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[Introduction/Motivation

Goal:
Reduce critical path =» shorter period

Decrease dynamic power

Approach:

Add clock skew at FFs = clock skew scheduling (CSS)
Relax CSS constraints = delay padding (DP)
Reduce power due to glitching = GlitchLess (GL)

Implementation:
One architectural change, to satisfy all 3 above

Add programmable delay elements (PDE) to clocks
For every FF (best QoR)
For every CLB (best area)




Contributions

One architectural change, to satisfy
CSS
DP
GlitchLess

Delay Padding for FPGAs - first time

Improved glitch modelling

GlitchLess allows period increase
Investigates period, power and area tradeoffs
PDE sharing

This presentation
Considers GlitchLess only, or CSS/DP only
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Before:
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CSS constraints on
permissible range of skew
settings for Xi, Xj

Increase permissible range

Cannot decrease Dmax -

Increase Dmin

Dmin=4ns
FF 2
clk
Dmax T

Xj=4ns




Coneepis i

CSS constraints on
permissible range of skew
settings for Xi, Xj

Increase permissible range

Cannot decrease Dmax -

Increase Dmin by d

—>

Dmin=4ns 9@ +d
< Dmax > T




Concept — Feature Comparison

*FPGA 2002
(Brown)

F *ISCAS 1994 *FPGA 2005 *ISPD 2005 *DAC 2005
eature (Sapatnekar) | (Sadowska) (Kourtev) (LU)
*FPL 2007

(Bazargan)

Platform ASIC FPGA ASIC ASIC FPGA

CSS Delays  continuous  discrete  continuous continuous  discrete
Variation
modeling « « « x «
Platform ASIC ASIC FPGA

DP Delays continuous continuous  discrete

Variati
g v X v

Algorithm graph graph LP graph graph




Coneepts Glitehless

Output fluctuate due to different input arrival

Past approach

Our approach

(b) Glitch removed by delaying input ¢

TVLSI 2008: Lamoureux
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Architecture 1

1 PDE per FF
20 PDEs (2 FFs per LUT)
~10% area cost

GL - insert FF on path

k-input LUTg

k-input LUT




Archite ek

Objective: save area
1 PDEpenCish

Share PDE with all FFs
~0.5% area cost

GL - insert FF on path

k-input LUTg

k-input LUT




Algorithm - Overall

Two choices:

Cl
&
Cl

noice
noice

noice

“”: GlitchLess Only
“2”: CSS_I_DP
“3”: CSS+DP+GlitchLess

VPR PGR vpr.del vpr.act | pGR GL.del
solution print_delay GL
CSS+DP

final.act

final.act

final.act
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Results — Benchmarking

10 largest MCNC sequential circuits
VPR 5.0: timing driven place and route
route_chan_width = 104

Architecture
65nm technology
k=4, N=10, [=22
(k=6, N=10, =33 not shown)

Glitch estimation:
Modified ACE 2.0
5000 pseudo-random input vectors
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All saving percentages are % of original period

CSS geomean 13%

CSS+DP geomean 18% (up to 32%)
Delay padding benefits 4 circuits (up to 23%)

100%
90%
80%
=0%
60%
50%
40%
30%
20%
10%

0%




Results — CSS+DP Only

All saving percentages are % of original period
CSS geomean 13% 1 PDE per CLB restriction:

DP not achievable
Geomean 10%

CSS+DP geomean 18% (up to 32%)
Delay padding benefits 4 circuits (up to 23%)
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Results — CSS+DP Power Implications

PDEs need power - clock has activity = 1!

1 PDE per CLB - significantly lower power
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Results — CSS+DP Power Implications

PDEs need power - clock has activity =1!

4-clk: power overhead with 3 extra global clocks
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Results — Skew Distribution

PDE settings aggregated over all circuits
Skew is relatively “spread out”
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Delay (ns)




Results — GlitchLess Only

Green lines > 1 PDE per CLB
AN
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Select nodes above
“threshold”

Power of node with
most glitching = 1.0
Threshold filter
selects nodes with
most glitching
Few (~10) high
glitch power nodes

Most nodes w/
small glitch power

Threshold < 0.2

PDE power
overhead swamps
glitch savings

Includes PDE power

pres s aadni

©

c
- “'.......
0.944

ﬂ Excludes PDE power

0.9

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Threshold




Outline

Introduction/Motivation
Concept

Implementation

Results




Conclusion

20 PDEs per CLB

CSS+DP speedup

k=4: geomean 18% (up to 32%)
k=6: geomean 20% (up to 38%)

Dynamic power reduction
Best case savings
k=4: average 3% (up to 14%)
k=6: average 1% (up to 8%)
Swamped by PDE power =
need low-power PDE

Area penalty
k=4:11.7%
k=6:7.6%

1 PDE per CLB
CSS speedup

k=4: geomean 10% (up to 27%)
k=6: geomean 10% (up to 38%)
Can’t do delay padding

Dynamic power reduction
Similar

Area Penalty
k=4:0.6%
k=6: 0.4%




Future Work

Improve glitch power estimation
Done: fast glitches, analog behavior on single net
To do: propagate analog glitches through LUTs

Reduce PDE power overhead

Low-power PDE (circuit design)

Newer benchmarks
Bigger, more recent circuits




Conclusion

20 PDEs per CLB
CSS+DP speedup
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Architeansiser==FDiE

PDE adapted from GlitchLess (TVLSI 2008)
2" delay values

Fast path — min size SRAM  SRAM  SRAM

Fast path clk Fast path

I)elay' state

on on on

on on off

on off on Slow path

GND
on off off

Increasing channel length (resistance)




Glitch Estimation

Need good activity estimator for good power
estimates
Previous work: ACE 2.0

Uses threshold to determine glitch propagation
Threshold = one length-4 segment

. £ . ?
NO: DEdesion: can the glitch get through theY%%g.rpr%%g i

propagate indefinitely
Glitch pulse width

Real glitches have analog behavior
Short pulses GRADUALLY damps out




Glitch Estimation

Real glitches have analog behavior
Short pulses GRADUALLY damps out
Group pulse widths into bins — X axis

-HQW//----

0 10 20 30 40 50 60 70 80 90 100110120 130 140 150 160 170 180
Glitch Pulse Width




Glitch Estimation

Positive = original ACE underestimates

More underestimates for k=4 = arrival time
differences for smaller LUTSs are smaller




iteration = 0
solution[iteration] = CSS ( Pmax, Pmin
num_edges = find_critical_hold_edges ( edges|iteration]| ); //delete edges
while (num_edges > 0
find_deleted_edge_nodes ( edges|iteration]| ); //for delay padding later
recalculate_binary_bound ( &Pmax, &Pmin
iteration
solution|iteration] = CSS ( Pmax, Pmin
num_edges = find_critical_hold_edges ( edges|iteration

while (iteration 0) { //in case delay padding fails for current iteration
success = delay_padding ( edges|iteration], solution|iteration
if (success) break
iteration 1




for each node “n” on deleted edge “iedge”
max_padding = get_max_padding( n
skew = roundup ( fanin—>arrival
Ts + MARGIN + fanin_delay(n, fanin), PRECISION ); //for early clock
delay = skew — fanin—>arrival — fanin_delay( n, fanin
needed_slack = delay + MARGIN; //for late clock
while (delay < needed_delay needed_slack max_padding
increment skew, delay and needed_slack by PRECISION
needed_delay delay
if ( needed_delay 0.0 ) {done = 1; break

if ( done ) check_other_paths(); //check other paths with same source/sink
else success = 0




for each level in breadth-first timing graph
rank_nodes ( &list, threshold ); //only nodes with glitch power > threshold
for each node “"n” in list
skew = roundup ( n—>arrival
Ts + MARGIN, PRECISION ); //for early clock

needed_slack = skew — n—>arrival + MARGIN; //for late clock
if ( needed_slack < n—>slack
for each fanin “f” of node “n”
needed_delay = n—>arrival — f->arrival — fanin_delay( n, f
fanin_delay( n, f needed_delay + needed_slack




