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Abstract—In the well-known electro-mechanical analogy used to
transform between electrical and mechanical systems, mass is
replaced by a grounded capacitor. This is sufficient for converting a
mechanical system into its electrical equivalent, but does not allow
any electrical system to be modeled by a mechanical equivalent. A
two-terminal isolated mass element, previously proposed by the
author, simulates a capacitor in the general case and can be used to
build a topologically identical mechanical equivalent of any electric
circuit. It is the missing link of perhaps the most powerful
technique available for building student intuition on the analogous
behaviour of electrical and mechanical systems.

I. INTRODUCTION, GOALS & OBJECTIVES

Converting between an electrical and mechanical system is
rarely a necessary step when analyzing an electrical or
mechanical system. The behaviour of either is entirely governed
by the differential equations describing its internal states and
can always be solved directly using mathematical methods. The
incentive for performing a transformation is merely to present a
particular problem in a domain which is more familiar to the
analyst. This is particularly useful when students are first
exposed to electric circuits since they have a lifetime of
experience with mechanical interactions with may be observed
with the naked eye, but little appreciation for electrical
interactions which cannot be observed without test equipment.
Any child who has ever played with a SlinkyTM knows how a
spring works but they are unlikely to have any appreciation for
inductance.

Since the purpose of electro-mechanical transformation is to
provide insight into an unfamiliar domain, any dissimilarity
between the two domains is a source of confusion that is greatly
self defeating. The greatest such source is the fundamental
dissimilarity between a mass and a capacitor which have
different numbers of terminals and are only analogous under
certain conditions. A new model involving a mass and pulley
system, previously developed by the author, mimics both the

topology and the behaviour of a capacitor in the general sense.
When used in conjunction with the conventional spring and
damper models, a topologically identical mechanical model may
be developed for any electric circuit. This modified analogy is
easier to apply and more intuitive to students, particularly when
they are first introduced to it.

A proposal to derive a relative mass model was originally
presented in [1],[2]. A more complete development of the idea
is presented in [3] where the often neglected reference terminal
of the mass model is freed of its implied ground connection by a
mechanical isolation transformer. It is shown that the proposed
model enables one to implement a mechanical band-pass filter,
which would otherwise, not be possible. Finally, examples are
presented which demonstrate how the technique may be applied
to higher order mechanical models such as robot systems.

Section II of this paper describes conventional electro-
mechanical analogies and points out the shortcomings of the
mass model. Section III describes the isolated mass model while
Section IV shows how it may be used as a teaching tool to
develop greater intuition in students. Section V presents
concluding remarks and identifies the potential impact.

II. CONVENTIONAL MODELS

The ability to define an electro-mechanical equivalent circuit
is a potent teaching tool that spans two seemingly dissimilar
areas of study with a common set of fundamentals. The
background behind the technique can be found in a large
number of text books ([4] for example) on system modelling
and control.

The idea stems from the duality of the differential equations
that describe electrical and mechanical systems, each of which
involve an across variable, a through variable and an impedance
or admittance variable. In electrical circuits, voltage E(s) is the
across variable and current I(s) is the through variable. In
mechanical systems, it is convenient to treat velocity V(s) as the
across variable and force F(s) as the through variable. This
results in the correspondence between resistance R and damping
B, inductance L and stiffness K, and capacitance C and mass M
shown in (1-3).

This mathematical similarity demonstrates that each element
is an impedance to the transmission of energy, be it electrical or
mechanical, with either a proportional (1), integral (3) or

An Isolated Mass Model for Intuitive Electro-Mechanical Analogies

L. Stocco
Electrical and Computer Engineering, The University of British Columbia

leos@ece.ubc.ca



Regular Paper 2

differential (2) relationship between the across and through
variables. As such, the product of the across and through
variables corresponds to the rate of energy, or power being
dissipated where an imaginary value denotes energy that is
stored and returned without loss. This is shown in (4) for an
electrical system and in (5) for a mechanical system.

Deriving an analogous system involves replacing each
component in the original system with its equivalent in the
alternate domain. This ideally requires topological consistency
between components that are to be substituted for one another.
Resistors, inductors and capacitors all share the following three
fundamental traits.

1. They have exactly 2 terminals which can be connected
to any node in a circuit.

2. They are symmetrical about their 2 terminals (i.e.
flipping a device over does not affect its response).

3. They obey Ohm’s Law in the s-domain.

Voltage and current sources share the following two traits:

1. They have exactly 2 terminals.

2. They are directional with respect to their 2 terminals
(i.e. flipping a device over changes its sign).

Unlike passive components, sources have some connectivity
constraints. Connecting dissimilar voltage sources in parallel
violates KVL while connecting dissimilar current sources in
series violates KCL with either condition resulting in an
unsolvable circuit.

According to equations (1-3), the electro-mechanical
equivalents are as shown in Figure 1. Of course, similar
equivalents may be defined for angular motion, but only linear
motion symbols are used in this paper.

All components in Figure 1 have two terminals and obey
Ohm’s Law. However, the reference terminal of the mass
symbol is commonly neglected because it is implicitly
connected to ground. This implicit connection exists because a
non-deformable mass stores energy in the form of inertia which
corresponds to its velocity with respect to the earth.

Consequently, the first step in the process for converting a
mechanical system into its analogous electrical equivalent is to
replace all masses by grounded capacitors as shown in Figure 2.
This fixes the reference voltage of the capacitor to zero and
guarantees correspondence between (6) and (7).

Since a capacitor has no implicit connections, a capacitor can
always be used to simulate a mass but a mass cannot always be
used to simulate a capacitor. Consider, for example, the band-
pass filter in Figure 3. R1, R2 and C2 are replaced by B1, B2 and
M respectively in the equivalent mechanical system. But there is
no mechanical component that can be used to represent C1
because there is no way to connect the ground symbol to C1
without changing the circuit. In other words, C1 and C2 do not
share a common node. 
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Fig. 1. Electro-mechanical equivalents.

Current Source: I s 

Voltage Source: E s 
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Fig. 2. Capacitor / mass equivalent models.
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Fig. 3. Band-pass filter example.
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III. ISOLATED MASS MODEL

The technique would be much more intuitive if it included a
mechanical component which simulated a capacitor in general
so that even an electrical circuit with multiple capacitors with no
common nodes, could be represented by an equivalent
mechanical system. The component should have two symmetric
terminals, obey Ohm’s Law, and be able to simultaneously
accommodate a non-zero velocity at either terminal. In other
words, it should contain no implicit connections. 

The standard method for removing an unwanted ground from
an electric circuit with an isolation transformer. Connecting a
unity gain isolation transformer to a grounded capacitor, as
shown in Figure 4, results in a system with the equivalent circuit
of an ungrounded capacitor. Since a electrical transformer does
have a mechanical equivalent, a similar approach may to used to
arrive an ungrounded, or isolated mass.

A transformer scales voltage by its winding ratio and current
by the inverse. Similarly, a gear and pinion scales velocity by its
tooth count ratio and force by the inverse. Of course, a gear and
pinion is one of many methods to obtain mechanical speed
reduction. Others include a linear rack and pinion, a planetary
gear, a lead screw, a worm gear, and a cable and pulley system,
among others.

Isolating a mass using the ideal cable/pulley transmission
shown in Figure 5 results in the relationship shown in (8). Note
that only the component of differential velocity between nodes
n1 and n2 will translate the mass. All common mode velocity is
cancelled by motion of the ideal (i.e. massless, frictionless)
pulley block. It can be shown that the transmission system
shown in Figure 5 is the mechanical equivalent of a unity gain
isolation transformer.

Differentiating (8) results in (9,10) with the Laplace transform
shown in (11) where F corresponds to the tensile force present
in both cables (left and right) in Figure 5.

Equation (11) is merely Ohm’s Law for a mass (7) with the
implicit V1(s) = 0 constraint removed. This mirrors Ohm’s Law
for a “not necessarily grounded” capacitor (6).

The symbol shown in Figure 6 is used here to represent the
isolated mass element. Unlike the mass in Figure 1, both
terminals of the isolated mass (n1 and n2) may be connected to
any node in a mechanical circuit. It is not necessary to connect
either to ground.

The instantaneous power flowing into the isolated mass Pd(t)
(12) is computed by substituting (9) into the equation for
mechanical power. This corresponds to the instantaneous power
flowing into a capacitor Pc(t) (13). From (11), the complex
impedance Zd(s) of the isolated mass is obtained directly (14).

The isolated mass model has two symmetric, interchangeable
terminals, and is shown to obey Ohm’s law, and to satisfy the
same differential equation as a conventional mass but with an
arbitrary reference velocity. It is, therefore, a general
mechanical equivalent of a capacitor.

Unlike a pure mass, an isolated mass can be used to model C1
in the band-pass filter example in Figure 3. Substituting each
capacitor with an isolated mass results in Figure 7 which may be
analyzed just like an electric circuit. At very low frequencies
(15), the impedance of both the conventional and isolated mass
approach infinity (16), and due to the finite impedance of
damper B2, all of the input velocity is “dropped” across the
isolated mass M2 (17). In other words, the masses simulate
mechanical open circuits, just like the capacitors in Figure 3.

At very high frequencies (18), the impedances of both the
conventional and isolated masses approach zero (19) and all of
the input velocity is “dropped” across damper B1 (20). In other
words, the masses simulate mechanical short circuits, just like
the capacitors in Figure 3. At all other frequencies the output

Fig. 4. Achieving relative mass with a mechanical isolation transformer.
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Fig. 5. Isolated mass model.
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Fig. 6. Block diagram of isolated mass.
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velocity vo is non-zero and finite, and a mechanical band-pass
filter is realized.

IV. INTUITION DEVELOPMENT

The benefit of the isolated mass model is not limited to an
expanded ability for transforming electric circuits. It also
overcomes what is almost certainly the largest obstacle to the
development of intuition and understanding, topological
dissimilarity. Consider Figure 8 which shows what appears to
be a series connection between a spring, mass and damper and
its electrical equivalent.

The mechanical circuit appears like it contains a single force
loop when, in fact it contains two as is evident from its electrical
equivalent. The reason for its deceptive appearance is the
implicitly grounded mass. Since it only has one explicit node,
the entire symbol is typically used to represent that node, just as
it is in a free body diagram. Adjacent components are connected
from all sides, providing the false impression of series
connections that do not actually exist.

An isolated mass, on the other hand, has two distinct
terminals, just like any other mechanical or electrical
component. This eliminates any ambiguity between series and
parallel connections. In addition, transforming any circuit from
one domain to the other simply involves replacing each
component with its associated equivalent. The topology of the
circuit remains completely unchanged, without exception.
Consider Figure 9 where the conventional mass from Figure 8 is
replaced by an isolated mass. In Figure 9, the mechanical
system behaves exactly the way it  looks, like a series
connection. In addition, its electrical equivalent mirrors it in
every detail, including the particular choice of reference node.

From the perspective of the student, this is much more
intuitive. Although it does take some effort to develop an
understanding of the difference between a conventional and
isolated mass, the payoff is well worth the effort, even for
simple circuits like Figure 9. Although duality in Figure 8 may
be mathematically proven, duality in Figure 9 is obvious.

V. CONCLUSION AND IMPACT

As stated earlier, the domain transformation technique is
particularly valuable when teaching electric circuits since
mechanical interactions are observable with the naked eye and
are a normal part of everyday life. Developing a deep
understanding of capacitance is particularly cumbersome since
no mechanical model exists that fully describes it. The isolated
mass model presented here fills that gap. It mimics the
behaviour of a capacitor in the general case, with a practical
system that can actually be built using simple parts so that
students do not have to rely on a mathematical proof and their
imagination to develop intuition. They can “feel” capacitance
with their own two hands, just as they are able to feel
inductance by stretching a spring or feel resistance by
compressing a shock absorber.

This work may be used to improve circuit analysis and
control theory courses in science, electrical, mechanical and
other engineering disciplines by filling in the one remaining
hole in the analogy that links the behaviour of a mechanical
proportional / integral / differential (PID) system to a PID
system in any other domain (electrical, fluid, chemical,
biological, etc.)

Fig. 7. Mechanical model of a band-pass filter.
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Fig. 8. A conventional MBK circuit and its RLC equivalent.
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