Self-Hosted Placement
for
Massively Parallel Processor Arrays

(MPPASs)

Graeme Smecher,
Steve Wilton, Guy Lemieux

Thursday, December 10, 2009
FPT 2009

Landscape

* Massively Parallel Processor Arrays

— 2D array of processors
 Ambric: 336, PicoChip: 273, AsAP: 167, Tilera: 100

— Processor-to-processor communication

* Placement (locality) matters

— Tools/algorithms immature

Opportunity

 MPPAs track Moore’ s Law

— Array size grows
 E.g. Ambric:336, Fermi:512

* Opportunity for FPGA-like CAD?
— Compiler-esque speed needed

— Self-hosted parallel placement

* M x N array of CPUs computes placement for
M x N programs

* Inherently scalable

Overview

 Architecture

Placement Problem
Self-Hosted Placement Algorithm
Experimental Results

Conclusions

MPPA Architecture

32 x32=1024 PEs
PE = RISC + Router

RISC core
— In-order pipeline

— More powerful
PE than prev talk

Router
— 1-cycle per hop

clock

PE

PE

PE

PE

PE|—: - - -

S| router >
\'4
A

PE

MPPA Architecture (cont’ d)

* Simple RISC core
— More capable than RVEArch

e Small local
RAM

to/from
router
mem >
> > &
G > N
mem R By 2 S
X) H’j« . <
o accum
Nt N ’
0 Sng ®— data >
W B/ @ —> mem
mem (N, S,E,W) (D)
N o T Voo sk — | SN
S >, PLA —1>S
W L —ew

Overview

 Architecture

Placement Problem
Self-Hosted Placement Algorithm
Experimental Results

Conclusions

Placement Problem

* Given: netlist graph
— Set of “cluster” programs
— One per PE
— Communication paths

* Find: good 2D placement
— Use simulated annealing

— E.g., minimum total
Manhattan wirelength

C L

CiC

Verilog

'

\

O/

]

Parallelize

'

Cluster

CC

/1
C
/
C
Hc

@

I~

@N%

O 10OHO

Overview

 Architecture

Placement Problem
Self-Hosted Placement Algorithm
Experimental Results

Conclusions

Self-Hosted Placement

* |dea from Wrighton and DeHon, FPGAO3
— Use FPGA to place itself

— Imbalanced: tiny problem size needs HUGE FPGA
— N-FPGAs needed to place 1-FPGA design

s Yil INY

£ XILINX

£ Yl INY . £ XILINX
' £ Yl INY > v
£ XILINX £ XILINX

v v

Self-Hosted Placement

 Use MPPA to place itself
— PE powerful enough to place itself
— Removes imbalance

— 2 x 3 PEs to place 6 “clusters” into 2 x 3 array

31952 0112
| | | |

1Hol14 jl> 3Hal [5

Regular Simulated Annealing

1. initial: random ‘
placement

2. for Tin {temperatures}

1. fornin 1..N clusters

1. Randomly select 2 blocks

Compute swap cost

Accept swap if
i) cost decreases, or
i) random trial succeeds

Modified Simulated Annealing

1. inital: random PE

placement

2. forTin {temperatures}

1. fornin 1..N clusters

1. Consider all pairs in

neighbourhood of n
2. Compute swap cost
3

Accept swap if
i) cost decreases, or
i) random trial succeeds

Self-Hosted Simulated Annealing

1. initial: random
placement

2. forTin {temperatures}
1. fornin 1..N clusters

1.
2.

Update position chain

Consider all pairs in
neighbourhood of n

Compute swap cost

Accept swap if
i) cost decreases, or
i) random trial succeeds

Wiest

North

O
O
O

O
]
O

0
O
O

] m

] m

[East

OomOO

(a) 5-PE

South
(b) 9-PE

c) 13-PE
& 14

Algorithm Data Structures

* Place-to-block maps ¢ Net-to-block maps

PEs <x,y> Nets
bnm nbm
S\ /4
Blocks
(pl;ograms)

\ \)

| |
DYNAMIC STATIC

Algorithm Data Structures

pb

Il
=

@ @
1
o = o B

1

[[[]

y=Y —1 :: L -
Full map i

2

m

2 ... (X 1)

block ID
(bid)
or -1

[[]]

n each PE

Partial map in each PE

16

Swap Transaction

* PEs pairup

— Deterministic order, hardcoded in algorithm

* Each PE computes cost for own BlockID
— Current placement cost
— After cost if BlockID was swapped

 PE 1 sends cost of swap to PE 2
— PE 2 adds costs, determines if swap accepted
— PE 2 sends decision back to PE 1
— PE 1 and PE2 exchange data structures if swap

Data Structure Updates

Local <x,y>: update on swap Exchanged with swap
Other <x,y>: update chain
z=0 1 2 .. (X-1 bid=0 1 2 3 ... (B-1)
v=0][] [D@ B
y=11 11 1 - block ID /
y=21 |||] (bid) l(];tild?
N or -1
y=y -1 [J[|[]...[] /
bid=0 1 2 3 (B-1) nid=0 1 2 3 ... (B-1)
[T EZ@H-Dm
; I | block ID
(z,y) : 4 (bid)

18

Data Communication
Swap Transaction

PES exchange PES exc.:hange netS
BlockIDs for thelr BlocklIDs
z=0 1 2 ... (X-1) bid=0 1 ... (B=1)
u=0 : B
— (bi d)
bid=0 1 2 3 (B—1) ~a— nid=0 1 2 3 ... (B-1)
block 1D
| @) (bid)

(already updated) PEs exchange BIockIDs
for their nets 19

Overview

 Architecture

Placement Problem
Self-Hosted Placement Algorithm
Experimental Results

Conclusions

Methodology

* Three versions of Simulated Annealing (SA)

— Slow sequential SA
* Baseline, generates “ideal” placement
* Very slow schedule (200k swaps per T drop)
e Impractical, but nearly optimal

— Fast Sequential SA
e Vary parameters across practical range

— Fast Self-Hosted SA

Benchmark “Programs”

* Behavioral Verilog dataflow circuits
— Courtesy Deming Chen, UIUC
— Compiled using RVETool into parallel programs

e Hand-coded Motion Estimation kernel
— Handcrafted in RVEArch
— Not exactly a circuit

Benchmark Characteristics

Benchmark | Blocks | Nets | Cost
me 1024 | 998 | 1,242
dir 1024 | 760 | 1,785
chem 1024 | 749 | 1,250
mcm 256 | 244 404
honda 256 | 240 379
pr 256 128 181

Up to 32 x 32 array size

23

Result Comparisons

* Investigate options
— Best neighbourhood size: 4 8 12

L]

] . .
L1 L1] iy jEy.
[)| ..

O
(a) 5-PE (b) 9-PE (c) 13-PE

— Update chain frequency
— Stopping temperature

4-Neighbour Swaps

Swaps per Temperature Step (1000s; Traditional Placer)
0 100 200 300 400 500 600 700 800 900

1.20
— dir

- — me]
2}
S 1.15} —pr - Um0
e L]
Q
£
Q
O
D1.10 (a) 5-PE
©
)
N
g
= 1.05f
=

1- %00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Swap Rounds per Temperature Step (1000s; Distributed Placer)

25

Normalized Placement Cost

8-Neighbour Swaps

Swaps per Temperature Step (1000s; Traditional Placer)
0 100 200 300 400 500 600 700 800 900

oot
|| 0]
W)

1.20rp
' — dir
— me
1.15H} —pr
— mcm
honda
1.10f chem
1.05}

1- %00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Swap Rounds per Temperature Step (1000s; Distributed Placer)

(b) 9-PE

26

12-Neighbour Swaps

Swaps per Temperature Step (1000s; Traditional Placer)
0O 100 200 300 400 500 600 700 800 900
: — dir
— me
pr || [
— macm

honda
— chem

=
[
192

.
OO m o
e
O

1.10f

(c) 13-PE

Normalized Placement Cost
=
o
Ul

) w " V -f X LA\

1- %00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Swap Rounds per Temperature Step (1000s; Distributed Placer)

27

1.20

Normalized Placement Cost

Update-chain Frequency

=
[
192

1.10f

=
o
[

— mcm | L]

—— honda

oot

chem
— dir

Updates

OO m o

(c) 13-PE

28

Stopping Temperature

1.20
— dir 0
— me ul[=][=
1.15} — pr] OlO/m{Olo
— mcm ul[=][=
honda -
1.10 — chem | (0) 13-PE

Normalized Placement Cost
=
o
o4

1.00 '
10° 10 1072

29

Limitations and Future Work

e These results were simulated on a PC
— Need to target real MPPA

— Performance in <# swaps> vs
<amount of communication> vs <runtime>

* Need to model limited RAM per PE

— We assume complete netlist, placement state can be
divided among all PEs

— Incomplete state if memory is limited?

e e.g., discard some nets?

Conclusions

e Self-Hosted Simulated Annealing
— High-quality placements (within 5%)
— Excellent parallelism and speed
* Only 1/256%" number of swaps needed

— Runs on target architecture itself
e Eat you own dog food
 Computationally scalable
* Memory footprint may not scale to uber-large arrays

Conclusions

e Self-Hosted Simulated Annealing
— High-quality placements (within 5%)
— Excellent parallelism and speed
* Only 1/256%" number of swaps needed

— Runs on target architecture itself
e Eat you own dog food
 Computationally scalable
* Memory footprint may not scale to uber-large arrays

* Thank you!

EOF

