
ABSTRACT
A new global isotropy index (GII) is proposed to quantify the

configuration independent isotropy of a robot’s Jacobian or mass
matrix. The matrix is scaled to homogenize the physical units, to tailor
it to the demands of the application and to choose optimum actuator
parameters. A new discrete global optimization algorithm is also
proposed to optimize the GII without placing any conditions on the
objective function. The algorithm is used to establish design guidelines
and a globally optimum architecture for a planar haptic interface from
both a kinematic and dynamic perspective and to compare three robots
for use as a 5-DOF haptic pen. The algorithm demonstrates consistent
effort reductions of up to six orders of magnitude over global searching
with low sensitivity to initial conditions.

INTRODUCTION
Modern robot applications such as haptic interfaces make

performance demands far beyond those of the assembly and repetitive
task devices of the past. Meeting these demands is difficult because
robot capabilities tend to degrade at certain configurations or when
acting in certain directions. Geometric parameters largely determine
how consistently a robot behaves and many proposals have been made
regarding how to choose these parameters. Cost functions have been
proposed to describe kinematic isotropy, manipulability and accuracy
(Kim and Khosla, 1991), inertial isotropy and stiffness (Angeles et. al.,
1992), kinematic nonlinearity and redundancy (van den Doel and Pai,
1994) and maximum joint velocity (Merlet, 1996). Various ways of
removing the configuration dependence from these measures have also
been proposed. They include integrating over the workspace (Gosselin
and Angeles, 1991) which results in an average and tends to tolerate
small regions with poor behaviour, worst-case values (Hayward et. al.,
1994) which due the local nature of the measure does not consider
relative performance between configurations and the number of poses
where performance surpasses a threshold value (Kircanski, 1994),
which ignores behaviour in the remainder of the workspace. In this
paper, the shortcomings of these methods are circumvented by defining

a new cost function that does not consider configurations individually
but, instead, compares worst-case values of the workspace as a whole.
The cost function is calculated from the singular values of the Jacobian
or mass matrix which is scaled to homogenize the physical units, tailor
it a specific application and allow inclusion of actuator parameters into
the optimization search space. The cost function and a new
optimization algorithm are used to optimize the kinematic designs of a
5-DOF haptic interface and the kinematic and dynamic design of a 2-
DOF pantograph haptic interface.

A proposal for normalizing and scaling the Jacobian or mass
matrix is followed by a description of a new measure of global
isotropy. A global search method is presented to search a discretized
parameter and workspace for the optimum. Unlike descent based
optimization algorithms, this method is unhampered by non-
differentiable, non-convex or discontinuous cost functions or those that
contain local minima. Two versions are given to perform optimization
of the new global measure or to solve problems of the minimax form.
The cost function and a new optimization algorithm are used to
optimize the kinematic designs of a 5-DOF haptic interface and the
kinematic and dynamic design of a 2-DOF pantograph haptic interface.

PERFORMANCE MEASURES
Isotropy is often computed by the ratio of singular values at a

position x  for a design parameter p .  For example, the ratio
 compares the magnitudes of the major

and minor axes of the position dependent velocity ellipsoid. This is a
local isotropy measure and manipulators designed to be isotropic at
individual points may not exhibit similar levels of isotropy throughout
their workspaces. In the past (Hayward et. al., 1994), configuration
independence has been checked by the secondary local measure

. Here, this secondary measure is averted by introducing a
global isotropy index (GII) which compares the smallest singular value
in the workspace to the largest (Eq. (1)). The GII extends the idea that
robot performance at a configuration can be summarized by the lengths
of its major and minor velocity ellipsoid axes to encompass the entire
workspace.
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For example, consider the constrained (workspace limited to a
horizontal trajectory) elbow manipulator in Fig. 1. Local velocity
ellipsoids map all arbitrarily oriented, unit magnitude, end-effector
velocities at a particular configuration into joint rates. The GII is the
ratio of the radius of the largest sphere contained in all these ellipsoids
to the radius of the smallest sphere containing all these ellipsoids.
Figure 2 shows velocity ellipsoids and spheres for the robot and
workspace shown in Fig. 1.

A globally isotropic robot design parameter is one that maximizes
the GII as in Eq. (2).

Note that the GII only considers the ratio between worst-case
singular values but ignores other issues that may also be important such
as magnitude or smoothness. If necessary, these should be checked as
secondary measures after an optimal GII has been obtained or be
included with scale factors into the original cost function.

The task of a haptic interface is to present virtual impedances to a
human hand. It can be simply modeled by the equivalent circuit in Fig.
3 where  is the actuator torque,  is the configuration dependent
robot impedance,  is the force applied by the hand and  is the
equivalent impedance perceived by the hand.

Using the Jacobian definition of Eq. (3) for a parallel manipulator,
the actuator torque  required to produce an equivalent impedance ,
assuming the relationship between applied force and perceived

impedance in Eq. (4), is given in Eq. (5). Ideally, one would like the
control law that emulates the impedance  to be both isotropic
(position independent) and direction independent. Since Eq. (5)
suggests that the equivalent actuator impedance is dictated to a large
extent by the Jacobian, these desired characteristics can be achieved by
optimizing J to satisfy the same criteria.

The interpretation of the Jacobian in Eq. (3) can also be used to
indicate kinematic accuracy and distance from singular positions while
a dual force/torque interpretation can be used to indicate the
distribution of power among actuators for forces of constant magnitude
and arbitrary direction at the end-effector. Both of these have a direct
relationship to the controllability of the device and support the claim
that robot performance improves when the Jacobian is more isotropic
and well conditioned.

The conditioning of J can be checked by comparing its minimum
and maximum singular values. The singular values are, however, only
meaningful when the physical units are homogeneous. This is not the
case when a manipulator is capable of both translation and rotation at
its end effector. This has led to various proposals to normalize the units
using a quantity known as “characteristic link length”. They include
choosing the characteristic link length which produces the best
condition number (Angeles et. al., 1992) and using the average
platform radius (Ma and Angeles, 1991) for a parallel manipulator. In
both cases, dimensional weighting is chosen in such a way as to place
equal demands upon the actuators in either domain. Relative robot
capabilities should not be determined in this way but should, instead,
reflect the demands of the application. Also, the optimal solution will
not always involve identical actuators which is a further constraint.
This is particularly obvious if one is designing a serial mechanism.

A different approach is to pre and post-multiply J by two diagonal
weighting matrices,  and . The diagonal entries of these matrices
represent maximum values for the two vectors related by J. For
example, in the kinematic relationship of Eq. (3), the two matrices have
the physical interpretation shown in Eq. (6) and Eq. (7). The resulting
normalized Jacobian transforms two dimensionless vectors,  and

, which represent percentages of maximum physical values. Not
only are the physical units homogeneous but dissimilar physical
dimensions are ranked explicitly with respect to the demands of the
application. Relative actuator requirements can also be solved by
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Figure 1: Constrained Elbow Manipulator Example
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including them in the vector of design parameter p searched by the
optimization algorithm.

Since scalar multiples do not affect isotropy, they can be factored
out to produce normalized, diagonal, transformation matrices of
relative weightings. Example 2-DOF matrices for Eq. (7) are shown in
Eq. (8) and Eq. (9) where  is a vector of maximum velocities of
two actuators denoted by subscripts 0 and 1 and  and
are the maximum linear and angular velocities.

The  matrix is diagonal and usually describes either relative
actuator velocity or torque. When it is included, its diagonal entries are
added to the design parameter search vector p, so that p contains both
geometric quantities and actuator scale factors. The values chosen by
optimization can be implemented, for example, by adding reduction
mechanisms or by scaling the actuators themselves, both of which
increase rotor inertia and may hamper performance. Limits should,
therefore, be placed on the values that are searched to match an
actuation strategy that will not overly impact performance. If, for
example, direct drive is required, ratios should be constrained to 2 or
3:1 whereas if planetary or harmonic drives can be used, ratios of up to
20:1 or 200:1 are reasonable.

CULLING ALGORITHM
Descent and stochastic algorithms are not well suited to robot

mechanism design problems. Descent algorithms can not reliably avoid
the abundance of local minima and stochastic approaches offer only a
measures of confidence rather than a guarantee of global optimality. A
new algorithm is proposed which is essentially an accelerated global
search. It identifies non-optimal parameters and culls them from the
search space until only the optimum remains. The algorithm optimizes
the GII (Eq. (1)) which is defined between 0 and 1 corresponding to
poor and ideal performance respectively over a workspace W which is a
constrained set of configurations x for a parameter p. The optimization
goal (Eq. (2)) is to find the parameter p with the best “worst-case”
behavior throughout the constrained workspace W. The algorithm is
shown in Eq. (10) through Eq. (19).

After some initialization (Eq. (10) and Eq. (11)), a starting guess
p0 is chosen (Eq. (12)). Performance indices are calculated for pi at
each x in W (Eq. (13)). If pi shows better worst-case performance than
the front-runner , pi becomes the new front-runner  (Eq. (14)).
Performance indices are calculated for each p in Pi at  and  and the
corresponding worst-case-so-far indices  and  are updated
(Eq. (15)). Equation (15) is omitted for all p whose worst-case-so-far
performance is worse than  since they are culled
from Pi in Eq. (16). The p with the best worst-case-so-far performance
is chosen as the next candidate pi+1 (Eq. (17)). Equation (13) through
Eq. (18) are repeated until  is the only parameter left in Pi at which
point  is the global optimum (Eq. (19)).

Since parameters are removed from the search space only after
exhibiting worse behaviour than another parameter for which the
absolute worst-case has been rigorously computed, the global optimum
is guaranteed. Computational savings result from strategically
exploring configurations which are likely to eliminate many sub-
optimal parameters simultaneously. The level of expected success,
however, relies on the presumption that within a continuous, bounded
range of parameters, many (particularly those in close proximity to
each other) will exhibit similar behaviour at similar configurations.

While the GII culling algorithm is specifically tailored for GII
optimization, some worst-case design are of the form shown in Eq. (20)
and can be solved using a similar approach. An optimization criteria of
this form is used, for example, by (Hayward et. al., 1994) with

 to optimize the mass matrix
of a planar pantograph haptic interface. The minimax culling algorithm
is shown in Eq. (21) through Eq. (30).

APPLICATION TO A PLANAR HAPTIC INTERFACE
In (Hayward et. al., 1994) a five-bar linkage is optimized for use

as a planar haptic interface. The culling algorithm and new definition
of global isotropy are used to re-examine this mechanism for both
kinematic and dynamic conditioning. A general representation of a
five-bar linkage with a square workspace (Fig. 4) is used to establish
symmetry and positioning guidelines.
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ẋmax lin,

1 0
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The kinematic GII is optimized with seven free parameters (a, b1,
b2, c1, c2, γ and η) with r and w fixed to avoid a trivial result (i.e.
isotropy improves as r→∞ or as w→0) and  and  set to the identity
(identical actuators and equal capabilities in both directions). For
r=w=10 and ∆w=0.1 (∆w is the discrete sample spacing in the
workspace) the search space and global optimum obtained by the GII
culling algorithm are shown in Table 1.

The global optimum has left/right symmetry of both the robot and
workspace. Future optimizations, therefore, need only consider three
parameters (a, b=b1=b2 and c=c1=c2) and half of the workspace. This
simplifies the problem sufficiently to allow further generalization.
Varying r while constraining the elbow angles to 0≤(λ,τ)≤π shows the
optimum posture for different values of r. Figure 5 shows the optimum
geometry, GII and posture for -25≤r≤25, γ=η=π/2 and the parameter

space shown in Table 2. Note that the search space constrains the robot
and workspace to a 30x30 square area.

The GII curve is non-smooth and the optimal parameter curves (a,
b & c) are discontinuous in r. Parametric discontinuities occur at the
intersections of optimum GII curves for different postures. Consider
the region around r=10. The optimum GII of the “M” posture is
relatively level while the optimum GII of the elbow-out posture
logarithmically increases with r. When the curves intersect, the
optimum posture switches from “M” to elbow-out and the parametric
curves experience a jump.

There are clearly two viable ranges for r. Magnitudes less than 5
are acceptable in which case the “M” posture is best with the
workspace positioned below the actuators. Magnitudes greater than 10
are also acceptable in which case the elbow-out posture is preferred.
While elbow-in achieves GIIs similar to elbow-out for similar
magnitudes of r it requires longer physical link lengths (b & c). The
inertial implications of this distinguish elbow-out as the better posture.
For magnitudes between 5 and 10, the optimal postures combine long
link lengths with poor GIIs and should be avoided.

An inertial optimization is next carried out which assumes a light,
fingertip grip and, therefore neglects hand inertia. The mass matrix is
obtained by solving the elbow joint velocities and computing the mass
matrices of the two elbow manipulators (Spong and Vidyasagar, 1989)
making up the five-bar linkage. The robot’s natural frequency is
conservatively bounded by choosing the beam dimensions that place
the same lower bound on the natural frequency ω of a cantilever beam
the length of all four robot links arranged end to end (Hunt, 1979). The
diameter d and mass/unit length m are calculated assuming circular
cross-section 2024-T4 aluminum tubing of thickness t.

It is debatable whether it is preferable to optimize the mass matrix
for isotropy or scale. Since isotropic mass is not particularly important

Table 1: Parameter Space & Optimum

Parameter Min. Val. Max. Val. Resolution Optimum

a 0 3 0.5 1.5

b1, b2 4 10 0.5 7.5

c1, c2 7 14 0.5 9.5

γ, η 0 π/2 π/20 π/2
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Figure 4: Generalized Five-Bar Linkage
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if the magnitude is small, it is decided to minimize maximum mass by
considering the normalized performance index involving only the
maximum singular value of the mass matrix shown in Eq. (31). Since
this measure does not involve a workspace inclusive ratio of singular
values, the minimax culling algorithm can be used. The measure is
optimized with w=10, ∆w=0.1 and ω=200π (100 Hz).

Two different parameter spaces are searched. The first has one
free parameter r which is matched to its corresponding kinematic
optimum robot geometry (a, b and c) from Fig. 5. The second
parameter space is comprised of a much larger cross-section (all 4
dimensions free) of geometric combinations. Note that although a
trivial result is obtained when r is free during kinematic optimization,
this does not occur during dynamic optimization. The two parameter
spaces are shown in Table 3.

The first parameter space has a very narrow scope but guarantees
a kinematically favourable solution. The second ignores kinematic
conditioning but results in the dynamic global optimum. In order to
choose between the two, they are compared using the sensitivity
analysis in Table 4. Since solution “A” shows a smaller decrease in
dynamic performance than solution “B” shows in kinematic
performance, solution “A” (a=1.6, b=7.6, c=9.8, r=10.4) is concluded
to offer the best overall performance.

As previously mentioned, haptic interface performance may also
be hampered by sudden changes in singular values. This is checked as a
secondary measure by plotting the minimum and maximum singular
values of the Jacobian and mass matrices over the workspace. As seen
in Fig. 6, they are both smooth and even have regions of perfect local
isotropy where the minimum and maximum singular value curves
intersect ( ).

OPTIMIZATION OF A 5-DOF HAPTIC INTERFACE
With fast global optimization, one can not only select optimal

robot parameters but also the optimal robot. By optimizing a number of

candidates, one can choose the device whose capabilities best suit a
particular application. In (Stocco and Salcudean, 1996), three devices
are compared in terms of their reachable workspaces to act as the
coarse stage in a coarse-fine haptic pen. They including the “Stewart”
platform (Fichter, 1986), a five-bar linkage actuated “Spider” platform
(Tsusaka et. al., 1987), and a novel mechanism called the “Twin-
Elbow” platform (Stocco and Salcudean, 1996). These three devices
are shown in Fig. 7 through Fig. 9.

The pen axis aligns with the  axis of the coarse stage robot at its
home position. It is desirable to have unrestricted ability to rotate about
the pen axis in applications such as virtual or tele-operated surgery
where one must orient the cutting direction of a scalpel. This is
accommodated by using a series actuator to provide that degree of
freedom. The candidates are, therefore, only compared with respect to

Table 3: Inertial Parameter Spaces & Optima

Parameter Min. Val. Max. Val. Resolution Optimum

Parameter Space #1

a n/a n/a n/a 1.6

b n/a n/a n/a 7.6

c n/a n/a n/a 9.8

r -25 25 0.2 10.4

Parameter Space #2

a 0 15 0.2 0

b 5 30 0.2 7.2

c 5 30 0.2 8.8

r -25 25 0.2 9.2

Table 4: Sensitivity Analysis

Kinematic GII Inertia Index

Solution A - Parameter Space #1 0.3657 0.9045

Solution B- Parameter Space #2 0.2790 0.9271

Sensitivity (% change) -23.7% +2.5%

s p x,( ) 1
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Figure 6: Singular Values of Jacobian & Mass Matrix
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their remaining five degrees of freedom. Since the chosen device will
act essentially as a velocity source, the three are compared in terms of
their Jacobian velocity transformations shown in Eq. (7).

A literature survey of suggested design goals for a haptic interface
and experimental results showing the linear motion capabilities of the
human hand can be found in (Stocco and Salcudean, 1996). To clarify
rotational capabilities with respect to workspace size, an angular
version of the experiment was conducted. Ten subjects were asked to
oscillate their wrists at various amplitudes as fast as possible while the
trajectories were recorded by a low mechanical impedance
potentiometer. The maximum velocity achieved at each amplitude is
calculated from the corresponding average frequency by assuming a
sinusoidal trajectory as in Eq. (32). The results of this transformation
are shown in Fig. 10.

It was proposed in (Stocco and Salcudean, 1996) that a reasonable
workspace size for such a device is 16 cm (  axis) × 10 cm (  /
axes) × ±45° (pitch / yaw). From Fig. 10, the following maximum
velocities are expected for this motion range.

Each manipulator is allotted one free actuator scale factor Q. Q is
applied to the waist joints of the Twin-Elbow platform and the two
front joints of the Stewart and Spider platforms since they have left-
right symmetry but lack front/back symmetry. The kinematic GII of
each robot is optimized using the normalized Jacobians shown in Eq.
(33) and Eq. (34). Note that due to redundancy in all three robots, the
Jacobians are 6×5 matrices.

The GII culling algorithm is used to optimize the GII of each robot
with the workspace centred 25 cm above the base. As with the planar
device, the workspace position must be fixed to avoid a trivial result.
The search spaces and optimum geometries are shown in Table 5 while
Table 6 compares the three kinematically optimized devices in terms of

their resultant GIIs and combined total link lengths (this correlates to
total moving mass) which is indicative of the relative amounts of
inertia one can expect to experience from similarly constructed
devices.

The Twin-Elbow platform is superior to the other two devices in
both respects and also has two actuators which are base mounted,
making a smaller inertial contribution to the system. The Stewart
platform has leg lengths ranging between 10.8 and 48.3 cm requiring
the actuators to extend below the base where they could intersect and
the Spider platform can experience interferences between adjacent
pantograph elbows. This does not occur with the Twin-Elbow since its
pantographs face one another so it is also less prone to linkage
collisions.

For the Twin-Elbow platform, an optimal value of Q = 1.6 was
obtained. This indicates that the waist actuators rotate an average of 1.6
times slower than the shoulders. If used, reduction mechanism should,
therefore, have ratios 1.6 times larger at the waist joints to obtain
isotropic velocities at the actuator shafts. Also, if measurements are
taken directly at the joints, a similar increase in sensor resolution is
required to ensure isotropic measurement accuracy.

A prototype Twin-Elbow platform based 5-DOF haptic interface
with passive roll has been constructed for experimental purposes. Its
end-effector is oriented vertically to offer a more natural pen/probe

Figure 10: Human Capability vs. Motion Range
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Table 5: Kinematic Optimizations

Parameter Min. Max. Res. Opt.

Candidate #1 - Stewart Platform:

a 2 30 1 14

L1 2 15 0.5 8

L2 2 15 0.5 10.5

L1/l1, L2/l2 0.1 2 0.1 0.5

η 100° 140° 5° 120°

Q 0.7 1.3 0.1 1.1

Candidate #2 - Spider Platform:

a 0.5 4 0.5 0.5

b 10 30 1 18

c 15 35 1 24

L 2 12 1 7

L/l 0.2 1.3 0.1 0.6

η 100° 150° 5° 135

Q 0.7 1.2 0.1 0.9

Candidate #3 - Twin-Elbow Platform:

a 0.25 5 0.25 2.75

b 10 30 0.5 18.5

c 10 35 0.5 23

l, L 5 20 0.5 10.5

Q 0.5 2 0.1 1.6

Table 6:  5-DOF Optimization Results

Stewart Spider Twin-Elbow

Sum total of all
link lengths

6qmax+l1+2l2
= 347.8 cm

6(b+c)+3l
= 287 cm

4(b+c)+2l
= 187 cm

GII 0.236 0.191 0.283



grip, to accommodate gravitational counterbalancing and to shift the
gravitational burden onto the stronger and redundantly over-actuated
waist joints. Robot mass is minimized through the use of carbon fibre
links, magnesium clevises and titanium wrist pins. A photograph of the
prototype haptic interface is shown in Fig. 11.

EFFICIENCY OF CULLING ALGORITHM
The culling algorithm is essentially a global search that avoids

redundant evaluations. Therefore, it always converges to the global
optimum within the discretized parameter space. Each loop iteration
removes at least one parameter from contention so the number of
potential loop iterations is bounded by the dimension of the parameter
space and the stopping criterion is always satisfied in finite time. A
worst-case scenario of no culling whatsoever results in an exhaustive
global search. As with most optimization algorithms, efficiency
depends on the objective function and initial conditions. While the
algorithm makes no efficiency guarantees, experience with robot
design problems has shown consistently dramatic improvement over a
global search with low sensitivity to initial conditions. Table 7
compares the number of condition index calculations performed by the
culling algorithm to those required by a global search for the
optimizations discussed in this paper.

One should not try to improve efficiency by replacing the global
workspace search of each candidate parameter by a faster, possibly
stochastic approach. This will eliminate the guarantee of global
optimality and reduce the severity of culling each time a suboptimal
worst-case position is found, compensating, or possibly even
overcompensating for performance gains resulting from the faster
search.

CONCLUSIONS
A new global isotropy index (GII) is proposed which defines

isotropy as the ratio between the minimum and maximum singular
values in the workspace. It summarizes the global performance of a
mechanism by a scalar and can be applied to either the Jacobian or
mass matrix. The physical units of the matrix can be normalized and
tailored to a specific set of requirements by post-multiplying it by a
diagonal scaling matrix. Optimal actuator scaling factors (transmission
ratios) can also be solved simultaneously with geometric parameters by
pre-multiplying the matrix by a diagonal scaling matrix of free
variables.

A novel optimization procedure is also proposed which is a
variation of the global search method. It repeatedly uses the worst
configuration of one parameter to eliminate others from contention
until only the optimum remains. The approach guarantees convergence,
finite time termination and a global result. Two versions of the
algorithm are presented for optimization of either the GII or some other
local measure. The algorithm consistently demonstrates drastic
improvements over global searches with observed ratios of up to
1,850,000 : 1. An optimization (Table 5 - #1) that took approximately 3
days to solve on a Sparc 5 workstation using the culling algorithm is
estimated to require 15,000 years to solve by global search on a similar
machine. The culling algorithm, therefore, allows one to use
unsophisticated computer hardware to solve high dimensional
problems that would otherwise be too computationally demanding to
attempt.

The kinematic GII and maximum inertia of a five-bar linkage
based planar haptic interface are optimized. It is shown that the best
overall architecture has left/right symmetry about the robot and
workspace and that the robot is best kept in either an “M” or elbow-out
posture. A sensitivity analysis is performed to trade-off kinematic and
dynamic performance for an overall optimum design. Kinematic
optimizations of a Stewart platform, Spider platform and a hybrid
serial/parallel device called the Twin-Elbow show that the Twin-Elbow

A. Typical value for an optimization conducted for any one value of r
B. The parameter space was divided into 10 parts to overcome

hardware (memory) limitations so the reported ratio is an average.
Partitioning reduces the efficiency of the culling algorithm so the
reported improvement ratio is conservative.

Figure 11: Prototype Haptic Pen

Table 7: Culling/Global Search Efficiency

Optimization
Workspace

Size
Param Space

Size
Search : Cull

Ratio

Table 1 1.02×104 2.66×107 3670 : 1

Table 2 5151 1.21×106 1910A : 1

Table 3 - #1 5151 251 82 : 1

Table 3 - #2 5151 3.03×108 3500B : 1

Table 5 - #1 4.00×106 2.28×107 1.85×106 : 1

Table 5 - #2 4.00×106 2.82×107 1.54×106 : 1

Table 5 - #3 2.10×106 2.07×107 1.25×106 : 1



platform is the most viable candidate for use as the coarse stage of a
coarse-fine haptic pen.
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