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Abstract—Space-filling curves have been found useful for
many applications in diverse fields. A space-filling curve
is a path in a 2" x 2" raster domain which visits each
location exactly once. In mathematical terms, space-filling
curves linearize a two-dimensional integer space, bijectively
mapping the space to the integer line.

An algorithm is presented which generates a large
number of space-filling curves/spatial orders. Functions
are derived such that the code of each location can be
calculated from its coordinates and, conversely, a location
code can be decoded to yield the coordinates. The algorithm
first generates 4 x 4 spatial orders which subsequently are
scaled up to any desired domain of size 2" x 2".

The underlying theory of the algorithm is described in
detail as are the processes for scaling up, encoding, and
decoding. The curves are generated as a set of incongruent
curves, followed, if required, by the sets of associated
congruent curves. A number of space-filling curves are
illustrated.

I. LITERATURE, HISTORY, MOTIVATION, CONCEPTS

Spatial orders and their associated space-filling curves
map an n-dimensional space (n > 1) to a one-
dimensional space (the line of non-negative integers).
By means of a space-filling curve, a multi-dimensional
problem can be reduced to one dimension, processed in
this less-complex state, and then restored to the original
dimension if required.

The literature on space-filling curves and spatial orders
can be grouped into two classes, applications depending
on space-filling curves and papers addressing space-
filling curves as such.

Applications can be found in a wide range of areas,
concentrating in image and signal processing, parallel
and distributed processing, database computing, global
optimization, antenna design, and yet others. In image
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processing, subareas comprise image abstraction, clas-
sification, coarsening, compression (both lossless and
lossy), encryption and steganography (data and image
hiding), multimedia and multispectral processing, and
more. Many of the papers include the term ’space-filling
curve’ in their title, signifying the importance of their
role. Examples of articles published in the past five
years can be found for all of above areas. Examples:
Ouni et al. [1] propose an adaptive algorithm for lossless
image compression by exploiting inherent local image
coherence by choosing from a fixed set of four space-
filling curves. Bhatnagar et al. [2] encrypt images by
shuffling the coefficients in a fractional Fourier transform
domain according to space-filling curves. Amirtharajan
et al. [3] hide confidential data by encrypting them first
by a standard method, and then convert the encrypted
1-dimensional data stream into a 2-dimensional pattern
using a space-filling curve and hiding that in a cover
image. Koga et al. [4] developed an algorithm for image
coarsening achieved by generating a minimal length
space-filling curve which is adapted to the structure of a
given image, preserving its structural context. Lawder et
al. [5] discuss multi-dimensional indexing for data-base
management systems based on space-filling curves.

The papers on space-filling curves as such deal with
properties, valuation metrics and parameters, e.g., do-
main size. Mokbel et al. [6] propose a metric called
irregularity which reflects the ordering quality of a given
space-filling curve for a large range of dimensions and
any space-filling curve. Zarai et al. [7] propose two
algorithms, one to calculate the location codes of a
Hilbert curve from the locations code of the Z-order, the
other from the Gray-order. Chung et al. [8] generalize
the domain of Hilbert curves to rectangular domains of
arbitrary size, thus removing the size constraint 2" x 2".
Rather than reducing the dimension, Ahmed et al. [9]
utilize the converse situation with a space-filling surface
algorithm, mapping from 2-d to 3-d, thereby achieving a
proximity improvement which is of advantage in parallel
computing.

The curves dealt with in above papers are primarily
the Hilbert, Peano, Z, Gray, raster scan, and diagonal
meander (’zig-zag’) space-filling curves, with the Hilbert
curve dominating.
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New space-filling curves have been proposed previ-
ously. Wierum [10] describes the €2 curve and the H-
index curve in the course of assessing a number of curves
with the aid of several quality metrics. Liu [11] discusses
several new curves; in particular four curves which are
related to Hilbert’s, comprising, together with a variant
of Hilbert’s known as Moore’s, a complete set. Stocco et
al. [12] interleave bits (see [13]) in a systematic fashion,
thereby leading to many new space-filling curves; their
method is easily extended to three and higher dimensions
and to rectangular domains. Haverkort et al. [14] also
evaluate a number of space-filling curves from 27 x 27
and 3" x 3" domains, several of which are new curves.

The history of space-filling curve traces to 1878
when Cantor showed that two finite-dimensional, smooth
manifolds are of the same cardinality, even if they are
of different dimensions. Specifically, the (closed) unit
square [0, 1] x [0, 1] can be mapped to the (closed) unit
interval [0, 1]; stated as a corollary, the unit square can
be linearized. This is a surprising, non-intuitive result
which leads to a large number of practical applications.

Space-filling curves accomplish the linearization of
a finite area, volume, or hyper-volume. The first was
proposed by Peano in 1890 [15], another by Hilbert
a year later [16], Lebesgue in 1904 followed with
the Z-curve [17]; yet more were described by other
authors in subsequent years. The problems investigated
in connection with their research belong to continuous
mathematics. For a thorough treatment of this area of
mathematics, see Sagan [18].

The motivation for the space-filling curves considered
here is an entirely different one. Rather than taking the
unit square within the domain R? as the range, the
space-filling curves of interest are defined on a grid
or lattice, i.e. the set of coordinates of ordered integer
pairs within the domain I2; thus these investigations are
domiciled in discrete mathematics.

Morton [19] rediscovered Lebesgue’s space-filling
curve in 1966 in the context of discrete mathematics and
computer science. It is now known as the Morton order
or the Z-order. Since then, more space-filling curves
were discovered, often restricted to a square domain of
size 2" x 27, together with a large number of interesting
characteristics. Bader [20] describes in depth many of
the well-known space-filling curves.

The principal aim of this paper is to present an
algorithm and its underlying theory which efficiently
generates a large number of spatial orders and the
associated space-filling curves in domains of dimensions
2"x 2", r = 2,3, ---. Here, the terms ’spatial order’ and
’space-filling curve’ will be used interchangeably since
they name the same object in different representations.

Two major subsets can be identified, distinct or in-
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congruent and non-distinct or congruent space-filling
curves; they will be generated separately. Two curves are
incongruent if one cannot be derived from the other by
a reflection or a rotation. The set of incongruent spatial
orders is a proper subset of the congruent set.

A unique label, the signature will be associated with
each spatial order/space-filling curve. The signature will
(a) identify the spatial order, (b) serve as a generating
function for the spatial order and establish the order ma-
trix, and (c) define the space-filling curve and facilitate
to plot it.

Consider a finite integer grid of size 2" x 27, the
domain, where r is its resolution. It is embedded in a co-
ordinate system with coordinate ranges {0, 1,2, ---,2"—
1}. Each coordinate point in the domain defines a
location. Customarily, the grid is depicted as a square
table of 22" unit squares, each square representing a
location.

Starting at some chosen location (the entry location),
the sequence 0,1,2,---,2?" — 1 is mapped onto the
domain in some fashion, resulting in a square matrix, the
spatial order. By connecting the locations sequentially,
starting at the entry location 0 and ending at location
227 _1 (the exit location), a path is generated, the space-
filling curve.

The domains of space-filling curves can be structured
hierarchically. Subdivide a 2" x 2" domain recursively:
first into four equally-sized square sub-domains, the
quadrants, of size 2"~'x 2771, next each of these again,
and repeat the process. When the sub-domains have
reached dimension 1 x 1 (the locations), the subdivision
process terminates. Following the terminology used for
trees (as in data-structures), the domain itself is said to
be at level r, the first four subdivided sub-domains are
each at level r — 1, etc.; the locations are at level 0.

One important task related to space-filling curves is
to find functions which allow the calculation of the
location code n from the two coordinates (encoding:
n = f(x,y)) and the converse operation of finding
the coordinates (x,y) of a location from its code
(decoding: (z,y) = (g(n),h(n))). This is possible
because the set of coordinates, given by the Cartesian
products {(z;,y;) | zsy: € {0,1,---,2" — 1}} is
mapped bijectively to the location codes, the set
{0,1,2,---,8%" —1}.

II. COMBINATIONS AND PERMUTATIONS OF
SIGNATURE ELEMENTS

The Domain of Size 2 x 2

Consider first the domain of size 2 x 2. The total
number of space-filling curves is 4! = 24, which includes
all rotated and reflected curves. To reduce this set to
mutually incongruent curves, fix the starting point at the
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origin of the coordinate system. The number of space-
filling curves reduces to 3! = 6, but elements of this
set still include the reflections on the major diagonal
(the domain’s diagonal passing through the origin). But
a curve and its reflection are congruent to each other.
Each curve has one such reflection, thus, the number
of incongruent curves is 3!/2 = 3 for a 2 x 2 domain.
They are the Z-order (Figure 1), the U-order (Figure
2), and the X-order (Figure 3) [12], [21], [22], [23],
no others exist; therefore, they can be considered to be
fundamental and will be referred to as the three basis
orders.

—— 23 10 | 11

*— 01 00 | 01
Figure 1: The 2 x 2 Z-order (yo,xo)

1] 2 01|10

® 0|3 00 | 11

Figure 2: The 2 x 2 U-order (g, o P yo)
2|1 10 | O1
0|3 00 | 11

Figure 3: The 2 x 2 X-order (2 @ yo, Zo)

The Z-order is of particular importance due to the fact
that each location code is obtained by interleaving (see
[12]) the binary representation of the coordinates of the
location.

Thus, to calculate the location codes of the Z-curve,
interleave the bits (the binary digits) of the coordinates;
then the four location codes are given by n(zg,yo) =
Yo Lo, With zg,y0 € {0,1} (juxtaposition of the bits
implies concatenation of the bits). zy and y, are called
the bit-variables and for domains of size 2 x 2, interleav-
ing reduces to juxtaposition of 2 bits. Specifically, the
quadruple (00,01,10,11)2 = (0,1,2,3)10 is obtained
where the order of the elements in the quadruple is that
of the Z-order (Figure 1).

The location codes of the U-curve (Figure 2) are
obtained by concatenating the x-coordinate with the
function = @ y: n(zo, yo) = To To ® Yo, resulting in the
quadruple (0,3,1,2)19, where the symbol @ represents
the bitwise exclusive-OR (exclusive disjunction) operator.
For consistency, plotting a quadruple (in general, a 22"-
tuple for resolutions r» > 0) requires a convention to
be applied to all spatial orders. Since the elements of
a quadruple are the location codes at the coordinates
from which they were calculated, each must be plotted
at its coordinates. The convention adopted here is to
order the quadruples (the 22"-tuples) of coordinates in
Z-order. This convention is reflected in Table 1 below.
Thus, for the U-order, the quadruple of location codes
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(0,3,1,2)19 maps to the quadruple of coordinate pairs
((0,0),(1,0),(0,1),(1,1)), Figure 2.

Similarly, the location codes of the X-curve (Figure
3) are derived from concatenating xo & yo and zg:
n(xo,Yo) = o ® Yo xo, the quadruple is (0, 3,2, 1)10.

Thus, the location codes of the three orders are con-
structed by interleaving the z-coordinate with either the
y-coordinate or with the result of the operation = @ y.
Consider the three elements xg, Yo, and xo@yo; choosing
pairs, a total of six permutations, P(3,2) = 3!/(3—2)! =
6, viz. (zo,Y0) (Yo, %0), (Zo;To ® ¥o), (Yo, To & Yo)s
(zo ® Yo, 20), (xo D Yo, yo) result. (Recall, for a com-
bination of objects, say 2 from a set of 3, their order
is ignored; for a permutation, the order of the objects
is essential). The elements are permutable because the
operations to interleave and interchange (i.e. permute)
are not commutative. Eliminating reflections, the three
space-filling curves given by the values nzy = yo o,
nyg = ToTo ® yo and nxy = x9 D Yoo remain.
The associated ordered pairs (yo, zo), (%0, o ® Yo ), and
(zo @ yo,xo) are the signatures of the basis orders.

The Domain of Size 4 x 4

Only the basis orders Z, U, and X and their associated
congruent orders can be defined on a 2 X 2 domain
(r = 1). Since the stated goal is to generate a large
number of spatial orders, it is necessary to increase the
domain size to the next higher resolution r = 2, 4 x 4
domains, thereby resulting in a significantly larger set of
incongruent space-filling curves with a large variety of
appearances.

Specifically, for » = 2, each coordinate comprises
two bits in its binary representation. Let x = z; o and
Yy = Y1 Yo, where z;,y; € {0,1}, i = 0,1 are the bit-
variables; the set of bit-variables is {x1,xo,y1, Yo}, the
ranges of the coordinates  and y are {0,1, 2,3}, and
the range of the location codes is {0, 1,2, -+, 15};¢. For
the Z-order, the location codes are derived by interleav-
ing its coordinates: nz(x,y) = y1T1Yoxo, Ti,Y; €
{0,1}, ¢ =0, 1 (again, juxtaposition implies concatena-
tion). For the U-order, ny (2, y) = y1 1 ® Y1 Yo o B Yo;
and similarly for the X-order.

There are no reasons, however, to restrict the “assem-
bly” of location codes by interleaving coordinates, per-
muting (i.e. interchanging) their bits also produces space-
filling curves. The approach proposed is to permute (a)
bits from the binary representation of the coordinates
and (b) bits which result from applying exclusive-OR
operations to the bits of the coordinates.

The approach here is a generalization of the concept
proposed in [12]. It does not produce a complete set
of all possible curves in this domain; it does generate,
however, the set of curves which can be obtained using
only the logical and bit-shifting operations. The set of in-
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congruent curves may be augmented by their associated
reflections and rotations to provide a total of 322,560
space-filling curves in the 4 x 4 domain. In Section III,
methods are discussed by which the 4 x 4 domains are
scaled up to produce higher-resolution curves.

Since for each space-filling curve there is an entry
and an exit location, it is a directed (simple) path. The
direction of the path is reversed by interchanging the
entry with the exit location and relabelling the locations
on the path. The definition of congruency does not
take into consideration the direction of a space-filling
curve. There are curves for which one of the congruency
transformations coincides with its reversed path; for
example, a rotation by 180° reverses the path of the
Z-order (Figure 4). For other spatial orders, none of
the congruency transformations coincides with a path
reversal.

10[11[1a [15 e le
8o 1213 < N <
23|67 = e
o|1|a|s5 P N <«

Figure 4: The 4 x 4 Z-order and Z space-filling curve
(y1, 21, Yo, To) and its 180° rotation

Central to the generating algorithm is Table 1 which
lists the four bit-variables and the functions obtained by
applying the exclusive-OR operator on combinations of
two variables (z1 @ xo, - - -), three variables (z1 ® z¢ ®
Y1, - - ), and four variables (21 ®xoPy1 Dyo). There are
six combinations of two variables, four combinations of
three variables, and one for the four variables (permuta-
tions cannot be considered since the exclusive-OR oper-
ation is commutative). Together with the four variables,
there are 15 binary-valued entities to be called the binary
functions. Thus Table 1 is structured into 15 columns and
16 rows for the 16 locations of 4 x 4 domains; the rows
are ordered according to the convention discussed above,
viz. the 4 x 4 Z-order (Figure 4). Let a location code be
represented as a binary integer: n = ngmngoning, N; €
{0,1}, ¢ = 0,1,2,3. Rather than interleaving integer
coordinates, different binary functions chosen from Table
1 will be assigned to the four bits of a location code, e.g.,
n3 =1 By, N2 = T1, N1 = To D Yo, and ng = Tp.
Then (z1 ® y1, 1, o ® Yo, To) is the signature of the
spatial order (it is the signature of the 4 x 4 X-order);
the right-most bit is always the least significant bit. The
algorithm proceeds in several steps.

Step I: Generate a preliminary set of quadruples

Select systematically four binary functions from Table
1 by invoking a combinations generator; the resulting set
of quadruples is of size C(15,4) = 15!/(4!(15 —4)!) =
1, 365.

Step 2: Remove invalid quadruples

A closer inspection of the set of quadruples from step
1 reveals that many do not represent a spatial order;
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they must be eliminated. Consider row 1 of Table 1
for which all entries are zero. Take all combinations
of 4 elements from 7, the quadruples from row 1 will
evaluate to the zero-quadruple (0,0,0,0).

Lemma. For each non-zero row of Table 1, 35 combi-
nations can be chosen which are a zero-quadruple; the
total for Table 1 is 15 % 35 = 525 zero-quadruples.
Proof. Each non-zero row has exactly 7 zero
elements. The number of zero-quadruples is the
combination of four elements chosen from 7, or
C(7,4) = 71/(4(7 — 3)!) = 35. There are 15 non-zero

rows, thus the total for the table is 525. A =3
222 %
$323522%%3% 8

col| ||y |y |5 S 2|22 255 ]% 2%
row|1|2|3|4|5|6|7 |8 |9 /|10]11/12]13 (14|15
1/o0|o|ojo|oflojojo|o|o| o ofojo]oO
2(o0f1|ojo|1]ofof1|1 0| 1] 1]0]1]1
3jojojo|1|ojo|[1|o|1 | 1]o0f1]1][1]1
4fof1|of1|f1]o|1][1]o|1|1] 0/ 1]|0]0
5(1/0/0|o|1][1][1|o|o 0| 1] 1]1][0]1
6|1/1]/0/0fo|[1][1|1]|1 /0001 1|0
7111001 |f1]1]ofo|1 |11/ 0/ 0|10
gff1|1|of1]|o|1]|0o|1|o|1]0] 1|0]o0]1
9lojo|1|ofo[1]of1 01| 1] 0] 1]1]1
10(o1|1]|o|1|1]0]0|1|1|0[1]1/0]0
1mjojo|1|1]o[1|[1|1 1|0 1] 1]|0]0]0
120011 |1 |1]1[1|o|o|o| o] o|o|1]1
13(1]/0|1]0o|1|o|1][1]|0 101|010
14111 ]oojof1|o|1|1]1]0]0]0]1
151011 1|ojo|1|1|0fo0jo0|1| 0]t
161 ]1|1|1|oflojojo|o|o|1]1]1/ 1|0

Table 1: Table of 15 binary functions of 4 variables
When there are two zero-quadruples in a row among
rows 2 to 16, it means there are two location codes 0.
But it is not possible that two locations with the same
code exist in a spatial order; therefore, such a quadruple
is called invalid. Since there are 525 zero-quadruples in
rows 2 to 16, there is a total of 1,365 — 525 = 840 valid
quadruples in the table. The elements of this set will be
referred to as the basis quadruples.
Lemma. Only the zero-quadruple can act as the inva-
lidity criterion.
Proof by counterexample. The quadruple (0,0,0,1) is
not present in the set of quadruples of the signature
(z1,20,y1,21 ® x0), whereas it is for (z1,y1,z1 B
Y1, 2o D Y1), even though both are invalid. Examples of
pairs of signatures can be found for all other non-zero
quadruples where for one signature, a zero-quadruple is
present but not for the other. When the zero-quadruple
appears twice in a set of quadruples, it must replace
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one of the non-zero quadruples but which one it is
depends entirely on the binary functions of the associated
quadruple; thus, non-zero quadruples do not qualify as
the invalidity/elimination criterion. /A

Step 3: Expand the set of basis quadruples

By permuting the elements of a basis quadruple, more
space-filling curves are generated.

Lemma. Permuting the elements of a signature does not
invalidate the resulting signature.

Proof. The signature of a spatial order represents the 16
(numerical) quadruples obtained by evaluating each of
the binary functions of the signature at each location
of the domain. A signature is invalid when there is
more than one zero-quadruple among the 16 quadruples.
Permuting the elements of a quadruple will not change
any of the values, only their order is changed. Thus, no
additional zero-quadruples are introduced and the per-
muted signature is also a signature (a valid quadruple).A\
For each basis quadruple there are P(4,4) = 4! = 24
spatial orders for a total of 84024 = 20, 160 signatures.

Step 4: Eliminate reflections on the major diagonal

The set from step 3, however, includes congruent
pairs: a curve and its reflection on the major diagonal
(reflection is a commutative operation). By definition,
a geometric object is congruent to another geometric
object if the two coincide after one or more of the
transformations translation, scaling, rotation, and reflec-
tion has been applied. Space-filling curves are geometric
objects for which the transformations translation and
scaling need not be considered. There remain rotations
by 0° 90° 180° and 270° reflections about the major
diagonal, the minor diagonal (orthogonal to the major
diagonal), the horizontal axis, and the vertical axis (all
reflection axes pass through the centre of the domain);
in total 8 curves.

The reflection of a curve on the major diagonal
is obtained by interchanging the coordinate axes,
ie. ¥y, — x;, and x; — y;, ¢ = 0,1 (the
’substitution rule’). For example, the two signatures
(x1, 1 ® y1 ® Yo, To, xo ® y1) (Figure 5) and
(y1, 21 ® 2o D Y1, Yo, T1 ® yo) (Figure 6) represent
such a pair, hence the spatial orders they represent
are congruent. After elimination, there remain
20160/2 = 10,080 quadruples which are the signatures
of a set of incongruent curves.

Lemma. The binary functions of Table I can be paired
according to the substitution rule r; <> y;, ©» = 0, 1.
They will be called reflection pairs. There are three
exceptions of functions which are self-reflecting.

Proof. Consider a binary function and apply the
substitution rule, resulting in a reflection pair.
Substitution is a commutative operation, hence a
reflection pair is mutually reflective. For example, z;
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and y; are a reflection pair, as are x; B zo @ y; and
Y1 DYoo B T1 = 1 By1 Pyo. The self-reflecting functions
are x1 D Y1, To D Yo, and x1 D xg D Y1 D yo (exclusive
OR is a commutative operation). A

Mim 4N N
[V =V 4P
) Aazn A
s NIy oH ~ >
Fig. 5 Fig. 6 Fig. 7

Figure 5: A 4 x 4 space-filling curve from the U-order
family; (1,21 ® y1 D Yo, To, o D Y1)

Figure 6: Figure 5 reflected on the major diagonal

(Y1, 71 @ 2o © Y1,%0, 1 D Yo)

Figure 7: Figure 5 rotated by 270° or the path of Figure
6 reversed; (71,21 @ o D Y1, Y0, T1 O Yo)

The reflection of a quadruple is easily gener-
ated with the aid of a look-up table. Assign to
each binary function an index number (the col-
umn number in Table 1); the look-up table becomes
T, = [3,4,1,2,10,6,8,7,9,5,13,14,11,12,15]; i.e.
(t,T:(i)),s = 1,---,15 are reflection pairs. Let
(83,82, 81,80) be a given signature and (rs,r2,71,70)
the signature of its reflection, where r; = T,.(s;), i =
0,1, 2, 3. For most quadruples generated by step 3, either
s3 < r3 or r3 < s3. Thus, to eliminate the reflection
of a quadruple, generate its reflection, then accept the
quadruple if s3 < r3. If the quadruple has been accepted,
its reflection, which will be generated later, will be
rejected. Conversely, if it has not been accepted, the
reflection will be accepted later. There are cases when
s3 = r3, which will happen when s3 is one of the
self-reflecting binary functions. For these, the acceptance
criterion is s < 79, unless s; = 1o, in which case
the criterion is s; < ry. The case sy = 7; will not
occur because all quadruples which have the three self-
reflecting functions as elements are invalid.

Step 5: Expand the set of incongruent quadruples

The rotation and reflection transformations (except
the reflection on the major diagonal) are implemented
by inverting combinations of the bit-variables. (A bit-
variable, the value of which is a single bit, is inverted
by applying the bitwise NOT operator T, i.e. by a one’s
complement operation.)

Inverting none, one, two, three, or all four bit-variables
produces 16 signatures. Applying the same operations to
the reflections on the major diagonal doubles that num-
ber to 32. But there are only eight congruent curves for
a given curve, implying that by introducing inversions,
three additional incongruent curves are generated, to a
sum of 4. The total becomes 10080 x4 = 40, 320 space-
filling curves, none of which is congruent to any other
in that set.

Lemma. Inverting xo or yo or both xy and yy pro-
duces spatial orders which are incongruent to the spatial
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orders generated by step 4.
Proof. Inverting z( interchanges row 0 with row 1 and
row 2 with 3. The location code at coordinates (0,0)
is moved to (1,0). But the entry location of every
spatial order generated by step 4 is at (0, 0), furthermore,
congruence transformations move it to one of the four
domain vertices at (0,0), (3,0),(0,3) or (3,3). Thus a
spatial order with an entry location at coordinates of
(1,0),(0,1) or (1,1) is incongruent to the ones from
step 4. Similar arguments apply to inverting yo or both
o) and Yo- A

Thus, inverting x( results in space-filling curves with
the entry location at (1,0), inverting yo at (0,1) and
inverting both at (1,1) (Figure 8d).

6 |7 |10 |11 7 7 ﬂ7 e
4|/5|8/|9

2|3 (14|15 |y | o e

o 1]12]13 P L] Pu JA IN T
Fig. 8a Fig. 8b Fig. 8c Fig. 8d

Figure 8: The hybrid 4 x 4 ZU space-filling curves
(z1,71 D Y1, Y0, 20)> (T1,21 © Y1, Yo, To)
and (xla @ ylv%a%)

Step 6: Generate the signatures of congruent spatial
orders

A reflection on the major diagonal cannot be imple-
mented using inversions. Therefore, the spatial orders
which are reflections on the major diagonal must be
present in the set at this point, either by retaining them
by skipping step 4 above or by regenerating them, e.g.,
by a mapping operation using a table look-up. Ignoring
this consideration will fail to include orders reflected on
the major and minor diagonals and those rotated by 90°
and 270°.

Lemma. Congruence transformations are obtained
by inverting certain combinations of the bit-variables
T1,To, Y1, Yo as follows.

Reflection on the vertical domain axis: invert x1 and
xq, reflection on the horizontal domain axis: invert y;
and yy; rotation by 180° invert x1,xq, y1, Yo, reflection
on the major diagonal: substitute x; <> y;, © = 0,1;
rotation by 90°: invert x1, xg followed by the substitution
r; < yi, t = 0,1; rotation by 270°% invert yi,yo
followed by the substitution x; <> y;, © = 0, 1; reflection
on the minor diagonal: invert x1,xo, Y1, Yo followed by
the substitution x; < y;, © =0, 1.

Proof. Inverting z (the least significant bit of the x-
coordinate values) interchanges columns of the domain:
column 0 with column 1 and column 2 with 3; inverting
z; interchanges columns O and 1 with columns 2 and
3; inverting both xy and x; (yo and y;) results in the
reflection of the domain on the vertical (horizontal) axis;
carrying out both the vertical and horizontal reflections
then results in the rotation by 180° Substituting x; <>
y;, © = 0,1 interchanges the coordinate axes, i.e. reflects
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on the major diagonal; rotation by 90°(270°) is the result
of reflecting on the vertical (horizontal) axis followed by
reflecting on the major diagonal; reflection on the minor
diagonal is achieved by rotating by 180° followed by
reflecting on the major diagonal. A

Inverting combinations of the bit-variables of a sig-
nature in the set for all permutations and the permu-
tations of its reflection yields eight for each signature,
the set of congruent curves. The total score becomes
40320 * 8 = 322, 560 space-filling curves. Compared to
the number of all possible curves of a 4 x 4 domain,
16! =~ 2.09 103, it is still a small set.

Since with each incongruent curve there are 8 associ-
ated congruent curves (including itself), the total of in-
congruent curves in the 4 x4 domain is 16!/8 ~ 2.6 10*2.
Compared to the set of generated incongruent curves of
size 40,320, that set is also small.

Step 7: Scale up the 4 x 4 domain (as discussed in
Section III)

Step 8: Generate the spatial order and its associated
curve from a signature

The final step generates the spatial order and curve
from its signature. For » = 2, the spatial order is a
4 x 4 matrix of location codes, arranged according to
their coordinates. Each location code is derived from
the signature by substituting the bits of the coordinates
into the elements of the signature, evaluating them and
concatenating the resulting four bits.

To plot the space-filling curve, start at the location
with code 0 and draw the path by visiting the locations
in the sequence 0, 1,2, --,15. Figures 8a and 8b are an
example of a spatial order and its associated curve.

The signature of a space-filling curve with its path
reversed is obtained by inverting each element of its sig-
nature. For example, the signature (T7, 21 @ Y1, Yo, To)
represents the curve which is identical to that of Figure
8b except that its path is reversed (Figure 8c, compare
also Figures 6 and 7 and their signatures). Figure 8 also
demonstrates that a curve with reversed path need not
coincide with any of its congruent curves.

Additional considerations. Using appropriate pro-
gramming code, the algorithm can be tailored to the
specific requirements that a project/application may call
for. Thus, a variety of sets, differing in size or in se-
quence, or sets comprising spatial orders with a common
characteristic, can be accommodated. For example, sets
can be reduced in size by skipping one or more of steps
3,4, 5, or 6, or by selecting only every mth signature,
or by replacing Table 1 by a smaller one where some of
the binary functions were omitted.

The sequence of generation can be altered by rear-
ranging the binary functions in Table 1 or by changing
the combinations generator in step 1 or the permutation
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generator in step 3. Two complementary sets can be
obtained by generating one set first with the inequality
s; < r; in step 4 and then again with the inequality
inverted to s; > r;. A set with spatial orders which have
one common entry location (any one of the 16 locations
in the domain) or spatial orders where all have the same
orientation can be produced easily.

If only one or a very few spatial orders need to be
generated, first, pick four binary functions from the set
of 15 functions listed in Table 1 to form a preliminary
quadruple. Second, determine its validity by evaluating
the four elements of the quadruple for all coordinates.
If the quadruple evaluates to (0,0,0,0) no more than
once for the 16 evaluations, a 4 x 4 spatial order has
been found. Third, if required, invert one or more of the
bit-variables in the signature according to the desired
transformation (rotation, reflection).

III. GENERALISATIONS TO DOMAINS OF
RESOLUTION r > 2

For most applications, domains of resolution r = 1
and r = 2 are insufficient in size. It is quite simple, fortu-
nately, to increase the resolution. Several approaches are
available: (a) replicate a domain recursively, (b) replicate
a domain fourfold and connect the four replicates as
given by another spatial order of the resolution of the
original domain, (c) generate the signature of a spatial
order by combining the signatures of two or more lower-
resolution spatial orders, (d) generalize the algorithm
introduced above.

Approach (a) is the classical approach. Consider one
of the basis orders or one of their congruent orders,
replicate it four times (becoming four sub-domains)
and arrange these in a square. Connect the four sub-
domains by the order of the original curve, resulting
in a 4 x 4 domain. Iterate the process — the second
iteration generates an 8 X 8 domain; repeat until the
desired resolution/domain size is reached (Figures 9 and
10).

MmMmimirrmirm i Al rm
\LJ)KLJ)\LJ)\LJ)
anivailu~ilval fanilyailn~ilya
T N TN e N )
axUR==ll==lPacl IssUlaails=0Das
USRI TS T
mlmirmlim aniby el Alval Faslir iy Al7a
NE==NPAENE==HD, O NNV NN TV 7D
IATI |7L| IATI |7LI ma\Nunlianiiusl funlianiianllanl
NESSVARNA==EPA ANR==AVARNDZSRD)
WYY AP AR ARS AL dr
N Ml ln WIS T T YV
N RN )
Wi
NIRRT e sl el ie dh S TEe Tl
Fig. 9 Fig. 10

Figure 9: The 8 x 8 U-order space-filling curve
(w2, 72 © Y2, 71,71 © Y1, To, To D Yo)

Figure 10: The 16 x 16 U-order space-filling curve
(z3,23 © Y3, T2, T2 D Y2, 1, T1 D Y1, T0, To D Yo)
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An order from the set of congruent orders that
is not a 4 x 4 Z-, U-, or X-order, however, must
be replicated 16 times to allow connecting the sub-
domains according to the original curve, resulting in a
16 x 16 domain on the first iteration (Figures 11 and 12).
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Figure 11: The 4 x 4 H-order space-filling curve
(z1,21 © Y1,T0 D Y1, To D Yo) [23]

Figure 12: The 16 x 16 H-order

(z3, 23DYs, T2DYs, T2 B2, 71, T1DY1, ToDY1, ToDYo)

Approach (b) exploits the observation that there is no
compelling reason to employ the same spatial order to
connect a set of sub-domains at a certain level to obtain
a higher-level domain. To see this, consider the 2 x 2
Z-curve, and replace each location by, say, a 2 X 2 X-
curve, resulting in a 4 x 4 spatial order of four 2 x 2
X-curves connected by the Z-curve (Figure 13, see also
Figure 8).

Similarly, replicating an order from the set of congru-
ent orders four times and connecting the sub-quadrants
in turn by one of the orders from the set of 2 x 2 basis
orders results in an 8 x 8 domain (Figures 14 and 15).
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Figure 13: A 4 x 4 hybrid XZ curve

(Y1, 1, o B Yo, To)

Figure 14: The 4 x 4 space-filling curve

(1,21 © 20 ® Y1,71 B To S Yo, To S Y1 D Yo)
Figure 15: Figure 14 scaled up to size 8 x 8

(Y2, T2, 71,71 B T B Y1, 71 B To D Yo, To D Y1 D Yo)

Approach (c) is the algebraic version of approach
(b). The signature (xg,21 D y1,T1,To D Yo) represents
the curve shown in Figure 16. Prepend this signature
by (ys,ya2, 3, Z2), the indices-adjusted signature of the
raster-scan order (Figure 17) for level » = 3. The result
is the signature (y3, Y2, T3, T2, X0, T1 D Y1, T1,To D yo)
of the space-filling curve depicted in Figure 18.
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Figure 16: The Bat space-filling curve

(w0, 21 @ Y1, 71,20 D Yo)

Figure 17: The 4 x 4 Raster-scan space-filling curve
(Y1, Y0, T1,T0)

Figure 18: A hybrid space-filling curve by combining
Figures 14 and 15;

(Y3, Y2, T3, T2, To, T1 D Y1, 1, T0 D Yo)

Approach (d) utilizes the principles of the proposed
algorithm. For the resolution » = 3 (8 X 8 domains),
for example, there are six bit-variables and 63 binary
functions. Choose six functions from the set of binary
functions. Determine the validity of the selected 6-tuple;
if valid, the 6-tuple is the signature; else obtain another
selection; example: Figure 19.
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Figure 19: The Snowflake space-filling curve
(x2 ® Y2, 1 B Y1, To B Yo, T2, 1, Z0) [12]

Approaches (a) to (d) do not exhaust the possibilities
to increase the resolution.

IV. ENCODING AND DECODING

The ability to encode and decode all spatial orders is
considered a major characteristic and advantage of the
described algorithm.

To encode and decode spatial orders, the signature
must be known. Encoding is straight-forward: substitute
the bits of a coordinate into the signature, resulting in
the location code at that location.

There are two methods for decoding. The arithmetic
method needs to be implemented in stages with the
aid of Table 1. Separate the four least significant bits
of the given location code and rearrange the four bits
according to the order of the binary functions of Table
1. If the signature is stored as a tuple of indices (i.e. the
column numbers shown in Table 1), the rearrangement
is achieved by sorting the binary function indices in
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ascending order and rearrange the location code bits
accordingly. Example: the signature of the order of
Figure 16 is (zg, 1 ®y1, 21,20 D yo) and is represented
by the index-tuple (2,6,1,9). Sorted in the order of
Table 1, it becomes (1,2,6,9). The location code n =
1319 = 11014, rearranged as was the signature, becomes
01115. By searching Table 1 under columns (1,2,6,9) for
01115, row 10 is found for which (z,y) = (1,2), the
expected result. For orders r» > 2, repeat the process
by matching the next four least significant bits of the
location code to yield zs,x2,ys, yo; iterate as required
for higher levels. Finally, the coordinate bits need to be
concatenated to obtain the coordinates.

Alternatively, an algebraic formula approach may be
taken to decode a location code. From the signature
s = (s3, 82,81, 80), where s; is one of the 15 binary
functions, it is easy to derive the four formulas for
the bits of the coordinates: z1 = fi(ss,S2,$1,50)s
xo = fa(ss, S2, $1, S0), and similarly for y1, yo, by using
the exclusive-OR identity y = (z ® y) D x.

For the previous example, the four coordinate func-
tions become x1 = $1,To = S3,Y1 = S2D S1,Yo = S3D
S0, from which 1 = ny,x9 = n3,y1 = N2 B n1,Yo =
ns & ng, where the n; are again the location code bits.
Thus, n = 13 yields 1 = 0,29 = 1,51 = 1 D0 =
Ly=1®1=0or (z,y) = (1,2), as before.

The advantage of the arithmetic method is that it can
be programmed for spatial orders generated internally
whereas for the algebraic approach the coordinate func-
tions need to be derived and programmed explicitly for
each order.

V. VISUAL ASSESSMENTS

Since the set of incongruent orders is so large, a visual
inspection of all its elements was not attempted; only a
few are presented here (of size 4 x 4), chosen at random.

Among the curves in the set of incongruent orders are
the Z-, U-, and X-orders as well as others related to them,
which frequently is visually obvious. For example, the
orders shown in Figures 8, 20, and 21 are clearly related
to the Z-order, and the curves shown in Figures 5, 11,
22, 23, and 24 are part of the U-family; similarly, the
curves of Figures 25, 26, and 27 are from the X-family.
Yet others cannot be clearly associated with the Z-, U-,
or X-order family (Figures 14, 28, 29, 30, and 31).

Some well-known curves are in that set, e.g., the
raster-scan (Figure 17), interlaced raster-scan, meander
scan (row prime scan), and the curves generated by Gray
codes [24], [25], [27], (e.g., Figures 22 and 23). The
Hilbert curve [26], however, requires a two-part signature
for its definition and therefore is not generated.

To demonstrate the effect of permuting signature el-
ements, compare Figure 25 with 28 and 32: the sets of
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signature elements are identical, but not their order, and
the three curves differ substantially in appearance.

A space-filling curve, reflected on its major diagonal
followed by inverting y; and o is rotated by 270°
(90° clockwise) (Figures 25 and 26); by inverting xy and
Yo, a curve with entry location at (1,1) results (Figure
27).

Changing a single variable in a signature by substi-
tuting a variable with another one (e.g., by changing the
index of one of the variables) may render the quadruple
invalid. If it is not invalid, the change will produce an
order which may be markedly different from the original
(Figures 20 and 33).
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Figure 20: The signature of Figure 25 with change of

one index; (LEQ, x1 D Y1, 21 D Yo, To D ’yo)

Figure 21: The 4 x 4 Double-Z space-filling curve

(71,%0,Y1,0)

Figure 22: A Gray-order space-filling curve

(y1, 21 @ Y1, 21 S Yo, o  Yo)

Figure 23: An anti-Gray-order space-filling curve

(T0, 20 B Y1, 1 B T0 D Y1, 71 B To B Y1 DYyo) [27], [23]
Generally, as a cursory overview shows, some space-

filling curves are quite distinctive and, arguably, visually

pleasing. Many possess a vertical, horizontal or other

symmetry.
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Figure 24: The Rose space-filling curve

(Y0, 20, 71,71 D Y1)

Figure 25: The space-filling curve

(zo, 20 © Y1, 71 D Yo, To D Yo)

Figure 26: Figure 25 rotated 270°

(o; 1 @ o, o © T1, w0 D Yo)

Figure 27: Inverted o and yo in the signature of Figure
25; (70,70 © Y1, 21 B Yo, To © o)
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Figure 28: The Spider space-filling curve, a permutation
of the signature of Figure 25 (21®yo, oPYo, To, ToDYy1)
Figure 29: The space-filling curve

(z1,20 D Yo, Y1, 21 D Yo)

Figure 30: The space-filling curve

(21820 D Yo, 11 DY1 Yo, To D Y1 Yo, T1 DT DY1 DYo)
Figure 31: The space-filling curve
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(o, 21 ® Y1, 21 ® Yo, To D Y1)
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Figure 32: Another permutation of the signature of
Figure 25; (z1 @ Yo, %0, o D Y1, T0 D Yo)

Figure 33: The signature of Figure 25 with change of
one variable; (2o, zo @ y1, 21 B X0, To B Yo)

Figure 34: The space-filling curve

(z1, 20 ® Yo, T0 D Y1, T0)

Figure 35: The space-filling curve

(o ® Y1, 0 D Yo, 21 ® To D Yo, Yo)

Finally, two orders are shown which cannot be
generated by the algorithm presented (Figures 38
and 39). The signature of the spiral curve cannot be
represented by the binary functions of Table 1 with
the exception of sg (so = xo D yo). The signature of
the curve of Figure 39 requires a two-part signature,

s = (z1,71 © Y2, 20 © Yo, 50), Where so = x1 D yo
when y; = 0 and sy = zo when y; = 1.
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Figure 36: The Samurai space-filling curve

(1 © Y1, 20 © Yo, 71, 20) [12]

Figure 37: The space-filling curve

(z1,21 © 20,21 T D Y1,71 S X0 D Y1 D Yo)
Figure 38: A spiral space-filling curve

Figure 39: A space-filling curve from the X-family

VI. CONCLUSION

An algorithm is presented which generates large sets
of spatial orders/space-filling curves which are either
incongruent to each other or, if desired, include all con-
gruent orders. The generation can be altered to include
subsets of any size. A spatial order is definable by
three representations: (a) graphically, as illustrated with
examples, (b) numerically/arithmetically by a matrix of
the location codes, and (c) algebraically by a 2 r-tuple
(where r is the resolution of the spatial order) called
its signature. A signature is a generating function, it
enables the encoding of the coordinates, i.e. calculating
the location code. A signature may also be utilized as
a unique label for the order it generates. The converse
operation, decoding or extracting the coordinates from
a given location code, is just as straightforward; decod-
ing is accomplished either numerically or by decoding
functions that can be derived from the signature.

Only three incongruent spatial orders, the Z-, U-, and
X orders, can be defined on the 2 x 2 domain (the
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domain of resolution 1), whereas the 4 x 4 domain
(resolution 2) supports a large number of spatial orders.
Thus, the algorithm generates spatial orders for domains
of resolution 2 which then can be scaled up to resolutions
greater than 2 by several techniques.

The algorithm is based on treating the bits of the coor-
dinates as variables; the binary functions of the signature
are defined with the exclusive-OR and the bitwise-NOT
operators. From the four variables xg, 21, 40, y1 (the bits
of the coordinates), 15 binary functions can be defined
and organized in a 16 x 15 table. Selecting four functions
from the 15 yields a quadruple which may or may not
define a spatial order; eliminating invalid quadruples is,
however, quite simple with the aid of the function table.
Selecting all combinations of quadruples and eliminating
the invalid ones results in a set of 10,080 incongruent
spatial orders. This set can be increased four-fold to a
larger set of incongruent spatial orders by inverting one
or both z(,yo. Finally, all congruent spatial orders are
obtained by inverting all combinations of coordinate bits,
resulting in a set of size 322,560.

The algorithm described has been encoded and tested
using MATLAB [28], verifying the results.

A survey of some spatial orders from the set of
incongruent orders reveals that the Z-, U-, and X-orders
of resolution 2 are members, as are other well-known
ones, e.g., the raster-scan, meander- and Gray orders.
Examples of selected spatial orders are included.

A visual assessment of some of the space-filling
curves of that set shows spatial orders which exhibit
much symmetry and are frequently of pleasing appear-
ance; others seem to have been generated, counter-
intuitively, at random without discernible order.

A generalization of the algorithm to higher dimen-
sions, e.g., the 4 x4 x4 voxel domain, is straight-forward
by including a third variable z.
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