THE UNIVERSITY OF BRITI@H C OLTJI\IBI A

UBC

S Sy_stemO%Chlp

LT

,/
P

VENICE: & 0%0'

A Soft Vector Processor

research lab

Aaron Severance
Advised by Prof. Guy Lemieux

Zhiduo Liu, Chris Chou, Jason Yu,
Alex Brant, Maxime Perreault, Chris Eagleston

Motivation

 FPGAs for embedded systems
— In use for glue logic, interfaces, etc.

— Would like to do data processing on-chip
» Fixed performance requirements

Motivation

 FPGAs for embedded systems
— In use for glue logic, interfaces, etc.

— Would like to do data processing on-chip
» Fixed performance requirements

* Options
— Custom hardware accelerator
— Soft processor
— Multiprocessor-on-FPGA
— Synthesized accelerator

Problems...

« Custom hardware accelerator cost
— Need hardware engineer
— Time-consuming to design and debug
— 1 hardware accelerator per function

« Soft processor limited performance
— Single issue, in-order
— 2 or 4-way superscalar/VLIW register file maps inefficiently to FPGA
— Expensive to implement CAMs for OoOE

« Multiprocessor-on-FPGA complexity
— Parallel programming and debugging
— Area overhead for interconnect
— Cache coherence, memory consistency 4

Problems...

« Automatically synthesized hardware accelerators

— Change algorithm - regenerate FPGA bitstream
* Altera C2H

« Xilinx AutoESL
» Mentor Graphics Catapult Synthesis
» Forte Design Cynthesizer

— Parallelism obscured by starting from sequential code

Change algorithm - same RTL, just recompile software

Soft Vector Processor

Simple programming model
— Data-level parallelism, exposed to the programmer

One hardware accelerator supports many applications

Scalable performance and area

Write once, run anywhere...
Small FPGA: 1 ALU (smaller than Nios II/f)
Large FPGA: 10’s to 100’s of parallel ALUs

Parameterizable; remove unused functions to save area

Vector Processing

* Organize data as long vectors
— Replace inner loop with vector instruction

for(i=0; i<N; i++) set vl, N
[a[i] = b[i] * c[i] ‘ vmult a, b, (J

« Hardware loops until all elements are processed
— May execute repeatedly (sequentially)
— May process multiple at once (in parallel)

Hybrid Vector-SIMD

E :D_' 64 20 EB— 0|2]4]s
for(i=0; i<8; i++) { 10—
C[i] = A[i] + B[] ° e
E[i] = C[i] * DIi] 0
} c A 1
5,0+))
5 :D— 7 5 3 1 C?g 8 cycles

Vector Processing on FPGAs

| f f f

Scalar CPUs 1st Generation 2nd Gen. 3rd Gen
Vector

1st Generation SVPs

* VESPA (UofT)/VIPERS (UBC)
« Based on VIRAM (2002)

— Vector > VLIW/Superscalar for embedded multimedia
— Traditional load/store architecture

— Fixed # of vector data registers
« Maximum vector length

 Demonstrated feasibility of SVPs
— But not specifically architected for FPGAs

10

VEGAS Architecture

2nd Generation

Better Utilizing On-Chip
Memory

VEGAS Architecture

<« DS

Scalar Core:
Niosll/f @ 200MHz

Concurrent
Execution
FIFO

synchronized

DMA Engine
& External

DDR2 \

1

ue

\

¥ ¥

DMA & |
Avalon

!

DDR2
Memory
(off-chip)

1$;I/IY\JIOS 1/f

i

ctor

Instr.

ue

Vector
Data
Queue

A
—

Vector Core:
VEGAS @ 120MHz

VEGAS: Better Utilizing On-Chip Memory

e Scratchpad-based “register file” (2kB..2MB)
— Vector address register file stores vector locations
- Very long vectors (no maximum length)

- Any number of vectors
(no set number of “vector data registers”)

— Double-pumped to achieve 4 ports
e 2 Read, 1 Write, 1 DMA Read/Write

e Lanes support sub-word SIMD

— 32-bit ALU configurable as 1x32, 2x16, 4x8
— Keeps data packed in scratchpad for larger working set

13

Scratchpad Memory in Action

Dest
|
713 40 > >
7 [r—

40| |5|1 1—

DMA & |

Avalon

D i 2 S

6|2 713

VENICE Architecture

3 Generation
High Frequency, Low Area

VENICE Overview

Vector Extensions to NIOS Implemented Compactly and Elegantly
e 3 Key ideas borrowed from VEGAS

— Scratchpad memory
- Asynchronous DMA transactions
— Sub-word SIMD (1x32, 2x16, 4x8 bit operations)

e Optimized for smaller implementations

— VEGAS achieves best performance/area at 4-8 lanes
e Vector programs don't scale indefinitely
e Communications networks scale > O(N)

— VENICE targets 1-4 lanes
e About 50% .. 75% of the size of VEGAS

— Vector Multiprocessor
e N small VENICE processors > 1 big VEGAS processor ?

VENICE Overview

Vector Extensions to NIOS Implemented Compactly and Elegantly

« Removed vector address register file
— Address stored in scalar processor’s registers
— Reduces area/control overhead
— Now 2 cycle instruction dispatch though

* |In pipeline vector alignment network
— Much faster for convolutions
— Low overhead for small number of lanes

+ Single clock domain with master CPU

— Deeper pipelining (registers cheap on FPGAS)
— Reaches 200MHz, ~50% faster than previous SVPs

VENICE Overview

Vector Extensions to NIOS Implemented Compactly and Elegantly

* Programming changes

— 2D/3D vectors for multimedia/linear algebra/etc.
« Repeated vector instruction with separate strides for srcA, srcB, and Dest
» Reduces instruction dispatch bandwidth requirements

— C pointers used to index into scratchpad
« VEGAS (old):
vegas_set(VADDR, V1, pBufSrc1);
vegas_set(VADDR, V2, pBufSrc2);
vegas_set(VADDR, V4, pBufDest);
vegas vvw(VADD, V4,V1,V2); [IV4=V1+V2

« VENICE (new):
vector(VVW, VADD, pBufDest, pBufSrc1, pBufSrc2);

VENICE Architecture

Altera Avalon
Fabric

Instruction Queue

VENICE Vector Engine

DMA

AR

i B W B S N t
.

Address Logic

Scratchpad
Memory
2kB - 2MB

MUL

(2nd

SHIFT % pipe
ROTATEZ stage)

l

ALU
EXTEND
CMOV

ABS

¥

AW

19

VENICE Scratchpad Alignment

Align 3

Scratchpad

5

1

Align1 Align2 ALUs

g

\

6

2

20

VENICE Fracturable Multiplier

:<><>1 8x18 32, byte 0/
1é " halfword 0
18x18 7~ byte 1
18x18 1§'= byte 2
>< > <<32 32/ > byte 3 /
:O halfword 1

18x18
VEGAS Fracturable Multiplier

2 DSP Blocks + extra logic

@36)(36 64 /- byte 0 / halfword 0 / worc

E1 8x18 o2 /- byte 1 / halfword 1

:®9x9 16 /. pyte 2

EQXQ 16 ,
WA

VENICE Fracturable Multiplier

byte 3

2 DSP Blocks (no extra logic)

21

ALMS

Area Breakdown

VENICE area greatly reduced.

10,000 B Total

Il DMA

Il Control &
7,500 Pipeline

I ICN
B ALU/Accum

5,000 W NIOS

]

4

2,500 ! -
1

AL L AP LN L N AN N L
G @ P JEOT O 1 O \,@\\ \‘g\\\\ \,@\\

VENICE Average Speedup vs. ALMs

. 25
< -
o 2

o & 20
> g Nios II/f
o5 Single CPU
3 £ 15 iy
2 o ¢ Nios IlI/f

c “= .
o 210 |deal Scaling
‘g’_ g VEGAS
e : 5 V1, V2, V4
U & “ \, VENICE
v 0 V1,V2, Va4

0 2 4 6 8

Area (relative to Nios Il/f, ALM count)

23

VENICE Computational Density

100 -

s <
A_
< ¥ 10
5 2
2 5
g.-l-l
s 9
[T
VD ©
Q - 1
v 9

“VEGAS-V1 = VENICE-V1

-

IR I IR AR Q
\Q/Q. {)5\‘ 6\’5 ,@59 b (00 Q/’b
NS > '\
NS N Qg,o

24

VENICE: Multiprocessor
16-bit 4x4 DCT

i Speedup vs Nios II/f & Speedup per ALM

60

50

40

30

20

10

hh LLL LLl

1D (V2) 2D (V2) 3D(V2) 1XV2 2xV2 4xV2
(3.4k (8.8k (19k 25
ALMs) ALMs) ALMs)

Conclusions

» Soft Vector Processors
— Scalable performance
— No hardware recompiling necessary

 VENICE
— Optimized for FPGAs, 1 to 4 lanes
— 5X Performance/Area of Nios Il/f

* Future work
— Hybrid vector/thread architectures

— Commercial version (VectorBlox Computing)

