EECE 360 Homework - Poles & Zeros

- 1) Draw a pole/zero plot of the transfer function specified in question:
 - a. E2.2
 - b. E2.4
 - c. E2.18
 - d. E2.21
 - e. E2.25
 - f. E2.29a
 - g. P2.30
 - h. P2.37
- 2) For the circuit in Figure E2.14, $R_1 = R_2 = R$, $L_1 = L_2 = L$, $C_1 = C_2 = C$.
 - a. Determine the transfer functions $T_1 = I_1/V$ and $T_2 = I_2/V$ in terms of R, L and C.
 - b. For R = L = C = 1, determine the poles and zeros of T_1 and T_2 .
 - c. Plot the poles and zeros of T_1 and T_2 .
- 3) For the circuit in Figure E2.19, $R_1 = R_2 = 1000\Omega$, $C_1 = 10 \text{mF}$, $C_2 = 5 \text{mF}$.
 - a. Determine the transfer function $T = V_0/V$.
 - b. Determine the poles and zeros of T.
 - c. Draw a pole/zero plot of T.
 - d. Roughtly sketch the time response from the pole/zero plot.
 - e. Compute the inverse Laplace Transform of T to check your sketch.
- 4) For the mechanical system in Figure E2.25:
 - a. Determine the transfer function $T = V_1/F$ ($V_1 = \text{velocity of mass } M_1$).
 - b. Draw a pole/zero plot of T.
 - c. Roughtly sketch the time response from the pole/zero plot.
 - d. Repeat a-c for the transfer function $T = V_2/F$.
 - e. Repeat a-c for the transfer function $T = X_1/F$.
 - f. Repeat a-c for the transfer function $T = X_2/F$.
- 5) For the circuit in Figure E2.27:
 - a. Determine the transfer function $T = V_0/V$.
 - b. Draw a pole/zero plot of T.
 - c. Roughtly sketch the time response from the pole/zero plot.