as fast as possible while their hand trajectory was

recorded by a position tracking device (BirdTM magnetic sensor). The test apparatus for the rotational

experiment was a low friction potentiometer connected to a key shaped handle through a universal joint.

The trajectory was recorded and displayed in real time on a CRT with visual upper and lower amplitude

Table 6.1: Relative Force/Torque Capabilities of the Human Hand

i axis j axis k axis

Force / Fi 1.0 1.0 1.5

Torque / Fi 3.6 cm 0.5 cm 3.9 cm

Figure 6.5: Force/Torque Test Values for High Exertion Trials
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bounds. Subjects were asked to oscillate between the bounds as quickly as possible and were free to orient

the test apparatus to maximize comfort and speed. Photographs of the two test apparatus are shown in

Figure 6.6 and Figure 6.7. Note that although the rotational test apparatus has a flat handle, it is held with a

grip that is very similar to a pencil grip.

Figure 6.6: Translational Velocity Test Apparatus

Figure 6.7: Rotational Velocity Test Apparatus
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A typical data set obtained from one trial of the rotation experiment is shown in Figure 6.8. Translational

data has a similar appearance and is not shown.

The trials were performed three times by each subject. The trajectories were analyzed to obtain the

dominant frequency component and the results of all trials were averaged. Maximum velocity was

computed by assuming a sinusoidal trajectory as shown in equations (6.7) through (6.9) and is plotted in

Figure 6.9.

Figure 6.8: Typical Angular Velocity Data From One Trial
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Figure 6.9 provides the maximum speed that the human hand can achieve inside a workspace of up to

16cm in translation and 180˚ in rotation.

6.4 Concluding Remarks

In this chapter, it is reasoned that an impedance type haptic interface will perform best if it has low

mechanical impedance and isotropic static force. It is proposed that impedance can be made sufficiently

low by selecting appropriate components so that the kinematic design can be focussed on static force

isotropy. It is also proposed that sensor resolutions can be chosen afterwards to obtain isotropic velocity

sensing capabilities for wider stability margins. Biomechanical studies measuring the maximum force and

velocity capabilities of the human hand are conducted to provide target values for a practical design

example.

In the following chapter, this data is used in conjunction with the design procedure described in Chapter 3

through Chapter 5 to compare three candidate manipulators for use as a haptic pen. The preferred device is

a novel hybrid manipulator called the Twin-Pantograph.

Figure 6.9: Velocity Test Results
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Chapter 7

7Design Optimization of a Haptic Pen

7.1 Introduction

In Chapter 6 a design specification has been proposed for a haptic interface which includes low mechanical

impedance and isotropic static forces. The low impedance requirement rules out the use of a serial

manipulator but there are a number of parallel and hybrid devices that may be suitable. This chapter

attempts to determine which one is the most suitable by comparing three candidates in terms of workspace

size and static force isotropy using the design procedure described in Chapter 3 through Chapter 5. One of

the candidates is a novel 6-DOF hybrid manipulator call the Twin-Pantograph that is introduced here. The

Twin-Pantograph has many of the advantages of a parallel manipulator such as high stiffness and low mass

but it also has a larger workspace and more isotropic static force capabilities. Therefore, it is selected as the

basis for a prototype haptic pen. Since a sufficiently light actuator is currently unavailable for actuating roll

about the pen axis, that degree-of-freedom is made passive and the prototype is re-designed for 5-DOF

operation.

This chapter is organized as follows. In Section 7.2 the Twin-Pantograph is introduced and its performance

is compared to two common parallel manipulators. In Section 7.3 the Twin-Pantographs is implemented as

a haptic pen with passive roll about the pen axis and a redundant base actuator. In Section 7.4 some

concluding remarks are made.

7.2 Device Comparison

The GII, scaling matrices, culling algorithm and workspace discretization technique are applied to the

design of an impedance type haptic interface. Only robots with low effective mass (i.e. non-serial robots)

are considered to ensure low mechanical impedance and design parameters are chosen to maximize static

force isotropy. Three robots are considered including the Stewart Platform (see Figure 5.9), the Inoue

Platform (see Figure 7.1) and a novel hybrid robot called the Twin-Pantograph (see Figure 7.2).
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The Twin-Pantograph uses two 3-DOF 5-bar linkages that are actuated about their folding or waist joints

(q1, q4) to provide five degrees of freedom (3 translation, 2 rotation) to a cylindrical end-effector. The sixth

degree of freedom (roll) is provided by a series actuator (q7) mounted to one of the 5-bar linkages. While

many permutations of this device exist (e.g. the pantographs could be replaced by prismatic actuators, q7

could be replaced by a lead-screw mechanism as in [30], etc.), only the version shown in Figure 7.2 is

considered here.

The Twin-Pantograph is a 6-DOF robot with seven actuators. One waist actuator (q1 or q4) is redundant but

eliminates a singularity that would occur when the platform axis lies in the plane of the five-bar linkage

with a passive waist1. It can be shown that the only remaining singular configurations occur when (i) a

pantograph is in a singular configuration (Figure 7.3a-c), (ii) the tip of a pantograph intersects its own

waist axis (Figure 7.3c-d), (iii) a pantograph is at its workspace limit or (iv) the tips of both pantographs

align with a forearm of a pantograph (i.e. a spherical wrist singularity). The pantograph singularities are,

however, not particularly problematic since, by design, the singularity in Figure 7.3a is physically

impossible if l1 > l2 as are the singularities in Figure 7.3b-d if l3 > (l1 + l2).

1. The same redundant actuation and sensing approach can be used with the Inoue platform.

Figure 7.1: 6-DOF Inoue Platform
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Figure 7.2: 6-DOF Twin-Pantograph
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Although the Twin-Pantograph uses a series actuator to roll its end-effector, the torque requirements of this

actuator are small (see Table 6.1) so its inertial contribution is not expected to exceed that of the two

additional base to platform links of the parallel platforms.

First, the semi-dextrous workspaces of the three devices are compared. A point belongs to such a semi-

dextrous workspace if the platform origin  can be placed there and rolled, pitched and yawed ±30˚. For

this comparison, the devices are given similar footprints and favourable geometries (i.e. similar forearm

and upper arm lengths, singularity avoidance as described above and platforms half as large as the bases as

suggested in [42]). The lengths q of the prismatic actuators are allowed to range between 9≤q≤18 and 5-bar

linkage geometries are chosen to provide a similar reach. The resulting semi-dextrous workspaces are

shown in Figure 7.4a-c for the Stewart Platform, Inoue Platform and Twin-Pantograph respectively.

The workspaces are all similar in size except that the Stewart Platform’s has a large void in its centre due to

the retraction limits of its prismatic actuators so its volume is much less than the others. If the U-joints

between the 5-bar linkages and platforms of the Inoue Platform and Twin-Pantograph are constrained to

±85˚ to avoid a spherical wrist singularity, their workspaces are reduced to those shown in Figure 7.5a-b

respectively. The Twin-Pantograph’s workspace is clearly larger.

Figure 7.3: Singular Positions of a 3-DOF Five-Bar Linkage
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Figure 7.4: Semi-Dextrous Workspaces of 6-DOF Manipulators
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Next, static force isotropy is compared by kinematically optimizing JT(x) for each device. For this

comparison, the Twin-Pantograph’s redundant (q4) actuator is replaced by a passive joint to eliminate any

unfair advantage that may result from redundant actuation so all three manipulators have square (i.e. 6×6)

Jacobian matrices.

From Table 2.1, a reasonable workspace size for a haptic device is 16cm(i-axis) × 10cm(j,k-axes) × ±45˚.

Since the parallel robots would have difficulty reaching a ±45˚ rotational workspace, it is reduced to ±30˚

for this comparison. The workspace centre is placed 25cm (measured along the k axis) from the base origin

. This avoids a trivial result since isotropy always improves when the workspace is moved further from

the base resulting in infinitely large robots. The 6-DOF workspaces are discretized as shown in Table 7.1.

Since the parallel devices are symmetric about the jk plane, half of the cartesian workspace is redundant

and will not affect the outcome. To eliminate unnecessary computations, the minimum position on the i

axis is set to 0cm so that the total number of discrete samples is 2,653,020. The Twin-Pantograph, on the

other hand, is not symmetric because of its wrist actuator q7 which operates relative to a pantograph

forearm so its entire workspace is considered.

Table 7.1: Discrete Workspaces of the 6-DOF Manipulators

Position

Axis Min Max Step Total

i -8 cm 8 cm 1.0 cm 17

j -5 cm 5 cm 1.0 cm 11

k -5 cm 5 cm 1.0 cm 11

Orientation

Axis Min Max Step Total

i,k -30˚ 30˚ variable 168

j -30˚ 30˚ 5˚ 13

Total discrete samples 4,492,488

Figure 7.5: Semi-Dextrous Workspaces with U-Joint Bend Angle Constraint
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The number of angular samples is computed from equation (B.3) using ki=17, kj=kk=11 and dt=3. For

rotations about the i and k axes, kr=162 for dr=2 is rounded up to Kr=168 for N=7 from equation (B.4).

For rotations about the j axis, kr=13 for dr=1.

Although additional geometric parameters to those shown in Figure 5.9, Figure 7.1 and Figure 7.2 could be

defined, some symmetries are introduced to keep the number of parameters manageable and all devices are

allotted two actuator scale factors, Q1 and Q2. For the Stewart and Inoue Platforms, Q1 is applied to q3 and

q6 and Q2 is applied to q4 and q5 since the devices are symmetric about the jk plane but not about the ik

plane. For the Twin-Pantograph, Q1 is applied to q1 and Q2 is applied to q7 since the waist (q1), wrist (q7)

and shoulder (q2, q3, q5, q6) joints have the most dissimilar torque demands. The resulting joint-space

scaling matrices SJ are shown in (7.1) for the Twin-Pantograph and in (7.2) for the parallel platforms.

Since a haptic interface must counteract hand forces, the maximum force/torque capabilities reported in

Table 6.1 are used in the ST matrix (7.3). Since these forces are relative to the subject’s hand, the Jacobian

is expressed in the end-effector coordinate frame prior to scaling.

Due to practical limits (processing speed of a SGI O2 running IRIX) the design parameter space is limited

to 50 million elements. It is, therefore, possible to search a broader range or use finer sample spacing when

there are fewer design parameters. Since the Twin-Pantograph has 7 free design parameters (l1 - l4, l6, Q1,

Q2), the Stewart Platform has 9 (l1, l4 - l7, η1, η2, Q1, Q2) and the Inoue Platform has 11 (l1 - l7, η1, η2, Q1,

Q2), search ranges and sample spacings are assigned accordingly. The parameter spaces and optimal

solutions are shown in Table 7.2 through Table 7.4.

(7.1)

(7.2)

SJ Diag Q1 1 1 1 1 Q2[ ]( )=

SJ Diag 1 1 Q1 Q2 Q2 Q1[ ]( )=

(7.3)ST Diag 1 1 1.5 3.6 0.5 3.9[ ]( )=



66

Table 7.2: Design Parameter Search Space for the Twin-Pantograph

Param Min Max Step Total Optimum

l1 0.5 5 0.5 10 3.0

l2 10.0 25.0 1.0 16 16.0

l3 15.0 30.0 1.0 16 22.0

l4 1.0 10.0 1.0 10 2.0

l6 0.5 6.0 0.5 12 3.0

Q1 0.6 2.0 0.1 15 1.9

Q2 0.005 0.05 0.005 10 0.03

Total discrete samples 46,080,000

GII of optimum solution 0.327

Table 7.3: Design Parameter Search Space for the Stewart Platform

Param Min Max Step Total Optimum

l1 4.0 16.0 2.0 7 10.0

l4 2.0 14.0 2.0 7 6.0

l5 2.0 14.0 2.0 7 6.0

l6 1.0 7.0 1.0 7 3.0

l7 1.0 7.0 1.0 7 4.0

η1 110˚ 140˚ 5˚ 7 120˚

η2 140˚ 175˚ 5˚ 8 170˚

Q1 0.3 1.5 0.2 7 0.5

Q2 0.3 1.5 0.2 7 0.9

Total discrete samples 46,118,408

GII of optimum solution 0.096
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The optimum GIIs of the Twin-Pantograph, Stewart Platform and Inoue Platform are 0.327, 0.096 and

0.215 respectively. The static force GII of the Twin-Pantograph is 3.4 and 1.5 times larger than the GIIs of

the parallel platforms. The Twin-Pantograph is, therefore, considerably more isotropic than the parallel

platforms in terms of the static force requirements of a haptic interface.

7.3 Design of a Haptic Pen

Since the Twin-Pantograph has a larger semi-dextrous workspace and can produce more isotropic static

forces than the parallel platforms, it is the most viable candidate. As predicted, the serial wrist actuator

should be very small (i.e. 1/63 the torque of the waist actuator) according to Table 7.2. A light-weight,

actuator is under development for this purpose but in the meantime, this joint is made passive. This slightly

simplified device (5 active DOF, 1 passive DOF) lends itself well to applications which do not rely on

reaction torques from axial rotations such as a surgical probe or an excavator bucket.

To fully exploit the device’s motion range, the rotational workspace is extended to ±45˚ and to further

enhance its static force isotropy, the redundant waist actuator (q4) is reintroduced. With only 5 active

degrees-of-freedom, the Twin-Pantograph is symmetric about both the jk plane and the ik plane so only

one quarter of its translational workspace needs to be considered to rigorously evaluate its performance.

This allows the workspace to be discretized more finely as shown in Table 7.5.

Table 7.4: Design Parameter Search Space for the Inoue Platform

Param Min Max Step Total Optimum

l1 1.0 5.0 1.0 5 2.0

l2 12.0 22.0 2.0 6 16.0

l3 20.0 30.0 2.0 6 24.0

l4 2.0 8.0 2.0 4 2.0

l5 2.0 8.0 2.0 4 2.0

l6 1.0 5.0 1.0 5 2.0

l7 1.0 5.0 1.0 5 4.0

η1 100˚ 140˚ 10˚ 5 120˚

η2 130˚ 170˚ 10˚ 5 170˚

Q1 0.5 1.5 0.25 5 0.75

Q2 0.5 1.5 0.25 5 0.75

Total discrete samples 45,000,000

GII of optimum solution 0.215
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Since a singularity is eliminated by introducing the redundant waist actuator, isotropy always improves

with increased base length (l4) since this increases the distance between the workspace and the actuators.

Therefore, l4 is fixed at 8.0 cm to keep the height of the device reasonable while providing adequate

clearance for the shoulder actuators. The resulting device has 5 free design parameters which are shown

with the optimal solution in Table 7.6. Note that l1 is assigned a minimum value of 2.4 cm to account for

the width of the shoulder actuators and l6 is assigned a minimum length of 7.0 cm so that the end-effector

can be held comfortably by a human hand.

The workspace position (i.e. 25cm away from the base) was chosen somewhat arbitrarily. Increasing this

distance is known to improve isotropy but also increases the mass and footprint of the device. To see how

performance is affected by workspace position, the device is optimized for different workspace distances

ranging between 15cm and 40cm. The results are shown in Table 7.7.

Table 7.5: Discrete Workspace of the 5-DOF Twin-Pantograph

Position

Axis Min. Max. Step Total

i 0 cm 8 cm 0.5 cm 17

j 0 cm 5 cm 0.5 cm 11

k -5 cm 5 cm 0.5 cm 21

Orientation

Axis Min. Max. Step Total

i,k -45˚ 45˚ n/a 617

Total discrete samples 2,422,959

Table 7.6: Design Parameter Search Space for the 5-DOF Twin-Pantograph

Dim. Min. Max. Step Total Optimum

l1 2.4 7.0 0.2 24 2.4

l2 10.0 30.0 0.5 41 17.0

l3 15.0 35.0 0.5 41 23.0

l6 7.0 11.0 0.2 21 7.0

Q1 0.5 3.0 0.1 26 1.6

Total discrete samples 22,027,824

GII of optimum solution 0.234
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The position/velocity sensing isotropy is considered next by selecting optimum sensor resolutions for the

designs in Table 7.7. To do this, it is assumed that to maintain a given velocity signal quality, the required

position sensor resolution is inversely proportional to the maximum joint velocity. Therefore, the SJ matrix

in (7.4) is used to find the optimal position sensor resolution ratio between the shoulder and waist joints

(Rw/Rs) and the ST matrix is assigned to the maximum velocity capabilities of the human hand as in (7.5).

From Figure 6.9, a human hand can produce a maximum linear velocity of 500cm/s inside a 16cm

workspace and maximum angular velocity of 30rad/s inside a ± 45  ̊workspace. Since the subjects in the

velocity experiments were allowed to choose the direction that maximized their performance, this data is

applied equally to all directions (7.6), (7.7) producing the ST matrix shown in (7.8).

Scaling the Jacobian J(x) in (7.9) by SJ in (7.4) and ST in (7.8) produces the normalized, scaled Jacobian

 in (7.10).

Table 7.7: Optimum Geometries and GIIs with Different Workspace Distances

Dist. l1 l2 l3 l6 Q1 GII

15 cm 2.4 13.0 16.0 7.0 1.6 0.089

20 cm 2.4 14.5 20.0 7.0 1.7 0.182

25 cm 2.4 17.0 23.0 7.0 1.6 0.234

30 cm 3.6 19.5 27.0 7.0 1.6 0.262

35 cm 3.6 22.5 30.5 7.0 1.6 0.280

40 cm 4.0 25.5 34.5 7.0 1.6 0.292

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

ST Diag 1
v j

vi
----

vk

vi
----

ωi

vi
-----

ωk

vi
------

 
 
 

=

ST Diag 1 1 1 0.06 0.06[ ]( )=

vi v j vk 500 cm= = = s⁄

ωi ωk 30 rad= = s⁄

SJ Diag 1
Rw

Rs
------

Rw

Rs
------ 1

Rw

Rs
------

Rw

Rs
------ 

 =
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Using  (7.10), the optimal encoder resolutions and resultant velocity GIIs for the designs in Table 7.7

are shown in Table 7.8 and the GIIs for both force and velocity are plotted in Figure 7.6.

Figure 7.6 shows a declining improvement in both the force and velocity GII when the workspace is

moved further from the base. Performance is substantially degraded when the workspace is placed less

than 20cm from the base and improvements become marginal when it is placed more than 25cm from the

base. A design based upon a workspace placement between 20-25cm, therefore appears to optimally trade-

off performance with compactness. Note that regardless of workspace position, the waist actuators should

have approximately 1.6 times the torque and 1.6 times the sensor resolution of the shoulder actuators.

7.4 Concluding Remarks

A new 6-DOF hybrid manipulator called the Twin-Pantograph has been introduced. It is stiff and light like

a parallel manipulator but has a much larger workspace, particularly in rotation. All singularities can be

eliminated from its reachable workspace by introducing a redundant base actuator and respecting some

geometric constraints.

The design procedure described in Chapter 3 through Chapter 5 has been used to show that the Twin-

Pantograph also has more isotropic static force capabilities than a Stewart or Inoue platform and is,

Table 7.8: Optimum Position Sensor Resolution Ratios

15 cm 20 cm 25 cm 30 cm 35 cm 40 cm

Rw/Rs 1.63 1.67 1.63 1.64 1.62 1.59

GII 0.105 0.186 0.232 0.269 0.285 0.303

Ĵ x( )

Figure 7.6: Plot of GII vs. Workspace Distance
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therefore, chosen as the basis for the prototype haptic pen. The prototype is designed with passive roll

about the pen axis since a suitable actuator for this particular degree-of-freedom is still under development.

In the next chapter, the 5-DOF Twin-Pantograph haptic pen is evaluated and controlled to mimic three

different virtual environments.
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Chapter 8

8Description, Evaluation and Control of a Haptic Pen

8.1 Introduction

A 5-DOF Twin-Pantograph haptic was designed in Chapter 7. In this chapter, all of the physical aspects of

the prototype system are described. This includes the materials used to build it, the computer hardware and

electronics used to control it, and the graphics system used to display the virtual scene. It also presents a

table of measured performance benchmarks that can be used to compare the device to existing devices

such as the SensAble PHANToM [48], describes the control algorithm that was used to implement the

virtual impedances and shows how the system has been used to emulate three virtual environments

including a virtual pencil, a virtual scalpel and a virtual excavator.

This chapter is organized as follows. Section 8.2 describes the hardware which includes the materials and

components used to construct the haptic pen and the electronic and computer hardware used to control it.

In Section 8.3 performance benchmarks of the haptic pen are measured. In Section 8.4 the control

algorithm is described. In Section 8.5 the simulated virtual environments are described. In Section 8.6 a

hard contact environment is used to evaluate the stability of the system. In Section 8.7 some concluding

remarks are made.

8.2 Hardware

The haptic pen is oriented so that its j axis is vertical. This enhances both ergonomics and versatility since

humans are accustomed to holding pens and pen-like instruments in a near vertical fashion. A photograph

and a schematic of the haptic pen are shown in Figure 8.1.
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In accordance with Chapter 6, the device is constructed to be as light as possible. The 5-bar linkage arms

are cut from 0.82” diameter carbon fibre tubing and the end-effector is cut from 0.28” diameter carbon

fibre tubing. The clevises are machined from magnesium and all other components (i.e. frame, shoulder

motor clamps) are machined from aluminum. Stainless steel counterbalances, mounted behind the

shoulder motors, are adjusted to oppose gravity as much as possible without causing the device to “fall up”

at any position inside its workspace.

The device is made as friction and backlash free as possible by using direct drive motors (i.e. no reduction

mechanisms) and roller bearings in nearly all passive joints including the elbow joints and the axial joints

that interface the universal joints to the 5-bar linkages and end-effector. Each universal joint is equipped

with a passive axial joint on each side to triple its maximum useable bend angle from 30˚ to 90˚. The

universal joints themselves account for the only plain bearings on the robot. They are made from Delrin to

provide negligible friction and backlash.

Two different actuators are used on the robot. Maxon 90W rare earth magnet motors are used at the

shoulder joints and Maxon 80W ferrite magnet motors are used at the waist joints. The 80W motors have

approximately twice the stall torque as the 90W motors and approximately 20 times the rotor inertia. Since

two shoulder motors ride on each waist motor, the large rotor inertia of the waist motors has little impact

on system performance but their higher torque satisfies the design specification of Chapter 7.

Figure 8.1: The Twin-Pantograph Haptic Pen
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Position sensing is handled using 1000 window (i.e. 4000 counts/rev) US Digital optical encoders at each

active joint. Although the design optimization suggests a need for higher resolution position sensors at the

waist joints, this was not economically viable for the prototype. Although both torque and sensing

resolution could be scaled at the waist joints by adding reduction mechanisms, the associated increase in

inertia, friction and backlash is expected to result in a net performance loss.

Encoder data is decoded by a custom built VME decoder board, read by an XVME 200 D/D converter and

processed by a Themis SPARC 5/64 CPU. Analog control signals are output by an XVME 542 D/A

converter into a 6 channel linear amplifier which is fed by a 1000W (40V, 25A) power supply. A

photograph of the Twin-Pantograph haptic pen, VME cage, linear amplifier and power supply is shown in

Figure 8.2.

8.2.1 Optical Decoder Board

An optical decoder board was built to provide an economical means of interpreting the encoder data. It

uses HP HCTL 2016 optical decoder chips to accumulate the transitions of six incremental optical

encoders. The data is latched so that the positions of all six encoders are acquired at the same instant and

clocked out serially to reduce the number of required digital input channels. The serial data of all six

encoders are read in parallel so a total of six digital input channels are required. The board is controlled by

a 4-state state machine using two D flip-flops so only two digital output channels are required. One control

signal advanced the state while the other shifts out the serial data. To calibrate the system, both outputs are

Figure 8.2: The Twin-Pantograph and Associated Hardware
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held high to reset the state machine and counters. A block diagram of the digital circuit is shown in Figure

8.3. A timing diagram for controlling the decoder board and reading in the encoder data is shown in Figure

8.4.

Figure 8.3: Optical Decoder Circuit Block Diagram
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A photograph of the six channel optical decoder board is shown in Figure 8.5 which was designed to be

mounted in a VME chassis.

8.3 Performance

A mass matrix (8.1) is computed numerically for the Twin-Pantograph haptic pen at its home position (i.e.

x,y=0, z=20cm, zero rotation) using Pro/MECHANICATM. Its value is shown in (8.2).

Figure 8.5: The 6-Channel Optical Decoder Board
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The robot specifications in Table 8.1 are either measured directly or derived from the mass and Jacobian

matrices and the actuator and sensor specifications. All values correspond to the robot at its home position

except for unbalanced weight which is a workspace inclusive range. The stiffness and damping coefficients

are obtained using a tuned PD controller at a control frequency of 1KHz with the end-point velocity

computed from low-pass filtered finite difference position readings using the filter described in [81]. The

minimum force is the force required to overcome static friction and the dynamic range is the ratio between

the minimum and peak force/torque capabilities.

8.4 Control

The device is controlled by a VxWorks real-time system. The control software contains two loops, a fast

loop that updates at 1000Hz and a slow loop that updates at 200Hz. The fast loop reads the encoder values,

computes the direct kinematics and velocity, and uses this information to update the state of the virtual

environment. The updated virtual environment computes a desired equivalent impedance Ze (see the

discussion on impedance devices in Chapter 6) which is used to transform the position and velocity into a

desired reaction force. This force is converted into joint torques using J-T which are applied to the actuators

via a linear amplifier. The slow loop recalculates J-T using the most recent position and communicates the

updated position to the graphic display. Although the Sparc 5 CPU is actually under-utilized at these

control frequencies, increasing the clock rate actually degrades performance because the discretization

effect on the filtered finite-difference velocity signal becomes magnified [51].

Table 8.1: Haptic Pen Performance Specifications

Translation Axis Rotation Axis

x y z x z

Workspace ±6cm ±3.75cm ±3.75cm ±45˚ ±45˚

Spatial Resolution 142µm 314µm 175µm 0.122˚ 0.099˚

Minimum F/T 0.022N 0.045N 0.023N 0.19Ncm 0.18Ncm

Continuous F/T 5.0N 3.3N 4.1N 34Ncm 41Ncm

Peak F/T 48N 21N 40N 324Ncm 396Ncm

Dynamic Range 2200:1 470:1 1700:1 1700:1 2200:1

Effective Mass 190g 226g 156g 10300gcm2 12600gcm2

Peak Acceleration 25.8G 9.5G 26.1G 3147s-2 3143s-2

Maximum Stiffness 16N/cm 12N/cm 13N/cm 874Ncm 1076Ncm

Maximum Damping 0.44Ns/cm 0.5Ns/cm 0.36Ns/cm 24Nscm 30Nscm

Unbalanced Weight 70g - 130g
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Since the haptic pen has a redundant waist actuator, J-T is a pseudo-inverse which has an infinite number of

solutions. The choice of J-T determines how the load is distributed between the redundant waist actuators.

Here, the load is distributed equally by converting the force and torque at the pen centre into an equivalent

force at each end of the pen (i.e. each pantograph). Inverse Jacobian matrices are computed for both the top

 and bottom  pantograph and are used to transform pantograph forces into actuator torques (see

Figure 8.6). This approach has the additional advantage that it is much easier to compute a 3×3 inverse

Jacobian for each pantograph than it is to compute one 6×5 pseudo-inverse Jacobian for the entire robot.

The computational savings makes it possible to use a control frequency with a wider stability margin.

The control algorithm uses PD+B control where B is a braking pulse [64] that is applied upon contact with

a stiff environment and is proportional to end point velocity. The braking pulse applies the necessary force

to bring the end-effector to a halt in a single control cycle. Since vertical forces are primarily induced by

the waist motors while horizontal forces are primarily induced by the shoulder motors, different controller

gains are used along the vertical and horizontal axes to account for mechanical differences to make the

device feel homogeneous.

A simple gravity compensation algorithm acts as an active counterbalance to make the device feel virtually

weightless. It is comprised of forces along the j and k axes. Since effective weight of the device increases

as it is stretched out (i.e. moved in the positive k direction), the force along the j axis is increased linearly

to oppose it. Similarly, since the pen tends to fall in (i.e. in the negative k direction) when the pen is lifted

and fall out (i.e. in the positive k direction) when the pen is lowered, force along k is also adjusted linearly

with respect to j. To avoid erroneous torques on the pen, gravity compensation is computed individually for

each pantograph while the gravity of the handle itself is neglected.

A block diagram of the control algorithm is presented in Figure 8.7 where f is the interaction force between

the human and the robot, q is the joint angles, x is the position of the end-effector,  is the filtered finite-

difference velocity of the end-effector, fd is the desired reaction force, τ is the joint torques, V is the control

voltages and I is the actuator currents.
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Figure 8.6: Decoupled Force Control of Pantographs
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The equivalent impedance block (Ze) is expanded in Figure 8.8 where desired impedance is determined

from the robot position x and the virtual environment being simulated, Kd is a damping scale factor, Kb is a

braking scale factor, xd is the desired position, xe is the position error,  is the velocity error,  is the

braking velocity, fc is the contact force and fg is the gravitational force.

Figure 8.7: Block Diagram of Control Algorithm
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8.5 Virtual Environments

The haptic pen is designed as a generic hand controller. Its is not designed for a specific application but

rather, to address the capabilities of the operator. This makes it a suitable master for practically any virtual

environment or tele-operation system. Its versatility is demonstrated by three diverse virtual reality

simulations, a virtual pencil, a virtual scalpel and a virtual excavator. All virtual environments are

implemented on an SGI O2 graphics computer running IRIX.

8.5.1 Virtual Pencil

In the virtual pencil simulation, a wooden pencil is enclosed in a rigid bounding box. When the pencil lead

contacts the box, hard contact is simulated by high PD gains and a braking pulse. A small damping force,

proportional to the penetration depth, is also applied along the contact plane to simulate surface friction.

The eraser end is treated similarly but there is no braking pulse, the PD gains are lower, and the planar

friction force is higher to give the eraser a more rubbery feel. The two pantographs are controlled

independently with the bottom pantograph simulating the pencil lead and the top pantograph simulating

the eraser. This sacrifices some stiffness in exchange for reduced disturbance forces and a more realistic

feel, particularly when one end of the pencil is held in contact while the other is swung freely about. Pencil

marks are left and erased just as one would expect with a regular pencil and all marks are removed when a

reset button is pressed. The reset button resides in the front left corner of the box. It is haptically rendered

as a hard surface when contacted from the side and as a compliant linear spring when contacted from the

top. A positive click, felt once the button has been fully depressed, is simulated by a discontinuous

Figure 8.8: Details of Equivalent Impedance Block
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decrease in the button’s spring constant as described in [48]. A snapshot of the graphic environment1 is

shown in Figure 8.9.

8.5.2 Virtual Scalpel

The virtual scalpel simulation is much like the virtual pencil simulation except the pencil is replaced by a

scalpel and a human brain protrudes from the floor of the bounding box. It demonstrates how such a device

might be used as a surgical trainer. When the tip of the scalpel contacts the surface of the brain, it leaves

cut marks which are erased by pressing the reset button which operates the same as in the virtual pencil

simulation. Since a scalpel has no eraser, both ends experience hard contact with the bounding box. When

the scalpel penetrates the brain tissue, a damping force is applied that is proportional to penetration depth.

Damping is applied to both ends of the scalpel during cutting to impede both linear and angular motions. A

snapshot of the graphic environment1 is shown in Figure 8.9.

8.5.3 Virtual Excavator

In the virtual excavator simulation, the haptic pen manipulates the bucket of a virtual excavator. The centre

of the pen is mapped to the teeth of the bucket and is free to move such that the kinematic constraints of the

excavator are not violated. For example, rotations are not permitted about any axis in the plane of the

boom. The motion range is also constrained to keep the haptic pen inside its workspace and to prevent

anything out of the ordinary from happening in the simulation. For example, the excavator arm is kept

from stretching beyond its reachable limit or from contracting so much that the boom crashes through the

cabin. When the bucket is above ground level, damping is applied in all directions to slow down operator

motion and present the sluggish, high impedance feel that one would expect when moving a heavy

machine. When the bucket penetrates the ground, a small vertical impulse force is applied and digging

interaction forces as described in [13] are presented thereafter. While in the ground, soil accumulation is

computed as a function of trench depth and length. This value is used to apply a proportional downward

force upon exiting the soil to simulate the weight of the load. When the bucket is subsequently tipped past

a fixed dump angle, the vertical force is removed and a mound of soil is graphically rendered falling from

the bucket to the ground. A snapshot of the graphic environment1 is shown in Figure 8.9.

1. The graphical environments were created by a fellow graduate student, Simon P. DiMaio.
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8.6 Stability

The system is very stable as can be seen in Figure 8.10 which shows motor currents and penetration depths

when one end of the haptic pencil is manoeuvred about the bottom, back, left corner of the stiff virtual box.

The stiff box is implemented using proportional gains of 3N/cm (horizontal) and 2.1N/cm (vertical),

differential gains of 0.05Ns/cm (horizontal) and 0.02Ns/cm (vertical), and braking gains of 6Ns/cm

(horizontal) and 3Ns/cm (vertical) at the contacting end of the haptic pencil. The top three traces are the

control signals applied to the three lower actuators q1 through q3 (see Figure 8.1) and the bottom three

traces are the penetration depths of the pencil tip into the virtual walls and floor. The pencil is lying flat on

the floor without any human contact between t0 and t1, is held in free space between t1 and t2, is pressed

into the walls, floor and adjoining corners between t2 and t3, is pressed into the corner adjoining all three

surfaces between t3 and t4, is quickly knocked all round the corner between t4 and t5 and is returned to free

space between t5 and t6. Note that between t4 and t5, rapid changes in current and penetration depth occur

Figure 8.9: Graphical Environments
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because the operator is rapidly impacting three virtual surfaces but the system remains stable. Note the

correspondence between penetration depths and motor currents and the absence of any extraneous

oscillations. The trajectory of the pencil tip with respect to the corner of the box and the resultant reaction

forces are shown in Figure 8.11.

8.7 Concluding Remarks

The physical components of the prototype haptic system have been described in detail. The haptic pen is

constructed from light weight materials and low friction components to minimize mechanical impedance.

Its measured performance capabilities are comparable to existing state-of-the-art haptic devices such as the

SensAble PHANToM [48] even through the Twin-Pantograph haptic pen has two additional degrees-of-

Figure 8.10: Motor Currents and Wall Penetration Depths
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freedom. The general applicability of the device is demonstrated by simulating diverse virtual

environments that include an ultra light pencil and a heavy duty excavator. The pencil simulation is used to

observe system stability during hard contact simulations. These combined results confirm that the design

procedure was successful at producing a high performance yet stable device.

In the following chapter, a proposal for a further improvement to haptic performance using redundant

actuation is investigated. It involves extending the workspace of a high-performance fine stage robot by

mounting it on a coarse stage robot and joining the two end-effectors with a flexible coupling.
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Chapter 9

9A Dual-Stage Coarse-Fine Haptic Interface

9.1 Introduction

Although the haptic pen can emulate a wide range of impedances, it is not ideal as defined by Lawrence

and Chapel [42]. It is incapable of producing static forces large enough to counteract a sustained,

maximum hand force. This requires the high gear ratios of an admittance device. It is also incapable of

generating forces at the top of the frequency spectrum of human sensory capabilities (500-1000 Hz). This

requires the low mass and friction of a device such as a maglev joystick [26]. To obtain performance levels

beyond those of a conventional robot, it was proposed in [26], [65] that the workspace of a maglev joystick

could be expanded by transporting it on a coarse motion stage. Unfortunately, such a device would be force

magnitude limited by the maglev. In this chapter, it is shown that the force limitation can be removed by

including a parallel flexible coupling between the coarse and fine stages. This results in a device with both

the force bandwidth of the maglev and the motion range and force magnitude of a conventional admittance

device. A redundant device such as this may possibly fulfill the requirements that define ideal haptic

performance.

This chapter is organized as follows. In Section 9.2 the characteristics of the maglev joystick are cited. In

Section 9.3 a proposal for a series coarse-fine system with a parallel compliant coupling is described. In

Section 9.4 some concluding remarks are made.

9.2 Characteristics of a Maglev Joystick

The performance figures for a maglev joystick reported in [65], [66] are shown in Table 9.1. These figures

do, however, vary with the size of the specific device, with the force to mass ratio deteriorating slightly

with scale [67]. The consensus figures (Table 2.1) for what is deemed an adequate workspace clearly

exceed what can be achieved with a single-stage maglev device since it would be extremely difficult, if not

impossible, to increase the workspace by an order of magnitude. Although the continuous maximum

forces generated by the maglev device only marginally satisfy the quoted requirements, the frequency

response specifications (assuming they apply to the motion travel accommodated by maglev devices)

exceed them.
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Although the limited continuous force capabilities of a maglev device may reduce the maximum static

stiffness it can emulate, its ability to emulate contact with stiff walls is enhanced by its high acceleration.

This is demonstrated in [63] where ten subjects were asked to move a maglev joystick against a virtual

wall and press a button upon detecting it. The surface model was a spring with stiffnesses ranging from 1-

10 N/mm and a removable braking force that brings the joystick to rest within a single control sample upon

penetration. This corresponds to accelerations of up to 90 m/s2. The results showed that subjects could

locate the wall more accurately and with less penetration when the braking pulse was present and that

performances did not improve significantly with stiffnesses above 6-7 N/mm.

An analysis of the data using ANOVA tables and F-ratios showed that both increased stiffness and

acceleration significantly decrease wall penetration and increase the accuracy with which the wall can be

located, with minimal interaction between the two. Consequently for stiff wall emulation, the maximum

force exerted by the haptic interface is no more important than its maximum acceleration. It is, however,

shown in the next section that the coarse-fine approach used to enlarge the workspace of a maglev device

can also be used to increase its maximum force by means of a compliant coupling.

A. Along z-axis; roughly 30% smaller along x,y axes
B. Coil amplifier dependent
C. Based on coil time constant
D. Digital-to-analog converter dependent

Table 9.1: Maglev Joystick Performance Specifications

Performance Specification Value

Diameter 13 cm

Height 11 cm

Nominal Motion Range (Translation) ± 4.5 mm

Nominal Motion Range (Rotation) ± 7˚

Closed-Loop Bandwidth (Translation) > 30 Hz

Closed-Loop Bandwidth (Rotation) > 15 Hz

Maximum Impulse ForceA,B 60N

Maximum Impulse TorqueA,B 6 Nm

Maximum Continuous ForceA,B 18 N

Maximum Continuous TorqueA,B 0.6 Nm

Force BandwidthC > 1000 Hz

Force ResolutionD 0.1 N

Maximum AccelerationA 90 m/s2

Flotor Mass 0.65 Kg

Position Resolution 1 µm
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9.3 A Parallel Compliant Coupling

Morrell & Salisbury [52] show that the high force resolution and bandwidth of a micro actuator acting on a

load can be augmented by the high force capability of a macro actuator by connecting the two actuators via

a flexible coupling. A drawing of a flexibly coupled parallel dual-stage system is shown in Figure 9.1, a

model is shown in Figure 9.2 and equations for the force applied to the load and the impedance seen by the

load are shown in (9.1) and (9.2) for the general case and in (9.6) through (9.9) for very stiff (Zt→∞) and

compliant (Zt→0) couplings. In equations (9.1) through (9.9), the subscripts c, f, t and l denote coarse, fine,

coupling and load components respectively and the subscript e denotes system equivalents. Both macro

and micro actuators act in parallel with respect to a common mechanical ground. As opposed to the series

macro-micro actuation schemes proposed in the past [35] [62] [63] [66] [69] [86] [91], the parallel

combination enjoys the full static force capability of the macro actuator but because of the parallel

connection, inherits the limited motion range of the micro actuator.

Figure 9.1: Parallel Dual-Stage Device with a Flexible Coupling
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Figure 9.2: Model of a Parallel Dual-Stage Device
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While it is agreed that the actuators must be flexibly coupled in parallel to sum force contributions, it

should be pointed out that they may be rigidly connected in series with little repercussion. This is done by

mounting the base of the fine-stage on the end-effector of the coarse-stage and maintaining the flexible

coupling between the two end-effectors. A drawing of the hybrid series/parallel dual-stage device is shown

in Figure 9.3, a model is shown in Figure 9.4 and equations for the effective force and impedance seen by

the load are shown in (9.10) through (9.15).
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Just as with the parallel device described in [52], the force capability and internal impedance of the dual-

stage device mimic that of the fine-stage for a compliant coupling and approach that of the coarse-stage as

the coupling is made stiffer. The difference is that the workspace size of the hybrid device is dictated by the

coarse-stage which must, however, bear the additional payload of the fine-stage.

For the hybrid device, the effect of coupling impedance on the maximum force magnitude and mechanical

impedance magnitude presented to the load over a range of frequencies is illustrated in Figure 9.5 and

Figure 9.6 respectively. The coupling impedance Bt + Kts
-1 is selected by varying Kt and selecting Bt such

that the coupling supporting the fine-stage mass is critically damped (i.e. ζ=1).

Figure 9.4: Model of a Hybrid Dual-Stage Device
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Ff, Mf and Bf refer to the fine-stage force, mass and damping respectively and are assigned values similar to

those of the maglev device described in Table 9.1. Fc, Mc and Bc refer to the coarse-stage force, mass and

damping respectively and are assigned the typical values Fc = 10Ff, Mc = 50Mf and Bc = 1000Bf.

Figure 9.5 and Figure 9.6 show that the coupled dual-stage device has the low mechanical impedance and

force capabilities of the fine stage device when the coupling impedance is low and the high mechanical

impedance and force capabilities of the coarse stage device when the coupling impedance is high. This

allows one to optimally trade off the characteristics of the coarse-stage and the fine-stage by choosing the

compliance of the flexible coupling. One could also introduce a stiffening coupling that is very compliant

when the fine-stage is near its home position and becomes increasingly rigid as the fine-stage approaches

its workspace limit. Consider, for example, a dual-stage system consisting of a geared Twin-Pantograph

Figure 9.5: Equivalent Force
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coarse-stage and a maglev fine-stage with a piece of light foam rubber mounted between the flotor and

stator of the maglev. The material would provide minimal resistance when fully extended and would

stiffen as it is compressed. The resulting device would supply the high fidelity small-signal performance of

the maglev when small forces are applied that do not displace the maglev flotor much from its centre

position as well as the large workspace and force of the Twin-Pantograph when larger forces are applied

which hold the flotor off-centre and compress the material.

9.4 Concluding Remarks

A dual-stage device has been proposed which combines the high force magnitude and large workspace of a

coarse-stage robot such as a Twin-Pantograph with the high force and acceleration bandwidth of a fine-

stage robot such as a maglev joystick. It involves mounting the two devices rigidly in series and flexibly

(i.e. using a flexible coupling) in parallel. It is shown that the dual-stage device inherits the characteristics

of the coarse-stage when a stiff coupling is used and the characteristics of the fine-stage when a compliant

coupling is used. Therefore, if a stiffening coupling is used, the device will behave like the coarse-stage

when large forces are applied and like the fine-stage when small forces are applied, thereby automatically

assuming the necessary characteristics to accommodate a dynamic environment.

In the final chapter, the contributions of this thesis are summarized and some future work is proposed.
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Chapter 10

10Conclusions

This chapter summarizes the contributions made in this thesis and suggests some areas for further research.

10.1 Contributions

The contributions are summarized as follows.

10.1.1 The Global Isotropy Index

A new condition index called the Global Isotropy Index (GII) is introduced. The GII is a global measure of

isotropy throughout a device’s workspace. Unlike existing local measures, the GII retains scale

information and does not need to be checked by a secondary measure. Unlike existing global measures, the

GII is a worst-case measure that does not tolerate intermittent displays of poor performance anywhere in

the workspace.

10.1.2 Non-Homogeneous Design and Actuator Specifications

A method for normalizing and scaling a design matrix is introduced. A task space matrix ST is used to fix

the demands of the application while a joint space matrix SJ holds design variables which are used to select

actuator scale factors. This method removes all physical units from the design matrix and skews the

condition index so that it evaluates performance according to a non-uniform task-space specification. It

also allows the robot geometry and actuator sizes to be chosen simultaneously for improved performance,

particularly with serial mechanisms.

10.1.3 The Culling Optimization Algorithm

A new optimization algorithm is introduced. It is a discrete branch-and-bound algorithm for solving GII

and minimax problems that is unhampered by many of the difficulties associated with existing

optimization algorithms. It can be applied to any objective function (e.g. no estimation or integration

required), guarantees a global optimum, is insensitive to initial conditions and is unhampered by nonlinear,

non-differentiable, discontinuous, non-convex, or unbounded objective functions. The algorithm is also

very easy to implement.
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10.1.4 Haptic Interface Performance Specifications

A haptic interface performance specification has been derived from the observed shortcomings of earlier

haptic interface designs and a model of a human hand interacting with a haptic interface. Biomechanical

studies were then conducted to provide target values pertaining to the above criteria. The studies obtained

the maximum force/torque and velocity capabilities of a human hand holding a pen shaped instrument.

10.1.5 The Twin-Pantograph Hybrid Manipulator

A novel 6-DOF hybrid robot manipulator called the Twin-Pantograph is introduced. Its equations of

motion are used to show that its reachable workspace can be made free of singular positions if a redundant

actuator is included and some geometric constraints are observed. A 5-DOF version is also introduced that

has all of its motors in the base like a parallel device but has a much larger workspace and better static

force isotropy.

10.1.6 The Twin-Pantograph Haptic Pen

A 5-DOF haptic pen is built and controlled in three virtual environments which include a virtual pencil, a

virtual scalpel and a virtual excavator. These diverse environments demonstrate the scope of the device and

its capability to simulate a wide range of impedances. Its measured performance benchmarks are found to

rival a current state-of-the-art mechanism (the SensAble PHANToM [48]) even through the Twin-

Pantograph haptic pen has two additional degrees of freedom in rotation. Lastly, it is shown that stability is

maintained by considering a hard contact situation involving three intersecting surfaces. The results

confirm that the proposed design procedure was able to create a high performance yet stable device.

10.1.7 A Coarse-Fine Haptic Interface

A proposal is made for a device that could potentially support an even wider virtual impedance range than

the haptic pen. It is comprised of a coarse-stage admittance device connected in series with a fine-stage

impedance device whose end-effectors are joined in parallel by a flexible coupling. It is shown that the

stiffness of the coupling determines which performance characteristics the dual-stage device inherits. It is

suggested that by using a stiffening coupling, the dual-stage device may actually share the high

performance characteristics (i.e. large workspace, large force magnitude, high acceleration/bandwidth) of

both devices.
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10.1.8 Robot Design Examples

Many robot design examples are presented which include RR, RRR and RPR serial manipulators, a planar

3-DOF parallel manipulator, a planar 5-bar linkage, a Stewart Platform, an Inoue Platform and a Twin-

Pantograph. A variety of aspects are considered including compactness, workspace size, kinematic (force

& velocity) isotropy, dynamic isotropy and singular value smoothness. Some widely applicable results

come from these examples such as the kinematic optimality of a symmetric 5-bar linkage and the optimal

postures associated with different workspace positions.

10.2 Future Work

Proposals for future work are summarized as follows.

10.2.1 An Experimental Dual Stage System

The theoretical work regarding the flexibly coupled dual-stage coarse-fine robot was not substantiated by a

physical design example. To complete this work, a 1-DOF dual-stage system is planned to demonstrate the

correspondence between theoretical and actual results. This is to be followed by a full scale, 6-DOF, Twin-

Pantograph/Maglev wrist coarse-fine haptic interface.

10.2.2 Alternative Applications of the Culling Algorithm

Presently, the culling algorithm has only been applied to robot design problems. However, robot design is

not the only field where minimax problems are prevalent. They are common in other fields such as filter

design. It is likely that the culling algorithm will be just as effective at solving these other types of

problems as they are at solving robot design problems.
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Appendix A

AEquations of Motion

Using existing methods, the equations of motion (direct kinematics, inverse kinematics and Jacobian) of

any non-redundant serial robot can be computed analytically. The same, however, cannot be said for

parallel or hybrid robots. While the inverse kinematics of parallel robots can be computed analytically, the

direct kinematics and Jacobian must often be solved numerically. To obtain analytic functions for robots

that contain a parallel component, they are “serialized” by computing passive joint angles and/or rates

from the active joint angles and/or rates that completes a serial path from the base to the end-effector. Then

existing serial methods can be used to complete the kinematic equations.

A.1 Direct Kinematics of a 3-DOF 5-Bar Linkage

Because the five-bar linkage is a parallel device, its forward kinematics are difficult to compute. The task is

further complicated by the 3-DOF hybrid version shown in Figure A.1. It can, however, be simplified by

considering a serial analogy (also shown in Figure A.1) of the device which treats all passive joints as

active and has an end-effector that coincides with the axis of the eliminated actuator q2. The forward

kinematics of the serial analogy are easily solved using serial techniques.

All joint angles are set to zero and reference frames are assigned for the serial pseudo-manipulator in

Figure A.2. Since the end effector of the 5-bar linkage is at the origin of frame 3, transformation matrices

between the base to frame 3 are derived in equations (A.1) through (A.4).

Figure A.1: Serial Analogy of a Five-Bar Linkage
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Since θ1 and θ2 are known explicitly (A.5), (A.6), only θ3 needs to be solved to complete the forward

kinematics using (A.7).

Figure A.2: Coordinate Frames of a Serial Pseudo-Manipulator
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0
T

1

=

T
0

1
C

0
1 0

0
T

1

=

T
1

2
C

1
2 C

1
2l2î
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To solve θ3 as a function of q2 and q3, the internal angles γ1→γ8 are defined in Figure A.3.

θ3 is then easily computed from the geometry of the 5-bar linkage as shown in (A.8) - (A.12).

A.2 Inverse Kinematics of a 3-DOF 5-Bar Linkage

Because the 3-DOF 5-Bar linkage is a parallel device riding on a single serial actuator, its inverse

kinematics are relatively easy to compute. Using  (A.13) to derive distances d1 (A.14) and d2 (A.15),

constants K1 and K2 are defined in (A.16) and (A.17) and plugged into equations (A.18) and (A.19) to

solve for q2 and q3. Equations (A.18) and (A.19) are taken from [72] which describes a similar solution for

the first joint angle of an elbow manipulator.

Figure A.3: Internal Angles of a 3-DOF 5-Bar Linkage
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ô4 2, ô1 2,–
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Then, q1 is solved (A.21) from the projection of  onto the x=0 plane (A.20).

A.3 Inverse Jacobian of a 3-DOF 5-Bar Linkage

The Jacobian matrix can also be computed using serial methods by converting the active joint rates

( ) into the joint rates ( ) of the pseudo-serial robot (Figure A.1). This results in a matrix

that conforms to the definition of the Jacobian for a serial robot. Therefore, it corresponds to the inverse

Jacobin in terms of parallel robot notation (A.22).
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The Jacobian is computed in two parts. The first part is a transformation matrix T (A.23) that converts

active joint rates into the joint rates of the first three joints of the pseudo-serial manipulator. The second

part is the Jacobian matrix J’’ (A.26) of the first three joints of the pseudo-serial manipulator which is

computed in (A.25) using common serial techniques.

The transformation matrix T (A.26) contains two functions, V(q2,q3) and V’(q2,q3) (A.27). T is easily

inverted (A.28) as long as it has full rank (i.e. V(q2,q3)≠0).

To calculate V(q2,q3) and V’(q2,q3) the 4×4 Jacobian matrix J’ (A.34) for the redundant planar serial

manipulator in Figure A.1 with θ1 neglected ( ) is computed in equation (A.35) where the

positions  through  in the  plane are computed using equations (A.29) through (A.33). Note that

the inverse kinematics can be solved to obtain values for q2 and q3.
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Applying the constraints , ,  and equation (A.36), which are intrinsic

to the 5-Bar linkage, and expanding the remaining terms in (A.35) results in (A.37).

Equation (A.37) contains three linearly independent equations and three unknowns. Solving for  in

terms of  and  (A.38) and rearranging it into the form (A.39) (equivalent to the third row of (A.27))

results in concise terms for V(q2,q3) (A.40) and V’(q2,q3) (A.41).
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A.4 Jacobian of a 2-DOF 5-Bar Linkage

The Jacobian of the 3-DOF 5-bar linkage is easily obtained by inverting the inverse Jacobian (A.22). It is,

however, useful to have an analytic solution for the Jacobian of the 2-DOF 5-bar linkage which operates in

the plane. Consider the 5-bar linkage in Figure A.3 where q2 and q3 are the only active joints (i.e. q1=0).

The Jacobian matrix is defined as in (A.42) with  defined as in (A.43).

First, the inverse kinematics are solved to obtain values for q2 and q3. Then, by solving equations (A.46)

and (A.47) by taking partial derivatives of equations (A.48) through (A.51), J (A.52) is obtained.
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A.5 Mass Matrix of a 2-DOF 5-Bar Linkage

As described in (72), a robot’s mass matrix can be interpretted as the position dependent transformation

between end point velocity and kinetic energy (A.53).

It is shown in (72) that the mass matrix D’ for the planar 2-DOF serial elbow robot shown in Figure A.4

can be computed by (A.54) where m is the mass per unit length of the linkage bar stock and I1 and I2 are

the longitudinal inertia of links l1 and l2 measured about axes perpendicular to the plane of motion and

passing through the link centre. Note that (A.54) does not take into account actuator masses.
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D’ (A.54) can be used to compute the individual inertias of the left and right halves of a 5-bar linkage if the

elbow joint rates are known. This requires a transformation R that computes joint rates  and  from

and  (from Figure A.3). Functions (A.40), (A.41) have already been derived for solving  in terms of

q2, q3,  and . The same functions can be used to solve  by using the parameters from the mirror

image of the 5-bar linkage. In other words, two new functions, W and W’ are defined (A.55) which are the

same as V and V’ (A.39) except l2 is interchanged with l5, l3 is interchanged with l4, q2 is replaced by π-q3

and q3 is replaced by π-q2. Using V, V’, W and W’, R (A.56) can be computed from (A.57).

The inertia matrix D is then computed from (A.58) where D’’ is D’ with the 5-bar linkage geometric

parameters l5 and l4 substituted for the serial parameters l1 and l2 respectively and internal angle θ5

substituted for q2 and D’’’ is D’ with the 5-bar linkage geometric parameters l2 and l3 substituted for the

serial parameters l1 and l2 respectively and internal angle θ3 substituted for q2.

Figure A.4: 2-DOF Planar Serial Robot
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The axial inertia IA, longitudinal inertia IL and mass per unit length m depend on the shape, dimensions and

material used to make the links. For these, it is assumed that the links are constructed of tubing with a

circular cross-section and wall thickness t. Geometric properties of the members are shown in Figure A.5.

The transverse inertia can then be computed from (A.59) where the average tube radius r is approximated

by the mean value of rin and rout and l is the length of the tube.

The radius of the tube is fixed such that the first natural frequency of the links is bounded by . A

conservative approach is used which considers the worst-case scenario of all four links (l2 through l5)

rigidly connected in series to form a single cantilever beam (one end pinned, the other free). The equation

for this is taken from [27] [58], shown in (A.60) and simplified by substituting in (A.61) where t is the

thickiness of the tube wall (rout-rin).
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Figure A.5: Geometry and Inertia of a Linkage Member
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Assuming 2024-T4 aluminum tubing is used, (A.62) is solved for r as a function of link length (l2 through

l5) and natural frequency ω in (A.62).

Mass per unit length m is then solved as a function of link length (l2 through l5), natural frequency ω and

tube thickness t in (A.64).

Equation (A.64) is substituted into (A.59) to compute the longitudinal inertias inside  and  (A.58).

A.6 Kinematics of a 3-DOF Planar Parallel Manipulator

Due to their physical similarity, the kinematic equations of the 3-DOF planar parallel manipulator shown

in Figure 4.2 can be derived using techniques similar to those used for solving the Stewart Platform. Using

the origin and frame assignments shown in Figure A.6, the inverse kinematics are calculated from (A.65)

and the Jacobian is calculated from (A.66).
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3
)= E 2.758
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2
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r 1.27
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(A.62)

(A.63)

m ρA 2.768 2πrt( ) 2.21
5–×10 l2 l3 l4 l5+ + +( )2ωt (g/cm)= = = (A.64)
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Figure A.6: Coordinate Frames of a Planar Parallel Manipulator
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A.7 Jacobian of a 2-DOF RR Serial Manipulator

The Jacobian of the planar serial manipulator in Figure 4.8 is computed in (A.67) using the origin and

frame assignments shown in Figure A.7 where all joint angles are set to zero.

A.8 Simple Inertia Matrix of a 2-DOF Serial Manipulator

In [11], a mass matrix (A.68) is computed for the elbow manipulator in Figure A.7 where the total robot

mass is approximated by two point masses m1 and m2 concentrated at points  and . Here, m1 and m2
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Figure A.7: Coordinate Frames of a 2-DOF Planar RR Serial Manipulator

o
˜ 0

i0

j0

k0 o
˜ 1

i1

j1

k1 o
˜ 2

i2

j2

k2

l1 l2
q1

q2

J
j
T

o
˜ 0 o

˜ 2–( ) j
T

o
˜ 1 o

˜ 2–( )

i
T

o
˜ 2 o

˜ 0–( ) i
T

o
˜ 2 o

˜ 1–( )
= (A.67)

o
˜ 1 o

˜ 2



115

are taken to be (A.69) and (A.70) where m is the mass per unit length of a linkage and mq is the total mass

of an actuator.

The mass matrix (A.68) is describes the effective mass seen by the actuators (A.71). It is redefined in

(A.72), (A.73) as the effective inertia D seen at the end-effector by assuming that the derivative of the

Jacobian is small enough to be neglected.

A.9 Jacobian of a 3-DOF RRR Serial Manipulator

The Jacobian of the planar serial manipulator in Figure 4.5 is computed in (A.74) using the origin and

frame assignments shown in Figure A.8 where all joint angles are set to zero.
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Figure A.8: Coordinate Frames of a 3-DOF Planar RRR Serial Manipulator
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A.10 Jacobian of a 3-DOF RPR Serial Manipulator

The Jacobian of the planar serial manipulator in Figure 4.9 is computed in (A.75) using the origin and

frame assignments shown in Figure A.9 where all joint angles are set to zero.
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Figure A.9: Coordinate Frames of a 3-DOF Planar RPR Serial Manipulator
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A.11 Kinematics of the Stewart Platform

The method for computing the equations of motion for the Stewart Platform Figure 5.9 are well known.

Using the origin assignments shown in Figure A.10, the inverse kinematics are shown in (A.76) and the

Jacobian is shown in (A.77).

A.12 Kinematics of the Inoue Platform

The inverse kinematics of the Inoue Platform Figure 7.1 are performed by breaking the problem into three

3-DOF problems. First, the platform vertices ,  and  shown in Figure A.11 are transformed into

the points ,  and  using (A.78). The points ,  and  correspond to the three 3-DOF 5-bar

linkage end-points for a device such as in Figure A.1.

Figure A.10: Coordinate Origins of the Stewart Platform
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Then, q1 and q2 are solved by substituting  for  in equations (A.18) and (A.19), q3 and q4 are solved

by substituting  for  in equations (A.18) and (A.19), and q5 and q6 are solved by substituting  for

 in equations (A.18) and (A.19).

The Jacobian of the Inoue Platform is solved in a similar fashion. First, the Jacobian of the Stewart

Platform JStew (A.77) is computed to transform the linear  and angular  velocity of the platform

into the rates of change of the dimensions d1 and d2 in Figure A.3. In equation (A.79),  and

correspond to the five-bar linkage comprising actuators q1 and q2,  and  correspond to the five-bar

linkage comprising actuators q3 and q4, and  and  correspond to the five-bar linkage comprising

actuators q5 and q6.

Each ,  pair is transformed into a corresponding planar velocity,  and , using the

transformation T1 (A.80) derived from the partial derivatives of (A.44) and (A.45) where x, y, and z are the

components of  and d1 and d2 are computed from (A.81) and (A.82).

Figure A.11: Coordinate Origins of the Inoue Platform
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The planar velocity is then transformed into actuator velocities by substituting xplane and yplane for x3 and

y3 into the equation for the Jacobian of a planar 5-bar linkage (A.52) to obtain transformation T2 (A.85).

Transformations T1 (A.80) and T2 (A.85) are combined to create transformation T3 (A.86) which, when

computed for all three 5-bar linkages (i.e. T3, T3’ and T3’’), and combined with the Jacobian of the Stewart

Platform (A.79) produces the Jacobian of the Inoue Platform (A.87).

A.13 Direct Kinematics of the Twin-Pantograph

To obtain analytic functions for the Twin-Pantograph Figure 7.2, it is divided into two halves which are

“serialized” as shown in Figure A.12. The two serial robots have active joints labeled θ (A.89) and θ’

(A.90). By using the angles and rates of the Twin-Pantograph’s active joints q (A.88) which are defined in

the range -π≤θ≤π to compute the angles and rates of the pseudo-active joints, serial techniques are again

used to solve the kinematic equations.
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The pseudo-active serial robots are shown with all joint angles set to zero and with reference frames in

Figure A.13.

Using these frames, the homogeneous transformation matrices are defined in equations (A.91) through

(A.95) where T5-Bar is the homogeneous transformation matrix of a 5-Bar Linkage defined in (A.7) which

is computed in (A.1) through (A.12). In equation (A.92), bT’3 is obtained by substituting q4 through q6 for

q q1 q2 q3 q4 q5 q6 q7

T
=

θ θ1 θ2 θ3 θ4 θ5 θ6

T
=

(A.88)

(A.89)

(A.90)θ' θ'1 θ'2 θ'3
T

=

Figure A.12: Twin-Pantograph Schematic Diagram
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Figure A.13: Coordinate Frames of the Pseudo-Active Serial Robots
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q1 through q3 when computing T5-Bar. The direct kinematics are solved by the transformation matrix bT3

(A.96).

Since θ4=q7, only θ5 and θ6 must be derived. This is done by computing the platform end points  and

 using transformation matrices (A.97) and (A.98) so that the platform axis  can be found from

(A.99).

Joint angles θ5 and θ6 are then be calculated by performing the well known inverse kinematics of the

spherical wrist (A.101) through (A.104). Note that due to the singularities of a spherical wrist, θ5 and θ6

can only be computed reliably when the angle between  and  is less than 90˚ (A.100).
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Once θ5 has been determined, θ6 is computed using (A.104) by obtaining  and  from bT5 (A.103).

With angles θ5 and θ6 known, the forward kinematics is computed using equation (A.96).

A.14 Inverse Kinematics of the Twin-Pantograph

The inverse kinematics are solved by first computing the end points  and  of the five-bar linkages

from (A.105) and (A.106).

Joint angles q1 through q3 are computed from the inverse kinematics of a 5-Bar linkage, (A.13) through

(A.22), and similarly for q4 through q6 by substituting  for  in (A.13). With joint angles θ1 through

θ3 known, transformation matrix bT3 (A.91) is computed from the forward kinematics and using the

method for solving the inverse kinematics of a spherical wrist, q7 is obtained from (A.107) and (A.108).
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A.15 Jacobian of the Twin-Pantograph

The Jacobian transforms the linear and angular velocity of the end effector into the joint rates. This is done

in a number of steps using the serial analogy described earlier. First the linear velocities of the two 5-bar

Linkage end-points  and  are computed using transformation T1 (A.109), (A.110).

Next, the 5-Bar Linkage end-point velocities are transformed into joint rates of spatial 3-DOF elbow

robots using transformation T2 described in (A.111) through (A.114). Note that T3 (A.113) and T’3

(A.114) are 3×3 serial Jacobian matrices for 3-DOF elbow robots and are easily inverted provided they are

non-singular.

Next, the transformation matrix T4 (A.115), (A.116) transforms the end-effector rotation rate from a

rotation relative to frame C0 to a rotation relative to frame C3. This is accomplished using transformation

T5 (A.117) which computes the rotation matrix  of frame C3 with respect to C0 in C0 as shown in

(A.118).
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Next, the robot joint rates are computed from the serial elbow joint rates and the rotation vector

using transformation T6 (A.119), (A.120). This is accomplished using transformations T7 and T’7 which

are the transformations (A.28) defined as part of the inverse Jacobian matrix of a 5-Bar linkage.

Transformation T8 (A.121) is also used which is the inverse Jacobian of a spherical wrist.

The Jacobian matrix is as shown in (A.124) and can be expanded as shown in (A.125).
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Appendix B

BWorkspace Discretization

B.1 Uniform Angular Sampling

A robot may navigate up to six degrees-of-freedom, three in translation and three in rotation. Any

configuration belonging to a 6-DOF workspace can be specified by a position and an orientation vector and

the extent of the workspace can be specified by a translational volume and a solid angle defined by

maximum roll θ0 and tip θ1 angles as shown in Figure B.1.

Defining and uniformly sampling a translational workspace is easy, particularly if the boundary is

rectangular. It is, however, considerably more difficult to do this for a rotational workspace. Euler angles

are not well suited to defining the boundary and result in non-uniform sample spacing [43] if they are

discretized uniformly (see Figure B.3a). An axis-angle representation R shown in (B.1) which contains roll

θ0, tip θ1 and sweep θ2 angles is much better suited to defining the boundary. Maximum roll and tip values

are assigned while sweep is unconstrained (0≤θ2<2π).

Unfortunately, sample spacing is still non-uniform if angles are discretized uniformly (see Figure B.3b).

To homogenize sample spacing, θ1 is discretized uniformly (i.e. constant ∆θ1) but the sample spacing of θ2

Figure B.1: 6-DOF Workspace
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(∆θ2) changes for each of the N θ1 samples. The value of ∆θ2 is computed in (B.2) for each θ1 value. The

terms in equation (B.2) are represented graphically in Figure B.2.

The three discretization methods are compared in Figure B.3 using a θ1 of 45˚. For each sample, a point is

plotted on the solid angle defining the boundary of the angular workspace. Notice the workspace

boundaries resulting from Euler angle and axis-angle methods as well as the uniform distribution resulting

from non-uniform θ2 sampling.

B.2 Selecting Sampling Resolutions

To ensure a fair split between translational (kt) and rotational (kr) samples, their geometric means are made

the same by computing kr from (B.3) where ki, kj and kk are the number of samples along each translational

axis and dt and dr are the number of axes in the translational and rotational workspaces.

(B.2)∆θ2 n,
∆θ1

n∆θ1( )sin
-------------------------; n 1 2 3 … N,, , ,{ }∈=

Figure B.2: Uniform Sampling Method
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Figure B.3: Example Angular Discretizations
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N is then chosen such that Kr from (B.4) is as close as possible to kr from (B.3) where  is the maximum

tip angle defining the angular workspace boundary. Since the distance between θ1 samples determines the

distance between θ2 samples and there must be an integer number N of θ1 samples, any other number of

total angular workspace samples is unachievable using the uniform sampling method described above. For

example, it is found from (B.4) that Kr={6,8,34,58,...} for N={1,2,3,4,...} when .

θ1
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Kr 1 floor
2πN
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