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Motivation

 FPGAs for embedded systems
— In use for glue logic, interfaces, etc.

— Would like to do data processing on-chip
» Fixed performance requirements
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* Options
— Custom hardware accelerator
— Soft processor
— Multiprocessor-on-FPGA
— Synthesized accelerator



Problems...

« Custom hardware accelerator cost
— Need hardware engineer
— Time-consuming to design and debug
— 1 hardware accelerator per function

« Soft processor limited performance
— Single issue, in-order
— 2 or 4-way superscalar/VLIW register file maps inefficiently to FPGA
— Expensive to implement CAMs for OoOE

« Multiprocessor-on-FPGA complexity
— Parallel programming and debugging
— Area overhead for interconnect
— Cache coherence, memory consistency 4



Problems...

« Automatically synthesized hardware accelerators

— Change algorithm - regenerate FPGA bitstream
* Altera C2H

« Xilinx AutoESL
» Mentor Graphics Catapult Synthesis
» Forte Design Cynthesizer

— Parallelism obscured by starting from sequential code



Change algorithm - same RTL, just recompile software

Soft Vector Processor

Simple programming model
— Data-level parallelism, exposed to the programmer

One hardware accelerator supports many applications

Scalable performance and area

Write once, run anywhere...
Small FPGA: 1 ALU (smaller than Nios II/f)
Large FPGA: 10’s to 100’s of parallel ALUs

Parameterizable; remove unused functions to save area



Vector Processing

* Organize data as long vectors
— Replace inner loop with vector instruction

for( i=0; i<N; i++) set vl, N
[ a[i] = b[i] * c[i] ‘ vmult a, b, (J

« Hardware loops until all elements are processed
— May execute repeatedly (sequentially)
— May process multiple at once (in parallel)




Hybrid Vector-SIMD
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Vector Processing on FPGAs
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1st Generation SVPs

* VESPA (UofT)/VIPERS (UBC)
« Based on VIRAM (2002)

— Vector > VLIW/Superscalar for embedded multimedia
— Traditional load/store architecture

— Fixed # of vector data registers
« Maximum vector length

 Demonstrated feasibility of SVPs
— But not specifically architected for FPGAs
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VEGAS Architecture

2nd Generation

Better Utilizing On-Chip
Memory



VEGAS Architecture
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VEGAS: Better Utilizing On-Chip Memory

e Scratchpad-based “register file” (2kB..2MB)
— Vector address register file stores vector locations
- Very long vectors (no maximum length)

- Any number of vectors
(no set number of “vector data registers”)

— Double-pumped to achieve 4 ports
e 2 Read, 1 Write, 1 DMA Read/Write

e Lanes support sub-word SIMD

— 32-bit ALU configurable as 1x32, 2x16, 4x8
— Keeps data packed in scratchpad for larger working set
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Scratchpad Memory in Action
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VENICE Architecture

3 Generation
High Frequency, Low Area



VENICE Overview

Vector Extensions to NIOS Implemented Compactly and Elegantly
e 3 Key ideas borrowed from VEGAS

— Scratchpad memory
- Asynchronous DMA transactions
— Sub-word SIMD (1x32, 2x16, 4x8 bit operations)

e Optimized for smaller implementations

— VEGAS achieves best performance/area at 4-8 lanes
e Vector programs don't scale indefinitely
e Communications networks scale > O(N)

— VENICE targets 1-4 lanes
e About 50% .. 75% of the size of VEGAS

— Vector Multiprocessor
e N small VENICE processors > 1 big VEGAS processor ?



VENICE Overview

Vector Extensions to NIOS Implemented Compactly and Elegantly

« Removed vector address register file
— Address stored in scalar processor’s registers
— Reduces area/control overhead
— Now 2 cycle instruction dispatch though

* |In pipeline vector alignment network
— Much faster for convolutions
— Low overhead for small number of lanes

+ Single clock domain with master CPU

— Deeper pipelining (registers cheap on FPGAS)
— Reaches 200MHz, ~50% faster than previous SVPs



VENICE Overview

Vector Extensions to NIOS Implemented Compactly and Elegantly

* Programming changes

— 2D/3D vectors for multimedia/linear algebra/etc.
« Repeated vector instruction with separate strides for srcA, srcB, and Dest
» Reduces instruction dispatch bandwidth requirements

— C pointers used to index into scratchpad
« VEGAS (old):
vegas_set( VADDR, V1, pBufSrc1 );
vegas_set( VADDR, V2, pBufSrc2 );
vegas_set( VADDR, V4, pBufDest );
vegas vvw( VADD, V4,V1,V2); [IV4=V1+V2

« VENICE (new):
vector( VVW, VADD, pBufDest, pBufSrc1, pBufSrc2 );



VENICE Architecture
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VENICE Scratchpad Alignment
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VENICE Fracturable Multiplier

:<><>1 8x18 32, byte 0/
1é " halfword 0
18x18 7~ byte 1
18x18 1§'= byte 2
>< > <<32 32/ > byte 3 /
:O halfword 1

18x18
VEGAS Fracturable Multiplier

2 DSP Blocks + extra logic

@36)(36 64 /- byte 0 / halfword 0 / worc

E1 8x18 o2 /- byte 1 / halfword 1

:®9x9 16 /. pyte 2

EQXQ 16 ,
WA

VENICE Fracturable Multiplier

byte 3

2 DSP Blocks (no extra logic)

21



ALMS

Area Breakdown

VENICE area greatly reduced.
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VENICE Average Speedup vs. ALMs
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VENICE Computational Density
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VENICE: Multiprocessor
16-bit 4x4 DCT

i Speedup vs Nios II/f & Speedup per ALM
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Conclusions

» Soft Vector Processors
— Scalable performance
— No hardware recompiling necessary

 VENICE
— Optimized for FPGAs, 1 to 4 lanes
— 5X Performance/Area of Nios Il/f

* Future work
— Hybrid vector/thread architectures

— Commercial version (VectorBlox Computing)



