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Abstract. The well-known electro-mechanical analogy that equates current, 
voltage, resistance, inductance and capacitance to force, velocity, damping, 
stiffness and mass has a shortcoming in that mass can only be used to simulate 
a capacitor which has one terminal connected to ground. A new model that was 
previously proposed by the authors that combines a mass with a pulley (MP) is 
shown to simulate a capacitor in the general case. This new MP model is used 
to model the off-diagonal elements of a mass matrix so that devices whose 
effective mass is coupled between more than one actuator can be represented by 
a mechanical system diagram that is topographically parallel to its equivalent 
electric circuit model. Specific examples of this technique are presented to 
demonstrate how a mechanical model can be derived for both a serial and a 
parallel robot with both two and three degrees of freedom. The technique, 
however, is extensible to any number of degrees of freedom. 
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1 Introduction 

The concept of impedance and its generalization reactance, has been used to define 
equivalent circuits of mechanical and electro-mechanical systems since the 
development of the Maxwell model of solids. The idea that driving point impedances 
could be decomposed into terms that parallel electrical elements was initiated by [5] 
who showed that the frequency response of any system is determined by the poles and 
zeros of its transfer function. The conditions for network synthesis are described by 
[1] and later applied by [8] who introduced bond graphs to distinguish and represent 
effort and flow variables in a graphical setting. Examples of electro-mechanical 
system simulations are numerous and include magnetic circuits [6], mechatronics and 
electromechanical transducers [11], [12], [9].  

Mechanical block diagrams are routinely used to model robot dynamics although 
some [3] limit them to a single axis while others [13] rely entirely on equivalent 
electric circuits to avoid the inherent difficulties of creating mechanical models of 
multi-axis devices, transmission systems or other systems with coupled dynamics. 

Section 2 of this paper describes the conventional electro-mechanical analogy 
and points out a limitation of the mass model. It goes on to describe a new 
mass/pulley (MP) model which overcomes the inherent deficiency in the conventional 



mass model. In Section 3, it is shown how the new MP model can be used to model 
the dynamics of devices which have coupled effective masses. Examples are provided 
which include both 2-DOF and 3-DOF serial and parallel manipulators. Lastly, 
concluding remarks are made in Section 4. 

2 Electro-Mechanical Analogies 

The ability to define an electro-mechanical equivalent circuit stems from the 
parallelism in the differential equations that describe electrical and mechanical 
systems, each of which involve an across variable, a through variable and an 
impedance or admittance variable. In electrical circuits, voltage E(s) is the across 
variable and current I(s) is the through variable. In mechanical systems, velocity V(s) 
is the across variable and force F(s) is the through variable (i.e. flow variable[4]). 
This results in a correspondence between resistance R and damping B, inductance L 
and spring constant K, and capacitance C and mass M shown in (1-3). An alternate 
approach treats force as the across variable and velocity as the through variable but 
that approach is not used here. By (1-3), the electro-mechanical equivalents shown in 
Figure 1 can be substituted for one another to model a mechanical system as an 
electrical circuit and vise versa.  

(1)

(2)

(3)

V s( ) F s( ) 1
B
---=

V s( ) F s( ) s
K
----=

V s( ) F s( ) 1
sM
-------=

E s( ) I s( )R I s( ) 1
G
----= =

E s( ) I s( )sL=

E s( ) I s( ) 1
sC
------=

 

2.1 Classical Mass Model Limitation 

Each of the components in Figure 1 has two terminals except for the mass which has 
only one. This is due to the fact that the dynamic equation of a mass (3) does not 
accommodate an arbitrary reference. Acceleration is always taken with respect to the 
global reference, or ground. Consider the two systems in Figure 2 which are well 
known to be analogous. 

In Figure 2, the voltage across the capacitor ec corresponds to the velocity of the 
mass vm. Both of these are relative measurements that only correspond to one another 
because both are taken with respect to ground. Consider, on the other hand, the circuit 
in Figure 3 which contains a capacitor with one terminal open circuited. 

In Figure 3, the open circuit at n2 prevents any current from flowing through the 
capacitor. Since there is no current shunted into the capacitor at n1, the voltage at n1 is 
unaffected by the capacitor. In the mechanical “equivalent”, it is not possible to 
connect a non-zero mass M to node n1 without affecting the output velocity vo. This is 
due to the implicit ground reference of the mass (shown by a dotted line) which is 
physically impossible to interrupt. Note that this same limitation does not apply to the 
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spring or damper since they both have two terminals which can be connected or left 
floating, as desired. 

 
Fig. 1. Admittance of electro-mechanical equivalents. 

Fig.2. LC circuit and mechanical equivalent. 

 
Fig. 3. RC circuit and mechanical equivalent. 

2.2 The Mass/Pulley (MP) Model 

Because of the above limitation, there are mechanical systems which can not be 
modelled using a mechanical system diagram. Elaborate transmission systems such as 
robotic manipulators may contain mass elements that are only present when relative 
motion occurs between individual motion stages. Currently, systems such as these can 
only be modelled using electric circuits since capacitors can be used to model this 
type of behaviour but masses cannot. 

C
G1

M

G2

E s ( ) n 1 n2

B1

B2

V s( )
vo

n1



It would be useful to have a mechanical model which simulates the behaviour of 
a capacitor without an implicit ground connection so that any mechanism (or electric 
circuit) could be modelled by a mechanical system diagram. This new model should 
have two symmetric terminals (i.e. flipping the device over should not affect its 
response), obey Ohm’s Law, and be able to accommodate non-zero velocities at both 
terminals simultaneously. A model proposed by the authors [10] combines a mass 
with the pulley-based differential transmission shown in Figure 4. The pulley system 
obeys the differential position / velocity relationship shown in (4, 5).  

 
Fig. 4. Pulley based differential transmission. 

(4)

(5)

Δxo
1
2
--- Δx1 Δx2+( )=

vo
1
2
--- v1 v2+( )=

 
Note from (5) that although the pulley provides the desired differential velocity 

input, it also introduces an undesired 2:1 reduction ratio. However, setting v1 to 0 (i.e. 
connecting n1 to ground) results in (6). Therefore, a similar pulley system with one 
input tied to ground could be used to scale up velocity by an equivalent ratio.  

(6)v2 2vo=
 

The double pulley system shown in Figure 5 is a differential transmission with a 
unity gear ratio. The primary pulley provides the differential input while the 
secondary pulley cancels the reduction ratio to achieve unity gain. A mass connected 
to the secondary pulley is accelerated by a rate equal to the difference between the 
acceleration of the two inputs, n1 and n2. This system simulates the behaviour of a 
capacitor that may or may not be connected to ground (Figure 5). Voltage E1 
corresponds to velocity V1, voltage E2 corresponds to velocity V2, current I 
corresponds to tension F and capacitance C corresponds to mass M as shown by (7, 
8). Note that the free-body diagram of the centre pulley shows that the tension F in 
the primary cable is equal to the tension F in the secondary cable. The system must be 
balanced because any net force on the massless centre pulley would result in infinite 
acceleration of the pulley and therefore, the mass as well. 

(7)

(8)V2 s( ) V1 s( )– F s( ) 1
sM
-------=

E2 s( ) E1 s( )– I s( ) 1
sC
------=

 
The MP model uses ideal cables with zero mass and infinite length and stiffness. 

The ideal cables travel through the system of massless, frictionless pulleys without 
any loss of energy. The MP model operates in zero gravity so the mass is only 
accelerated as a result of cable tension and/or compression. Unlike practical cables, 
the ideal cables never become slack. When an attractive force is applied between n1 
and n2, F<0 and the mass is accelerated downward. A block diagram of the MP model 

xo vo,
x1 v, 1

x2 v, 2
n1

n2n0
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is presented in Figure 6 where P has the same value as M in Figure 5. Note that, 
unlike a pure mass, the MP model has two terminals, n1 and n2 which correspond to 
the two ends of the primary cable. 

 
Fig. 5. Mass/ pulley equivalent of a capacitor. 

 
Fig. 6. Block diagram of MP model. 

 
Fig. 7. Mechanical equivalent circuit using MP model. 

Consider Figure 7 which is the mechanical system from Figure 3 with the mass 
replaced by an MP model. With terminal n2 left unconnected, the primary cable of the 
MP model travels freely through the primary pulley without accelerating the mass or 
consuming energy. The MP model behaves just like the capacitor in Figure 3. Also 
note the topological similarity between the electrical circuit in Figure 3 and its true 
mechanical equivalent in Figure 7. This is a direct result of the topological 
consistency between the capacitor and the MP model, both of which have two 
symmetric terminals. As pointed out in [10], this consistency allows one to analyze 
mechanical systems using electric circuit analysis techniques once all masses have 
been replaced by MP models. 

V1 V2
n 1 n2

F

F
M

E2E1

C
In 1 n2

F F

F F

P

n1 n2

B1 B2

V s( )

vo

n1

P
n2

Modelling Robot Dynamics with Masses and Pulleys      229



3 Robot Mass Matrix 

Consider the simplified dynamics of a 2-DOF robot (9) where M is the mass matrix, B 
is the damping matrix, F is a vector of joint forces/torques (10), R is a vector of joint 
rates r1 and r2 (10), and s is the Laplace operator. Spring constants, gravitational and 
coriolis effects are assumed to be negligible for the purpose of this example. If the 
damping in the system is dominated by the actuator damping coefficients, B is a 
diagonal matrix (10). M, on the other hand, represents the effective mass perceived by 
each joint and is not diagonal or otherwise easily simplified in general. 

(9)

(10)

F BR MsR+=

f1

f2

b1 0

0 b2

r1

r2

Ms r1

r2

+=

 
For simple kinematic arrangements such as the redundant actuators shown in 

Figure 8 which only have a single axis of motion, M is shown in (11). The system 
responses are modeled by the mechanical system diagram shown in Figure 9 and the 
dynamic equation shown in (10). Using the electro-mechanical transformation 
described in Section 2, this system can also be represented by the electrical circuit 
analogy shown in Figure 9. 

(11)M
m1 m2

m2 m2

=

 
Performing nodal analysis on the circuit in Figure 9 results in (12) by inspection. 

Note however, that (12) contains the term i1-i2 as well as v2 which corresponds to the 
end-point velocity in the mechanical system or, in other words, the sum of the joint 
rates r1+r2. To obtain a correspondence between electrical and mechanical component 
values, the dynamic equation (10) is rearranged in (13) where the associated damping 
B’ and mass M’ matrices are shown in (14, 15). From (14), the resistor admittances g1 
and g2 and capacitor values c1 and c2 correspond to the equivalent damping and mass 
values b’1, b’2, m’1 and m’2 (16) respectively. 

 
Fig. 8. Redundant rotary & prismatic actuators. 

q1 q2

q1 q2

m2m1

m2m1

b1 b2

b1 b2
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Fig. 9.System models of redundant actuators. 

(12)

(13)
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(15)
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g1 g2+ g2–

g2– g2

v1
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0 c2

s v1

v2

+=

f1 f2–

f2

B'
r1

r1 r2+
M's

r1

r1 r2+
+=

B' b'1 b'2+ b'2–
b'2– b2'

b1 b2+ b2–
b2– b2

= =

M'
m'1 0

0 m'2

m1 m2+ 0
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= =

b'1
b'2
m'1
m'2

b1

b2

m1 m2+

m2

=

 
In this simple example, masses are sufficient to model the system behaviour but 

only because the device has a single degree of freedom so M’ is diagonal and there is 
no cross-coupling between actuators. In general, however, effective mass is not 
always decoupled and the off-diagonal elements of M’ can be expected to be non-
zero. When M’ is not diagonal, conventional single-terminal masses are unable to 
model the entire effective mass of the system. They can not model the off-diagonal 
terms that describe inertial effects resulting from relative motion of the actuators. 

g1

i2

i1

g2

sc1

sc2

v2

v1

m'1b '1
f 1

m'2b'2

f2
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3.1 Serial 2-DOF Robot 

Consider the 2-DOF serial robot shown in Figure 10. The mass matrix for this 
mechanism is approximated in [2] by two point masses d1 and d2 placed at the distal 
actuator and end-effector as indicated below. The resulting mass matrix (17) has the 
terms shown in (18-20) where q1 and q2 are the joint angles and l1 and l2 are the link 
lengths. Just as in the previous example, actuator damping coefficients b1 and b2 are 
taken to dominate the total system damping. 

 
Fig. 10. 2-DOF serial robot. 

(17)

(18)

(19)

(20)

m1 l2
2d2 2l1l2d2 q2( )cos l1

2 d1 d2+( )+ +=

m3 l2
2d2 l1l2d2 q2( )cos+=

m2 l2
2d2=

M q( )
m1 q( ) m3 q( )

m3 q( ) m2 q( )
=

 
The equivalent circuit model of this system is shown in  Figure 11. It is similar to 

Figure 9 except that the capacitor values are configuration dependent and a third 
capacitor c12 is included to model the coupled mass terms that are present. Performing 
nodal analysis results in (21) and the corresponding M’ matrix in (22) which can be 
rearranged to solve for the mechanical model parameters in terms of the physical 
mass values in (23). B’ is the same diagonal matrix as in (14).  

Note from (22) that M’ is diagonal (i.e. p’12=0) when m2=m3. From (19,20), this 
is merely the special case when q2=±π/2. Therefore, it is not possible to model this 
system using only masses due to their implicit ground reference, as described in 
Section 2.1. The off-diagonal terms can, however, be modelled using the MP model 
proposed in Section 2.2. It results in a mechanical system model that is topologically 
identical to the equivalent circuit in Figure 11 where each grounded capacitor (c1,c2) 
is replaced by a regular mass and each ungrounded capacitor (c12) is replaced by an 
MP model since the MP model is able to accommodate a non-zero reference 
acceleration. The resulting mechanical system is shown in Figure 12. 

b1 b2

d1 d2

q1 q2

l1 l2
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Fig. 11. Electrical model of 2-DOF serial robot. 

(21)

(22)

(23)

i1 i2–

i2

g1 g2+ g2–

g2– g2

v1

v2

c1 c12+ c– 12

c– 12 c2 c12+
s

v1

v2

+=

M' q( )
m'1 p'12+ p– '12

p– '12 m'2 p'12+

m1 m2+ m3 m2–

m3 m2– m2

= =

m'1
m'2
p'12

m1 m3+

m3

m2 m3–

=

 

 
Fig. 12. Mechanical model of 2-DOF serial robot. 

Although p’12 has a negative value when -π/2<q2<π/2, the net mass perceived by 
each actuator is always positive because M is positive definite. When p’12 is negative, 
it simply means that the motion of actuator 1 reduces the net mass perceived by 
actuator 2, but the net mass perceived by actuator 2 is always greater than zero. 

3.2 Parallel 2-DOF Robot 

The same technique can be applied to parallel manipulators such as the 2-DOF 5-bar 
linkage used by (Hayward et al., 1994). In the case of parallel manipulators, each 

g1

i 2

i 1

g2

sc1 q( )

sc12 q( )

sc2 q( )

v2

v1

m'1 q( )

p'12 q( )

b '1 

f 1
m'2 q( )

b'2

f2

l2
2d2 l1l2d2 q2( )cos+

2 l2
2d 2 3 l1l 2d 2 q2( )cos l1

2 d1 d2+( )+ +

l 1– l2 d 2 q2( )cos
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actuator is referenced to ground but there remains a coupling between the effective 
mass perceived by each actuator which, like a serial manipulator, is configuration 
dependent. This coupling is modelled by c12 and p’12 in the equivalent electrical and 
mechanical models shown in Figure 13. Typically, parallel manipulators also have 
coupled damping terms due to their passive joints which would be modelled by a 
conductance g12 added between nodes 1 and 2 (i.e. in parallel with c12). However, for 
the sake of simplicity, the damping of the passive joints are neglected here. 

 
Fig. 13. Model of a 2-DOF parallel robot. 

Performing nodal analysis on the circuit in Figure 13 results in (24) by 
inspection. For a parallel robot, currents and voltages correspond directly to joint 
forces and joint rates so B’=B and M’=M. For a mass matrix of the form shown in 
(17), the elements of the M’ matrix, and therefore the parameter values associated 
with the masses and MP models of Figure 13, are shown in (26). 
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0 g2

v1
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c12– c2 c12+
s v1
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+=
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0 b'2
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p'12– m'2 p'12+
s
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+=
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m1 m3+

m2 m3+

m– 3

=

 

3.3 Multiple Degree of Freedom Robots 

This technique is easily extended to devices with any number n of degrees of 
freedom. With serial manipulators, the compliance and damping is often mainly in the 

sc1 q( )

g 1 i 1 

v1 
g2 i2

v2

m'2b '2

f 2 
m'1

b'1

f1

sc1 q( ) sc2 q( )

p'1
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actuators and the damping B and spring K matrices are diagonal (27,28). With parallel 
manipulators, the B and K matrices typically contain off-diagonal terms but they are 
easily modelled using conventional techniques since springs and dampers are 2-
terminal devices which can be placed at any two nodes in a system diagram. 

(27)

(28)

B diag b1 b2 … bn⎝ ⎠
⎛ ⎞=

K diag 1 k⁄ 1 1 k⁄ 2 … 1 k⁄ n⎝ ⎠
⎛ ⎞=

 
To account for inertial cross-coupling, the model must contain a capacitor and/or 

MP model between every pair of actuators. For example, the electric circuit model 
and corresponding mechanical system model of a serial 3-DOF manipulator are 
shown in Figure 14. The capacitance C matrix resulting from the nodal analysis (29) 
of the circuit in Figure 14 is shown in (30).  

 
Fig. 14. Model of a 2-DOF parallel robot. 
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(29)

(30)

i1 i2–

i2 i3–

i3

G q( )
v1

v2

v3

C q( )s
v1

v2

v3

+=

C q( )
c1 c12 c13+ + c– 12 c– 13

c– 12 c2 c12 c23+ + c– 23

c– 13 c– 23 c3 c23 c13+ +

=

 
Just as in previous examples, the 3x3 mass matrix M’ (32) is rearranged into the 

form shown in (31) to parallel the current/voltage relationship of (29). For a mass 
matrix M of the form shown in (33), the entries of the M’ matrix are solved for in 
(34). Similarly, for a parallel 3-DOF robot, the electric circuit model and 
corresponding mechanical system model are shown in Figure 15. For a mass matrix of 
the form shown in (33), the elements of M’ are shown in (35). 

(31)

(32)

f1 f2–

f2 f3–

f3

B'
r1

r1 r2+

r1 r2 r3+ +

M's
r1

r1 r2+

r1 r2 r3+ +
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M' q( )
m'1 p'12 p'13+ + p'– 12 p– '13

p'– 12 m'2 p'12 p'23+ + p– '23

p– '13 p– '23 m'3 p'13 p'23+ +
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(34)

m'1
m'2
m'3
p'12

p'23

p'13

m1 m4–

m4 m5–

m5

m2 m5 m4 m6––+

m3 m6–

m6 m5–

=

 

4 Conclusions 

It is argued that a plain mass is not a complete and general model of a capacitor since 
a mass only has one terminal whereas a capacitor has two. The response of a mass 
corresponds to its acceleration with respect to ground and, therefore, can only be used 
to simulate a capacitor which has one terminal connected to ground. It cannot be used 

(33)M q( )
m1 q( ) m4 q( ) m5 q( )

m4 q( ) m2 q( ) m6 q( )
m5 q( ) m6 q( ) m3 q( )

=
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to simulate a capacitor which has a non-zero reference voltage. A new model 
described here that consists of a mass and a pulley correctly simulates the response of 
a capacitor in the general case. 

(35)

m'1
m'2
m'3
p'12

p'23

p'13

m1 m4 m6+ +

m2 m4 m6+ +

m3 m5 m6+ +

m– 4

m– 5

m– 6

=

 

 
Fig. 15. Model of a 3-DOF parallel robot. 

It is shown that the MP model can be used to model systems with cross-coupled 
effective masses which are otherwise, impossible to model with pure masses alone. 
This includes both serial and parallel manipulators with any number of degrees of 
freedom. The mechanical system model that is obtained fully describes the dynamic 
response of the system and is topologically identical to its electric circuit equivalent. 
As shown in (Stocco & Yedlin, 2007), this makes it possible to apply electric circuit 
analysis techniques to mechanical systems, directly.  
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