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Abstract—FPGA routing is one of the most time consuming 

steps in a typical CAD flow. The problem itself is similar to the 
NP-complete problem of computing a set of disjoint paths in a 
graph. The routing resource graph (RRG) that represents an 
FPGA routing network is necessarily large, and becomes even 
larger when modeling modern FPGAs that integrate sparse intra-
cluster routing crossbars. This paper introduces two scalable 
heuristics that reduce the runtime and memory footprint of 
FPGA routing: (1) SElective RRG Expansion (SERRGE), which 
employs an application-specific memory manager that stores the 
RRG in a compressed form, and dynamically decompresses it as 
the router proceeds; and (2) Partial Pre-Routing (PPR) locally 
routes all nets within each logic cluster, followed by a global 
routing stage to complete the routes. PPR and SERRGE converge 
faster than a traditional router using a fully expanded RRG. PPR 
runs faster and uses less memory than SERRGE, while SERRGE 
yields the highest clock frequencies among the three. 
 

Index Terms—Field Programmable Gate Array (FPGA), 
Routing, Routing Resource Graph (RRG). 

I. INTRODUCTION 
HE long running times of commercial CAD software is 
one impediment to the wide-spread adoption of Field 

Programmable Gate Array (FPGA) technology. Among the 
different stages in a typical CAD flow, routing is often the 
most significant in terms of runtime and performance, since it 
directly affects the achievable clock frequency. Practically all 
commercial FPGA routers have their origins in the PathFinder 
algorithm, introduced in 1995 by McMurchie and Ebeling [1]. 
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PathFinder employs an algorithmic approach called negotiated 
congestion, in which individual nets in the user circuit are 
allowed to shared FPGA routing resources; as the algorithm 
proceeds, the negotiation process ensures that at most one net 
is routed along each resource. This process is often lengthy 
and memory-intensive. In particular, the Routing Resource 
Graph (RRG) of a commercial-grade FPGA can be very large, 
due to the inordinate quantity of uniquely programmable 
routing resources that are present in the architecture. 
 One of the significant contributors to overall RRG size is 
the presence of sparse intra-cluster routing crossbars within 
the FPGA routing network [2-5]. In early FPGA generations, 
intra-cluster routing crossbars were fully connected, which 
allowed the RRG to implicitly represent them. When the 
crossbars become sparse, the implicit representation is no 
longer accurate, so the need to explicitly enumerate their 
connectivity significantly enlarges the overall RRG size.  
 This paper reduces the runtime and memory footprint of the 
PathFinder FPGA routing algorithm for FPGAs with sparse 
intra-cluster routing crossbar. Two heuristics are introduced 
with different characteristics in terms of runtime, memory 
usage, and quality of solution. SElective RRG Expansion 
(SERRGE) employs a memory manager that compresses the 
RRG and decompresses relevant portions of it as the router 
executes, thereby eliminating the need to fully expand it prior 
to routing. A second, heuristic, Partial Pre-Routing (PPR) 
computes routes for each intra-cluster routing crossbar a-
priori, and then routes the rest of the circuit using the global 
routing resources of the FPGA. Between the two, PPR 
achieves shorter runtimes and consumes less memory, while 
SERGGE tends to find legal routing solutions with lower 
critical path delays, equating to higher clock frequencies.Our 
results demonstrate that SERRGE and PPR address the routing 
challenge imposed by FPGAs with sparse intra-cluster routing 
crossbars, as they offer a clear and unequivocal improvement 
over the state-of-the-art in FPGA routing algorithms. 

This paper is an extension of the authors’ prior work, which 
was published at FPL 2012 [6]. New contributions of this 
article include: (1) descriptions of modifications to VPR’s 
internal data structures used by the different routing 
algorithms; and (2) more extensive experimentation and 
analysis across a wider set of target FPGA architectures. 
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II. PRELIMINARIES 

A. FPGA Architecture 
Our implementation, experimental results and analysis use 

the Versatile Place and Route (VPR) 5.0 architectural 
simulator, made publicly available by the University of 
Toronto [7]. This section summarizes the VPR architecture.  

The atomic unit of FPGA programmable logic is a K-input 
LookUp Table (K-LUT), which can be configured to 
implement any K-input, 1-output logic function. A Basic 
Logic Element (BLE) is a K-LUT coupled with a bypassable 
flip-flop, as shown in Fig. 1(a). 

As shown in Fig. 1(b), BLEs are clustered in groups called 
Configurable Logic Blocks (CLBs). Each CLB contains N 
BLEs, along with an intra-cluster routing crossbar. In early 
FPGAs, the intra-cluster routing crossbar was fully connected; 
in more recent devices, it has become sparse. A Connection 
Block (C Block) connects each CLB input pin to a subset of 
the wires in the adjacent routing channel. The intra-cluster 
routing crossbar connects the CLB input pins and local 
feedbacks (one per BLE) to the BLE inputs.  

Fig. 1(c) illustrates the FPGA floorplan. Switch Blocks (S 
Blocks) are programmable intersections between horizontal 
and vertical routing channels. The multiplexers, shown on the 
right-hand side of Fig. 1(b), are implemented in the S Blocks, 
which are shown (without detail) in Fig. 1(c). Fig. 1(b) depicts 
inputs coming in from the left hand side of the CLB and 
outputs leaving to the right; in actuality, inputs and outputs 
may enter and exit from all four sides. 

The user describes an FPGA using VPR’s architecture 
configuration file. VPR reads in the architecture configuration 
file and algorithmically generates the logic and routing 
architecture of the FPGA [8]. This alleviates the need for the 
user to specify every connection within the device. The most 
important device parameters are: 

 
K: the LUT size (i.e., a K-LUT); 
N: the number of LUTs per CLB; 
I: the number of CLB input pins; 
W: the number of segments per routing channel; and 
Fcin and Fcout: C Block connectivity parameters 

 
Each C Block input multiplexer in Fig. 1(b) selects one of 

W�Fcin wires, and each BLE drives W�Fcout segments in the 
adjacent routing channels. Most FPGAs use single driver 
routing [9], so the C Block output is a conceptual description 
of the routing topology. 

B. Routing Resource Graph (RRG) 
The RRG represents the connectivity between physical 

resources in an FPGA. Vertices in the RRG represent wires 
and pins that are internal to the FPGA, and edges represent 
switches that connect wires; switches may be unidirectional or 
bidirectional. Fig. 2 provides an example of an RRG that 
represents a small fragment occurring within a larger FPGA.  

When performing routing, sources start at FPGA input pins 
and BLE outputs, and sinks (targets) are FPGA output pins 
and BLE inputs.    

 
(a) 

 
(b) 

 

 
(c) 

 
Fig. 1.  The Basic Logic Element (BLE) of an FPGA (a); a Configurable 
Logic Block (CLB) contains several BLEs with fast local interconnect 
provided by the intra-cluster routing crossbar; the Connection Block (C 
Block) inputs and outputs interface the CLB with the global routing network 
(b); the floorplan of a general island-style FPGA (c).  

 

 
 (a) (b) 
 
Fig. 2.  A small FPGA fragment (a) and its corresponding RRG (b) [8, Fig. 4]. 
Observe that switches between wires can be uni-directional or bi-directional, 
depending on the architecture.   
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C. Problem Formulation 
 FPGA routing is a technology-specific variation of the 
disjoint path problem from graph theory, which is one of 
Karp’s original NP-complete problems [10]. In a graph, two 
paths are disjoint if they share no vertices or edges. Fig. 3 
provides an example of disjoint and non-disjoint paths. 

An instance of the disjoint path problem is a graph G(V, E), 
and two sets of vertices: a set of sources S = {s1, s2, …, sk} and 
a set of sinks T = {t1, t2, …, tk}. A legal solution is a set of 
paths P = {p1, p2, …, pk} where pi is a path from si to ti in G, 
such that the paths in P are disjoint. The NP-complete decision 
problem is whether or not a set P of disjoint paths exists, given 
G, S, and T; corresponding optimization problems may try to 
minimize the total lengths of the paths in P, the length of the 
longest path in P. In the routing problem for FPGAs, the graph 
G is the RRG, and the set of sources corresponding sinks is 
derived from the placement solution.  

One important difference is that each path in the FPGA 
represents a net in a digital circuit, where a source may fan-out 
to drive multiple sinks. Each net has the form Ni = (si, Ti), 
where si is the source and Ti = {ti

1, ti
2, …, ti

n} is the set of n 
sinks driven by source si; thus, pi is actually a hyper-path 
(tree) that connects si to the sinks in Ti. 

A second important difference involves the equivalence of 
sinks. Because LUTs are programmable logic functions, their 
inputs are equivalent. Without loss of generality, if a 2-input 
LUT is configured to perform a logic function f(s1, s2), then 
there is an equivalent logic function f’(s2, s1) = f(s1, s2), 
yielding a symmetric source/sink assignment, shown in Fig. 
4(a). Explicitly listing either pair as the one possible legal 
solution, as shown in Fig. 4(b), is overly restrictive. Thus, it is 
necessary to introduce a single vertex t to represent a common 
sink, as shown in Fig. 4(c). Therefore, any legal routing 
solution must be node disjoint, except at the common sink.   

The objective of an FPGA router is twofold: (1) find a legal 
route, supposing the one exists; and (2) minimize the delay of 
the critical path in the circuit, which may involve the 
concatenation of several disjoint paths in the RRG. Many 
aspects of this delay will be technology-specific, including the 
logic delay through the BLEs on the path, delays relating to 
fanout, delays through routing multiplexers, wire delays in the 
routing network, etc. We employ the models VPR provides. 

D. Sparse Intra-Cluster Routing Crossbars 
VPR (versions 5.0 and before) model FPGAs with full 

intra-cluster routing crossbars, as shown in Fig. 5(a). 
Specifically, a full intra-cluster routing crossbar means that a 
programming routing connection exists between every CLB 
input and every BLE input within the CLB. This means that 
the router only needs to algorithmically compute routes from 
sources to CLB inputs, not BLE inputs; with a full crossbar 
connecting CLB inputs to BLE inputs, it is trivial to complete 
the route. Thus, the intra-cluster routing crossbar can be 
omitted from the RRG; this has been standard in VPR since its 
inception, although the assumption has since been lifted since 
the release of VPR 6.0 [11]. Now, the intra-cluster routing 
crossbar topology is part of the architecture configuration file. 

 
 (a) (b) (c) 
 
Fig. 3.  A simple instance of the disjoint path problem: a graph G(V, E) with 
sources S = {s1, s2} and sinks T = {t1, t2} (a); an illegal solution, i.e., two non-
disjoint paths that share a common vertex (b); a legal solution, i.e., two 
disjoint paths that share no common vertices (c).  
 

 
 (a) (b) (c) 
 
Fig. 4.  Due to the equivalence of LUT inputs, different source-sink pairs may 
be legal solutions (a); however, enforcing specific source-sink pairs may be 
overly restrictive (b); the solution is to create a common sink (t) that 
represents all equivalent LUT inputs (c).  
 
 

   
 (a) (b) 
 
Fig. 5.  CLBs with a fully connected (a) and sparsely connected (b) intra-
cluster routing crossbars.   

 
When the intra-cluster routing crossbar becomes sparse, as 

shown in Fig. 5(b), CLB inputs are no longer equivalent (in 
the general case). In order for the route to complete a legal 
disjoint path routing solution, it is necessary to explicitly 
represent the intra-cluster routing crossbar in the RRG. This 
enlarges the size of the RRG: the set of vertices must include 
each CLB input and each BLE input (before, the CLB inputs 
could be represented as a single sink, akin to Fig. 4(c), while 
BLE inputs were omitted altogether); and the number of edges 
that are added to the RRG depends on the population density 
of the crossbar. Taken in aggregation across the entire FPGA, 
the RRG size can increase significantly. 

E. PathFinder Algorithm 
This section summarizes the PathFinder FPGA routing 

algorithm [1]. PathFinder is based on the paradigm of 
Negotiated Congestion (NC), which computes illegal routing 
solutions in which several nets may share a single wire (RRG 
vertex). The negotiation process dynamically adjusts a cost 
function, which, over time, pushes nets away from congested 
wires, and yields a globally legal routing solution. 
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Fig. 6 presents pseudocode for PathFinder. The outer 
loop, the Global Router, iterates until a legal solution is found. 
At the beginning of each iteration, it rips up each routing tree 
and updates the vertex costs used by the algorithm. The 
pseudocode assumes that a legal solution can be found. In 
practice, the global router terminates after a fixed number of 
iterations if a solution is not found. The Signal Router (lines 2-
26) is oblivious to congestion (i.e., several nets sharing the 
same RRG vertex); a cost function (described below) is 
computed for each RRG vertex and is dynamically updated to 
dissuade the usage of congested vertices during routing. The 
objective of the signal router is to find a route that minimizes 
the aggregate cost of the RRG vertices that comprise the route.    

The Signal Router routes one net a time; routing tree RTi 
for net Ni is expanded in search of each sink ti

j∈Ti, one sink at 
a time, and in-order. The routing tree RTi for net Ni, computed 
during the previous iteration, is discarded, and a new route is 
computed. Routes may be computed using a priority-driven 
breadth-first search [1], similar to Lee’s maze expansion [12]; 
more efficient routes can be computed using an A* cost 
function, which includes an additional term that directs the 
search toward the target sink ti

j [1, 13-15].  
The first search emanates from source si of net Ni to the 

first sink, ti
1, resulting in a routing path. Subsequent searches 

expand the routing path into a routing tree, RTi. Inductively, 
let RTi connect si to sinks, {ti

1, ti
2, …, ti

j-1}. The next search will 
find a path that connects some vertex in RTi to the jth sink, ti

j.  
In its original description, PathFinder computes a route 

from each source to each sink. The search initializes a priority 
queue PQ to contain the vertices in RTi at zero cost. 
Subsequently, PQ contains each vertex that (1) has at least one 
neighbor in RTi, and (2) does not belong to RTi itself. VPR 
(and Fig. 6) in contrast, maintains the wavefront and continues 
expansion until all sinks have been discovered [15, Fig. 4.11].  

The search works as follows: the lowest cost vertex v is 
removed from PQ and added to RTi. The vertices adjacent to v 
are expanded and inserted into PQ accordingly. This process 
repeats until the current sink ti

j is found. Initially, PQ must 
include an adjacent neighbor u of v that belongs to RTi; thus, v 
and adjacent edge (u, v) are added together to RTi.  
 
Cost Function: An important implementation detail is the 
cost computed for each vertex when it is inserted into PQ. 
Different PathFinder implementations use different cost 
functions [1, 13-15], with different objectives and strategies. 
Let v be the vertex, and u be a vertex adjacent to v that has 
already been added to RTi; in other words, if the search selects 
v for inclusion in RTi, it will include edge (u, v) as well. Let fu 
denote the cost of the path from source i to node u, and cv 
denote the cost of adding node v to the route. Then the cost of 
routing from the source to v is 
 

gu,v = fu + cv.                 (1) 
 
To accommodate an A* cost function, let dv 

j be an estimate of 
the cost of completing the route from node v to sink ti

j. Then 
the cost of the path from source i to sink ti

j along RRG edge 
(u, v) is 
 

fv = gu,v + dv 
j.                (2) 

// Global Router 
1.  While at least two nets share a common routing resource 
  // Signal Router 
2.  For each net Ni   
3.   Rip up routing tree RTi for net Ni = (si, Ti) 
   and update affected pv values 
4.   Reinitialize RTi to contain only the source si  
5.   Initialize priority queue PQ 
6.   For each sink ti

j ∈ Ti     
7.    While ti

j ∉ RTi 
8.     Remove min. cost vertex u from PQ 
9.     If u ≠ ti

j 
10.      For each RRG edge (u, v) 
11.       If v!∉ RTi and v!∉ PQ 
12.        Insert v into PQ with cost fv = gu,v + dv 

j  
         and predecessor edge (u, v) 
13.       Else If v!∉ RTi and v!∈ PQ and fv > gu,v + dv 

j 
14.        Change the cost of v in PQ to  
         fv = gu,v + dv 

j 
15.        Change the pred. edge of v in PQ to (u, v) 
16.       EndIf 
       EndFor 
17.     EndIf 
18.    EndWhile 
19.   EndFor 
20.   For each sink ti

j ∈ Ti 
21.    For each node v in reverse path from ti

j to si 
22.     Update cost cv 
23.     Add v to RTi 
24.    EndFor 
25.   EndFor 
26.  EndFor 
27. EndWhile 
 
Fig. 6.  Pseudocode for the PathFinder FPGA routing algorithm.   
 
 
A breath-first search, i.e., a Lee-style maze expansion [12], 
then corresponds to the case where dv

j = 0. Several 
modifications have been proposed to assign relative weights to 
the breadth-first and A* components of the cost function 
 
  fv = gu,v + αdv 

j, α ≥ 0; and   [13]      (3) 
  fv = (1 - β)gu,v + βdv 

j, 0 ≤ β ≤ 1  [14].      (4) 
 

When adding a new vertex u into RTi, each neighbor v of 
u is processed and added to PQ, unless v already belongs to 
RTi. If is possible that a different neighbor w of v is also part 
of RTi, so v may already be in the priority queue with some 
cost function fv = gw,v + cv.  

In principle, it is now possible to add v to RTi either via 
edge (u, v) or (w, v). The best choice is the one that minimizes 
fv. Therefore, the cost and predecessor of v in PQ are changed 
from w to u if gu,v < gw,v, or, equivalently, if gu,v + cv is less 
than the current value of fv.   

Several different variants of the node cost function cv 
have also been proposed: 
 

cv = (bv + hv)pv, and  [1]           (5) 
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cv = bvhvpv,     [15, Eq. (4.3)1]       (6) 
 

where bv is the base cost of v (typically its intrinsic delay), hv 
is the history cost of v, which depends on the number of nets 
that are routed through v during previous iterations, and pv is a 
penalty function associated with the number of nets routed 
through v in the current solution. PathFinder dynamically 
updates hv and pv accordingly as routing proceeds. According 
to Ref. [15], the advantage of Eq. (6) over Eq. (5) is that 
multiplying the bv and hv terms, rather than adding them, 
eliminates the need to normalize them; one possible drawback, 
not mentioned by Ref. [15], is that bvhv > bv + hv for bv, hv > 2, 
so there is a greater chance of arithmetic overflow if both 
terms grow significantly as the algorithm iterates.  

The difference between hv and pv is that hv permanently 
increases the cost of using v to ensure that routes through other 
vertices are attempted, while pv is based primarily on the 
current routing solution. Recall that PathFinder routes nets 
one-at-a-time. Suppose that nets N1 and N2 are being routed in 
subscript order. The history cost could potentially dissuade 
PathFinder from routing both N1 and N2 through v during the 
current iteration, especially if v has a history of congestion. 
Now, supposing that PathFinder routes N1 through v despite 
the value hv, then increasing pv in response would dissuade 
PathFinder from routing N2 through v, to increase the 
likelihood of converging to a legal solution. 

A generalized form of the cv terms that favors delay-
minimization for source-sink pairs whose delay is expected to 
near-critical is 

 
cv = Criti,jdelayv + (1 - Criti,j)(bv + hv)pv, or     (7) 
cv = Criti,jdelayv + (1 - Criti,j)bvhvpv, such that    (8) 

Criti,j = 1 – Slacki,j/Dmax,           (9)
      

where delayv is the intrinsic delay of RRG node v, Slacki,j is 
the estimated amount of delay that could be added to the 
source-sink path from i to j before it becomes critical, and 
Dmax is the estimated critical path delay of the placed-and-
routed circuits. In VPR’s timing-driven router [15, Section 
4.4], the delayv term is based on the Elmore delay model, 
which is derived from the existing routing tree RTi, including 
the prospective path from i to v; additionally, the Criti,j term is 
more complex; details are omitted to conserve space. 
 The original PathFinder paper did not describe precisely 
which functions are used for hv and pv [1]. In VPR, pv is reset 
and recomputed every time a routing tree is ripped up and 
rerouted, while hv is defined as a recurrence relation which 
varies from iteration to iteration of the global router.  

Let hv
k denote the history cost of vertex v during the kth 

iteration of the global router; for the first iteration, hv
1 = 1. 

The pv and hv
k terms are then defined as follows: 

 
pv = 1 + occupancyvpfac, and     [15, Eq. (4.4)2]  (10) 
hv

k
 = hv

k-1 + occupancyvhfac, k > 1,  [15, Eq. (4.5)2]  (11) 
 

 
1 We ignore the BendCost(…) term from Eq. (4.3) in Ref. [15] because we are 
performing combined global-detailed routing.  
2 In combined global-detailed routing, which is the approach taken by VPR, 
the capacity of each routing resource is 1, which allows us to eliminate the 
capacity(…) term from Eqs. (4.4) and (4.5) in Ref. [15].  

where occupancyv is the number of nets currently routed 
through RRG node v, and pfac and hfac are scaling factors. Ref. 
[15, Section 4.3.1] suggests that pfac should be at most 0.5 for 
the first iteration, and then increased by a factor of 1.5x to 2x 
for subsequent iterations, and that hfac should remain constant 
and that any value between 0.2 and 1 should suffice.  
 The enhancements to PathFinder introduced in this paper, 
PPR and SERRGE, are compatible with any cost function 
(breadth-first or A* search) described in previous literature. 
We have implemented PPR and SERRGE in VPR 5.0, and all 
of our experimental results reported in Section V use VPR’s 
timing-driven router [15, Section 4.4].   

F. RRG Terminology 
We use the term global RRG to refer to the representation of 

the FPGA’s global (inter-cluster) routing resources. The VPR 
5.0 (and earlier) PathFinder implementation performs routing 
on a global RRG, which does not explicitly represent any local 
(intra-cluster crossbar) routing resources.  

We use the term local RRG to refer to the representation of 
the intra-cluster routing resources for one CLB; if the intra-
cluster routing crossbar contains just one layer of internal 
multiplexers, the local RRG is bipartite: each vertex is either a 
CLB input pin (including local feedback arcs) or a BLE input 
pin; each edge connects a CLB input pin to a BLE input pin.  

We use the term complete RRG to refer to the representation 
of all FPGA routing resources (inter- and intra-cluster) in a 
single graph: a complete RRG combines the global RRG with 
a local RRG for each CLB in the FPGA.  

III. BASELINE ROUTER 
The Baseline router, described in this section, contains a 

minimalist set of algorithmic modifications to extend the 
PathFinder algorithm to support FPGAs with sparse intra-
cluster routing crossbars. The Baseline router suffers from an 
enlarged memory footprint, which both SERRGE and PPR, 
described in the subsequent sections, overcome.   

A. Expanded RRG and CLB Input Pin Equivalence 
The Baseline router performs routing on a complete RRG, 

which explicitly represents both inter- and intra-cluster routing 
resources, as discussed in Section II.F.  PathFinder now routes 
nets to BLE input pins, rather than CLB input pins, as shown 
in Fig. 7, and delineates which BLE is the sink of each net. 
The input pins of each BLE are logically equivalent.  

If the intra-cluster routing crossbar is fully populated, then 
all CLB input pins are logically equivalent and do not require 
explicit representation in the CLB. A legal route is obtained by 
routing all nets from their respective sources to any input pin 
of a CLB that contains the sink; a full crossbar guarantees a 
direct connection from each CLB input pin to the sink. 

When the intra-cluster routing becomes sparse, CLB input 
pins are not logically equivalent; whatever equivalency exists 
depends on the crossbar topology. Let Sj contain the CLB 
input pins that can be routed to at least one input of BLE j. In 
general, each CLB input pin may belong to several such sets.  

For example, consider Fig. 7: all CLB inputs, except for the 
feedback emanating from the top BLE, connect to at least one 
input of both LUTs; all of them belong to subsets S1 and S2; 
the feedback output belongs to subset S1, but not S2.  
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 Fig. 7.  In the Baseline router, the RRG is extended to include LUT inputs 
(each of which forms a unique equivalence class) and the sparse intra-cluster 
routing crossbar; this expansion is performed for every CLB in the FPGA. 
 

B. Wire-to-pin Lookup Map 
An important data structure that complements the RRG in 

VPR is a wire-to-pin lookup map that identifies connections 
between the channel wires and CLB input pins. In VPR 5.0 
and earlier, the lookup map is a 4-dimensional array, as shown 
in Fig. 8(a). Since the intra-cluster routing crossbar is fully 
populated, there is no need to extend the map into the CLB.  
 When the intra-cluster routing crossbar becomes sparse, the 
router needs to know whether a wire in the routing channel has 
a connection to each LUT input, which goes through both the 
C-Block (as before) as well the intra-cluster routing crossbar. 
To accommodate this information, two extra dimensions must 
be added to the wire-to-pin lookup map, as shown in Fig. 8(b). 

 Although needed for correctness, the memory overhead 
of these two extra dimensions is significant. For example, 
consider an FPGA with parameters K = 10, N=6, I = 33, 
W=100, Fcin = 15%, and Fcout = 10%. In VPR 5.0, the intra-
cluster routing crossbar implicitly has population density p = 
100%, and a matrix of dimensions 33x4x15 = 1980 is 
allocated (assuming height=1). For a sparse crossbar with 
population density of p = 50%, the matrix size expands to 
1980x50x60 = 5,940,000. The increase in cost is significant, 
since the wire-to-pin map is relatively sparse. 

C. Memory Footprint 
Empirically, we observed that the Baseline router has an 

excessively large memory footprint. The two main causes are 
the expanded wire-to-pin lookup map, as described in the 
preceding subsection, and the Elmore delay trees computed by 
VPR’s timing-driven router [15, Section 4.4], which are used 
to accurately estimate the delay term used in the cost function 
cv shown in Eqs. (8)/(9); VPR’s routability-driven router [13, 
15 Section 4.3] does not use Elmore delay modeling and 
sidesteps this overhead. Other relevant data structures (e.g., 
the expanded RRG, priority queue, traceback list, etc.) become 
larger, but do not significantly impact the memory footprint. 

VPR’s timing-driven router builds an Elmore delay tree for 
each vertex as it is discovered during maze expansion. If the 
signal router is presently routing net Ni, a tree is computed for 
each vertex that is discovered during the search. The tree is 
then saved when the vertex is inserted into the priority queue; 
many of these vertices are never removed from the priority 
queue during the search, and even fewer are added to the 
routing tree. The contribution of Elmore delay trees to the 
memory footprint varies from iteration to iteration.  

int **** tracks_connected_to_ipin; 
tracks_connected_to_ipin = alloc(num_pins, height, 4, Fc); 
/* tracks_connected_to_ipin[num_pins][height][4][Fc] */ 
 
for(int i = 0; i < num_pins; i++) 
 for(int j = 0; j < height; j++)  
  for(int k = 0; k < 4; k++) 
   for(int l = 0; l < Fc; l++) 
    tracks_connected_to_ipin[i][j][k][l] = OPEN;  
    

(a) 
 
int ****** tracks_to_LUT_ipin; 
tracks_to_LUT_ipin = alloc(K*N, density, num_pins, height, 4, Fc); 
/* tracks_to_LUT_pin[K*N][density][num_pins][height][4][Fc] */  
 
/* K*N is the number of BLE inputs pins (N K-LUTs per CLB) 
 density is the number of CLB input pins that connect to each BLE  
 input. If p is the population density of the crossbar, then 
 density = p*I. (e.g., if I=40, p=75%, then density = 30).  
*/  
for (int i = 0; i < K*N)  
 for (int j = 0; j < density; j++)  
  for(int k = 0; k < num_pins; k++)  
   for(int l = 0; l < height; l++) 
    for(int m = 0; m < 4; m++) 
     for(int n = 0; n < Fc; n++) 
      tracks_to_LUT_pin[i][j][k][l][m][n] = OPEN; 
 

(b) 
 
Fig. 8.  (a) Pseudocode to allocate and initialize the 4-dimensional wire-to-pin 
lookup map array in VPR 5.0 (and earlier), under the assumption that the 
intra-cluster routing crossbar was fully populated. (b) Pseudocode to allocate 
and initialize a 6-dimensional wire-to-pin lookup map array, which has been 
extended to support sparse intra-cluster routing crossbars, which do not 
guarantee a connection between each CLB input pin and each LUT input. The 
map entries that are set to USED (rather than OPEN), i.e., connections that 
actually exist, are derived from the FPGA routing architecture.  

 
The impact of the memory footprint on performance 

depends on the target FPGA size, the placement solution, and 
the amount of memory available on the system that computes 
the route. The operating system’s memory management 
policies and background applications and services also affect 
the amount of memory made available to the router. To 
manage this overhead, we set a limit on the memory size of all 
of the routing resources; in practice, the choice of limit 
depends on the system configuration and memory demands of 
the operating system and other persistent applications. When a 
PathFinder iteration exceeds the memory limit, the Baseline 
Router treats that iteration as a failure: it deallocates all data 
structures and propagates any history cost updates from the 
failed iteration to the next iteration. The Baseline Router does 
not otherwise modify PathFinder’s core algorithmic behavior.  

IV. ROUTING WITH SELECTIVE RRG EXPANSION (SERRGE) 
 
SElective RRG Expansion (SERRGE) refers to a collection 

of modifications to the Baseline router, which further reduce 
the memory footprint, yielding significantly faster runtimes. 
SERRGE features a custom memory manager and garbage 
collector that are specific to the RRG and other associated data 
structures used by VPR’s implementation of PathFinder. 
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A. Dynamic RRG  
SERRGE begins with a global RRG G = (V, E) and one 

copy of a local RRG GL = (VL, EL) as a representative of each 
CLB. When routing each net Ni, PathFinder’s maze expansion 
first finds a path in the global RRG from the source si to an 
input pin j of a CLB that contains one of Ni’s sinks. SERRGE 
then refers to the local RRG and identifies the CLB input pin 
j’ in GL corresponding to j.  Let vL(j’) and eL(j’) denote the sets 
of neighboring vertices and incident edges in the fanout of j’ 
in GL. SERRGE expands the global RRG according to the 
following two rules: (1) for each vertex v’∈vL(j’), add a new 
vertex v to V; (2) for each edge e’ = (j’, v’)∈eL(j’), allocate a 
new edge e = (j, v) to E.  

With the newly expanded vertices and edges, PathFinder 
can now complete the route to the sink in the BLE, which will 
be one of the newly added vertices to V. The costs associated 
with each newly allocated vertex and edge are initialized and 
updated appropriately; nets routed during the current, and 
subsequent, PathFinder iterations, may negotiate to use these 
newly allocated routing resources.  

This dynamic RRG is a supergraph of the global RRG and a 
subgraph of the complete RRG, by construction. In the worst 
case, the dynamic RRG will grow until it becomes the 
complete RRG, but this is impractical. The intuition behind 
this approach is that the Baseline Router preemptively 
allocates portions of the RRG that are never expanded; 
SERRGE, in contrast, dynamically allocate the portions of the 
local RRGs that PathFinder explores, on-demand.  

B. Garbage Collection 
To limit the memory footprint of the dynamic RRG (and 

other data structures that are proportional in size), SERRGE 
includes a dynamic garbage collector. If the dynamic RRG 
grows more than 30% larger than the global RRG, then the 
garbage collector deletes all presently unused vertices and 
edges that were dynamically allocated; this includes all 
auxiliary data structures associated with each vertex and edge, 
including Elmore delay trees (see Subsection E), traceback 
information, etc. In other words, RRG growth is used as a 
proxy for the growth of a much larger set of data structures 
whose collective memory requirements greatly exceed that of 
the RRG (i.e., just the vertices and edges) in isolation.   

The garbage collector never deallocates vertices and edges 
that belong to the global RRG. Within each CLB, the garbage 
collector identifies candidates for deletion by comparing the 
number of LUT input pins that have been reached thus far 
with the number of nets that have sinks in each LUT. If the 
number is equal, then all RRG resources that are incident on 
the LUT inputs are deallocated; this ensures that routes 
computed previously during this iteration can be recovered if 
PathFinder successfully converges. Otherwise, the routing 
resources are left in-place under the assumption that at least 
one future net may use them when searching for its sink.  

The garbage collector does not consider history costs when 
deleting RRG vertices; all costs associated with a deleted 
vertex are lost, and are reset to zero if the vertex is later re-
allocated. This may alter the way that PathFinder negotiates 
under SERRGE, and could yield a different routing result 
compared to the Baseline router (presuming that the latter does 
not incur failed iterations due to exceeding the memory limit).  

The lost history costs are restricted to vertices and edges 
that represent the final link connecting a routed net to its sink.  
Even if the history cost is deleted, a net that routes through a 
re-allocated resource will increase the penalty cost, which 
would serve to dissuade subsequent nets from using those 
resources during the current PathFinder iteration.   

C. Example 
Fig. 9 illustrates the preceding discussion. PathFinder first 

searches the global RRG (not shown) from source s to a CLB 
that contains sink t. Upon reaching the CLB input pin, Fig. 
9(a) shows that the portion of the RRG corresponding to the 
CLB has not yet been allocated (gray). SERRGE consults the 
local RRG to expand the dynamic RRG to fan out from the 
CLB input pin, as shown in Fig. 9(b). In Fig. 9(c), the local 
route completes using a subset of the newly allocated routing 
resources. In Fig. 9(d), the garbage collector claims unused 
routing resources that SERRGE expanded, but did not use. 

D. Compressed Wire-to-pin Lookup Map 
To further reduce the memory footprint of SERRGE, the 

extended wire-to-pin lookup map (Section III.B) is converted 
to a one-dimensional array that exclusively represents routing 
resources that could possibly be used by the netlist being 
routed. For example, connections to BLEs within a CLB that 
are not used (as determined by the placer/packer) are omitted; 
likewise, CLB I/O pins that interface exclusively with unused 
BLEs, and CLB sides where all pins connect to unused BLEs, 
are omitted from the lookup map as well. Fig. 10 provides 
pseudocode for the map initialization process. 

E. Elmore Delay Trees 
VPR’s timing-driven router builds an Elmore delay tree for 

each vertex discovered during maze expansion (Section III.C), 
which is saved throughout the search. This increases the 
router’s memory footprint and severely impacts performance.  

 

  
 (a) (b) 

 
 (c) (d) 

Fig. 9.  Illustration of the basic behavior of SERRGE; PathFinder maintains an 
RRG corresponding to global FPGA routing resources, while selectively 
expanding the RRG to include a subset of nets that may be used inside of an 
intra-cluster routing crossbar. When routing a net, the first step is to compute 
a route from the source s to an input of the CLB that contains the sink t. The 
portion of the RRG corresponding to the CLB’s intra-cluster routing crossbar 
is initially not allocated (a). The fanout of the CLB input found by the global 
router is allocated and added to the RRG (b). In this example, the route is 
completed to the target LUT (c). Later on, the garbage collector may reclaim 
CLB routing resources that have been allocated, but were not used (d).  
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#define USED 1 
#define OPEN 0 
 
/* Values vary from CLB to CLB, based on BLE utilization */ 
int used_CLB_pins = …; 
int used_sides = …; 
int used_MUXes = …; 
int used_LUT_ipins = …; 
 
int N  

= used_CLB_pins * used_sides * used_MUXes *used_LUT_ipins; 
 
/* Initialize all map entries to OPEN */ 
int *tracks_to_LUT_pin = calloc(N, sizeof(int));  
 
/* Mark the array entries that are used */ 
for (int i = 0; i < used_LUT_ipins; i++) { 
 int I = (i * used_IIB_MUXes * used_sides * used_CLB_pins); 

for (int j = 0; j < used_IIB_MUXes; j++)  { 
 int J = (j * used_sides * used_CLB_pins); 

for (int k = 0; k < used_sides; k++) { 
 int K = (k * used_CLB_pins); 

for (int L = 0; L < used_CLB_pins; L++) 
tracks_to_LUT_pin[I + J + K + L] = USED; 

}}} 
 
Fig. 10. Pseudocode to initialize 1-dimensional wire-to-pin map. Unlike the 
maps in Fig. 8, the map entries that are marked as being USED (rather than 
OPEN) depend both on the FPGA architecture and the packing/placement 
result, and vary from CLB to CLB.  
  
 VPR’s timing-driven router computes the Elmore delay tree 
for each vertex v when v is discovered during the search. It 
uses the tree to compute the term delayv that contributes to the 
vertex’s cost term cv, as per Eqs. (7) and (8), which, in turn, 
contributes to the cost function fv, in Eqs. (1)-(4), i.e., the 
priority of v when it is inserted into the priority queue. The 
Baseline Router saves the Elmore delay tree for v, so that 
delayv can be updated quickly when necessary (Fig. 6, lines 
13-16), and for quick access when and if the search removes v 
from the priority queue during the search (i.e., v has the 
highest priority among all enqueued vertices).  

In contrast, SERRGE discards the Elmore delay tree after 
delayv is computed, and re-computes the tree on-demand, 
when necessary. The performance benefits accrued by the 
reduced memory footprint outweigh the overhead of re-
computing the Elmore delay trees on-the-fly. When and if the 
router completes successfully, all of the Elmore delay trees are 
re-computed at the very end, in order to facilitate post-route 
timing analysis based on the Elmore delay model.  

F. Memory Limit 
Similar to the Baseline router, SERRGE sets a limit on the 

memory consumption per iteration, for all of the routing 
resources. If this memory limit is exceeded, then the iteration 
fails, and any adjusted history costs are propagated to the next 
iteration. Due to the compressed wire-to-pin lookup map and 
memory-efficient approach to computing the Elmore delays, 
SERRGE exceeds the memory less frequently than the 
Baseline router; despite these efficiencies, SERRGE cannot 
guarantee that it will always stay within the memory limit, 
especially when routing large netlists on large FPGAs.  

 

V. ROUTING WITH PARTIAL PRE-ROUTING (PPR) 
 

Partial Pre-Routing (PPR) starts by locally routing each 
CLB (having at least one used BLE) by executing PathFinder 
on the local RRG, as shown in Fig. 11(a). Fig. 11(b) illustrates 
one of many possible local routing solutions. PPR is then 
followed by a global routing step that completes each route 
(i.e., from each source to an appropriate CLB input) using the 
global RRG. By using one global and one local RRG, PPR 
avoids the large memory footprint of the Baseline router, and 
the complications associated with a dynamic RRG and 
garbage collection required by SERRGE.  

A. Algorithm 
The local RRG for each CLB is bipartite. Local routing 

involves a subset of the nets in the complete routing problem 
for the entire FPGA, and involves computation of a partial 
path for each net. To model the local routing problem, a super-
source s* is allocated and connected to each CLB input.  

Let N* be the set of nets having at least one sink in the 
CLB. For net Ni = (si, Ti)∈N*, let Ti’⊆ Ti, be the subset of 
sinks in the CLB. If si is a source in the CLB, then net Ni’ = 
(si, Ti’) is added to the local routing problem instance; 
otherwise, net Ni’ = (s*, Ti’) is added to the local routing 
problem instance. PathFinder then computes the local routes.  

If |Ti’| = 1 for every net Ni’ in the local routing problem 
instance, then it can be simplified to bipartite matching, which 
can be solved optimally in polynomial-time using a network 
flow algorithm. We did not implement this option because 
PathFinder converged quickly enough in practice.  

To solve the local routing problem for each CLB, PPR 
computes all intra-cluster routes required for each net. A 
global routing problem instance using the global RRG then 
computes the inter-cluster routes, subject to the constraints 
imposed by the local routing result. The constraints can be 
expressed as CLB input equivalence classes. As shown in Fig. 
11(b), the local routing solution computed two CLB inputs 
that route to BLE t1. As a consequence, these two CLB inputs 
become logically equivalent sinks in the global routing 
problem. Specifically, they become the targets for the two 
respective nets for which BLE t1 was the original target. 
 In our experiments, PPR consumed far less memory than 
either the Baseline router or SERRGE, and did not suffer from 
memory-related performance issues. Consequently, we did not 
include SERRGE’s memory optimizations for the wire-to-pin 
lookup maps or Elmore delay trees in PPR; however, they 
remain nonetheless fully compatible, in principle, with PPR.  

  

 
 (a) (b) 
 
Fig. 11.  PPR starts by routing each intra-cluster routing crossbar individually, 
finding a set of disjoint paths from the source to the inputs of all BLEs that are 
used (a); CLB inputs that are connected to inputs of the same BLEs form 
equivalence classes that act as new sinks for the global router (b).  
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B. Limitations 
The pre-routing phase of PPR lacks a global view; thus, 

PPR may yield sub-optimal global routes. Fig. 12 shows an 
example. In Fig. 12(a), CLB1 needs to route to its neighbor, 
CLB2, which has two input pins available, in1 (facing CLB1) 
and in2 (on the opposite side). PathFinder (in its Baseline or 
SERRGE configurations) could route to either in1 or in2, and, 
absent congestion, could find a short route to in1 in Fig. 12(a). 
In Fig. 12(b), PPR, being oblivious to global considerations, 
may produce a partial route within CLB2 using in2. In this 
case, the global routing phase has no choice other than to route 
from CLB1 to in2 on the opposite side of CLB2. This example 
demonstrates one way that PPR sacrifices optimality for 
efficient runtime. 

VI. EXPERIMENTAL SETUP AND METHODOLOGY 

A. Experimental Platform 
We implemented the routing algorithms in VPR 5.0 [7], 

which was the most up-to-date version of VPR when we 
started this project. VPR 5.0 did not support sparse-intra-
cluster routing crossbars. The Beta release of VPR 6.0 [11] 
featured sparse intra-cluster routing, but did not include a 
timing-driven router; that feature was added to the official 
release of VPR 6.0 early in 2012, when the implementation 
work outlined here was mostly complete. VPR 6.0’s router 
shares many principle similarities with PPR (Section V). 

We used a tool described by Lemieux and Lewis [2] to 
generate routable sparse crossbars with a user-specified 
population density. We used ABC [16] for logic synthesis and 
technology mapping, T-VPack for packing, and VPR 5.0 for 
placement and (timing-driven) routing. 

All experiments reported here were performed on an Apple 
iMac featuring a 2.66 GHz Intel Core i5 with 4GB of DDR3 
memory, running OS X 10.9.2. Around 3GB of memory were 
taken by the OS, leaving 1GB for user space programs. 

B. Sparse Intra-cluster Routing Crossbar Modeling 
We model the intra-cluster routing as a 2-dimensional 

binary matrix B, with I+N columns and KN rows. Each 
column corresponds to an input (a CLB input pin or a local 
feedback from a BLE in the cluster), and each row 
corresponds to a BLE input. B(i, j) = 1  if a signal can route 
from input i  to output j , and 0  otherwise. It is important to 
note that B simply models the input-to-output connectivity of 
the crossbar, but does not model its internal architecture. 

     
 (a) (b) 
Fig. 12.  FPGA routing algorithms that take a global view can route to any one 
of multiple CLB input pins, allowing for shorter overall routes (a); PPR pre-
computes the target CLB input pin for each net, without considering global 
implications, potentially leading to longer routes (b).  

As an example, we model a CLB with N=2 , K=2  (e.g., it 
contains two 2-LUTs); the four BLE inputs are denoted b00, 
b01, b10, and b11. The CLB has three input pins, I0, I1, and I2, 
and two local feedbacks from the BLEs, O0 and O1.  

An example of the matrix representation (for one input-
output connectivity topology)   

 
In this example, there is a connection from CLB input pin I0 

to LUT input pins b00  and b01 , but not b10  and b11; also, the 
local feedbacks are not used. The tool that we used to generate 
routable sparse crossbars [2] creates a matrix B such that each 
row, column, and the entire matrix have a population density 
approximately equal to a user-specified parameter p, i.e.: 

 
 ! !, !! = ! ! + ! ± 1,          (12) 
 ! !, !! = !"# ± 1, and          (13) 
 ! !, !!,! = !" ! + ! ± 1.         (14) 

C. Experimental Parameters 
We modeled an FPGA using an architecture configuration 

file from the iFAR repository [17, 18] based on 65nm BPTM 
technology. Table I lists the architectural parameters that we 
used. We considered intra-cluster routing crossbars with 
population densities p = 40%, 50%, and 75%.   

VPR repeatedly routes each benchmark using a binary 
search to identify the smallest channel width, Wmin, for which a 
legal route can be found. VPR also allows the user to specify a 
chosen channel width (W), and then tries to find a legal route, 
but may fail. Different routing algorithms may yield different 
Wmin values for a given FPGA architecture, benchmark, and 
placement/packing result; for each, we ran Baseline, PPR, and 
SERRGE and computed their respective Wmin values, the 
largest of which we denote as Max(Wmin). We generate an 
FPGA with channel with W = 1.4Max(Wmin). We then re-route 
each benchmark using all three algorithms on this FPGA and 
present those results. This prevents architectural differences 
due to varying Wmin values from skewing the experiments. 
 PathFinder terminates after a user-specified number of 
iterations. We set the maximum number of iterations allowed 
to 300; if PathFinder cannot find a successful route after 300 
iterations, then it fails. Since FPGA routing is NP-complete, 
PathFinder is not guaranteed to find a legal routing solution, 
even if one exists. 
 We report the size of the RRG, wire-to-pin lookup maps, 
and Elmore delay trees for each routing algorithm. The wire-
to-pin lookup maps are allocated once and remain static 
throughout routing; the Elmore delay trees grow and shrink 
dynamically. The RRG is static under PPR and the Baseline 
Router, and dynamic under SERRGE. We measure the 
memory requirement of the static data structures once and 
profile the size of the dynamic data structures after each 
dynamic allocation that increases their size. We report the 
peak memory consumption of these data structures for each 
benchmark and architecture during the runtime of the routers. 



0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

10 

TABLE I 
FPGA ARCHITECTURE PARAMETERS 

 

 

D. Timing and Area Models 
Our timing model was similar to VPR 5.0. We added 

models to account for delays inside of the CLBs. The timing 
graph is generated such that every CLB or LUT input pin 
becomes a timing node. Timing edges represent connectivity 
between pins, and delays are marked on edges, not nodes. 

The area model sums the aggregate areas of the number of 
minimum-width transistors required to place and route a 
circuit on in VPR; we did not modify VPR’s counting method. 
We added extensions to account for the intra-cluster routing 
crossbar area, which depends on its population density.  

We employed the basic techniques that were used in VPR to 
estimate the silicon area occupied by each multiplexer and 
wire in the CLB. We assume that a minimum width transistor 
takes 1 unit of area. A double-width transistor takes twice the 
diffusion width, but the same spacing, so we assume it takes 
1.5x the area of a minimum-width transistor. 

Buffer sizes are calculated based on the drive strength 
requirements and depend on the fan-out of the buffer. VPR 
uses 4x the minimum size, which we have adopted for general 
buffers. We sized the CLB input buffers using the approach 
used by Lemieux et al. [3], where the drive strength is at least 
7x and at most 25x the minimum size. 

We model an FPGA with single-driver wires; each wire 
segment begins with a multiplexer followed by a driver. We 
attempt to judiciously select the multiplexer size depending on 
the number of inputs. One-level multiplexers are used when 
there are 4 or fewer inputs, and more levels are used when the 
number of multiplexer inputs increases. 

E. Benchmarks 
We selected 10 of the largest IWLS benchmarks [17] for 

use in our experiments; Table II summarizes them.  
VPR generates a custom FPGA that is sized for each 

benchmark. The second column of Table II lists the 
dimensions of the FPGA generated for each benchmark (e.g., 
an MxM array of CLBs). The third and fourth columns list the 
number of nets and CLBs used in each benchmark for an 
FPGA architecture using the parameters listed in Table I. 

Some of the IWLS benchmarks are I/O bound, rather than 
logic bound. In these cases, the number of I/Os per physical 
pin on the perimeter of the FPGA dictates the dimensions. 
When this occurs, VPR generates an FPGA with far more 
LUTs/CLBs than are necessary to realize each benchmark, and 
LUT/CLB utilization is relatively low as a result. 

For each benchmark and FPGA, we generate 10 placements 
by varying the random number seed used in VPR’s simulated 
annealing-based placer. For each placement, we then route the 
benchmark using PPR, SERRGE, and the Baseline router. For 
each data point (benchmark/FPGA/router), the results reported 
are the averages over the ten placements.  

 
 
 

TABLE II 
BENCHMARK OVERVIEW 

VII. EXPERIMENTAL RESULTS 

A. Wmin and Routability 
Fig. 13 reports the Wmin values obtained by routing each 

benchmark/FPGA combination using PPR, SERRGE, and the 
Baseline Router. Surprisingly, PPR yields the lowest overall 
Wmin values across all benchmark/architectures, with the 
exception of des_area for the FPGA with intra-cluster routing 
crossbar population density p = 75%.  

These results indicate that PPR is more likely than 
SERRGE or the Baseline Router to find a legal routing result. 
When considering Wmin as a proxy for routability, it is 
important to note that our experiments use VPR’s timing-
driven router; experiments have been published which 
demonstrate that VPR’s routability-driven router, which does 
not employ the Elmore delay model, tends to yield lower Wmin 
values than the timing-driven router [15, Table 4.8].  

 
 
Fig. 13.  Wmin for the ten largest IWLS benchmarks (Table II) placed-and-
routed on an FPGA with parameters specified in Table I. Results are reported 
for devices with intra-cluster routing crossbar population densities of p = 75% 
(top) 50% (middle) 40% (bottom).  
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B. Critical Path Delay 
Fig. 14 reports the critical path delays obtained by routing 

each benchmark/FPGA combination using PPR, SERRGE, 
and the Baseline Router. PPR is competitive with SERRGE 
and the Baseline Router in many cases; the biggest disparity in 
critical path delay is 3.43 MHz (143.88 MHz to 140.45 MHz) 
for the pci_bridge32 benchmark for the FPGA with intra-
cluster routing crossbar population density p = 40%.  

PPR’s pre-routing phase does constrain the search space for 
negotiation, which accounts for the cases where SERRGE and 
the Baseline Router achieve lower critical path delays. 
SERRGE and the Baseline Router permit PathFinder to 
negotiate for routes at the CLB inputs and within the intra-
cluster routing crossbar, facilitating discovery of faster routes.  

C. Runtime and the Number of PathFinder Iterations 
Fig. 15 reports the runtimes of PPR, SERRGE, and the 

Baseline Router for all benchmark/FPGA combinations. PPR 
is uniformly the fastest, followed by SERRGE, and Baseline. 
All three routing algorithms tend toward faster convergence at 
lower intra-cluster routing crossbar population densities.  

Fig. 16 reports the number of PathFinder iterations required 
for PPR, SERRGE, and the Baseline Router to converge for 
each benchmark/FPGA combination. With one exception 
(wb_conmax for an FPGA with intra-cluster routing crossbar 
population density p = 50%), PPR requires the fewest 
iterations, followed by SERRGE, and then the Baseline 
Router. Reducing the intra-cluster routing crossbar population 
density marginally reduces the number of iterations.  

 

 
 
Fig. 14.  The critical path delay (ns) for the ten largest IWLS 2005 
benchmarks (Table II) placed-and-routed on an FPGA with parameters 
specified in Table I. Results are reported for devices with intra-cluster routing 
crossbar population densities of p = 75% (top) 50% (middle) 40% (bottom).  
 

 
 
Fig. 15.  Runtime (seconds) for the ten largest IWLS benchmarks  (Table II) 
placed-and-routed on an FPGA with parameters specified in Table I. Results 
are reported for devices with intra-cluster routing crossbar population 
densities of p = 75% (top) 50% (middle) 40% (bottom).  
 
 

 
 
Fig. 16.  The number of PathFinder iterations for the ten largest IWLS 
benchmarks (Table II) placed-and-routed on an FPGA with parameters 
specified in Table I. Results are reported for devices with intra-cluster routing 
crossbar population densities of p = 75% (top) 50% (middle) 40% (bottom).  
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PPR requires far fewer iterations to converge than SERRGE 
or the Baseline Router. This is due primarily to two factors: 
(1) PPR’s restricted search space; and (2) PPR’s more efficient 
usage of memory, which limits the number of iterations that 
fail due to exceeding the memory limit. These factors, 
correlate directly to the reduced runtimes reported in Fig. 16.  

D. Memory Consumption 
Fig. 17 reports the peak memory consumption of PPR, 

SERRGE, and the Baseline Router for each benchmark/FPGA 
combination. The Elmore delay trees, which are specific to 
VPR’s timing-driven router [15, Section 4.4], consume more 
than twice as much memory than the wire-to-pin lookup maps 
and RRG combined, and the wire-to-pin lookup maps 
consume significantly more memory than the RRG.  

SERRGE offers a marginal improvement in peak memory 
consumption compared to the Baseline Router, due primarily 
to its compressed wire-to-pin lookup map and re-computation, 
rather than storage, of the Elmore delay trees. PPR consumes 
far less memory than either SERRGE or the Baseline Router, 
because the global RRG, which is smaller than SERRGE’s 
dynamic RRG at peak memory consumption and the Baseline 
Router’s complete RRG, has fewer vertices and edges, and 
thus stores fewer Elmore delay trees. Also, PPR’s wire-to-pin 
lookup maps stop at the CLB inputs, while SERRGE and the 
Baseline Router must route all the way to BLE input pins. As 
shown in Fig. 17, memory savings for the largest benchmarks 
can be as high as hundreds of MBs (e.g., for pci_bridge32).   

 

 

VIII. RELATED WORK 

A. Sparse Intra-cluster Routing Crossbars 
Lemieux et al. presented an algorithm to generate and 

evaluate routable sparse crossbars [2], and later proposed their 
usage for FPGA intra-cluster routing; to improve routability 
they added spare CLB input pins [3]. Later work by Feng and 
Kaptanoglu [4] used entropy counting to design intra-cluster 
routing crossbars that offer greater routability; however, there 
is concern that CLB inputs and local feedbacks cannot reach 
fast inputs for LUTs with non-uniform delay [20].   

Ye [5] showed how the equivalence of LUT inputs can be 
leveraged to reduce the population density of the intra-cluster 
routing crossbar without compromising routability; however, 
it is unclear if this approach is compatible with more advanced 
logic block features such as fracturable LUTs and carry 
chains, where LUT inputs can no longer be treated as logically 
equivalent. Chin and Wilton [21] extended Ye’s work to 
investigate high-capacity hierarchical CLBs with multi-layer 
sparse crossbar interconnects, and showed that this approach 
reduced the placement and routing problem sizes significantly, 
thereby yielding faster and more robust CAD algorithms.  
 In terms of commercial FPGAs, Xilinx employs a C-block 
(Fig. 1(b)) without an intra-cluster routing crossbar, while 
Altera and Microsemi (formerly Actel) employ an intra-cluster 
routing crossbar in conjunction with a C-block. We presume 
that Xilinx’s C-block is much denser than Altera’s or 
Microsemi’s, although no formal comparative study has been 
published, to the best of our knowledge. 

  

 

 
Fig. 17.  The peak memory consumption of the ten largest IWLS benchmarks (Table II) placed-and-routed on an FPGA with parameters specified in 
Table I. Results are reported for devices with intra-cluster routing crossbar population densities of p = 75% (top) 50% (middle) 40% (bottom).  
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Altera has disclosed that their Stratix-series devices employ 
a sparse intra-cluster routing crossbar [22]; although no details 
regarding the topology were presented. Microsemi disclosed 
that their FPGAs employ a 3-layer Clos network, where the 
third layer is subsumed by LUTs [20]. PPR and SERRGE are 
compatible with any sparse intra-cluster routing crossbar 
topology and population density, and do not rely on presumed 
logical equivalence between LUT inputs. Our work has 
evaluated PPR and SERRGE using sparse crossbars generated 
by the tool designed and described by Lemieux et al. [2].  

B. FPGA Routing Algorithms 
Since its introduction in 1995, PathFinder [1] has become 

the most widely used FPGA routing algorithm; VPR’s 
routability-driven and timing-driven routers are both based on 
PathFinder [13, 15]. VPR 6.0 introduced sparse intra-cluster 
routing crossbars; VPR uses an approach similar to PPR to 
perform routing. The main difference with our work is that 
VPR integrates the partial pre-routing phase into the packer 
[11, 23], as a legality check. In other words, any packing 
solution that cannot be routed locally within a CLB is 
disallowed. The router (which follows packing and placement) 
is similar to PPR’s global router, described in Section V of 
this paper.  

If a global iteration of PathFinder fails to find a legal 
solution, all nets are ripped up and rerouted, which partially 
eliminates the dependence on net ordering when routing. 
Mulpuri and Hauck [24] modified PathFinder to exclusively 
rip up nets routed through oversubscribed resources. Although 
this modification speeds up PathFinder’s convergence time 
significantly, a non-negligible increase in critical path delay 
was observed for all benchmarks; for this reason, we do not 
consider this implementation choice in our experiments.  

Gort and Anderson [25] reduce contention for CLB output 
pins by forcing a multi-sink net to use the same output pin for 
all sinks during wavefront expansion while exclusively ripping 
up and re-routing nets that route through oversubscribed 
resources, similar to Mulpuri and Hauck; they reported a 3x 
speedup in router runtime coupled with a 2% increase in 
critical path delay and wirelength. Subsequently, Gort and 
Anderson [26] observed that PathFinder spends up to 40% of 
its runtime resolving congestion among nets that have been 
routed legally. They allow PathFinder to converge when the 
routing solution is almost legal on a coarsened RRG, and then 
legalize the result using a SAT solver. In principle, this 
approach is also compatible with either PPR or SERRGE.  

Chin and Wilton [27] developed an RRG compression 
scheme that takes advantage of the regular tiled nature of an 
FPGA. An RRG is instantiated for each tile, and inter-tile 
connections are represented using “wrap-around” edges. 
Different tile types are instantiated for programmable logic, 
embedded blocks, and I/Os. Extensions are presented to 
handle long wires and sparse intra-cluster routing crossbars, 
including the heterogeneous depopulation schemes that vary 
from tile-to-tile. Separate storage is maintained for the costs 
associated with each edge in the fully expanded RRG; this 
information is not compressed. The additional steps added to 
the router to enable the compressed RRG representation 
increase the router’s runtime by a factor of 2.16x, on average. 
In contrast, PPR and SERRGE reduce the runtime of the 

router, although the reductions in RRG size reported here are 
far more modest in comparison to Chin and Wilton’s scheme. 

So [28] introduced a delay budgeting scheme to reduce the 
critical path delay of a circuit synthesized on an FPGA; since 
this is a post-processing step, it could improve the quality of 
results for all data points reported in Fig. 10 of this paper; 
however, it significantly increases the router runtime by a 
factor of at least 7x and also increases the memory footprint.  

Rubin and DeHon [29] observed that small perturbations in 
initial conditions (e.g., the order in which nets are routed; 
variations in intrinsic delays associated with routing resources) 
yield significant variations in the critical path delays reported 
by VPR’s implementation of PathFinder. They introduced a 
timing constraint and an increased search space that uses 
additional iterations after meeting routability to meet the 
timing constraint. Furthermore, the timing-constrained router 
is placed inside a binary search to find the lowest effective 
timing constraint. In principle, this approach could be used in 
conjunction with either PPR or SERRGE, as long as the 
runtime overhead of repeatedly routing the circuit is tolerable. 

IX. CONCLUSION 
PPR and SERRGE reduce the runtime and memory 

footprint of FPGA routing based on the PathFinder negotiated 
congestion algorithm [1], as implemented in VPR [13, 15]. 
The Baseline Router, which is an extension of VPR’s timing-
driven router, was extended with larger data structures that 
represent intra-cluster routing crossbars. SERRGE extends the 
Baseline Router with compressed data structures and online 
garbage collection, while PPR divides routing into local and 
global phases, requiring less memory and attaining rapid 
convergence, but at the cost of a greatly reduced search space. 
PPR offers the best overall routability (Wmin values), fastest 
running times, and smallest memory footprint, while SERRGE 
tends to find routing solutions with the lowest overall critical 
path delays. If router runtime is a premium, then PPR should 
be used; if critical path delay is more important, then 
SERRGE is preferable; in the vast majority of our 
experiments, PPR and/or SERRGE outperformed the Baseline 
router for all metrics of interest, as reported in Figs. 12-16. 
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