
0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—FPGA routing is one of the most time consuming

steps in a typical CAD flow. The problem itself is similar to the
NP-complete problem of computing a set of disjoint paths in a
graph. The routing resource graph (RRG) that represents an
FPGA routing network is necessarily large, and becomes even
larger when modeling modern FPGAs that integrate sparse intra-
cluster routing crossbars. This paper introduces two scalable
heuristics that reduce the runtime and memory footprint of
FPGA routing: (1) SElective RRG Expansion (SERRGE), which
employs an application-specific memory manager that stores the
RRG in a compressed form, and dynamically decompresses it as
the router proceeds; and (2) Partial Pre-Routing (PPR) locally
routes all nets within each logic cluster, followed by a global
routing stage to complete the routes. PPR and SERRGE converge
faster than a traditional router using a fully expanded RRG. PPR
runs faster and uses less memory than SERRGE, while SERRGE
yields the highest clock frequencies among the three.

Index Terms—Field Programmable Gate Array (FPGA),
Routing, Routing Resource Graph (RRG).

I. INTRODUCTION
HE long running times of commercial CAD software is
one impediment to the wide-spread adoption of Field

Programmable Gate Array (FPGA) technology. Among the
different stages in a typical CAD flow, routing is often the
most significant in terms of runtime and performance, since it
directly affects the achievable clock frequency. Practically all
commercial FPGA routers have their origins in the PathFinder
algorithm, introduced in 1995 by McMurchie and Ebeling [1].

Manuscript received May 23, 2014; revised August 19, 2014 and
November 28, 2014; accepted May 20, 2015. Date of publication TBD; date
of current version TBD. This work was supported by a DoD SMART
Fellowship. This paper was recommended by Associate Editor L. He.
(Corresponding author: Philip Brisk.)

Y. Moctar is with IBM, Austin, TX (e-mail: yommoctar@gmail.com).
G. G. F. Lemieux is with the Department of Electrical and Computer

Engineering, University of British Columbia, Vancouver, BC V6T 1Z4,
Canada (e-mail: lemieux@ece.ubc.ca).

P. Brisk is with the Department of Computer Science and Engineering,
University of California, Riverside, Riverside, CA 92521 USA (email:
philip@cs.ucr.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2010.2076841

PathFinder employs an algorithmic approach called negotiated
congestion, in which individual nets in the user circuit are
allowed to shared FPGA routing resources; as the algorithm
proceeds, the negotiation process ensures that at most one net
is routed along each resource. This process is often lengthy
and memory-intensive. In particular, the Routing Resource
Graph (RRG) of a commercial-grade FPGA can be very large,
due to the inordinate quantity of uniquely programmable
routing resources that are present in the architecture.
 One of the significant contributors to overall RRG size is
the presence of sparse intra-cluster routing crossbars within
the FPGA routing network [2-5]. In early FPGA generations,
intra-cluster routing crossbars were fully connected, which
allowed the RRG to implicitly represent them. When the
crossbars become sparse, the implicit representation is no
longer accurate, so the need to explicitly enumerate their
connectivity significantly enlarges the overall RRG size.
 This paper reduces the runtime and memory footprint of the
PathFinder FPGA routing algorithm for FPGAs with sparse
intra-cluster routing crossbar. Two heuristics are introduced
with different characteristics in terms of runtime, memory
usage, and quality of solution. SElective RRG Expansion
(SERRGE) employs a memory manager that compresses the
RRG and decompresses relevant portions of it as the router
executes, thereby eliminating the need to fully expand it prior
to routing. A second, heuristic, Partial Pre-Routing (PPR)
computes routes for each intra-cluster routing crossbar a-
priori, and then routes the rest of the circuit using the global
routing resources of the FPGA. Between the two, PPR
achieves shorter runtimes and consumes less memory, while
SERGGE tends to find legal routing solutions with lower
critical path delays, equating to higher clock frequencies.Our
results demonstrate that SERRGE and PPR address the routing
challenge imposed by FPGAs with sparse intra-cluster routing
crossbars, as they offer a clear and unequivocal improvement
over the state-of-the-art in FPGA routing algorithms.

This paper is an extension of the authors’ prior work, which
was published at FPL 2012 [6]. New contributions of this
article include: (1) descriptions of modifications to VPR’s
internal data structures used by the different routing
algorithms; and (2) more extensive experimentation and
analysis across a wider set of target FPGA architectures.

Fast and Memory-Efficient Routing Algorithms
for Field Programmable Gate Arrays with

Sparse Intra-cluster Routing Crossbars
Yehdhih Ould Mohammed Moctar, Guy G. F. Lemieux, Senior Member, IEEE and Philip Brisk,

Member, IEEE

T

Copyright (c) 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the
IEEE by sending an email to pubs-permissions@ieee.org.

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

II. PRELIMINARIES

A. FPGA Architecture
Our implementation, experimental results and analysis use

the Versatile Place and Route (VPR) 5.0 architectural
simulator, made publicly available by the University of
Toronto [7]. This section summarizes the VPR architecture.

The atomic unit of FPGA programmable logic is a K-input
LookUp Table (K-LUT), which can be configured to
implement any K-input, 1-output logic function. A Basic
Logic Element (BLE) is a K-LUT coupled with a bypassable
flip-flop, as shown in Fig. 1(a).

As shown in Fig. 1(b), BLEs are clustered in groups called
Configurable Logic Blocks (CLBs). Each CLB contains N
BLEs, along with an intra-cluster routing crossbar. In early
FPGAs, the intra-cluster routing crossbar was fully connected;
in more recent devices, it has become sparse. A Connection
Block (C Block) connects each CLB input pin to a subset of
the wires in the adjacent routing channel. The intra-cluster
routing crossbar connects the CLB input pins and local
feedbacks (one per BLE) to the BLE inputs.

Fig. 1(c) illustrates the FPGA floorplan. Switch Blocks (S
Blocks) are programmable intersections between horizontal
and vertical routing channels. The multiplexers, shown on the
right-hand side of Fig. 1(b), are implemented in the S Blocks,
which are shown (without detail) in Fig. 1(c). Fig. 1(b) depicts
inputs coming in from the left hand side of the CLB and
outputs leaving to the right; in actuality, inputs and outputs
may enter and exit from all four sides.

The user describes an FPGA using VPR’s architecture
configuration file. VPR reads in the architecture configuration
file and algorithmically generates the logic and routing
architecture of the FPGA [8]. This alleviates the need for the
user to specify every connection within the device. The most
important device parameters are:

K: the LUT size (i.e., a K-LUT);
N: the number of LUTs per CLB;
I: the number of CLB input pins;
W: the number of segments per routing channel; and
Fcin and Fcout: C Block connectivity parameters

Each C Block input multiplexer in Fig. 1(b) selects one of

W�Fcin wires, and each BLE drives W�Fcout segments in the
adjacent routing channels. Most FPGAs use single driver
routing [9], so the C Block output is a conceptual description
of the routing topology.

B. Routing Resource Graph (RRG)
The RRG represents the connectivity between physical

resources in an FPGA. Vertices in the RRG represent wires
and pins that are internal to the FPGA, and edges represent
switches that connect wires; switches may be unidirectional or
bidirectional. Fig. 2 provides an example of an RRG that
represents a small fragment occurring within a larger FPGA.

When performing routing, sources start at FPGA input pins
and BLE outputs, and sinks (targets) are FPGA output pins
and BLE inputs.

(a)

(b)

(c)

Fig. 1. The Basic Logic Element (BLE) of an FPGA (a); a Configurable
Logic Block (CLB) contains several BLEs with fast local interconnect
provided by the intra-cluster routing crossbar; the Connection Block (C
Block) inputs and outputs interface the CLB with the global routing network
(b); the floorplan of a general island-style FPGA (c).

 (a) (b)

Fig. 2. A small FPGA fragment (a) and its corresponding RRG (b) [8, Fig. 4].
Observe that switches between wires can be uni-directional or bi-directional,
depending on the architecture.

DFFK-LUT
K

Clock

BLE output

Configuration bit

W routing segments

Isolation
Buffers

W×Fcin:1 multiplexer

Intra-
Cluster
Routing

BLE
K

BLE
K

...

......

N local feedbacks

Each CLB has N BLEs (K-LUTs)

Configurable Logic Block (CLB)

I = Number of of CLB inputs

C Block
(inputs)

...

W routing segments

Each BLE connects to W×Fcout
segments in the routing channel

C Block (outputs)

...

I/O Pads

CLB

Switch Block
(S Block)

Connection Block
(C Block)

2"LUT&

in1& in2&

out&

wire1&
wire2&

wire3& wire4& source&

sink&

out&

wire4&

wire2&

in2&in1&

wire1&

wire3&

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

C. Problem Formulation
 FPGA routing is a technology-specific variation of the
disjoint path problem from graph theory, which is one of
Karp’s original NP-complete problems [10]. In a graph, two
paths are disjoint if they share no vertices or edges. Fig. 3
provides an example of disjoint and non-disjoint paths.

An instance of the disjoint path problem is a graph G(V, E),
and two sets of vertices: a set of sources S = {s1, s2, …, sk} and
a set of sinks T = {t1, t2, …, tk}. A legal solution is a set of
paths P = {p1, p2, …, pk} where pi is a path from si to ti in G,
such that the paths in P are disjoint. The NP-complete decision
problem is whether or not a set P of disjoint paths exists, given
G, S, and T; corresponding optimization problems may try to
minimize the total lengths of the paths in P, the length of the
longest path in P. In the routing problem for FPGAs, the graph
G is the RRG, and the set of sources corresponding sinks is
derived from the placement solution.

One important difference is that each path in the FPGA
represents a net in a digital circuit, where a source may fan-out
to drive multiple sinks. Each net has the form Ni = (si, Ti),
where si is the source and Ti = {ti

1, ti
2, …, ti

n} is the set of n
sinks driven by source si; thus, pi is actually a hyper-path
(tree) that connects si to the sinks in Ti.

A second important difference involves the equivalence of
sinks. Because LUTs are programmable logic functions, their
inputs are equivalent. Without loss of generality, if a 2-input
LUT is configured to perform a logic function f(s1, s2), then
there is an equivalent logic function f’(s2, s1) = f(s1, s2),
yielding a symmetric source/sink assignment, shown in Fig.
4(a). Explicitly listing either pair as the one possible legal
solution, as shown in Fig. 4(b), is overly restrictive. Thus, it is
necessary to introduce a single vertex t to represent a common
sink, as shown in Fig. 4(c). Therefore, any legal routing
solution must be node disjoint, except at the common sink.

The objective of an FPGA router is twofold: (1) find a legal
route, supposing the one exists; and (2) minimize the delay of
the critical path in the circuit, which may involve the
concatenation of several disjoint paths in the RRG. Many
aspects of this delay will be technology-specific, including the
logic delay through the BLEs on the path, delays relating to
fanout, delays through routing multiplexers, wire delays in the
routing network, etc. We employ the models VPR provides.

D. Sparse Intra-Cluster Routing Crossbars
VPR (versions 5.0 and before) model FPGAs with full

intra-cluster routing crossbars, as shown in Fig. 5(a).
Specifically, a full intra-cluster routing crossbar means that a
programming routing connection exists between every CLB
input and every BLE input within the CLB. This means that
the router only needs to algorithmically compute routes from
sources to CLB inputs, not BLE inputs; with a full crossbar
connecting CLB inputs to BLE inputs, it is trivial to complete
the route. Thus, the intra-cluster routing crossbar can be
omitted from the RRG; this has been standard in VPR since its
inception, although the assumption has since been lifted since
the release of VPR 6.0 [11]. Now, the intra-cluster routing
crossbar topology is part of the architecture configuration file.

 (a) (b) (c)

Fig. 3. A simple instance of the disjoint path problem: a graph G(V, E) with
sources S = {s1, s2} and sinks T = {t1, t2} (a); an illegal solution, i.e., two non-
disjoint paths that share a common vertex (b); a legal solution, i.e., two
disjoint paths that share no common vertices (c).

 (a) (b) (c)

Fig. 4. Due to the equivalence of LUT inputs, different source-sink pairs may
be legal solutions (a); however, enforcing specific source-sink pairs may be
overly restrictive (b); the solution is to create a common sink (t) that
represents all equivalent LUT inputs (c).

 (a) (b)

Fig. 5. CLBs with a fully connected (a) and sparsely connected (b) intra-
cluster routing crossbars.

When the intra-cluster routing crossbar becomes sparse, as

shown in Fig. 5(b), CLB inputs are no longer equivalent (in
the general case). In order for the route to complete a legal
disjoint path routing solution, it is necessary to explicitly
represent the intra-cluster routing crossbar in the RRG. This
enlarges the size of the RRG: the set of vertices must include
each CLB input and each BLE input (before, the CLB inputs
could be represented as a single sink, akin to Fig. 4(c), while
BLE inputs were omitted altogether); and the number of edges
that are added to the RRG depends on the population density
of the crossbar. Taken in aggregation across the entire FPGA,
the RRG size can increase significantly.

E. PathFinder Algorithm
This section summarizes the PathFinder FPGA routing

algorithm [1]. PathFinder is based on the paradigm of
Negotiated Congestion (NC), which computes illegal routing
solutions in which several nets may share a single wire (RRG
vertex). The negotiation process dynamically adjusts a cost
function, which, over time, pushes nets away from congested
wires, and yields a globally legal routing solution.

2"LUT&BLE&
in1&

in2&

2"LUT&BLE&
in3&

in4&

CLB&inputs&

Local&feedbacks&

2"LUT&BLE&
in1&

in2&

2"LUT&BLE&
in1&

in2&

CLB&inputs&

Local&feedbacks&

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Fig. 6 presents pseudocode for PathFinder. The outer
loop, the Global Router, iterates until a legal solution is found.
At the beginning of each iteration, it rips up each routing tree
and updates the vertex costs used by the algorithm. The
pseudocode assumes that a legal solution can be found. In
practice, the global router terminates after a fixed number of
iterations if a solution is not found. The Signal Router (lines 2-
26) is oblivious to congestion (i.e., several nets sharing the
same RRG vertex); a cost function (described below) is
computed for each RRG vertex and is dynamically updated to
dissuade the usage of congested vertices during routing. The
objective of the signal router is to find a route that minimizes
the aggregate cost of the RRG vertices that comprise the route.

The Signal Router routes one net a time; routing tree RTi
for net Ni is expanded in search of each sink ti

j∈Ti, one sink at
a time, and in-order. The routing tree RTi for net Ni, computed
during the previous iteration, is discarded, and a new route is
computed. Routes may be computed using a priority-driven
breadth-first search [1], similar to Lee’s maze expansion [12];
more efficient routes can be computed using an A* cost
function, which includes an additional term that directs the
search toward the target sink ti

j [1, 13-15].
The first search emanates from source si of net Ni to the

first sink, ti
1, resulting in a routing path. Subsequent searches

expand the routing path into a routing tree, RTi. Inductively,
let RTi connect si to sinks, {ti

1, ti
2, …, ti

j-1}. The next search will
find a path that connects some vertex in RTi to the jth sink, ti

j.
In its original description, PathFinder computes a route

from each source to each sink. The search initializes a priority
queue PQ to contain the vertices in RTi at zero cost.
Subsequently, PQ contains each vertex that (1) has at least one
neighbor in RTi, and (2) does not belong to RTi itself. VPR
(and Fig. 6) in contrast, maintains the wavefront and continues
expansion until all sinks have been discovered [15, Fig. 4.11].

The search works as follows: the lowest cost vertex v is
removed from PQ and added to RTi. The vertices adjacent to v
are expanded and inserted into PQ accordingly. This process
repeats until the current sink ti

j is found. Initially, PQ must
include an adjacent neighbor u of v that belongs to RTi; thus, v
and adjacent edge (u, v) are added together to RTi.

Cost Function: An important implementation detail is the
cost computed for each vertex when it is inserted into PQ.
Different PathFinder implementations use different cost
functions [1, 13-15], with different objectives and strategies.
Let v be the vertex, and u be a vertex adjacent to v that has
already been added to RTi; in other words, if the search selects
v for inclusion in RTi, it will include edge (u, v) as well. Let fu
denote the cost of the path from source i to node u, and cv
denote the cost of adding node v to the route. Then the cost of
routing from the source to v is

gu,v = fu + cv. (1)

To accommodate an A* cost function, let dv

j be an estimate of
the cost of completing the route from node v to sink ti

j. Then
the cost of the path from source i to sink ti

j along RRG edge
(u, v) is

fv = gu,v + dv
j. (2)

// Global Router
1. While at least two nets share a common routing resource
 // Signal Router
2. For each net Ni
3. Rip up routing tree RTi for net Ni = (si, Ti)
 and update affected pv values
4. Reinitialize RTi to contain only the source si
5. Initialize priority queue PQ
6. For each sink ti

j ∈ Ti
7. While ti

j ∉ RTi
8. Remove min. cost vertex u from PQ
9. If u ≠ ti

j
10. For each RRG edge (u, v)
11. If v!∉ RTi and v!∉ PQ
12. Insert v into PQ with cost fv = gu,v + dv

j
 and predecessor edge (u, v)
13. Else If v!∉ RTi and v!∈ PQ and fv > gu,v + dv

j
14. Change the cost of v in PQ to
 fv = gu,v + dv

j
15. Change the pred. edge of v in PQ to (u, v)
16. EndIf
 EndFor
17. EndIf
18. EndWhile
19. EndFor
20. For each sink ti

j ∈ Ti
21. For each node v in reverse path from ti

j to si
22. Update cost cv
23. Add v to RTi
24. EndFor
25. EndFor
26. EndFor
27. EndWhile

Fig. 6. Pseudocode for the PathFinder FPGA routing algorithm.

A breath-first search, i.e., a Lee-style maze expansion [12],
then corresponds to the case where dv

j = 0. Several
modifications have been proposed to assign relative weights to
the breadth-first and A* components of the cost function

 fv = gu,v + αdv

j, α ≥ 0; and [13] (3)
 fv = (1 - β)gu,v + βdv

j, 0 ≤ β ≤ 1 [14]. (4)

When adding a new vertex u into RTi, each neighbor v of
u is processed and added to PQ, unless v already belongs to
RTi. If is possible that a different neighbor w of v is also part
of RTi, so v may already be in the priority queue with some
cost function fv = gw,v + cv.

In principle, it is now possible to add v to RTi either via
edge (u, v) or (w, v). The best choice is the one that minimizes
fv. Therefore, the cost and predecessor of v in PQ are changed
from w to u if gu,v < gw,v, or, equivalently, if gu,v + cv is less
than the current value of fv.

Several different variants of the node cost function cv
have also been proposed:

cv = (bv + hv)pv, and [1] (5)

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

cv = bvhvpv, [15, Eq. (4.3)1] (6)

where bv is the base cost of v (typically its intrinsic delay), hv
is the history cost of v, which depends on the number of nets
that are routed through v during previous iterations, and pv is a
penalty function associated with the number of nets routed
through v in the current solution. PathFinder dynamically
updates hv and pv accordingly as routing proceeds. According
to Ref. [15], the advantage of Eq. (6) over Eq. (5) is that
multiplying the bv and hv terms, rather than adding them,
eliminates the need to normalize them; one possible drawback,
not mentioned by Ref. [15], is that bvhv > bv + hv for bv, hv > 2,
so there is a greater chance of arithmetic overflow if both
terms grow significantly as the algorithm iterates.

The difference between hv and pv is that hv permanently
increases the cost of using v to ensure that routes through other
vertices are attempted, while pv is based primarily on the
current routing solution. Recall that PathFinder routes nets
one-at-a-time. Suppose that nets N1 and N2 are being routed in
subscript order. The history cost could potentially dissuade
PathFinder from routing both N1 and N2 through v during the
current iteration, especially if v has a history of congestion.
Now, supposing that PathFinder routes N1 through v despite
the value hv, then increasing pv in response would dissuade
PathFinder from routing N2 through v, to increase the
likelihood of converging to a legal solution.

A generalized form of the cv terms that favors delay-
minimization for source-sink pairs whose delay is expected to
near-critical is

cv = Criti,jdelayv + (1 - Criti,j)(bv + hv)pv, or (7)
cv = Criti,jdelayv + (1 - Criti,j)bvhvpv, such that (8)

Criti,j = 1 – Slacki,j/Dmax, (9)

where delayv is the intrinsic delay of RRG node v, Slacki,j is
the estimated amount of delay that could be added to the
source-sink path from i to j before it becomes critical, and
Dmax is the estimated critical path delay of the placed-and-
routed circuits. In VPR’s timing-driven router [15, Section
4.4], the delayv term is based on the Elmore delay model,
which is derived from the existing routing tree RTi, including
the prospective path from i to v; additionally, the Criti,j term is
more complex; details are omitted to conserve space.
 The original PathFinder paper did not describe precisely
which functions are used for hv and pv [1]. In VPR, pv is reset
and recomputed every time a routing tree is ripped up and
rerouted, while hv is defined as a recurrence relation which
varies from iteration to iteration of the global router.

Let hv
k denote the history cost of vertex v during the kth

iteration of the global router; for the first iteration, hv
1 = 1.

The pv and hv
k terms are then defined as follows:

pv = 1 + occupancyvpfac, and [15, Eq. (4.4)2] (10)
hv

k
 = hv

k-1 + occupancyvhfac, k > 1, [15, Eq. (4.5)2] (11)

1 We ignore the BendCost(…) term from Eq. (4.3) in Ref. [15] because we are
performing combined global-detailed routing.
2 In combined global-detailed routing, which is the approach taken by VPR,
the capacity of each routing resource is 1, which allows us to eliminate the
capacity(…) term from Eqs. (4.4) and (4.5) in Ref. [15].

where occupancyv is the number of nets currently routed
through RRG node v, and pfac and hfac are scaling factors. Ref.
[15, Section 4.3.1] suggests that pfac should be at most 0.5 for
the first iteration, and then increased by a factor of 1.5x to 2x
for subsequent iterations, and that hfac should remain constant
and that any value between 0.2 and 1 should suffice.
 The enhancements to PathFinder introduced in this paper,
PPR and SERRGE, are compatible with any cost function
(breadth-first or A* search) described in previous literature.
We have implemented PPR and SERRGE in VPR 5.0, and all
of our experimental results reported in Section V use VPR’s
timing-driven router [15, Section 4.4].

F. RRG Terminology
We use the term global RRG to refer to the representation of

the FPGA’s global (inter-cluster) routing resources. The VPR
5.0 (and earlier) PathFinder implementation performs routing
on a global RRG, which does not explicitly represent any local
(intra-cluster crossbar) routing resources.

We use the term local RRG to refer to the representation of
the intra-cluster routing resources for one CLB; if the intra-
cluster routing crossbar contains just one layer of internal
multiplexers, the local RRG is bipartite: each vertex is either a
CLB input pin (including local feedback arcs) or a BLE input
pin; each edge connects a CLB input pin to a BLE input pin.

We use the term complete RRG to refer to the representation
of all FPGA routing resources (inter- and intra-cluster) in a
single graph: a complete RRG combines the global RRG with
a local RRG for each CLB in the FPGA.

III. BASELINE ROUTER
The Baseline router, described in this section, contains a

minimalist set of algorithmic modifications to extend the
PathFinder algorithm to support FPGAs with sparse intra-
cluster routing crossbars. The Baseline router suffers from an
enlarged memory footprint, which both SERRGE and PPR,
described in the subsequent sections, overcome.

A. Expanded RRG and CLB Input Pin Equivalence
The Baseline router performs routing on a complete RRG,

which explicitly represents both inter- and intra-cluster routing
resources, as discussed in Section II.F. PathFinder now routes
nets to BLE input pins, rather than CLB input pins, as shown
in Fig. 7, and delineates which BLE is the sink of each net.
The input pins of each BLE are logically equivalent.

If the intra-cluster routing crossbar is fully populated, then
all CLB input pins are logically equivalent and do not require
explicit representation in the CLB. A legal route is obtained by
routing all nets from their respective sources to any input pin
of a CLB that contains the sink; a full crossbar guarantees a
direct connection from each CLB input pin to the sink.

When the intra-cluster routing becomes sparse, CLB input
pins are not logically equivalent; whatever equivalency exists
depends on the crossbar topology. Let Sj contain the CLB
input pins that can be routed to at least one input of BLE j. In
general, each CLB input pin may belong to several such sets.

For example, consider Fig. 7: all CLB inputs, except for the
feedback emanating from the top BLE, connect to at least one
input of both LUTs; all of them belong to subsets S1 and S2;
the feedback output belongs to subset S1, but not S2.

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

 Fig. 7. In the Baseline router, the RRG is extended to include LUT inputs
(each of which forms a unique equivalence class) and the sparse intra-cluster
routing crossbar; this expansion is performed for every CLB in the FPGA.

B. Wire-to-pin Lookup Map
An important data structure that complements the RRG in

VPR is a wire-to-pin lookup map that identifies connections
between the channel wires and CLB input pins. In VPR 5.0
and earlier, the lookup map is a 4-dimensional array, as shown
in Fig. 8(a). Since the intra-cluster routing crossbar is fully
populated, there is no need to extend the map into the CLB.
 When the intra-cluster routing crossbar becomes sparse, the
router needs to know whether a wire in the routing channel has
a connection to each LUT input, which goes through both the
C-Block (as before) as well the intra-cluster routing crossbar.
To accommodate this information, two extra dimensions must
be added to the wire-to-pin lookup map, as shown in Fig. 8(b).

 Although needed for correctness, the memory overhead
of these two extra dimensions is significant. For example,
consider an FPGA with parameters K = 10, N=6, I = 33,
W=100, Fcin = 15%, and Fcout = 10%. In VPR 5.0, the intra-
cluster routing crossbar implicitly has population density p =
100%, and a matrix of dimensions 33x4x15 = 1980 is
allocated (assuming height=1). For a sparse crossbar with
population density of p = 50%, the matrix size expands to
1980x50x60 = 5,940,000. The increase in cost is significant,
since the wire-to-pin map is relatively sparse.

C. Memory Footprint
Empirically, we observed that the Baseline router has an

excessively large memory footprint. The two main causes are
the expanded wire-to-pin lookup map, as described in the
preceding subsection, and the Elmore delay trees computed by
VPR’s timing-driven router [15, Section 4.4], which are used
to accurately estimate the delay term used in the cost function
cv shown in Eqs. (8)/(9); VPR’s routability-driven router [13,
15 Section 4.3] does not use Elmore delay modeling and
sidesteps this overhead. Other relevant data structures (e.g.,
the expanded RRG, priority queue, traceback list, etc.) become
larger, but do not significantly impact the memory footprint.

VPR’s timing-driven router builds an Elmore delay tree for
each vertex as it is discovered during maze expansion. If the
signal router is presently routing net Ni, a tree is computed for
each vertex that is discovered during the search. The tree is
then saved when the vertex is inserted into the priority queue;
many of these vertices are never removed from the priority
queue during the search, and even fewer are added to the
routing tree. The contribution of Elmore delay trees to the
memory footprint varies from iteration to iteration.

int **** tracks_connected_to_ipin;
tracks_connected_to_ipin = alloc(num_pins, height, 4, Fc);
/* tracks_connected_to_ipin[num_pins][height][4][Fc] */

for(int i = 0; i < num_pins; i++)
 for(int j = 0; j < height; j++)
 for(int k = 0; k < 4; k++)
 for(int l = 0; l < Fc; l++)
 tracks_connected_to_ipin[i][j][k][l] = OPEN;

(a)

int ****** tracks_to_LUT_ipin;
tracks_to_LUT_ipin = alloc(K*N, density, num_pins, height, 4, Fc);
/* tracks_to_LUT_pin[K*N][density][num_pins][height][4][Fc] */

/* K*N is the number of BLE inputs pins (N K-LUTs per CLB)
 density is the number of CLB input pins that connect to each BLE
 input. If p is the population density of the crossbar, then
 density = p*I. (e.g., if I=40, p=75%, then density = 30).
*/
for (int i = 0; i < K*N)
 for (int j = 0; j < density; j++)
 for(int k = 0; k < num_pins; k++)
 for(int l = 0; l < height; l++)
 for(int m = 0; m < 4; m++)
 for(int n = 0; n < Fc; n++)
 tracks_to_LUT_pin[i][j][k][l][m][n] = OPEN;

(b)

Fig. 8. (a) Pseudocode to allocate and initialize the 4-dimensional wire-to-pin
lookup map array in VPR 5.0 (and earlier), under the assumption that the
intra-cluster routing crossbar was fully populated. (b) Pseudocode to allocate
and initialize a 6-dimensional wire-to-pin lookup map array, which has been
extended to support sparse intra-cluster routing crossbars, which do not
guarantee a connection between each CLB input pin and each LUT input. The
map entries that are set to USED (rather than OPEN), i.e., connections that
actually exist, are derived from the FPGA routing architecture.

The impact of the memory footprint on performance

depends on the target FPGA size, the placement solution, and
the amount of memory available on the system that computes
the route. The operating system’s memory management
policies and background applications and services also affect
the amount of memory made available to the router. To
manage this overhead, we set a limit on the memory size of all
of the routing resources; in practice, the choice of limit
depends on the system configuration and memory demands of
the operating system and other persistent applications. When a
PathFinder iteration exceeds the memory limit, the Baseline
Router treats that iteration as a failure: it deallocates all data
structures and propagates any history cost updates from the
failed iteration to the next iteration. The Baseline Router does
not otherwise modify PathFinder’s core algorithmic behavior.

IV. ROUTING WITH SELECTIVE RRG EXPANSION (SERRGE)

SElective RRG Expansion (SERRGE) refers to a collection

of modifications to the Baseline router, which further reduce
the memory footprint, yielding significantly faster runtimes.
SERRGE features a custom memory manager and garbage
collector that are specific to the RRG and other associated data
structures used by VPR’s implementation of PathFinder.

2"LUT&BLE&
in1&

in2&

2"LUT&BLE&
in1&

in2&

CLB&inputs&

Local&feedbacks&

Global&&
RRG&

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

A. Dynamic RRG
SERRGE begins with a global RRG G = (V, E) and one

copy of a local RRG GL = (VL, EL) as a representative of each
CLB. When routing each net Ni, PathFinder’s maze expansion
first finds a path in the global RRG from the source si to an
input pin j of a CLB that contains one of Ni’s sinks. SERRGE
then refers to the local RRG and identifies the CLB input pin
j’ in GL corresponding to j. Let vL(j’) and eL(j’) denote the sets
of neighboring vertices and incident edges in the fanout of j’
in GL. SERRGE expands the global RRG according to the
following two rules: (1) for each vertex v’∈vL(j’), add a new
vertex v to V; (2) for each edge e’ = (j’, v’)∈eL(j’), allocate a
new edge e = (j, v) to E.

With the newly expanded vertices and edges, PathFinder
can now complete the route to the sink in the BLE, which will
be one of the newly added vertices to V. The costs associated
with each newly allocated vertex and edge are initialized and
updated appropriately; nets routed during the current, and
subsequent, PathFinder iterations, may negotiate to use these
newly allocated routing resources.

This dynamic RRG is a supergraph of the global RRG and a
subgraph of the complete RRG, by construction. In the worst
case, the dynamic RRG will grow until it becomes the
complete RRG, but this is impractical. The intuition behind
this approach is that the Baseline Router preemptively
allocates portions of the RRG that are never expanded;
SERRGE, in contrast, dynamically allocate the portions of the
local RRGs that PathFinder explores, on-demand.

B. Garbage Collection
To limit the memory footprint of the dynamic RRG (and

other data structures that are proportional in size), SERRGE
includes a dynamic garbage collector. If the dynamic RRG
grows more than 30% larger than the global RRG, then the
garbage collector deletes all presently unused vertices and
edges that were dynamically allocated; this includes all
auxiliary data structures associated with each vertex and edge,
including Elmore delay trees (see Subsection E), traceback
information, etc. In other words, RRG growth is used as a
proxy for the growth of a much larger set of data structures
whose collective memory requirements greatly exceed that of
the RRG (i.e., just the vertices and edges) in isolation.

The garbage collector never deallocates vertices and edges
that belong to the global RRG. Within each CLB, the garbage
collector identifies candidates for deletion by comparing the
number of LUT input pins that have been reached thus far
with the number of nets that have sinks in each LUT. If the
number is equal, then all RRG resources that are incident on
the LUT inputs are deallocated; this ensures that routes
computed previously during this iteration can be recovered if
PathFinder successfully converges. Otherwise, the routing
resources are left in-place under the assumption that at least
one future net may use them when searching for its sink.

The garbage collector does not consider history costs when
deleting RRG vertices; all costs associated with a deleted
vertex are lost, and are reset to zero if the vertex is later re-
allocated. This may alter the way that PathFinder negotiates
under SERRGE, and could yield a different routing result
compared to the Baseline router (presuming that the latter does
not incur failed iterations due to exceeding the memory limit).

The lost history costs are restricted to vertices and edges
that represent the final link connecting a routed net to its sink.
Even if the history cost is deleted, a net that routes through a
re-allocated resource will increase the penalty cost, which
would serve to dissuade subsequent nets from using those
resources during the current PathFinder iteration.

C. Example
Fig. 9 illustrates the preceding discussion. PathFinder first

searches the global RRG (not shown) from source s to a CLB
that contains sink t. Upon reaching the CLB input pin, Fig.
9(a) shows that the portion of the RRG corresponding to the
CLB has not yet been allocated (gray). SERRGE consults the
local RRG to expand the dynamic RRG to fan out from the
CLB input pin, as shown in Fig. 9(b). In Fig. 9(c), the local
route completes using a subset of the newly allocated routing
resources. In Fig. 9(d), the garbage collector claims unused
routing resources that SERRGE expanded, but did not use.

D. Compressed Wire-to-pin Lookup Map
To further reduce the memory footprint of SERRGE, the

extended wire-to-pin lookup map (Section III.B) is converted
to a one-dimensional array that exclusively represents routing
resources that could possibly be used by the netlist being
routed. For example, connections to BLEs within a CLB that
are not used (as determined by the placer/packer) are omitted;
likewise, CLB I/O pins that interface exclusively with unused
BLEs, and CLB sides where all pins connect to unused BLEs,
are omitted from the lookup map as well. Fig. 10 provides
pseudocode for the map initialization process.

E. Elmore Delay Trees
VPR’s timing-driven router builds an Elmore delay tree for

each vertex discovered during maze expansion (Section III.C),
which is saved throughout the search. This increases the
router’s memory footprint and severely impacts performance.

 (a) (b)

 (c) (d)

Fig. 9. Illustration of the basic behavior of SERRGE; PathFinder maintains an
RRG corresponding to global FPGA routing resources, while selectively
expanding the RRG to include a subset of nets that may be used inside of an
intra-cluster routing crossbar. When routing a net, the first step is to compute
a route from the source s to an input of the CLB that contains the sink t. The
portion of the RRG corresponding to the CLB’s intra-cluster routing crossbar
is initially not allocated (a). The fanout of the CLB input found by the global
router is allocated and added to the RRG (b). In this example, the route is
completed to the target LUT (c). Later on, the garbage collector may reclaim
CLB routing resources that have been allocated, but were not used (d).

2"LUT&BLE&
in1&

in2&

2"LUT&BLE&
in1&

in2&

CLB&inputs&

Local&feedbacks&

t&

2"LUT&BLE&
in1&

in2&

2"LUT&BLE&
in1&

in2&

CLB&inputs&

Local&feedbacks&

t&

2"LUT&BLE&
in1&

in2&

2"LUT&BLE&
in1&

in2&

CLB&inputs&

Local&feedbacks&

t&

2"LUT&BLE&
in1&

in2&

2"LUT&BLE&
in1&

in2&

CLB&inputs&

Local&feedbacks&

t&

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

#define USED 1
#define OPEN 0

/* Values vary from CLB to CLB, based on BLE utilization */
int used_CLB_pins = …;
int used_sides = …;
int used_MUXes = …;
int used_LUT_ipins = …;

int N

= used_CLB_pins * used_sides * used_MUXes *used_LUT_ipins;

/* Initialize all map entries to OPEN */
int *tracks_to_LUT_pin = calloc(N, sizeof(int));

/* Mark the array entries that are used */
for (int i = 0; i < used_LUT_ipins; i++) {
 int I = (i * used_IIB_MUXes * used_sides * used_CLB_pins);

for (int j = 0; j < used_IIB_MUXes; j++) {
 int J = (j * used_sides * used_CLB_pins);

for (int k = 0; k < used_sides; k++) {
 int K = (k * used_CLB_pins);

for (int L = 0; L < used_CLB_pins; L++)
tracks_to_LUT_pin[I + J + K + L] = USED;

}}}

Fig. 10. Pseudocode to initialize 1-dimensional wire-to-pin map. Unlike the
maps in Fig. 8, the map entries that are marked as being USED (rather than
OPEN) depend both on the FPGA architecture and the packing/placement
result, and vary from CLB to CLB.

 VPR’s timing-driven router computes the Elmore delay tree
for each vertex v when v is discovered during the search. It
uses the tree to compute the term delayv that contributes to the
vertex’s cost term cv, as per Eqs. (7) and (8), which, in turn,
contributes to the cost function fv, in Eqs. (1)-(4), i.e., the
priority of v when it is inserted into the priority queue. The
Baseline Router saves the Elmore delay tree for v, so that
delayv can be updated quickly when necessary (Fig. 6, lines
13-16), and for quick access when and if the search removes v
from the priority queue during the search (i.e., v has the
highest priority among all enqueued vertices).

In contrast, SERRGE discards the Elmore delay tree after
delayv is computed, and re-computes the tree on-demand,
when necessary. The performance benefits accrued by the
reduced memory footprint outweigh the overhead of re-
computing the Elmore delay trees on-the-fly. When and if the
router completes successfully, all of the Elmore delay trees are
re-computed at the very end, in order to facilitate post-route
timing analysis based on the Elmore delay model.

F. Memory Limit
Similar to the Baseline router, SERRGE sets a limit on the

memory consumption per iteration, for all of the routing
resources. If this memory limit is exceeded, then the iteration
fails, and any adjusted history costs are propagated to the next
iteration. Due to the compressed wire-to-pin lookup map and
memory-efficient approach to computing the Elmore delays,
SERRGE exceeds the memory less frequently than the
Baseline router; despite these efficiencies, SERRGE cannot
guarantee that it will always stay within the memory limit,
especially when routing large netlists on large FPGAs.

V. ROUTING WITH PARTIAL PRE-ROUTING (PPR)

Partial Pre-Routing (PPR) starts by locally routing each
CLB (having at least one used BLE) by executing PathFinder
on the local RRG, as shown in Fig. 11(a). Fig. 11(b) illustrates
one of many possible local routing solutions. PPR is then
followed by a global routing step that completes each route
(i.e., from each source to an appropriate CLB input) using the
global RRG. By using one global and one local RRG, PPR
avoids the large memory footprint of the Baseline router, and
the complications associated with a dynamic RRG and
garbage collection required by SERRGE.

A. Algorithm
The local RRG for each CLB is bipartite. Local routing

involves a subset of the nets in the complete routing problem
for the entire FPGA, and involves computation of a partial
path for each net. To model the local routing problem, a super-
source s* is allocated and connected to each CLB input.

Let N* be the set of nets having at least one sink in the
CLB. For net Ni = (si, Ti)∈N*, let Ti’⊆ Ti, be the subset of
sinks in the CLB. If si is a source in the CLB, then net Ni’ =
(si, Ti’) is added to the local routing problem instance;
otherwise, net Ni’ = (s*, Ti’) is added to the local routing
problem instance. PathFinder then computes the local routes.

If |Ti’| = 1 for every net Ni’ in the local routing problem
instance, then it can be simplified to bipartite matching, which
can be solved optimally in polynomial-time using a network
flow algorithm. We did not implement this option because
PathFinder converged quickly enough in practice.

To solve the local routing problem for each CLB, PPR
computes all intra-cluster routes required for each net. A
global routing problem instance using the global RRG then
computes the inter-cluster routes, subject to the constraints
imposed by the local routing result. The constraints can be
expressed as CLB input equivalence classes. As shown in Fig.
11(b), the local routing solution computed two CLB inputs
that route to BLE t1. As a consequence, these two CLB inputs
become logically equivalent sinks in the global routing
problem. Specifically, they become the targets for the two
respective nets for which BLE t1 was the original target.
 In our experiments, PPR consumed far less memory than
either the Baseline router or SERRGE, and did not suffer from
memory-related performance issues. Consequently, we did not
include SERRGE’s memory optimizations for the wire-to-pin
lookup maps or Elmore delay trees in PPR; however, they
remain nonetheless fully compatible, in principle, with PPR.

 (a) (b)

Fig. 11. PPR starts by routing each intra-cluster routing crossbar individually,
finding a set of disjoint paths from the source to the inputs of all BLEs that are
used (a); CLB inputs that are connected to inputs of the same BLEs form
equivalence classes that act as new sinks for the global router (b).

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

B. Limitations
The pre-routing phase of PPR lacks a global view; thus,

PPR may yield sub-optimal global routes. Fig. 12 shows an
example. In Fig. 12(a), CLB1 needs to route to its neighbor,
CLB2, which has two input pins available, in1 (facing CLB1)
and in2 (on the opposite side). PathFinder (in its Baseline or
SERRGE configurations) could route to either in1 or in2, and,
absent congestion, could find a short route to in1 in Fig. 12(a).
In Fig. 12(b), PPR, being oblivious to global considerations,
may produce a partial route within CLB2 using in2. In this
case, the global routing phase has no choice other than to route
from CLB1 to in2 on the opposite side of CLB2. This example
demonstrates one way that PPR sacrifices optimality for
efficient runtime.

VI. EXPERIMENTAL SETUP AND METHODOLOGY

A. Experimental Platform
We implemented the routing algorithms in VPR 5.0 [7],

which was the most up-to-date version of VPR when we
started this project. VPR 5.0 did not support sparse-intra-
cluster routing crossbars. The Beta release of VPR 6.0 [11]
featured sparse intra-cluster routing, but did not include a
timing-driven router; that feature was added to the official
release of VPR 6.0 early in 2012, when the implementation
work outlined here was mostly complete. VPR 6.0’s router
shares many principle similarities with PPR (Section V).

We used a tool described by Lemieux and Lewis [2] to
generate routable sparse crossbars with a user-specified
population density. We used ABC [16] for logic synthesis and
technology mapping, T-VPack for packing, and VPR 5.0 for
placement and (timing-driven) routing.

All experiments reported here were performed on an Apple
iMac featuring a 2.66 GHz Intel Core i5 with 4GB of DDR3
memory, running OS X 10.9.2. Around 3GB of memory were
taken by the OS, leaving 1GB for user space programs.

B. Sparse Intra-cluster Routing Crossbar Modeling
We model the intra-cluster routing as a 2-dimensional

binary matrix B, with I+N columns and KN rows. Each
column corresponds to an input (a CLB input pin or a local
feedback from a BLE in the cluster), and each row
corresponds to a BLE input. B(i, j) = 1 if a signal can route
from input i to output j , and 0 otherwise. It is important to
note that B simply models the input-to-output connectivity of
the crossbar, but does not model its internal architecture.

 (a) (b)
Fig. 12. FPGA routing algorithms that take a global view can route to any one
of multiple CLB input pins, allowing for shorter overall routes (a); PPR pre-
computes the target CLB input pin for each net, without considering global
implications, potentially leading to longer routes (b).

As an example, we model a CLB with N=2 , K=2 (e.g., it
contains two 2-LUTs); the four BLE inputs are denoted b00,
b01, b10, and b11. The CLB has three input pins, I0, I1, and I2,
and two local feedbacks from the BLEs, O0 and O1.

An example of the matrix representation (for one input-
output connectivity topology)

In this example, there is a connection from CLB input pin I0

to LUT input pins b00 and b01 , but not b10 and b11; also, the
local feedbacks are not used. The tool that we used to generate
routable sparse crossbars [2] creates a matrix B such that each
row, column, and the entire matrix have a population density
approximately equal to a user-specified parameter p, i.e.:

 ! !, !! = ! ! + ! ± 1, (12)
 ! !, !! = !"# ± 1, and (13)
 ! !, !!,! = !" ! + ! ± 1. (14)

C. Experimental Parameters
We modeled an FPGA using an architecture configuration

file from the iFAR repository [17, 18] based on 65nm BPTM
technology. Table I lists the architectural parameters that we
used. We considered intra-cluster routing crossbars with
population densities p = 40%, 50%, and 75%.

VPR repeatedly routes each benchmark using a binary
search to identify the smallest channel width, Wmin, for which a
legal route can be found. VPR also allows the user to specify a
chosen channel width (W), and then tries to find a legal route,
but may fail. Different routing algorithms may yield different
Wmin values for a given FPGA architecture, benchmark, and
placement/packing result; for each, we ran Baseline, PPR, and
SERRGE and computed their respective Wmin values, the
largest of which we denote as Max(Wmin). We generate an
FPGA with channel with W = 1.4Max(Wmin). We then re-route
each benchmark using all three algorithms on this FPGA and
present those results. This prevents architectural differences
due to varying Wmin values from skewing the experiments.
 PathFinder terminates after a user-specified number of
iterations. We set the maximum number of iterations allowed
to 300; if PathFinder cannot find a successful route after 300
iterations, then it fails. Since FPGA routing is NP-complete,
PathFinder is not guaranteed to find a legal routing solution,
even if one exists.
 We report the size of the RRG, wire-to-pin lookup maps,
and Elmore delay trees for each routing algorithm. The wire-
to-pin lookup maps are allocated once and remain static
throughout routing; the Elmore delay trees grow and shrink
dynamically. The RRG is static under PPR and the Baseline
Router, and dynamic under SERRGE. We measure the
memory requirement of the static data structures once and
profile the size of the dynamic data structures after each
dynamic allocation that increases their size. We report the
peak memory consumption of these data structures for each
benchmark and architecture during the runtime of the routers.

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

TABLE I
FPGA ARCHITECTURE PARAMETERS

D. Timing and Area Models
Our timing model was similar to VPR 5.0. We added

models to account for delays inside of the CLBs. The timing
graph is generated such that every CLB or LUT input pin
becomes a timing node. Timing edges represent connectivity
between pins, and delays are marked on edges, not nodes.

The area model sums the aggregate areas of the number of
minimum-width transistors required to place and route a
circuit on in VPR; we did not modify VPR’s counting method.
We added extensions to account for the intra-cluster routing
crossbar area, which depends on its population density.

We employed the basic techniques that were used in VPR to
estimate the silicon area occupied by each multiplexer and
wire in the CLB. We assume that a minimum width transistor
takes 1 unit of area. A double-width transistor takes twice the
diffusion width, but the same spacing, so we assume it takes
1.5x the area of a minimum-width transistor.

Buffer sizes are calculated based on the drive strength
requirements and depend on the fan-out of the buffer. VPR
uses 4x the minimum size, which we have adopted for general
buffers. We sized the CLB input buffers using the approach
used by Lemieux et al. [3], where the drive strength is at least
7x and at most 25x the minimum size.

We model an FPGA with single-driver wires; each wire
segment begins with a multiplexer followed by a driver. We
attempt to judiciously select the multiplexer size depending on
the number of inputs. One-level multiplexers are used when
there are 4 or fewer inputs, and more levels are used when the
number of multiplexer inputs increases.

E. Benchmarks
We selected 10 of the largest IWLS benchmarks [17] for

use in our experiments; Table II summarizes them.
VPR generates a custom FPGA that is sized for each

benchmark. The second column of Table II lists the
dimensions of the FPGA generated for each benchmark (e.g.,
an MxM array of CLBs). The third and fourth columns list the
number of nets and CLBs used in each benchmark for an
FPGA architecture using the parameters listed in Table I.

Some of the IWLS benchmarks are I/O bound, rather than
logic bound. In these cases, the number of I/Os per physical
pin on the perimeter of the FPGA dictates the dimensions.
When this occurs, VPR generates an FPGA with far more
LUTs/CLBs than are necessary to realize each benchmark, and
LUT/CLB utilization is relatively low as a result.

For each benchmark and FPGA, we generate 10 placements
by varying the random number seed used in VPR’s simulated
annealing-based placer. For each placement, we then route the
benchmark using PPR, SERRGE, and the Baseline router. For
each data point (benchmark/FPGA/router), the results reported
are the averages over the ten placements.

TABLE II
BENCHMARK OVERVIEW

VII. EXPERIMENTAL RESULTS

A. Wmin and Routability
Fig. 13 reports the Wmin values obtained by routing each

benchmark/FPGA combination using PPR, SERRGE, and the
Baseline Router. Surprisingly, PPR yields the lowest overall
Wmin values across all benchmark/architectures, with the
exception of des_area for the FPGA with intra-cluster routing
crossbar population density p = 75%.

These results indicate that PPR is more likely than
SERRGE or the Baseline Router to find a legal routing result.
When considering Wmin as a proxy for routability, it is
important to note that our experiments use VPR’s timing-
driven router; experiments have been published which
demonstrate that VPR’s routability-driven router, which does
not employ the Elmore delay model, tends to yield lower Wmin
values than the timing-driven router [15, Table 4.8].

Fig. 13. Wmin for the ten largest IWLS benchmarks (Table II) placed-and-
routed on an FPGA with parameters specified in Table I. Results are reported
for devices with intra-cluster routing crossbar population densities of p = 75%
(top) 50% (middle) 40% (bottom).

K" N" I" Fcin" Fcout" p"

6" 10" 33" 0.15" 0.10" 40%,"""50%,""75%" Benchmark"
Array"
size" Nets" CLBs"

Input"
Pins"

Output"
Pins"

ac_ctrl"
aes_core"
des_area"
mem_ctrl"
pci_bridge32"
spi"
systemcaes"
systemcdes"
usb_funct"
wb_conmax"

48x48"
30x30"
15x15"
26x26"
74x74"
12x12"
19x19"
11x11"
40x40"
43x43"

5035"
6093"
1496"
4354"
7803"
900"
2416"
999"
5156"
9294"

382"
857"
695"
589"
597"
129"
337"
107"
517"
1781"

2267"
789"
368"
1204"
3527"
274"
930"
314"
1894"
1900"

2263"
668"
72"
1232"
3539"
277"
819"
258"
1891"
2189"

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

B. Critical Path Delay
Fig. 14 reports the critical path delays obtained by routing

each benchmark/FPGA combination using PPR, SERRGE,
and the Baseline Router. PPR is competitive with SERRGE
and the Baseline Router in many cases; the biggest disparity in
critical path delay is 3.43 MHz (143.88 MHz to 140.45 MHz)
for the pci_bridge32 benchmark for the FPGA with intra-
cluster routing crossbar population density p = 40%.

PPR’s pre-routing phase does constrain the search space for
negotiation, which accounts for the cases where SERRGE and
the Baseline Router achieve lower critical path delays.
SERRGE and the Baseline Router permit PathFinder to
negotiate for routes at the CLB inputs and within the intra-
cluster routing crossbar, facilitating discovery of faster routes.

C. Runtime and the Number of PathFinder Iterations
Fig. 15 reports the runtimes of PPR, SERRGE, and the

Baseline Router for all benchmark/FPGA combinations. PPR
is uniformly the fastest, followed by SERRGE, and Baseline.
All three routing algorithms tend toward faster convergence at
lower intra-cluster routing crossbar population densities.

Fig. 16 reports the number of PathFinder iterations required
for PPR, SERRGE, and the Baseline Router to converge for
each benchmark/FPGA combination. With one exception
(wb_conmax for an FPGA with intra-cluster routing crossbar
population density p = 50%), PPR requires the fewest
iterations, followed by SERRGE, and then the Baseline
Router. Reducing the intra-cluster routing crossbar population
density marginally reduces the number of iterations.

Fig. 14. The critical path delay (ns) for the ten largest IWLS 2005
benchmarks (Table II) placed-and-routed on an FPGA with parameters
specified in Table I. Results are reported for devices with intra-cluster routing
crossbar population densities of p = 75% (top) 50% (middle) 40% (bottom).

Fig. 15. Runtime (seconds) for the ten largest IWLS benchmarks (Table II)
placed-and-routed on an FPGA with parameters specified in Table I. Results
are reported for devices with intra-cluster routing crossbar population
densities of p = 75% (top) 50% (middle) 40% (bottom).

Fig. 16. The number of PathFinder iterations for the ten largest IWLS
benchmarks (Table II) placed-and-routed on an FPGA with parameters
specified in Table I. Results are reported for devices with intra-cluster routing
crossbar population densities of p = 75% (top) 50% (middle) 40% (bottom).

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

PPR requires far fewer iterations to converge than SERRGE
or the Baseline Router. This is due primarily to two factors:
(1) PPR’s restricted search space; and (2) PPR’s more efficient
usage of memory, which limits the number of iterations that
fail due to exceeding the memory limit. These factors,
correlate directly to the reduced runtimes reported in Fig. 16.

D. Memory Consumption
Fig. 17 reports the peak memory consumption of PPR,

SERRGE, and the Baseline Router for each benchmark/FPGA
combination. The Elmore delay trees, which are specific to
VPR’s timing-driven router [15, Section 4.4], consume more
than twice as much memory than the wire-to-pin lookup maps
and RRG combined, and the wire-to-pin lookup maps
consume significantly more memory than the RRG.

SERRGE offers a marginal improvement in peak memory
consumption compared to the Baseline Router, due primarily
to its compressed wire-to-pin lookup map and re-computation,
rather than storage, of the Elmore delay trees. PPR consumes
far less memory than either SERRGE or the Baseline Router,
because the global RRG, which is smaller than SERRGE’s
dynamic RRG at peak memory consumption and the Baseline
Router’s complete RRG, has fewer vertices and edges, and
thus stores fewer Elmore delay trees. Also, PPR’s wire-to-pin
lookup maps stop at the CLB inputs, while SERRGE and the
Baseline Router must route all the way to BLE input pins. As
shown in Fig. 17, memory savings for the largest benchmarks
can be as high as hundreds of MBs (e.g., for pci_bridge32).

VIII. RELATED WORK

A. Sparse Intra-cluster Routing Crossbars
Lemieux et al. presented an algorithm to generate and

evaluate routable sparse crossbars [2], and later proposed their
usage for FPGA intra-cluster routing; to improve routability
they added spare CLB input pins [3]. Later work by Feng and
Kaptanoglu [4] used entropy counting to design intra-cluster
routing crossbars that offer greater routability; however, there
is concern that CLB inputs and local feedbacks cannot reach
fast inputs for LUTs with non-uniform delay [20].

Ye [5] showed how the equivalence of LUT inputs can be
leveraged to reduce the population density of the intra-cluster
routing crossbar without compromising routability; however,
it is unclear if this approach is compatible with more advanced
logic block features such as fracturable LUTs and carry
chains, where LUT inputs can no longer be treated as logically
equivalent. Chin and Wilton [21] extended Ye’s work to
investigate high-capacity hierarchical CLBs with multi-layer
sparse crossbar interconnects, and showed that this approach
reduced the placement and routing problem sizes significantly,
thereby yielding faster and more robust CAD algorithms.
 In terms of commercial FPGAs, Xilinx employs a C-block
(Fig. 1(b)) without an intra-cluster routing crossbar, while
Altera and Microsemi (formerly Actel) employ an intra-cluster
routing crossbar in conjunction with a C-block. We presume
that Xilinx’s C-block is much denser than Altera’s or
Microsemi’s, although no formal comparative study has been
published, to the best of our knowledge.

Fig. 17. The peak memory consumption of the ten largest IWLS benchmarks (Table II) placed-and-routed on an FPGA with parameters specified in
Table I. Results are reported for devices with intra-cluster routing crossbar population densities of p = 75% (top) 50% (middle) 40% (bottom).

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

Altera has disclosed that their Stratix-series devices employ
a sparse intra-cluster routing crossbar [22]; although no details
regarding the topology were presented. Microsemi disclosed
that their FPGAs employ a 3-layer Clos network, where the
third layer is subsumed by LUTs [20]. PPR and SERRGE are
compatible with any sparse intra-cluster routing crossbar
topology and population density, and do not rely on presumed
logical equivalence between LUT inputs. Our work has
evaluated PPR and SERRGE using sparse crossbars generated
by the tool designed and described by Lemieux et al. [2].

B. FPGA Routing Algorithms
Since its introduction in 1995, PathFinder [1] has become

the most widely used FPGA routing algorithm; VPR’s
routability-driven and timing-driven routers are both based on
PathFinder [13, 15]. VPR 6.0 introduced sparse intra-cluster
routing crossbars; VPR uses an approach similar to PPR to
perform routing. The main difference with our work is that
VPR integrates the partial pre-routing phase into the packer
[11, 23], as a legality check. In other words, any packing
solution that cannot be routed locally within a CLB is
disallowed. The router (which follows packing and placement)
is similar to PPR’s global router, described in Section V of
this paper.

If a global iteration of PathFinder fails to find a legal
solution, all nets are ripped up and rerouted, which partially
eliminates the dependence on net ordering when routing.
Mulpuri and Hauck [24] modified PathFinder to exclusively
rip up nets routed through oversubscribed resources. Although
this modification speeds up PathFinder’s convergence time
significantly, a non-negligible increase in critical path delay
was observed for all benchmarks; for this reason, we do not
consider this implementation choice in our experiments.

Gort and Anderson [25] reduce contention for CLB output
pins by forcing a multi-sink net to use the same output pin for
all sinks during wavefront expansion while exclusively ripping
up and re-routing nets that route through oversubscribed
resources, similar to Mulpuri and Hauck; they reported a 3x
speedup in router runtime coupled with a 2% increase in
critical path delay and wirelength. Subsequently, Gort and
Anderson [26] observed that PathFinder spends up to 40% of
its runtime resolving congestion among nets that have been
routed legally. They allow PathFinder to converge when the
routing solution is almost legal on a coarsened RRG, and then
legalize the result using a SAT solver. In principle, this
approach is also compatible with either PPR or SERRGE.

Chin and Wilton [27] developed an RRG compression
scheme that takes advantage of the regular tiled nature of an
FPGA. An RRG is instantiated for each tile, and inter-tile
connections are represented using “wrap-around” edges.
Different tile types are instantiated for programmable logic,
embedded blocks, and I/Os. Extensions are presented to
handle long wires and sparse intra-cluster routing crossbars,
including the heterogeneous depopulation schemes that vary
from tile-to-tile. Separate storage is maintained for the costs
associated with each edge in the fully expanded RRG; this
information is not compressed. The additional steps added to
the router to enable the compressed RRG representation
increase the router’s runtime by a factor of 2.16x, on average.
In contrast, PPR and SERRGE reduce the runtime of the

router, although the reductions in RRG size reported here are
far more modest in comparison to Chin and Wilton’s scheme.

So [28] introduced a delay budgeting scheme to reduce the
critical path delay of a circuit synthesized on an FPGA; since
this is a post-processing step, it could improve the quality of
results for all data points reported in Fig. 10 of this paper;
however, it significantly increases the router runtime by a
factor of at least 7x and also increases the memory footprint.

Rubin and DeHon [29] observed that small perturbations in
initial conditions (e.g., the order in which nets are routed;
variations in intrinsic delays associated with routing resources)
yield significant variations in the critical path delays reported
by VPR’s implementation of PathFinder. They introduced a
timing constraint and an increased search space that uses
additional iterations after meeting routability to meet the
timing constraint. Furthermore, the timing-constrained router
is placed inside a binary search to find the lowest effective
timing constraint. In principle, this approach could be used in
conjunction with either PPR or SERRGE, as long as the
runtime overhead of repeatedly routing the circuit is tolerable.

IX. CONCLUSION
PPR and SERRGE reduce the runtime and memory

footprint of FPGA routing based on the PathFinder negotiated
congestion algorithm [1], as implemented in VPR [13, 15].
The Baseline Router, which is an extension of VPR’s timing-
driven router, was extended with larger data structures that
represent intra-cluster routing crossbars. SERRGE extends the
Baseline Router with compressed data structures and online
garbage collection, while PPR divides routing into local and
global phases, requiring less memory and attaining rapid
convergence, but at the cost of a greatly reduced search space.
PPR offers the best overall routability (Wmin values), fastest
running times, and smallest memory footprint, while SERRGE
tends to find routing solutions with the lowest overall critical
path delays. If router runtime is a premium, then PPR should
be used; if critical path delay is more important, then
SERRGE is preferable; in the vast majority of our
experiments, PPR and/or SERRGE outperformed the Baseline
router for all metrics of interest, as reported in Figs. 12-16.

REFERENCES
[1] L. McMurchie and C. Ebeling, “PathFinder: A negotiation-based

performance-driven router for FPGAs,” in Proceedings of the 3rd
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA), Monterey, CA, Feb. 1995, pp. 111-117.

[2] G. G. Lemieux, P. Leventis, and D. M. Lewis, “Generating highly-
routable sparse crossbars for PLDs,” in Proceedings of the 8th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA), Monterey, CA, Feb. 2000, pp. 155-164.

[3] G. G. Lemieux and D. M. Lewis, “Using sparse crossbars within LUT,”
in Proceedings of the 9th ACM/SIGDA International Symposium on
Field Programmable Gate Arrays (FPGA), Monterey, CA, Feb. 2001,
pp. 59-68.

[4] W. Feng and S. Kaptanoglu, “Designing efficient input interconnect
blocks for LUT clusters using counting and entropy,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS), vol.
1, no. 1, article no. 6, March, 2008.

[5] A. Ye, “Using the minimum set of input combinations to minimize the
area of local routing networks in logic clusters containing logically
equivalent I/Os in FPGAs,” IEEE Transactions on Very Large Scale
Integration Systems (TVLSI), vol. 18, no. 1, pp. 95-107, January 2010.

0278-0070 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCAD.2015.2445739, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

[6] Y. O. M. Moctar, G. G. F. Lemieux, and P. Brisk, “Routing algorithms
for FPGAs with sparse intra-cluster routing crossbars,” in Proceedings
of the 22nd International Conference on Field Programmable Logic and
Applications (FPL), Oslo, Norway, Aug. 2012, pp. 91-98.

[7] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, K. B.
Kent, and J. Rose, “VPR 5.0: FPGA CAD and architecture exploration
tools with single-driver routing, heterogeneity, and process scaling,”
ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 4, no. 4, article no. 32, 2011.

[8] V. Betz and J. Rose, “Automatic generation of FPGA routing
architectures from high-level descriptions,” in Proceedings of the 8th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA), Monterey, CA, Feb. 2000, pp. 175-184.

[9] G. Lemieux, E. Lee, M. Tom, and A. J. Yu, “Directional and single-
driver wires in FPGA interconnect,” in Proceedings of the 3rd
International Conference on Field Programmable Technology (FPT),
Brisbane, Australia, December, 2004, pp. 41-48.

[10] R. M. Karp, “Reducibility among combinatorial problems,” in
Proceedings of the Symposium on the Complexity of Computer
Computations, Yorktown Heights, New York, March, 1972, pp. 85-103.

[11] J. Luu, J. H. Anderson, and J. Rose, “Architecture description and
packing for logic blocks with hierarchy, modes, and complex
interconnect,” in Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA), Monterey,
CA, Feb. 2011, pp. 227-236.

[12] C. Y. Lee, “An algorithm for path connections and its applications,” IRE
Transactions on Electronic Computers, vol. EC-10, no. 2, pp. 346-365,
February, 1961.

[13] J. S. Swartz, V. Betz, and J. Rose, “A fast routability-driven router for
FPGAs,” in Proceedings of the 6th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA), Monterey,
CA, Feb. 1998, pp. 140-149.

[14] R. Tessier, “Negotiated A* routing for FPGAs,” in Proceedings of the
5th Canadian Workshop on Field Programmable Devices (FPD),
Montreal, Quebec, Canada, June, 1998.

[15] V. Betz, S. Marquardt, and J. Rose, Architecture and CAD for Deep
Submicron FPGAs. Norwell, MA, USA: Kluwer Academic Publishers
(now Springer), 1999.

[16] Berkeley Logic Synthesis and Verification Group, “ABC: A system for
sequential synthesis and verification.” [Online]. Available:
http://www.eecs.berkeley.edu/~alanmi/abc/

[17] I. Kuon and J. Rose, “Area and delay trade-offs in the circuit and
architecture design of FPGAs,” in Proceedings of the 16th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA),
Monterey, CA, Feb. 2008, pp. 149-158.

[18] I. Kuon and J. Rose, “Automated transistor sizing for FPGA architecture
exploration,” in Proceedings of the ACM/IEEE Design Automation
Conference (DAC), Anaheim, CA, June 2008, pp. 792-795.

[19] IWLS 2005 Benchmarks. [Online]. Available:
http://iwls.org/iwls2005/benchmarks.html

[20] J. W. Greene, S. Kaptanoglu, W. Feng, V. Hecht, J. Landry, F. Li, A.
Krouglyanskiy, M. Morosan, and V. Pavzner, “A 65nm flash-based
FPGA fabric optimized for low cost and power,” in Proceedings of the
19th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays (FPGA), Monterey, CA, Feb. 2011, pp. 87-96.

[21] S. Y. L. Chin and S. J. E. Wilton, “Towards scalable FPGA CAD
through architecture,” in Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA),
Monterey, CA, Feb. 2011, pp. 143-152.

[22] D. M. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S.
Marquardt, C. McClintock, B. Pedersen, G. Powell, S. Reddy, C.
Wysocki, R. Cliff, and J. Rose, “The StratixTM routing and logic
architecture,” in Proceedings of the 11th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA), Monterey,
CA, Feb. 2003, pp. 12-20.

[23] J. Luu, J. Rose, and J. H. Anderson, “Towards interconnect-adaptive
packing for FPGAs,” in Proceedings of the 22nd ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA),
Monterey, CA, Feb. 2014, pp. 21-30.

[24] C. Mulpuri and S. Hauck, “Runtime and quality tradeoffs in FPGA
placement and routing,” in Proceedings of the 9th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA),
Monterey, CA, Feb. 2001, pp. 29-36.

[25] M. Gort and J. H. Anderson, “Accelerating FPGA routing through
parallelization and engineering enhancements,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 31, no. 1, pp. 61-74, Jan. 2012.

[26] M. Gort, and J. H. Anderson, “Combined architecture/algorithm
approach to fast FPGA routing,” IEEE Transactions on Very Large
Scale Integration Systems (TVLSI), vol. 21, no. 6, pp. 1067-1079, June,
2013.

[27] S. Y. L. Chin and S. J. E. Wilton, “Static and dynamic memory footprint
reduction for FPGA routing algorithms,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 1, no. 4, article
no. 18, Jan. 2009.

[28] K. So, “Enforcing long-path timing closure for FPGA routing with path
searchers on clamped lexicographic spirals,” in Proceedings of the 16th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA), Monterey, CA, Feb. 2008, pp. 24-34.

[29] R. Rubin and A. DeHon, “Timing-driven pathfinder pathology and
remediation: quantifying and reducing delay noise in VPR-pathfinder,”
in Proceedings of the 19th ACM/SIGDA International Symposium on
Field Programmable Gate Arrays (FPGA), Monterey, CA, Feb. 2011,
pp. 173-176.

Yehdhih Ould Mohamed Moctar received the Maitrise
(BSc equivalent) in Computer Engineering with a
concentration in Mathematics from l’Institut Superieur
Scientifique, Mauritanie, in 1996, a Graduate Certificate
in Learning Algorithms and Intelligent Systems from
l’Université de Montréal, Montreal, in 1999, and the M.S.
and Ph.D. degrees, both in computer science, from the
University of California, Riverside in 2012 and 2014
respectively.

Since July 2014, he has been with the Electronic Design Automation Team
at IBM Systems and Technology Group. His current research interests include
the optimization and acceleration of electronic design automation (EDA) tools
for IBM Power and Z microprocessors, and he is actively investigation
algorithms to accelerate scheduling, partitioning, placement, and routing.

Dr. Moctar received a U.S. Department of Defense SMART fellowship,
which funded his Ph.D. studies.

Guy G. F. Lemieux (S’91–M’04–SM’08) received the
B.A.Sc., M.A.Sc., and Ph.D. degrees from the University
of Toronto, Toronto, ON, Canada.

In 2003, he joined the Department of Electrical and
Computer Engineering, University of British Co- lumbia,
Vancouver, BC, Canada, where he is now an Associate
Professor. He is co-author of the book De- sign of
Interconnection Networks for Programmable Logic
(Kluwer, 2004). His research interests include FPGA

architectures, computer-aided design algo- rithms, VLSI and SoC circuit
design, and parallel computing.

Dr. Lemieux was a recipient of the Best Paper Award at the 2004 IEEE
International Conference on Field-Programmable Technolog

Philip Brisk received the B.S., M.S., and Ph.D. degrees,
all in computer science, from UCLA in 2002, 2003, and
2006, respectively. From 2006-2009 he was a
postdoctoral scholar in the Processor Architecture
laboratory in the School of Computer and
Communication Sciences at the École Polytechnique
Fédérale de Lausanne, (EPFL), in Lausanne,
Switzerland. He is now an assistant professor in the
Department of Computer Science and Engineering in the
Bourns College of Engineering at the University of
California, Riverside.

His research interests include FPGAs, compilers, and design automation
and architecture for application-specific processors. He was a recipient of the
Best Paper Award at CASES, 2007 and FPL 2009. Dr. Brisk is or has been a
member of the program committees of several international conferences and
workshops, including DAC, ASPDAC, DATE, VLSI-SoC, FPL, FPT, and
others. He has been the general (co-)chair of IEEE SIES 2009, IEEE SASP
2010, and IWLS 2011, and participated in the organizing committee of many
other conferences and symposia as well.

