Period and Glitch Reduction Via
Clock Skew Scheduling,
Delay Padding and Glitchless

UBC

NS
‘ FPT 2009

Xiao Patrick Dong
Supervisor: Guy Lemieux

Introduction/Motivation

Goal:
Reduce critical path =» shorter period

Decrease dynamic power

Introduction/Motivation

Goal:
Reduce critical path =» shorter period

Decrease dynamic power

Approach:

Add clock skew at FFs = clock skew scheduling (CSS)
Relax CSS constraints = delay padding (DP)
Reduce power due to glitching = GlitchLess (GL)

[Introduction/Motivation

Goal:
Reduce critical path =» shorter period

Decrease dynamic power

Approach:

Add clock skew at FFs = clock skew scheduling (CSS)
Relax CSS constraints = delay padding (DP)
Reduce power due to glitching = GlitchLess (GL)

Implementation:
One architectural change, to satisfy all 3 above

Add programmable delay elements (PDE) to clocks
For every FF (best QoR)
For every CLB (best area)

Contributions

One architectural change, to satisfy
CSS
DP
GlitchLess

Delay Padding for FPGAs - first time

Improved glitch modelling

GlitchLess allows period increase
Investigates period, power and area tradeoffs
PDE sharing

This presentation
Considers GlitchLess only, or CSS/DP only

Outline

Introduction/Motivation

Implementation

Results
Conclusion
Future Work

ConcepiEiss

Before:
14-ns critical path delay

local path A local path B

—>(Min: 5ns B Min: 6ns

Max: 14ns Max: 6ns

ConcepiEiss

Before:
14-ns critical path delay

After:

10-ns critical delay - borrowed time

local path A local path B

—>(Min: 5ns B Min: 6ns

Max: 14ns Max: 6ns

ConcepiEiss

How to implement CSS?

FPGA 2002: Brown

ConceptiaiGss

How to implement CSS?

(clock tree
root, R)

FPGA 2005: Sadowska

FPGA 2002: Brown

ConcepiEiss

How to implement CSS?

FPGA 2002: Brown

Our 2 approaches

1 PDE for every FF

k-input LUT

FFl1 FF3

(clock tree
root, R)

FPGA 2005: Sadowska

ConcepiEiss

How to implement CSS?

FPGA 2002: Brown

Our 2 approaches

1 PDE for every FF

k-input LUT

FFl1 FF3

(clock tree
root, R)

k-input LUT

k-input LUT

1 PDE for
every CLB

Coneepis i

CSS constraints on
permissible range of skew
settings for Xi, Xj

Increase permissible range

Cannot decrease Dmax -

Increase Dmin

Dmin=4ns
FF 2
clk
Dmax T

Xj=4ns

Coneepis i

CSS constraints on
permissible range of skew
settings for Xi, Xj

Increase permissible range

Cannot decrease Dmax -

Increase Dmin by d

—>

Dmin=4ns 9@ +d
< Dmax > T

Concept — Feature Comparison

*FPGA 2002
(Brown)

F *ISCAS 1994 *FPGA 2005 *ISPD 2005 *DAC 2005
eature (Sapatnekar) | (Sadowska) (Kourtev) (LU)
*FPL 2007

(Bazargan)

Platform ASIC FPGA ASIC ASIC FPGA

CSS Delays continuous discrete continuous continuous discrete
Variation
modeling « « « x «
Platform ASIC ASIC FPGA

DP Delays continuous continuous discrete

Variati
g v X v

Algorithm graph graph LP graph graph

Coneepts Glitehless

Output fluctuate due to different input arrival

Past approach

Our approach

(b) Glitch removed by delaying input ¢

TVLSI 2008: Lamoureux

Outline

Introduction/Motivation

Concept

Results
Conclusion
Future work

Architecture 1

1 PDE per FF
20 PDEs (2 FFs per LUT)
~10% area cost

GL - insert FF on path

k-input LUTg

k-input LUT

Archite ek

Objective: save area
1 PDEpenCish

Share PDE with all FFs
~0.5% area cost

GL - insert FF on path

k-input LUTg

k-input LUT

Algorithm - Overall

Two choices:

Cl
&
Cl

noice
noice

noice

“”: GlitchLess Only
“2”: CSS_I_DP
“3”: CSS+DP+GlitchLess

VPR PGR vpr.del vpr.act | pGR GL.del
solution print_delay GL
CSS+DP

final.act

final.act

final.act

Outline

Introduction/Motivation
Concept

Implementation

Conclusion
Future work

Results — Benchmarking

10 largest MCNC sequential circuits
VPR 5.0: timing driven place and route
route_chan_width = 104

Architecture
65nm technology
k=4, N=10, [=22
(k=6, N=10, =33 not shown)

Glitch estimation:
Modified ACE 2.0
5000 pseudo-random input vectors

Results — CSS+DP Only

All saving percentages are % of original period

CSS geomean 13%

Results — CSS+DP Only

All saving percentages are % of original period

CSS geomean 13%

CSS+DP geomean 18% (up to 32%)
Delay padding benefits 4 circuits (up to 23%)

100%
90%
80%
=0%
60%
50%
40%
30%
20%
10%

0%

Results — CSS+DP Only

All saving percentages are % of original period
CSS geomean 13% 1 PDE per CLB restriction:

DP not achievable
Geomean 10%

CSS+DP geomean 18% (up to 32%)
Delay padding benefits 4 circuits (up to 23%)

100%
90%
80%
=0%
60%
50%
40%
30%
20%
10%

0% 1 T T
\\\,Q
Q

CSS CSS+DP M per CLB

Results — CSS+DP Power Implications

PDEs need power - clock has activity = 1!

1 PDE per CLB - significantly lower power

~700%

600%

Yo
v 500%

400%

=¥
=
% 300%
=
>
A

200%

IOO%II|II|IIII t
0%

be
: & 'Q °o°>

>
>
O&z
¢

Results — CSS+DP Power Implications

PDEs need power - clock has activity =1!

4-clk: power overhead with 3 extra global clocks

700%

600%

Yo
v 500%

'C 4
S & 4 oo

[o)
%)

® per CLB

Results — Skew Distribution

PDE settings aggregated over all circuits
Skew is relatively “spread out”

. 2 2.
Delay (ns)

Results — GlitchLess Only

Green lines > 1 PDE per CLB
AN
%IIIIIIIIH

Select nodes above
“threshold”

Power of node with
most glitching = 1.0
Threshold filter
selects nodes with
most glitching
Few (~10) high
glitch power nodes

Most nodes w/
small glitch power

Threshold < 0.2

PDE power
overhead swamps
glitch savings

Includes PDE power

pres s aadni

©

c
- “'.......
0.944

ﬂ Excludes PDE power

0.9

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Threshold

Outline

Introduction/Motivation
Concept

Implementation

Results

Conclusion

20 PDEs per CLB

CSS+DP speedup

k=4: geomean 18% (up to 32%)
k=6: geomean 20% (up to 38%)

Dynamic power reduction
Best case savings
k=4: average 3% (up to 14%)
k=6: average 1% (up to 8%)
Swamped by PDE power =
need low-power PDE

Area penalty
k=4:11.7%
k=6:7.6%

1 PDE per CLB
CSS speedup

k=4: geomean 10% (up to 27%)
k=6: geomean 10% (up to 38%)
Can’t do delay padding

Dynamic power reduction
Similar

Area Penalty
k=4:0.6%
k=6: 0.4%

Future Work

Improve glitch power estimation
Done: fast glitches, analog behavior on single net
To do: propagate analog glitches through LUTs

Reduce PDE power overhead

Low-power PDE (circuit design)

Newer benchmarks
Bigger, more recent circuits

Conclusion

20 PDEs per CLB
CSS+DP speedup

<=4:¢ om a. 18%
5

Dt 32)

k=6:¢ 0r = 0% (u, t 3¢)

Dynamic power reduction

Rect case savings
k 1:average 3% (0 to 14%)
ks :¢ erag 1° (n > A

Sw © pe "bv L Tpr & 2
need 1ow-power PUE
Area penalty
k=4:9027%
k=6:7.6%

1 PDE per CLB
CSS speedup

k= "¢ om n10% ‘u to27)H)

k=6. jeom an10% u to 38))
Can dode. - .ding

Dynamic power reduction
Similar

Area Penalty
k=4: 0.6%
k=6: 0.4%

Architeansiser==FDiE

PDE adapted from GlitchLess (TVLSI 2008)
2" delay values

Fast path — min size SRAM SRAM SRAM

Fast path clk Fast path

I)elay' state

on on on

on on off

on off on Slow path

GND
on off off

Increasing channel length (resistance)

Glitch Estimation

Need good activity estimator for good power
estimates
Previous work: ACE 2.0

Uses threshold to determine glitch propagation
Threshold = one length-4 segment

. £ . ?
NO: DEdesion: can the glitch get through theY%%g.rpr%%g i

propagate indefinitely
Glitch pulse width

Real glitches have analog behavior
Short pulses GRADUALLY damps out

Glitch Estimation

Real glitches have analog behavior
Short pulses GRADUALLY damps out
Group pulse widths into bins — X axis

-HQW//----

0 10 20 30 40 50 60 70 80 90 100110120 130 140 150 160 170 180
Glitch Pulse Width

Glitch Estimation

Positive = original ACE underestimates

More underestimates for k=4 = arrival time
differences for smaller LUTSs are smaller

iteration = 0
solution[iteration] = CSS (Pmax, Pmin
num_edges = find_critical_hold_edges (edges|iteration]|); //delete edges
while (num_edges > 0
find_deleted_edge_nodes (edges|iteration]|); //for delay padding later
recalculate_binary_bound (&Pmax, &Pmin
iteration
solution|iteration] = CSS (Pmax, Pmin
num_edges = find_critical_hold_edges (edges|iteration

while (iteration 0) { //in case delay padding fails for current iteration
success = delay_padding (edges|iteration], solution|iteration
if (success) break
iteration 1

for each node “n” on deleted edge “iedge”
max_padding = get_max_padding(n
skew = roundup (fanin—>arrival
Ts + MARGIN + fanin_delay(n, fanin), PRECISION); //for early clock
delay = skew — fanin—>arrival — fanin_delay(n, fanin
needed_slack = delay + MARGIN; //for late clock
while (delay < needed_delay needed_slack max_padding
increment skew, delay and needed_slack by PRECISION
needed_delay delay
if (needed_delay 0.0) {done = 1; break

if (done) check_other_paths(); //check other paths with same source/sink
else success = 0

for each level in breadth-first timing graph
rank_nodes (&list, threshold); //only nodes with glitch power > threshold
for each node “"n” in list
skew = roundup (n—>arrival
Ts + MARGIN, PRECISION); //for early clock

needed_slack = skew — n—>arrival + MARGIN; //for late clock
if (needed_slack < n—>slack
for each fanin “f” of node “n”
needed_delay = n—>arrival — f->arrival — fanin_delay(n, f
fanin_delay(n, f needed_delay + needed_slack

