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Landscape

* Massively Parallel Processor Arrays

— 2D array of processors
 Ambric: 336, PicoChip: 273, AsAP: 167, Tilera: 100

— Processor-to-processor communication

* Placement (locality) matters

— Tools/algorithms immature



Opportunity

 MPPAs track Moore’ s Law

— Array size grows
 E.g. Ambric:336, Fermi:512

* Opportunity for FPGA-like CAD?
— Compiler-esque speed needed

— Self-hosted parallel placement

* M x N array of CPUs computes placement for
M x N programs

* Inherently scalable
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MPPA Architecture

32 x32=1024 PEs
PE = RISC + Router

RISC core
— In-order pipeline

— More powerful
PE than prev talk

Router
— 1-cycle per hop
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MPPA Architecture (cont’ d)

* Simple RISC core
— More capable than RVEArch

e Small local
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to/from
router
mem >
> > &
G > N
mem R By 2 S
X) H’j« . <
o accum
Nt N ’
0 Sng ®— data >
W B/ @ —> mem
mem (N, S,E,W) (D)
N o T Voo sk — | SN
S >, PLA —1>S
W L —ew




Overview

 Architecture

Placement Problem
Self-Hosted Placement Algorithm
Experimental Results

Conclusions



Placement Problem

* Given: netlist graph
— Set of “cluster” programs
— One per PE
— Communication paths

* Find: good 2D placement
— Use simulated annealing

— E.g., minimum total
Manhattan wirelength
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Self-Hosted Placement

* |dea from Wrighton and DeHon, FPGAO3
— Use FPGA to place itself

— Imbalanced: tiny problem size needs HUGE FPGA
— N-FPGAs needed to place 1-FPGA design
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Self-Hosted Placement

 Use MPPA to place itself
— PE powerful enough to place itself
— Removes imbalance

— 2 x 3 PEs to place 6 “clusters” into 2 x 3 array
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Regular Simulated Annealing

1. initial: random ‘
placement

2. for Tin {temperatures}

1. fornin 1..N clusters

1. Randomly select 2 blocks

Compute swap cost

Accept swap if
i) cost decreases, or
i) random trial succeeds



Modified Simulated Annealing

1. inital: random PE

placement

2. forTin {temperatures}

1. fornin 1..N clusters

1. Consider all pairs in

neighbourhood of n
2. Compute swap cost
3

Accept swap if
i) cost decreases, or
i) random trial succeeds



Self-Hosted Simulated Annealing

1. initial: random
placement

2. forTin {temperatures}
1. fornin 1..N clusters

1.
2.

Update position chain

Consider all pairs in
neighbourhood of n

Compute swap cost

Accept swap if
i) cost decreases, or
i) random trial succeeds
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Algorithm Data Structures

* Place-to-block maps ¢ Net-to-block maps

PEs <x,y> Nets
bnm nbm
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Algorithm Data Structures
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Swap Transaction

* PEs pairup

— Deterministic order, hardcoded in algorithm

* Each PE computes cost for own BlockID
— Current placement cost
— After cost if BlockID was swapped

 PE 1 sends cost of swap to PE 2
— PE 2 adds costs, determines if swap accepted
— PE 2 sends decision back to PE 1
— PE 1 and PE2 exchange data structures if swap



Data Structure Updates

Local <x,y>: update on swap Exchanged with swap
Other <x,y>: update chain
z=0 1 2 .. (X-1 bid=0 1 2 3 ... (B-1)
v=0 ][] [ D@ B
y=11 11 1 - block ID /
y=21 ||| ] (bid) l(];tild?
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Data Communication
Swap Transaction

PES exchange PES exc.:hange netS
BlockIDs for thelr BlocklIDs
z=0 1 2 ... (X-1) bid=0 1 ... (B=1)
u=0 : B
— (bi d)
bid=0 1 2 3 (B—1) ~a— nid=0 1 2 3 ... (B-1)
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Methodology

* Three versions of Simulated Annealing (SA)

— Slow sequential SA
* Baseline, generates “ideal” placement
* Very slow schedule (200k swaps per T drop)
e Impractical, but nearly optimal

— Fast Sequential SA
e Vary parameters across practical range

— Fast Self-Hosted SA



Benchmark “Programs”

* Behavioral Verilog dataflow circuits
— Courtesy Deming Chen, UIUC
— Compiled using RVETool into parallel programs

e Hand-coded Motion Estimation kernel
— Handcrafted in RVEArch
— Not exactly a circuit



Benchmark Characteristics

Benchmark | Blocks | Nets | Cost
me 1024 | 998 | 1,242
dir 1024 | 760 | 1,785
chem 1024 | 749 | 1,250
mcm 256 | 244 404
honda 256 | 240 379
pr 256 128 181

Up to 32 x 32 array size
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Result Comparisons

* Investigate options
— Best neighbourhood size: 4 8 12
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— Update chain frequency
— Stopping temperature



4-Neighbour Swaps

Swaps per Temperature Step (1000s; Traditional Placer)
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Normalized Placement Cost

8-Neighbour Swaps

Swaps per Temperature Step (1000s; Traditional Placer)
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12-Neighbour Swaps

Swaps per Temperature Step (1000s; Traditional Placer)
0O 100 200 300 400 500 600 700 800 900
: — dir
— me
pr || [
— macm

honda
— chem

=
[
192

.
OO m o
e
O

1.10f

(c) 13-PE

Normalized Placement Cost
=
o
Ul

) w " V -f X LA\

1- %00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Swap Rounds per Temperature Step (1000s; Distributed Placer)

27



1.20

Normalized Placement Cost
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Stopping Temperature
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Limitations and Future Work

e These results were simulated on a PC
— Need to target real MPPA

— Performance in <# swaps> vs
<amount of communication> vs <runtime>

* Need to model limited RAM per PE

— We assume complete netlist, placement state can be
divided among all PEs

— Incomplete state if memory is limited?

e e.g., discard some nets?



Conclusions

e Self-Hosted Simulated Annealing
— High-quality placements (within 5%)
— Excellent parallelism and speed
* Only 1/256%" number of swaps needed

— Runs on target architecture itself
e Eat you own dog food
 Computationally scalable
* Memory footprint may not scale to uber-large arrays



Conclusions

e Self-Hosted Simulated Annealing
— High-quality placements (within 5%)
— Excellent parallelism and speed
* Only 1/256%" number of swaps needed

— Runs on target architecture itself
e Eat you own dog food
 Computationally scalable
* Memory footprint may not scale to uber-large arrays

* Thank you!
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