
Accelerator Compiler for the VENICE Vector Processor

by

Zhiduo Liu

B.A.Sc, Harbin Institute of Technology, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

September 2012

© Zhiduo Liu, 2012

Abstract

This thesis describes the compiler design for VENICE, a new soft vector processor

(SVP). The compiler is a new back-end target for the Microsoft Accelerator, a high-

level data parallel library in C/C++ and C#. This allows automatic compilation

from high-level programs into VENICE assembly code, thus avoiding the process

of writing assembly code used by previous SVPs. Experimental results show the

compiler can generate scalable parallel code with execution times that are compa-

rable to human-optimized VENICE assembly code. On data-parallel applications,

VENICE at 100MHz on an Altera DE3 platform runs at speeds comparable to one

core of a 2.53GHz Intel Xeon E5540 processor, beating it in performance on four

of six benchmarks by up to 3.2×. The compiler also delivers near-linear scaling

performance on five of six benchmarks, which exceed scalability of the Multi-core

target of Accelerator.

ii

Preface

[1] Zhiduo Liu, Aaron Severance, Satnam Singh and Guy G. F. Lemieux,
“Accelerator Compiler for the VENICE Vector Processor," in Proceedings

of the 20th ACM/SIGDA International Symposium on Field Programmable

Gate Arrays. ACM, 2012, pp. 229 - 232.

Portions of chapter 3 and 5 have been published at FPGA 2012 [1].

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vii

List of Figures . viii

Glossary . x

Acknowledgments . xii

1 Introduction . 1
1.1 Motivation and Research Goals 1

1.2 Contributions . 5
1.3 Approach . 7

1.4 Thesis Organization . 9

2 Background . 10
2.1 Vector Processors . 10

2.1.1 Soft Vector Processors 11

2.2 VENICE Architecture . 12
2.2.1 Native VENICE Programming Interface 15

2.3 Vectorizing Compilers . 21
2.4 Microsoft Accelerator System 23

iv

2.4.1 Accelerator Language Fundamentals 24

2.4.2 The Accelerator Front-end 26
2.5 The Sethi-Ullman Algorithm and Appel’s Generalization 30

3 Compiler Implementation . 32
3.1 Compiler Flow . 33

3.1.1 Compiler Overview . 33
3.1.2 Accelerator Front-end 35

3.1.3 Target-specific Optimizations 37
3.1.4 Convert to LIR . 43

3.1.5 Code Generation . 44
3.2 Implementation Limitations . 49

3.3 Summary . 50

4 Performance Enhancement . 52
4.1 Dynamic Partitioning . 52
4.2 Combining Operations . 60

4.3 Summary . 62

5 Experimental Results . 64
5.1 Benchmarks . 64
5.2 Experimental Strategy . 66

5.3 Results . 69
5.3.1 Execution Time . 69

5.3.2 Scalability . 73
5.3.3 Compile Time . 77

5.4 Summary . 78

6 Future Work . 79
6.1 Limitations . 79

6.1.1 Accelerator . 79

6.1.2 VENICE . 82
6.1.3 Compiler Design . 82

6.1.4 Evaluation Methodology 85

v

6.2 Ideas . 86

6.2.1 JIT mode . 86
6.2.2 Instruction Scheduling 87

6.3 Summary . 87

7 Conclusions . 88

Bibliography . 91

vi

List of Tables

Table 4.1 Performance before and after combining operations for motion

estimation . 61

Table 5.1 Benchmark descriptions . 65

Table 5.2 Speedups of compiler generated over hand-written code 70
Table 5.3 VENICE and single-CPU runtimes (ms) and speedups of

VENICE vs. single CPU . 72
Table 5.4 Benchmarks’ natural data types 73

Table 5.5 Speedups for benchmarks operating on byte vs. word 73
Table 5.6 Speedups for benchmarks operating on half word vs. word . . 73

Table 5.7 Input sizes used for Multi-core and VENICE execution 75
Table 5.8 VENICE target compile time (ms) 77

vii

List of Figures

Figure 1.1 Design goal for VENICE compiler 4

Figure 2.1 VENICE architecture (gray vertical bars are pipeline registers) 13
Figure 2.2 Native VENICE API to add 3 vectors 16

Figure 2.3 Extracting sub-matrix from a 2D array 18
Figure 2.4 VENICE execution flow . 20

Figure 2.5 VENICE pipeline structure 21
Figure 2.6 Accelerator code to add 3 vectors 24

Figure 2.7 Lowering memory transform operations 29
Figure 2.8 From IR to code generation 29

Figure 2.9 Sethi-Ullman labeling algorithm 31

Figure 3.1 Development flows with native VENICE and Accelerator . . . 33
Figure 3.2 Accelerator compiler flow 34

Figure 3.3 Accelerator front-end flow 35
Figure 3.4 Example on conversion from user-written code to IR graphs . 36

Figure 3.5 Target-specific optimizations 38
Figure 3.6 Establish evaluation order 39

Figure 3.7 Reference-counting process 41
Figure 3.8 Convert IR to LIR . 43

Figure 3.9 Code generation flow . 44
Figure 3.10 Memory transform examples 45

Figure 3.11 Data initialization for multiple memory transforms combined
together . 46

Figure 3.12 Example of generating code from LIR 49

viii

Figure 4.1 VENICE execution flow for memory-bound applications . . . 55

Figure 4.2 Impact of vector length selection for input size of 8192 (words)
with different instruction counts 57

Figure 4.3 Impact of vector length selection for instruction count of 16
with different input data sizes 58

Figure 4.4 Vector length look-up table for V16 59
Figure 4.5 Complete VENICE compiler flow 63

Figure 5.1 Speedups over Nios II implementation for compiler generated

code and hand-written code 70
Figure 5.2 Hand-written compare and swap 71

Figure 5.3 Compiler generated compare and swap 71
Figure 5.4 Scaling performance of the Accelerator multi-core target on

AMD Opteron . 74
Figure 5.5 Scaling performance of the Accelerator multi-core target on

Intel Xeon . 75
Figure 5.6 Scaling performance of the Accelerator VENICE target 76

Figure 6.1 Accelerator compiler flow 83

ix

Glossary

ALU Arithmetic Logic Unit . 3

ARBB Array Building Blocks . 3

DAG Directed Acyclic Graph . 26

IR Intermediate Representation . 8

LIR Linear Intermediate Representation . 28

CSE Common Subexpression Elimination . 27

PA Parallel Array . 25

SVP Soft Vector Processor . 3

GPU Graphics Processing Unit . 23

ISA Instruction Set Architecture . 82

SOC System on Chip . 3

CUDA Compute Unified Device Architecture

FPGA Field Programmable Gate Array . 3

API Application Programming Interface . 15

VL Vector Length . 17

DMA Direct Memory Access . 4

GPR General Purpose Register . 80

SSE Streaming SIMD Extensions . 24

SIMD Single Instruction, Multiple Data . 1

x

SPMD Single Program, Multiple Data. .23

JIT Just-In-Time . 22

xi

Acknowledgments

I would like to thank my supervisor Dr. Guy Lemieux for all his support,
fanancially and academically, over the past three years. I am very lucky to

become a student of Professor Lemieux and being involved in cutting edge FPGA
technology research projects. This thesis would not become possible without his

wealth of experience and knowledge, his innovative ideas, and his insights on the
project.

I want to give special thanks to Microsoft Accelerator group for accepting me

as an intern and teaching me everything about the Accelerator system. They are
also very generous and granted me access to part of the Accelerator source code,

which makes it possible for me to conduct this study.

Thanks to all the instructors of all the courses I’ve taken at UBC. I really
appreciate their fascinating lectures, their patience for students, and their great

kindness and help. All I’ve learned in the past three years have been solid
foundation for the completion of my thesis, and will become a precious gift in the

future of my life.

Thanks to all the members of the SoC lab for the support and help. To David
Grant, who inspired me and helped me on several course projects. To Aaron

Severance, who provided valuable suggestions and continuously efforts on vector
processor design and maintainance. To Chris Wang, who made jokes all the time

and brought laughters to the lab.

xii

In the end, I want to give my appreciation to my parents who teach me right,

and always support me in all aspects. To my husband Zheng, I feel so blessed for
marrying you and having you always on my side taking care of me.

xiii

Chapter 1

Introduction

1.1 Motivation and Research Goals

As modern processors have hit the power wall, we are embracing the parallel pro-

cessing era with a wide range of hardware architectures, parallel programming

languages, and auto-parallelizing compilers being extensively studied across the

world.

Today’s hardware offerings range from general-purpose chips with a few cores,

to graphic processors that support large-scale data-parallel applications, to recon-

figurable hardware with massive bit-level parallelism. Additionally, several spe-

cialized Single Instruction, Multiple Data (SIMD) platforms such as vector pro-

cessors are being actively investigated.

The fast growth of novel architectures with diverse components and increas-

ing levels of parallelism, either for general acceleration or specialized for certain

domain applications, raises great challenges for software developer’s to effectively

program them.

1

Using traditional sequential programming languages such as C/C++ to program

modern parallel platforms creates substantial difficulty for compiler developers.

It requires the compiler to identify the parallelizable part, analyze complex data

dependencies, and orchestrate data movement and synchronization among parallel

units in the target hardware architecture. This approach is complex and usually

renders limited performance.

Several specialized library languages, such as CUDA and OpenMP, have

demonstrated some success. Most of these languages expose low-level details of

the device architecture. The user has to perform operations such as explicitly spec-

ifying data movement between different memory spaces, creating a certain number

of threads, and synchronizing among threads to better exploit the processing re-

sources. These explicit operations provide a great help to the compiler towards

parallelizing the kernel. Many publications have shown that these languages can

yield much easier compiler development and good runtime performance. However,

they require users to apply knowledge of hardware details and advanced program-

ming skills. These languages usually target only one platform, being either GPU, or

Multi-core/Multi-threaded architecture, or computer clusters. Users have to learn

a new language or even several new languages for each new device coming to the

market. In addition, in order to optimize for performance, users are usually re-

quired to learn hardware architecture in detail. This is obviously not a sustainable

solution.

The ideal solution is to move towards hardware independent, portable library

languages based on existing primitive ones today. Hardware-independent lan-

guages abstract away hardware details and present the user with a simple and high-

level perspective. This higher abstraction is considered to be more portable and

2

less error-prone and it delivers higher programmer productivity. In addition, pro-

grammers would prefer these languages to completely new ones because they are

more similar to current primitive languages.

There are several such projects being actively researched around the world. To

name a few: Lime from IBM is a Java based language that can be ported among

GPU, Multi-core and FPGA devices; Array Building Blocks (ARBB) from In-

tel is a C++ based library that can be compiled to Multi-core and heterogeneous

many-core architectures; and Microsoft Accelerator supports multiple primitive

languages including C, C++, C#, and F#. Accelerator can be compiled to GPU,

Multi-core, and FPGA using the same source code.

These projects open the opportunity to provide effective, scalable solutions

for future parallel architectures. For this thesis, it is compelling to investigate the

feasibily of targeting one of these new high-level abstract languages to vector pro-

cessors. In particular, the VENICE architecture [2] is one of the newest and unique

vector architectures.

VENICE is a research project conducted at the System on Chip (SOC) lab of

the University of British Columbia. It has evolved through several generations

since 2007 [2–5] and is presently being commercialized. VENICE inherited the

SIMD model from general vector processing that provides massive data paral-

lelism. It also provides great flexibility with low cost as being a Soft Vector Pro-

cessor (SVP) running on Field Programmable Gate Arrays (FPGAS). It can be

configured to instantiate multiple vector lanes, where each lane contains a 32-bit

Arithmetic Logic Unit (ALU). In addition, it has several novel features:

• It is smaller and faster than all previously published SVPs.

3

Figure 1.1: Design goal for VENICE compiler

• It uses a multi-ported scratchpad memory for concurrent data accesses by

the ALUS and the Direct Memory Access (DMA) engine.

• Each ALU can be further fractured into sub-word ALUs that work concur-

rently, enabling better performance on vectors of bytes or half words.

• It can be programmed with a C-like inline assembly library system.

• It provides user-level flexibility with multiple configurable components.

• It uses a novel predicated move and flag system to handle data overflow and

comparisons.

Although the C-like inline assembly somewhat eases the programmability of

VENICE compared to previous generations, it can still be difficult to program.

For example, the two code fragments in figure 1.1 show native VENICE code on

the left adding two vectors, and an idealized array-based object system similar to

4

Microsoft Accelerator describing the same computation on the right. The cumber-

some assembly programming style, detailed hardware manipulation, and difficulty

of debugging create the need for a higher-level programming model to provide

simplicity, efficiency, and convenience. As explained, developing a new high-level

language specially for VENICE is not practical. Programming VENICE with an

existing portable higher-level abstraction could save development effort, and al-

lows the user to write simple and short expressions at the same time.

1.2 Contributions

This work presents a compiler design that serves as a vectorizing compiler/back-

end code generator for VENICE based on Microsoft’s Accelerator framework. Our

main contributions are as follows:

1. To our knowledge, this is the first compiler designed for a vector processor

with a scratchpad memory.

VENICE operates on a scratchpad memory, which can contain a vari-

able number of vectors with arbitrary vector length. The multi-banked

scratchpad memory allows concurrent read/write by multiple ALUs

and the DMA engine. The compiler simplifies the challenges raised by

the novel features of VENICE by treating the scratchpad memory as a

‘virtual vector registerfile’.

2. The compiler produces highly optimized VENICE assembly, and achieves

robust end-to-end performance, which is close to or even better than hand-

optimized code.

5

The compiler applies a double-buffering technique to effectively hide

memory-transfer overhead. It uses a modified Sethi-Ullman algorithm

to determine the evaluation order of sub-expressions, and a reference-

counting method to precisely calculate the exact number of vector

registers required by a computation. A profiling approach is adopted to

tune compiler performance.

3. The compiler greatly improves the programming and debugging experience

for VENICE.

Before this work, VENICE can only be programmed using C-like

inline assembly. Accelerator is a high-level abstraction language that

eliminates the manual effort of assembly programming on performing

operations such as memory transfers and synchronization of vector

instructions. Visual Studio debugger is available for Accelerator, which

saves the process of downloading to an FPGA board to check results

using print statements.

Although data management for architectures with scratchpad memory has been

studied before, and it is still an on-going research area, such work focuses exclu-

sively on scalar architectures (single ALU) co-existing with data caches. There are

also some works on compiler support for hard vector processors, such as VIRAM’s

vcc compiler and Cray’s compiler, but these vector processor designs have a fixed-

size register file which is divided into exact N1 vectors with exact N2 maximum

elements each. In contrast, the scratchpad memory in VENICE is flexible and can

6

be of arbitrary size. It supports an arbitrary number of vectors, each of an arbitrary

length, subject only to the maximum capacity. Further more, the DMA engine

connecting the scratchpad and main memory has a dedicated read/write port to the

scratchpad. The DMA queue and vector instruction queue in VENICE allows con-

trol processor to return immediately after dispatching a DMA or vector instruction.

These allow the scalar core, the DMA engine, and the vector engine to operate in

parallel. Compiler design for an architecture with such novel features has never

been studied before.

The experimental results show that across a set of selected benchmarks, the

VENICE compiler delivers a speedup (using a Nios II processor as the baseline)

up to 362× using the biggest VENICE configuration. Compared to a modern Intel

processor, it provides speedup of up to 3.2×. Furthermore, the compiler-generated

code can achieve speedups between 0.81× and 2.24× of hand-tuned VENICE as-

sembly code. In addition, when compared to the Accelerator Multi-core target, the

compiler reveals almost linear scaling performance from 1 to 64 ALUs, whereas

the Multi-core target performance saturates beyond 4 cores.

1.3 Approach

When searching for a suitable compiler framework for VENICE, ease-of-use and

ease-of-compiler-development were the two most important factors under consid-

eration. In particular, it is desirable to have a clean implementation language for

the user, and have parallelism as explicit as possible in order to avoid complex

dependency analysis algorithms within the compiler.

In comparison with other systems, Microsoft Accelerator has a number of fea-

tures that make it ideal for our goals and it is chosen as the target high-level lan-

7

guage for our compiler:

1. It operates as an embedded library in C/C++, C# and F#. Therefore, it pro-

vides the user with a certain amount of flexibility in choosing a language.

2. It has a vector-like description model which matches the VENICE architec-

ture extremely well. In many cases, an almost direct translation approach can

be used by the compiler. Special parallel-array data types simplify the task

of identifying the parallelizable part and managing data movement between

main memory and scratchpad memory.

3. The built-in Accelerator front-end provides an Intermediate Representation

(IR) with sufficient static information for the back-end target to analyze,

optimize, and parallelize.

4. It has built-in support for pluggable 3rd-party developed targets (back-end

compilers), so adding a new target is easy. Most other systems do not open

this option for 3rd-party developers.

5. It provides a sufficiently rich expressiveness to efficiently implement our

benchmarks, and yet restricts users from using operations that would destroy

data parallelism through unstructured array accesses.

6. Source code is accessible directly from Microsoft.

In this thesis, the compiler operates as a source-to-source translation compiler.

It compiles the Accelerator code into the low-level native VENICE code. The

resulting C code needs to be compiled with gcc before being downloaded to an

FPGA board.

8

As previously mentioned, the scratchpad memory is treated as a ‘virtual vector

registerfile’. However, the number of vector registers and vector length can be

arbitrary. They are dynamically decided by the compiler based on user input data

array sizes and computation tree structure. A modified Sethi-Ullman algorithm is

adopted to minimize the number of vector registers used by the generated code. A

double-buffering technique is used to hide memory latencies caused by transferring

data between scratchpad memory and main memory. Highly-efficient usage of the

scratchpad memory is the main optimization goal of this work.

1.4 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 presents back-

ground knowledge of the VENICE architecture, the VENICE native programming

interface, the Microsoft Accelerator system, basic compiler algorithms this work

is based on, and related works. Chapter 3 describes design details of this compiler

including platform-specific optimizations and Chapter 4 shows how compiler per-

formance is further improved. Chapter 5 describes the benchmarks used as well as

experimental methods and results. Chapter 6 lists some future works under consid-

eration. In the end, Chapter 7 concludes the whole thesis.

9

Chapter 2

Background

This chapter will first introduce the VENICE vector processor architecture, with

an emphasis on key features that are important to compiler design. Then it will

discuss some state-of-art parallel programming languages and projects similar to

Microsoft’s Accelerator, including Intel’s ArBB, IBM’s Lime, MATLAB’s parallel

computing toolbox, and the VIRAM vcc compiler. The Microsoft Accelerator

system and programming model will then be described. This chapter will also

introduce some general compiler algorithms related to this thesis.

2.1 Vector Processors

Vector processing has been applied on scientific and engineering workloads for

decades [6, 7]. It exploits the data-level parallelism readily available in applications

by performing the same operation over all elements in a vector or matrix. It is also

well-suited for image processing, signal processing, and multi-media applications.

The Cray-1 is the main ancestor of modern vector processors. Developed dur-

ing the early 1970s, Cray was the first vector processor to adopt a RISC-like load/s-

10

tore architecture, where all vector operations are executed register-to-register. The

Cray processor spanned several hundred circuit boards filling a large six-foot tall

cabinet.

VIRAM is a widely-cited embedded vector processor developed in the research

labs at the University of California Berkeley [8]. It also uses a load/store architec-

ture like Cray, but it is implemented on a single chip.

2.1.1 Soft Vector Processors

Compared to hard processors or other complex heterogeneous architectures, soft

vector processors running on FPGAs offer a fast, low-cost, and configurable solu-

tion with ultra-high performance. They are designed to do data-parallel processing

with less development effort than hardware design using VHDL or Verilog.

The VIPERS soft vector processor by Yu from the University of British

Columbia [3, 4] is the first published soft vector processor with configurable pa-

rameters. It serves as a general-purpose data-parallel accelerator on an FPGA. It

uses a Nios II-compatible multi-threaded processor called UT-IIe as control pro-

cessor.

The VESPA soft vector architecture developed by Yiannacouras at the Univer-

sity of Toronto [9, 10] implements a MIPS-compatible scalar core with a VIRAM-

compatible vector coprocessor.

Like Cray and VIRAM, both VIPERS and VESPA adopt a load/store archi-

tecture to transfer blocks of data into a vector data register file. In each case, the

register file storage is divided evenly among a fixed number of vector registers.

Hence, each vector register contains a fixed number of words. In order to offer

dual read ports for simultaneous reading of two operands, the vector register file is

11

duplicated, which is costly for precious on-chip memory.

The VEGAS project [5] made a significant departure from past vector archi-

tectures. VEGAS shares most similarities with VENICE, which is the target archi-

tecture of this thesis. It uses a Nios II/f as a control processor. Instead of vector

data registers, VEGAS uses a large multi-banked scratchpad memory. Vectors in

scratchapd are indexed by an 8-entry vector address register file. This organiza-

tion allows for a large number of vectors in the scratchpad, but only 8 of them can

be accessed immediately by any instruction; accessing the other vectors involves

spilling the vector address register file contents.

VEGAS uses DMA block-read and block-write commands to copy between

the scratchpad and an off-chip main memory (DDR2). The scratchpad memory

completely removes the load/store latencies and data duplication caused by using

vector data registers. As a result, VEGAS operates memory-to-memory on the

scratchpad, and can store a large number of vectors of arbitrary length up to the

maximum scratchpad capacity. Furthermore, the ALUs can be fractured to support

sub-word arithmetic. The ability to use arbitrarily long vectors and have more

parallelism on byte or half word data make VEGAS much more efficient.

2.2 VENICE Architecture

The VENICE soft vector processor was developed as an improvement to the VE-

GAS [5] architecture. A block diagram of the VENICE architecture is shown in

figure 2.1.

Similar to previous SVPS, VENICE requires a scalar core as the control pro-

cessor; in this case, a Nios II/f executes all control flow instructions.

12

D
D

R
2

D$

I$ Nios
II/f

CPU

ABS

Accum.

MUL
SHIFT

ROTATE
Align 1

Align 2
ALU

EXTEND
CMOV

Align 3

VENICE Vector EngineInstruction Queue

Scratchpad
Memory

2kB - 2MB

2x clk

Address Logic

Altera Avalon
Fabric

(2nd
pipe

stage)

DMA

Custom Instruction Port

Figure 2.1: VENICE architecture (gray vertical bars are pipeline registers)

13

VENICE vector operations are dispatched through the Nios custom instruction

interface to the vector accelerator. Similar to VEGAS, the vector engine imple-

ments a wide multi-ported scratchpad memory, in which vector operations take

place, along with a DMA engine for controlling transfers to and from main mem-

ory. The scratchpad memory has two read and one write ports dedicated to each

vector lane (32-bit ALU). This allows reading two operands for ALU execution

and writing one result back in every cycle. It also has a dedicated read/write port

for the DMA engine, which allows reading/writing data in parallel with ALU oper-

ations. The configurable number of vector lanes is the main form of parallelism for

VENICE. All vector lanes receive the same vector instruction from the instruction

queue and perform the operation concurrently. Similar to VEGAS, the 32-bit ALUs

can be collectively fractured to support sub-word SIMD parallelism, enabling op-

erations on vectors of bytes or half words with more parallelism. Memory-level

parallelism and instruction-level parallelism are attained through concurrent op-

erations of the scalar core, the DMA engine, and the vector core. The arbitrary

vector length, as well as the ability to achieve memory-level and instruction-level

parallelism raise interesting challenges for compiler design.

Besides the inherited features, VENICE makes the following improvements

upon the VEGAS architecture:

• Unlike VEGAS, all vector address registers are removed. This saves the

programmer from tracking and spilling the vector address registers. It would

also be an extra layer of work for compiler. Instead of the vector address

registers, C pointers are directly used as operands for vector instructions.

• Scratchpad-based designs require alignment networks to allow for cases

14

where the input operands and output are not aligned. VENICE uses 3 align-

ment networks in the pipeline to remove the performance penalty in VEGAS,

which has only one alignment network.

• Support for 2D data structures achieves a high instruction dispatch rate even

in the case of short vectors. These 2D instructions eliminate the need for

the auto-increment mode of the vector address registers in VEGAS. Further-

more, since the 2D instruction can perform in a strided manner, it is easy to

extract sub-matrices.

• The shared multiplier/shift/rotate structure requires two cycles operational

latency, allowing a general absolute value stage (the ABS block in figure 2.1)

to be added after the integer ALU.

As a result of these and other optimizations, the design was pipelined to reach

speeds of 200MHz, which is roughly 50–100% higher than previous SVPs. This

also allows the SVP to run synchronously at the same full clock rate as the Nios

II/f. All of these unique features of VENICE are under consideration during the

development of the compiler.

2.2.1 Native VENICE Programming Interface

Using inline C function to program VENICE

In order to simplify programming, C macros are used to make VENICE instruc-

tions look like C functions without adding any runtime overhead. The sample code

in figure 2.2 adds three vectors together using the native VENICE Application Pro-

gramming Interface (API).

15

1 #include "vector.h"
2
3
4 int main()
5 {
6 const int length = 8;
7 int A[length] = {1,2,3,4,5,6,7,8};
8 int B[length] = {10,20,30,40,50,60,70,80};
9 int C[length] = {100,200,300,400,500,600,700,800};
10 int D[length];
11
12 // allocate space in the scratchpad
13 const int data_len = length * sizeof(int);
14 int *va = (int *) vector_malloc(data_len);
15 int *vb = (int *) vector_malloc(data_len);
16 int *vc = (int *) vector_malloc(data_len);
17
18 flush_cache_all();
19
20 // transfer from main memory to scratchpad
21 vector_dma_to_vector(va, A, data_len);
22 vector_dma_to_vector(vb, B, data_len);
23 vector_dma_to_vector(vc, C, data_len);
24 vector_wait_for_dma();
25
26 // perform vector setup and operations
27 vector_set_vl(length);
28 vector(VVW, VADD, vb, va, vb);
29 vector(VVW, VADD, vc, vb, vc);
30
31 // wait and transfer results
32 vector_instr_sync();
33 vector_dma_to_host(D, vc, data_len);
34 vector_wait_for_dma();
35
36 vector_free();
37 }

Figure 2.2: Native VENICE API to add 3 vectors

Each macro dispatches one or more vector instructions to the vector engine.

Depending upon the operation, these may be placed in the vector instruction queue,

16

or the DMA transfer queue, or executed immediately. A macro that emits a queued

operation may return immediately before the operation is finished. This allows

several instructions to be executed concurrently if they operate on different com-

ponents. In addition, some macros are used to restore synchrony and explicitly

wait until the vector engine or DMA engine is finished.

As implied by figure 2.2, after initializing input data array (line 7-10), the

VENICE programming model follows a few general steps:

1. Allocation of memory in scratchpad (line 14-16)

2. Optionally flush data in data cache (line 18)

3. DMA transfer data from main memory to scratchpad (line 21-23)

4. Wait for DMA transaction to be completed (line 24)

5. Setup for vector instructions, e.g., the Vector Length (VL) (line 27)

6. Perform vector operations (line 28-29)

7. Wait for all vector operations to be completed (line 32)

8. DMA transfer resulting data back to main memory (line 33)

9. Wait for DMA transaction to be completed (line 34)

10. Deallocate memory from scratchpad (line 36)

The basic vector instruction format is vector(VVWU, FUNC, VD, VA,

VB). The VVWU specifier refers to ‘vector-vector’ operation (VV) on 32-bit integer

type data (W) that is unsigned (U). The vector-vector part can instead be scalar-

vector (SV), where the first source operand is a scalar value provided by Nios.

17

These may be combined with data sizes of bytes (B), half words (H) or words (W).

A signed operation is designated explicitly by using the signed specifier (S) or

implicitly by omitting the unsigned specifier (U).

Figure 2.3: Extracting sub-matrix from a 2D array

One important feature of VENICE mentioned in the previous section is the

ability to operate on two-dimensional arrays. This allows a smooth flow of vector

operations on a 2D array instead of individual 1D operations on each row. The user

can also operate on a sub-matrix of a 2D array by specifying strides of each vector

operand or destination vector. For example, to extract the shaded m×n sub-matrix

from the original M×N matrix in figure 2.3, the following vector setup instructions

are needed:

vector_set_vl(n);

vector_setup_2D(m, 4*(N-n), 0, 4*(N-n));

The vector length is specified by the set_vl instruction indicating n elements

will be processed for each row. In the setup_2D instruction, the first number m

indicates the number of rows that will be involved in the following 2D vector in-

structions. The second number is the row stride for destination vector, meaning

4*(N-n) bytes (N-n words) will be skipped at the end of each row after a vector

length of n is written into the destination vector. The third number indicates there

18

is no stride for the first source operand. The last number 4*(N-n) means the

number of bytes will be skipped at the end of each row for the last source operand.

Now, adding a scalar value of 1 to the sub-matrix to obtain the right-side matrix in

figure 2.3 can be as simple as :

vector(SVW, VADD, VA, 1, VA);

In addition to basic arithmetic, conditional moves of individual vector elements

are achieved via flag bits. These flags are efficiently encoded into the 9th bit of

every byte after a vector arithmetic instruction.1 The stored flag value depends

upon the operation: unsigned addition stores the carry-out, whereas signed addition

stores the overflow.

Optimizing for performance

The latest VENICE architecture can be configured up to 64 vector lanes (V64) on

a Stratix III chip. With sufficient data parallelism in the application, a V64 could

have a 64× speedup over a V1 configuration in the ideal case.

Since VENICE is built upon an FPGA, transferring data from and to main

memory could be an expensive overhead. From our experience, a simple and ef-

fective technique to hide this memory latency is double-buffering. As stated in

the previous section, user data has to be sent to the on-chip scratchpad memory in

order to perform vectorized operation. Double-buffering allocates two buffers in

the scratchpad memory for each user input array. First, input arrays are partitioned

into several pieces. Then the first piece of input array is sent to scratchpad mem-

ory. After this is done, vector processing on the first piece of data will happen at

the same time as transferring a second piece of input data. By the time the results

1FPGA memory blocks are normally 9 bits wide.

19

Figure 2.4: VENICE execution flow

are computed on the first piece of data, the second piece of input data is ready to be

processed. By alternating the two buffers for computation and data transfer, most

of the memory latency can be successfully hidden.

Figure 2.4 portrays how the three parts of VENICE work together concurrently

20

by applying double-buffering. The input data is partitioned into three pieces. With

vector execution and data transfer happening concurrently, most of the overhead

comes from transferring the first piece of input data and transferring back the last

piece of result.

On the other hand, VENICE has a pipelined architecture as indicated in fig-

ure 2.1. Figure 2.5 is a simplified pipeline structure of VENICE. There are 7

pipeline stages in total. Since the scratchpad memory is multi-ported, memory

read and write can be completed in the same cycle. Therefore, for the first vector

instruction entering the pipeline, there will be a 6 cycle latency. Any instruction

that has dependency on a previous one has to wait for 6 cycles as well to enter

the pipeline. Within one instruction, all elements of a specified vector will stream

through the pipeline with no stalls. Therefore, in order to keep high throughput of

the vector engine, an as-long-as possible vector length is desired. However, this

may expose the long data transfer overhead of the first and last pieces.

Figure 2.5: VENICE pipeline structure

2.3 Vectorizing Compilers

This section will introduce a few works similar to the Microsoft Accelerator system

and compiler work in this thesis.

VIRAM was the pioneer of applying the vector processor in the embedded do-

main. The VIRAM vcc compiler was based on Cray’s compiler and was developed

simultaneously with the VIRAM hardware. It is claimed to be able to automatically

21

vectorize C/C++ directly without any special pragma or language annotations in

most cases. However, it still needed pragmas to help with analysis on applications

with complex data dependencies [8]. A deep analysis of an incomplete version of

the vcc compiler was performed in [11]. The results showed that the compiler

could not detect vectorizable loops consistently. All results were derived from the

Dongarra Loops instead of real world benchmarks. Results from using the VIRAM

simulator were reported in [12]. However, there wasn’t enough evidence to prove

the completeness and efficiency of the compiler.

Intel’s ARBB [13] consists of a virtual machine and a C++ API that defines

new parallel types such as collections to avoid direct data dependencies. These

collections are treated like values and the Just-In-Time (JIT) compilation engine

optimizes these and extract thread and data parallelism. It targets multi-core pro-

cessors, GPU and Intel Many Integrated Core Architecture processors.

IBM’s Lime [14] is a Java-based language capable of generating multiple low-

level programming languages such as OpenCL for GPUs and Verilog for FPGAs.

It relies on a user-built task graph and explicit data flow specification to identify

the parallelizable kernel. It requires special value keywords to achieve data im-

mutability and gets hints from user-declared private, local or global data types to

manage complicated device memory systems.

For the OpenCL target, Lime generates a mix of Java ByteCode and OpenCL

code for GPU kernel computation. For the FPGA target, it generates a mix of

Java ByteCode and Verilog code. The advantage of Lime is less restriction to

applications since it uses standard array types. However, there is a substantial

overhead caused by Java to C and C back to Java conversion [15]. It is reported

that it could achieve equivalent performance of hand-tuned native OpenCL code

22

on GPUs. However, it only measures the computation kernel runtime without all

the data transfer and other overheads introduced by the framework. Results for the

FPGA target have not been published yet.

MATLAB’s parallel computing toolbox provides a flexibility of combining

hardware independent and hardware dependent code together to achieve maximum

performance, which gives the user the choice of whether to get involved in hard-

ware manipulation. It is available for multi-core processors, GPUs, and computer

clusters. The built-in libraries could be a time saver for developers. It also pro-

vides task parallelism among multiple applications and Single Program, Multiple

Data (SPMD) mode. The disadvantage of the MATLAB PCT is that programs are

not portable between GPU and multi-core or computer clusters.

There is a vast amount of other works for new languages and its associated

compilation and run-time techniques as well such as StreamIt [16], hiCUDA [17],

X10 [18], Sponge [19], etc. They will not be introduced one by one in detail since

they do not offer both high-level abstraction and diverse platform compatibility.

2.4 Microsoft Accelerator System

The Accelerator system developed by Microsoft Research [20, 21] is a domain-

specific language aimed at manipulating arrays. It presents to the user a set of

high-level data parallel operations and object types that can be embedded in mul-

tiple primitive languages such as C/C++, C# and F#. The key assets of the Accel-

erator system is its ability to target entirely different devices with a single source

language description. Accelerator provides a level of abstraction that completely

hides hardware details from the programmer, and it auto-parallelizes the code for

each target. It currently supports three different back-end targets: Graphics Pro-

23

cessing Units (GPUS) using DX9 and CUDA, Multi-core using Streaming SIMD

Extensions (SSE), and FPGAs using VHDL [22]. The language and some com-

piler front-end basics will be described in this section.

2.4.1 Accelerator Language Fundamentals

1 #include "Accelerator.h"
2 #include "MulticoreTarget.h"
3
4 using namespace ParallelArrays;
5 using namespace MicrosoftTargets;
6
7 int main()
8 {
9 Target *tgtMC = CreateMultiCoreTarget();
10
11 const int length = 8;
12 int A[length] = {1,2,3,4,5,6,7,8};
13 int B[length] = {10,20,30,40,50,60,70,80};
14 int C[length] = {100,200,300,400,500,600,700,800};
15 int D[length];
16
17 // constructors copy user data to PA objects
18 IPA a = IPA(A, length);
19 IPA b = IPA(B, length);
20 IPA c = IPA(C, length);
21
22 // assignment statements build an expression tree
23 IPA d = a + b + c;
24
25 // the ToArray() call evaluates the expression tree
26 tgtMC->ToArray(d, D, length);
27
28 tgtMC->Delete();
29 }

Figure 2.6: Accelerator code to add 3 vectors

This section serves as a brief introduction on how to program using Accelerator.

Figure 2.6 shows sample code for Accelerator adding three vectors together.

24

Accelerator declares and stores data arrays as Parallel Array (PA) objects. The

PA objects are largely opaque to the programmer and restrict them from manipu-

lating the array by index. Five primitive parallel array data types are supported by

Accelerator which are boolean, integer, float, double, and Float4 (a set of 4 floats).

Note there is no native support for byte or halfword (short) data types.

When an Accelerator PA object is instantiated, it is automatically initialized

by making a copy of the original user array. Accelerator does a lazy functional

evaluation of operations with PA objects. That is, expressions and assignments

involving PA objects are not evaluated instantly, instead they are used to build up

the expression graph. Loops and conditionals must be analyzable (i.e., not data-

dependent on the parallel computation) so they can be fully unrolled, if necessary.

At the end of a series of operations, the Accelerator ToArray() function

must be called. This results in the expression graph being optimized, translated

into native code using a JIT compilation process, and evaluated.

At its core, Accelerator allows easy manipulation of arrays using a rich variety

of element-wise operations, including both binary and unary arithmetic, compar-

isons, logical operations, and type-conversions. It also supports reductions (sum,

product, max, min, or, and) that can be applied to the entire array or just rows of

a 2D array, as well as linear algebra operations (inner product and outer product).

Finally, it also provides a number of transforms which can shift, expand, stretch,

transpose, or otherwise modify the shape and relative positions of the vector/matrix

entries.

As shown in figure 2.6, with user data arrays declared and initialized (line 12-

14), programming in Accelerator is straightforward as follows:

25

1. Create a target (Line 9)

2. Create parallel array objects for each input data array (Line 18-20)

3. Write expressions with parallel array objects and operations from the Accel-

erator library (Line 23)

4. Call ToArray() function to evaluate the result and copy it back to a regular

C array (line 26)

In figure 2.6, the CreateMCTarget() function indicates that a subsequent

ToArray() call will be evaluated on a Multi-Core platform. The IPA type repre-

sents an integer parallel array object. Similarly, the FPA type represents a floating

point parallel array object. Here, A, B, and C are declared as input PA objects that

are initialized by user arrays a, b, and c. D is the output PA which is converted to

user array d in the end. The ToArray() triggers the compiler to start the evalu-

ation of D. As stated previously, except for creating the proper target, the program

is unaware of all hardware-related details. Targeting a different device can be done

simply by changing the CreateMCTarget() function.

2.4.2 The Accelerator Front-end

The Accelerator front-end [23] is a built-in process common to all targets of

Accelerator. Accelerator uses deferred evaluation. It builds a Directed Acyclic

Graph (DAG) that consists of operations and associated data but it does not im-

mediately perform any computations until the evaluation method – ToArray()

is called. The DAG expression graph is composed of singly-linked expression

node objects. All of the loops will be analyzed and unrolled during this process

26

which might produce a large number of duplicated sub-expressions in the expres-

sion graph. The expression graph will be handed over to the compiler front-end

by a root operation node. After obtaining the full graph, the expression graph will

be converted to an IR graph which is also a DAG. The IR graph is usually a near-

duplicate of the expression graph but represented by a different object which serves

as a working copy of the expression graph. The IR graph is easier to further analyze

and optimize.

After the IR graph is validated, the system performs initial optimizations to the

graph including constant folding and Common Subexpression Elimination (CSE).

The CSE process will detect all of the common sub-expressions, including those

introduced by loop unrolling when building the initial expression graph, and mark

necessary breaks on relevant IR nodes.

One of the most important optimizations performed by the Accelerator front-

end is analyzing all of the memory-transforming operations, combining them to-

gether and binding them to a leaf node (input array) in the IR graph in the form of

index bound objects. Memory-transforming operations here refer to operations that

rearrange the elements of a PA object or change the array dimensions by adding or

deleting elements. An index bound is an object that stores a certain access pattern

of a PA object in the form of a start point, an array length, a stride value, and a

boundary condition for each dimension of the data array. The start point could be

a negative value if there is an out-of-bounds access. The array length could also

exceed the original array boundary as well. All these ‘out-of-bounds’ situations

will be handled according to the boundary condition, which can be ‘Wrap’ - assign

values from the opposite edge of the array to the new elements, ‘Clamp’ - assign

values from the nearest element to the new elements, or ‘DefaultValue’ - assign

27

a specified value to the new elements. The goal of this optimization is to put the

transform information at the point that data is retrieved from memory, rather than

performing the transform later as a separate operation.

Figure 2.7 explains how the Accelerator front-end converts memory transform

operations into index bound objects of leaf data nodes. Here, the shift operation

performed on intermediate data X will be detected as a memory transform oper-

ation. The front-end optimizer will perform a series steps upon this observation.

First, the Shift and ’+’ operations are swapped, which results in the Shift op-

erating on the two child data nodes. These Shift operations then can be pushed

to leaf data nodes as attached bounds objects. Therefore, the Shift operations

can be completely removed from the IR graph. This process is called a lowering

process of memory transform operations.

Multiple composable transforms can be combined together during the lowering

process. In-composable transforms will be marked as forced breaks of the original

IR graph. Memory transforms with the same boundary condition are considered

to be composable. With all memory transforming operations pushed down to leaf

nodes, no IR graph should contain any such operations.

In the end, the original IR graph are subdivided into a collection of small

graphs. Break points can be caused by the CSE process as common sub-expression,

or by memory transformation analysis process for in-composable memory trans-

forms, or by user-specified Evaluation points using the Evaluate() method.

The Accelerator framework provides the target developer enough flexibility

here to do any target-specific optimizations on the IR graphs from this point. After

all the optimizations, the IR graph is ready for conversion to a Linear Intermediate

Representation (LIR). The LIR is a linearized format that consists of operation

28

Figure 2.7: Lowering memory transform operations

and data nodes in stack-machine order. The primary purpose of the LIR is to repre-

sent an optimized IR graph in a format that can be readily converted to processor-

specific code. The built-in common interface for IR to LIR conversion provides a

convenient mechanism for generating processor-specific code. Figure 2.8 shows a

conceptional flow from IR graph to final processor-specific code generation that is

usually common to all targets.

Figure 2.8: From IR to code generation

All targets have their own back-end which starts from the semi-optimized IR.

Each back-end compiler can perform its own target-specific optimizations on the

29

IR graphs before serialization to LIR. The code generation process will also be

different for different devices.

2.5 The Sethi-Ullman Algorithm and Appel’s
Generalization

As introduced in previous section, the Accelerator front-end produces a set of

IR graphs representing the whole computation. Each target needs its own back-

end compiler to perform target-specific optimizations, code generation, and execu-

tion. The pipeline structure of VENICE, introduced in section 2.2, indicates that

short vector lengths cause idle cycles for ALUs and negatively affect performance.

Therefore, a vector length beyond a certain value is usually favored for avoiding

pipeline bubbles. In this thesis, the concept of ‘virtual vector registers’ is used to

hold vector data in the scratchpad. Due to the limited on-chip scratchpad memory,

a minimum number of virtual vector registers is desired.

The Sethi-Ullman algorithm [24] is a common technique used in compilers

to obtain an optimal ordering of a computation tree, which results in the fewest

number of registers required for storing intermediate results. The algorithm can be

applied to any binary computation tree.

The algorithm works bottom-up on the tree. Each node is labeled with a ‘Sethi-

Ullman number’, which is the number of registers required during its computation.

This number is equal to 1 if the node is a leaf node, or the maximum of the num-

bers of its children if they are unequal, or to the number of either child plus one

if two children have equal numbers. During the code generation stage, each node

will first recursively generate code for the child with a bigger number, then recur-

sively generate code for the other child then generate its own operation instruction.

30

Figure 2.9 shows an example of how the labeling process is done.

This is important because registers are usually a scarce resource in most archi-

tectures. In this work, the entire scratchpad memory is treated as a set of fixed-size

virtual vector registers. The fewer vector registers needed, the more memory can

be assigned to each one. However, the IR produced by the Accelerator front-end is

not always a binary tree. Therefore, a modified version of Sethi-Ullman algorithm

is adopted.

Appel and Supowit generalized the Sethi-Ullman algorithm [25] to accommo-

date operations with three or more operands. In the case that a node has three or

more children, it will be labeled the maximum of all its children’s numbers if they

differ from each other. If there are two or more children with the same number

that are equals to the maximum number of all children, each additional child node

that has a number equal to the maximum number will add one to the parent node

number. For example, a parent node with three children numbered 2, 2, and 2

respectively will be labeled 4.

Figure 2.9: Sethi-Ullman labeling algorithm

31

Chapter 3

Compiler Implementation

This chapter describes the end-to-end flow of the VENICE compiler, which serves

as a source-to-source translator. It compiles Accelerator code into VENICE in-

structions and stores them in a C file. The Accelerator built-in front-end is used

for building the expression graph and initial conversion from expression graph to

Intermediate Representation (IR). It also applies basic common optimizations to

the IR. The VENICE back-end implementation, which is the main topic of this the-

sis, starts from target-specific optimizations focusing mainly on the efficient usage

of the scratchpad memory. Then it converts the IR to a stack-machine-style LIR.

Code generation from LIR follows the steps for programming VENICE introduced

in chapter 2. This chapter also talks about some limitations of the compiler.

32

Figure 3.1: Development flows with native VENICE and Accelerator

3.1 Compiler Flow

3.1.1 Compiler Overview

Figure 3.1 shows the user flow for (a) programming VENICE directly, and (b)

programming in Accelerator. Unlike Multi-core, CUDA and DX9 targets, which

use a JIT compilation process, the VENICE back-end for Accelerator adopts an off-

line approach similar to the FPGA target. It serves as a source-to-source compiler

by writing out another C program that uses the VENICE APIs.

When writing native VENICE code and debugging, the user has to download

the compiled assembly to an FPGA board to check the correctness of results. In

contrast, the existing JIT mode targets of Accelerator allow fast debugging within

the Visual Studio debugger. Once the Accelerator code is complete, it only requires

a one-line change of the code to switch to the VENICE target and generate code

33

Figure 3.2: Accelerator compiler flow

for VENICE. The output is written into a C file, which can be compiled with gcc

and downloaded to an FPGA board for execution.

Figure 3.2 illustrates the high-level flow of Accelerator compilers. The Ac-

celerator front-end (upper box in figure 3.2) is common to all targets. It builds

an expression graph from user-written Parallel Array (PA) expressions, and pro-

duces an Intermediate Representation (IR) that serves as a working copy of the

expression graph. Optimizations can be performed on the IR. After the IR graph

is produced, each back-end compiler (lower box in figure 3.2) performs target-

specific optimizations on the IR before code generation. The remainder of this

34

section will walk through the steps in the back-end compiler needed to generate

native VENICE code that efficiently uses the available scratchpad memory. The

back-end first sets an evaluation order of each IR graph. Then, it counts the num-

ber of vector registers needed across all the IR graphs. Next, the IR graphs are

converted to a LIR format before final code generation. Steps in code generation

include data allocation and initialization, data transfers, and mapping Accelerator

APIs to VENICE instructions.

3.1.2 Accelerator Front-end

Figure 3.3: Accelerator front-end flow

35

Figure 3.4: Example on conversion from user-written code to IR graphs

36

The Accelerator front-end completes several tasks shown in figure 3.3. It con-

verts the user-written Accelerator code into an expression graph. The expression

graph is copied to an IR graph for initial validations and optimizations. It performs

constant folding, Common Subexpression Elimination (CSE), memory transform

combination, and memory transform lowering. In the end, it sub-divides the IR

graph into smaller IRs. Details on these processes of the front-end were introduced

in chapter 2, and will not be repeated here. Figure 3.4 shows an example of how

the Accelerator front-end produces the resulting IR graphs. In the example, two

rotations of parallel array A are added by scalar values. The use of Evaluate() on

these two additions forms two break points in the IR. The final resulting parallel ar-

ray D is an expression of user input array A, and intermediate results B and C. The

rotate operations in the original IR are combined into leaf node A. The IR is then

sub-divided into three smaller IRs due to the user-specified early evaluation points.

This example will continue to be used throughout this chapter to demonstrate the

steps in the back-end compiler.

3.1.3 Target-specific Optimizations

As the first step in the Accelerator back-end compiler, this sub-section describes

some target-specific optimizations on the IR graphs in preparation for conversion

to the LIR. It includes three steps shown in figure 3.5. The main goal of target-

specific optimizations is the efficient use of scratchpad memory. The back-end

follows the intuitive approach of treating the scratchpad space as a pseudo-vector-

registerfile. Similar approaches can be found in [26, 27] for scalar architectures. It

first uses an algorithm based on Appel’s generalization of the Sethi-Ullman algo-

rithm introduced in section 2.5 to determine the evaluation order of each IR graph.

37

Figure 3.5: Target-specific optimizations

Then it uses a reference-counting algorithm that walks through all the IR graphs in

the established evaluation order and calculates the exact number of vector registers

needed across all IRs. Since the entire scratchpad memory can be partitioned into

arbitrary number of vector registers with arbitrary size, this number is crucial for

optimized scratchpad memory partitioning.

Constant Folding

It is found beneficial to perform another round of constant folding in the back-end

in addition to the existing pass done in the front-end. This is necessary because the

Accelerator front-end is provided in pre-compiled form by Microsoft, so this part

of the flow could not be modified due to limited access to the source code.

Evaluation Order

To simplify the management of scratchpad memory and code generation, the

scratchpad is divided into the fewest equal-size ‘virtual-vector-registers’ that are

38

needed. Several techniques are employed to limit the number of vector registers

used, so as to maximize their size.

Chapter 2 introduced Appel’s generalization of Sethi-Ullman algorithm for de-

termining the evaluation order of computation trees. The algorithm can handle op-

erations that have three or more operands, where the Sethi-Ullman algorithm only

handles binary computation trees. Since Accelerator contains functions that have

more than two operands, Appel’s algorithm is adopted to determine the evaluation

order of sub-expressions in each IR graph.

However, modifications have to be made to accommodate the scratchpad archi-

tecture. The Sethi-Ullman labels are used to represent the number of vector regis-

ters in scratchpad memory. For common processor architectures, variables and im-

mediate values usually require a register to temporarily store the value. However,

in the VENICE architecture, all input data arrays are loaded to scratchpad memory.

Immediate values (scalar values) come directly from the instruction queue, and do

not take any space in the scratchpad. Therefore, all the scalar nodes are labeled 0.

Figure 3.6: Establish evaluation order

Figure 3.6 shows an example on how evaluation order is set for the IR graphs

produced at the end of figure 3.4. In part a) of figure 3.6, all nodes are labeled

39

with the Sethi-Ullman number. The circled numbers in part b) indicate the final

evaluation order of each IR graph.

Register Counting

In order to partition the scratchpad, the compiler must know the exact number of

vector registers needed by the computation. The labeling is done individually on

each IR graph. The compiler must combine all the IRs together to obtain a total

number of registers. Furthermore, the labeling does not take vector register re-use

into account. To reduce unnecessary data transfers, it is desirable to re-use vector

registers as much as possible. A reference-counting method is adopted to achieve

this goal.

Initially, each leaf data node is associated with a vector register. Each vector

resister may be re-used several times during the whole computation. To re-use a

vector register, the back-end keeps a list of leaf data nodes, plus the number of re-

maining references to each of them. Since each IR graph produces an intermediate

result that will become the leaf node of other IR graphs later in the computation,

not only are these nodes kept in the reference-counting list, but the back-end also

keeps a list that records when an intermediate data node becomes available and

when a data node dies after its reference count becomes 0.

The back-end calculates the exact total number of vector registers needed using

these two lists. This process follows the evaluation order established in the previous

pass, and mimics the code generation process.

Figure 3.7 demonstrates this register-counting process. The computation con-

sists three IR graphs, which are results of figure 3.6. Node A is a user input array.

Node B and C are intermediate results. Node D is the final output. When an IR

40

Figure 3.7: Reference-counting process

is highlighted, it means the IR is being processed, and when an IR is in dashed

outline, it has finished being processed. All of the IR graphs are already organized

in a desired evaluation order. The value ‘active’ in the active list indicates a leaf

41

data node is reserving a vector register. The value ‘no’ means the opposite. Two

variables are used to keep track of the number of registers used by each IR graph.

NumLoads is the number of active leaf nodes that are reserving a vector register.

NumTemps is the number of temporary registers requested by operation IR nodes

that cannot re-use any of its children’s registers.

The number of registers needed for leaf nodes (numLoads) is always the sum

of total active data nodes in the active list. Part a) shows initially only user input

array A is active. Therefore, numLoads is 1. Whenever an IR graph is completed,

the temporary result will activate the corresponding intermediate leaf data node in

the active list and update the numLoads. Part c) shows B becoming active after the

first IR is completed, and numLoads becomes 2. Each time an input data node is

consumed, its reference count will be reduced by 1. Whenever a reference count

becomes 0, that vector register is no longer needed to hold an input array or in-

termediate result and is available for re-use immediately. When encountering an

operation node, the compiler will check if it can re-use any of its children’s regis-

ters. If one of the children is an operation node, that register is always considered

reusable. If all children are leaf data nodes, the reference count of each leaf node is

checked to see if it has become 0. If no re-usable register is found, numTemps will

be increased. In the example shown in figure 3.7, when the first ‘+’ node in the

first IR graph is being processed, it finds that its left child A has a non-zero refer-

ence count, and its right child is a scalar node. Therefore, it adds 1 to numTemps.

The numTemps variable will be reset to 0 after an IR graph is processed.

The total number of registers needed (numTotal) is the sum of registers used

to hold leaf data nodes (numLoads) plus temporary registers needed by operation

nodes that cannot re-use its children’s registers (numTemps). The maxTotal vari-

42

able keeps track of the maximum value of numTotal. At the end of processing

all of the IR graphs, the maxTotal variable indicates the number of virtual vector

registers needed to perform the computation.

3.1.4 Convert to LIR

Figure 3.8: Convert IR to LIR

The Accelerator framework recommends use of the LIR for the convenience

of code generation. The LIR consists of node objects similar to IR nodes, but in a

stack-machine style. Figure 3.8 shows how the optimized IR graphs are converted

to LIR. The compiler creates LIR nodes in the established evaluation order. The

bound objects associated with each input data, the total number of registers com-

puted from previous section, and all other necessary information that is useful for

code generation, are passed over to the LIR during the conversion. When the LIR

is complete, it is ready for code generation.

43

3.1.5 Code Generation

Figure 3.9: Code generation flow

The code generation follows the steps required for VENICE assembly pro-

gramming. This flow is depicted in figure 3.9. This sub-section will go through

these steps one by one.

Memory Allocation and Data Initialization

The compiler calculates the size of each vector register and allocates memory in

the scratchpad according to the number of vector registers computed from sec-

tion 3.1.3. As discussed in chapter 2, one convenience feature of Accelerator is

the efficient handling of out-of-bounds array indices that comes from memory-

transforming operations such as Shift() and Rotate(). In the front-end, Ac-

celerator combines memory transforms and propagates the array bounds to leaf

data nodes, so the maximum extents are known. The back-end takes this infor-

mation into account, and allocates extra memory in the scratchpad for these out-

of-bound cases. All remaining scratchpad memory is allocated equally among the

44

Figure 3.10: Memory transform examples

number of vector registers.

The initialization stage copies user data to the output C file, and prepares

for memory transforms by padding the input array with proper values for out-of-

bounds accesses.

Figure 3.10 demonstrates how input data padding is done. Part a) shows a

rotation performed on a 1D array. The original array is white, with the out-of-

bounds elements shaded. In this case, the last element 1 appears padded after the

last element. The new 1× 5 array formed by the Rotate() is indicated by the

lower bold black bar. Therefore, a vector register size of 6 words will be allocated

for A. Part b) shows a shift by 1 row and 1 column on a 2D array. Values past the

bounds are initialized with the specified default value of k. The new 3× 3 array

is highlighted by a bold black box in the foreground. When allocating memory in

scratchpad, a total of 4×4 words will be assigned to B.

Each input data array might be referenced multiple times with different bound

conditions. For example, if the 1D array A in figure 3.10 is rotated to the left and

to the right by two different data nodes, not only will 1 be padded after the last

element, but the element 5 is also padded before the first element. This is shown in

45

Figure 3.11: Data initialization for multiple memory transforms combined
together

the upper half of figure 3.11. Similarly, if the 2D array B in figure 3.10 is shifted up

and left by 1, and later it is shifted down and right by 1, the compiler must prepare

for both cases during data initialization. Therefore, the initialization of this 2D

array will look like the lower half of figure 3.11.

However, if two shift operations on the 2D array in figure 3.11 need to be

padded with different values, the in-composable memory-bound conditions will

result in creation of a new 2D array.

All scratchpad memory is freed at the end of the entire program. This is mainly

because VENICE does not support partial de-allocation of the scratchpad memory.

Data Transfer

DMA transfer instructions are generated after memory allocation and data initial-

ization. Input data arrays are transferred to the scratchpad memory all at once. A

wait-for-DMA instruction is generated before vector instructions. All the results

46

will be transferred back to the main memory after vector instructions are com-

pleted.

Generate Vector Instructions

The ability to manipulate arrays is intrinsic to both Accelerator and VENICE.

Therefore, in many cases, a direct mapping of an Accelerator operation to a

VENICE instruction for basic element-wise operations is possible. For example,

the simple ‘+’ operator in Accelerator is mapped to VADD instruction in VENICE.

In a few cases that Accelerator operators are not directly supported by VENICE,

such as divide, modulo, power, and matrix multiply, pre-written library code is

required.

Memory transforms were discussed in the previous sub-section, and they were

handled by properly initializing the input data array. Extra elements might be

padded outside of the normal array bounds. In the code generation stage, the com-

piler must extract desired data from the original array based on the bounds object

associated with the individual data node.

Take the arrays in figure 3.10, for example. With all data properly initialized,

extracting partial data from the 1D array is simply done by adding an offset to the

starting address in the scratchpad memory. The Accelerator expression:

D = Rotate(A, [1]) + 2;

will be translated into the following VENICE assembly:

vector_set_vl(5);

vector(SVW, VADD, VD, 2, VA+1);

For 2D arrays, the row stride amounts can be adjusted to step over any padding

elements at both ends. The Accelerator expression:

47

D = Shift(B, {1,1}) + 2;

will be translated into the following VENICE assembly:

vector_set_vl(3);

vector_setup_2D(3, 0, 0, 1);

vector_2D(SVW, VADD, VD, 2, VB+1);

Accelerator provides APIs to do element-wise comparisons between arrays

such as Max() and Min(). There is also a Select() API that does a conditional move

operation. Chapter 2 introduced that VENICE supports conditional moves by us-

ing flag bits. This feature is used to perform Accelerator comparison operations.

For example, the Accelerator expression:

D = Select(A-B, A, B);

which moves an element in A to D if an element in A-B is greater than or equal

to 0 and moves the element in B to D otherwise, will be converted into VENICE

assembly as follows:

vector(VVW, VSUB, VTemp, VA, VB);

vector(VVW, VCMV_GTEZ, VD, VA, VTemp);

vector(VVW, VCMV_LTZ, VD, VB, VTemp);

The subtract instruction sets the flag bits associated with each element in

VTemp according to whether VTemp is positive or negative. The first conditional

move instruction VCMV_GTEZ moves elements in VA to VD if flag bits of VTemp

are not set. The last line of code moves elements in VB to VD if flag bits of vector

VTemp are set.

Figure 3.12 shows an example of the final stage of compiler that generates a

human-readable C program with VENICE APIs.

48

Figure 3.12: Example of generating code from LIR

3.2 Implementation Limitations

The compiler does not support all of the Accelerator APIs. One of the reasons is

that VENICE cannot perform floating-point arithmetic. Therefore, float and double

data types are not supported by the compiler. All APIs that require these data types,

such as Log() and Sin(), are hence omitted. Some rarely used operations, such as

OuterProduct(), Replicate() and Pad(), are also not supported due to

the low priority of the task during compiler development.

On the other hand, there are several VENICE instructions that cannot be ex-

pressed by Accelerator APIs, such as the multiply-high instruction which returns

the upper N bits of an N × N multiply. However, the generated C program is

human-readable, and can be easily modified to utilize such features of VENICE

that Accelerator cannot exploit.

49

As described in chapter 2, the Accelerator front-end has a built-in CSE algo-

rithm to eliminate duplicated evaluation of sub-expressions that are considered to

be expensive. However, VENICE is unlike other targets where sometimes com-

puting a sub-expression locally may be faster than storing intermediate data into

memory and reading from memory again. In VENICE, reading from and writing to

the scratchpad memory requires no extra overhead. Any duplicated computation is

an overhead. Therefore, the built-in CSE algorithm is not suitable for the VENICE

target. Attempts have been made to replace the built-in CSE algorithm with a

more aggressive version, but it is not yet integrated into the Accelerator front-end.

Instead, CSE must be performed manually by the user using the Evaluate()

operation.

The ToArray() call triggers generation of a C file with VENICE APIs. Appli-

cations that require multiple ToArray() calls require the manual effort of the user

to merge multiple C files and the associated memory management.

The scratchpad memory is treated as a medium that can be sub-divided into

as many pieces as possible. Demand for a large number of vector registers will

only result in a small size for each one. Demand for an exceptionally large number

of registers might result in a register size that degrades performance. For extreme

cases that require thousands of vector registers resulting in a register size that is

smaller than 1 word, the compiler reports an error.

3.3 Summary

The back-end compiler starts with an intermediate representation produced by the

Accelerator front-end, and follows a flow recommended by the Accelerator frame-

work. The back-end compiler performs a series of device-specific optimizations.

50

The key optimizations are the optimized evaluation order specific to VENICE re-

sulting in a minimal number of vector registers required by the whole computation,

and the precise calculation of the exact number of vector registers needed. This

number is used to partition the scratchpad memory. These optimizations provide a

maximum vector length for vector execution. The resulting C program with in-line

VENICE API calls is generated from a linearized intermediate representation.

The entire compiler implementation required approximately 1 year of work and

approximately 6000 lines of code.

This chapter has listed some of the limitations of the compiler. More will be

discussed in detail in chapter 6, where possible future work is presented.

51

Chapter 4

Performance Enhancement

This chapter describes two improvements made to enhance the performance of the

VENICE back-end compiler. First, the compiler handles the case when data arrays

cannot fit into the scratchpad memory by sub-dividing data arrays and performing

data transfers in a double-buffered fashion. Based on the input sizes and number of

operations in the application, the compiler references a look-up table that stores the

near-optimal vector lengths to partition the data arrays. These near-optimal vector

lengths are obtained by profiling on synthetic benchmarks.

Second, the back-end compiler is able to reduce vector-instruction count by

combining multiple Accelerator operations into one VENICE instruction. Experi-

mental results are provided to demonstrate the impacts of these optimizations.

4.1 Dynamic Partitioning

As mentioned in chapter 3, when the VENICE back-end performs target-specific

optimizations, it always precisely calculates a minimal number of vector registers

needed by the computation, so as to maximize register sizes. This is because the

52

vector-register size directly becomes the vector length for vector execution, which

affects the pipeline utilization and end-to-end runtime performance. In the case

where the user array size exceeds this maximized register size, the back-end needs

to sub-divide data array into smaller segments. In order to hide data-transfer over-

head, data movement can be done in a double-buffered fashion by pre-fetching the

next-needed pieces. This fully exploits the capability that DMA transactions and

vector computation can take place at the same time. Overlapping the two can al-

most completely hides the overhead of the data transfers. However, even when

the entire computation can be performed on VENICE without being segmented,

applying double-buffering may still be beneficial.

Unlike a GPU or multi-core architecture, memory latency could dominate

VENICE’s performance. The Multi-core target relies upon caching to hide mem-

ory latency. GPUs rely upon switching between thousands of threads to tolerate

memory latency. However, VENICE uses a DMA engine to transfer data between

scratchpad memory and main memory. Although the DMA engine owns a ded-

icated 4-byte read/write port to the entire width of the scratchpad memory, the

main memory doesn’t support multiple memory banks. This constrains the mem-

ory bandwidth to be at most 32 bytes, which is the maximum bandwidth of the

main memory at the board-level in the DE3 development system used by this work.

For smaller VENICE configurations using less than 8 lanes (4-byte wide each), the

bandwidth will be further limited by connections between DMA and scratchpad

memory. For example, a VENICE V4 only has a memory bandwidth of 16 bytes.

Furthermore, in addition to the bulk data transfer time, there is the additional la-

tency from the DMA instruction being dispatched until the data actually arrives the

destination. Taken together, these factors strongly impact VENICE’s performance.

53

Trade-offs have to be considered when performing double-buffering. Treating

the entire input data as a whole will result in no overlap for data transfer and vector

operations. With all the memory transfer overhead being exposed, performance

will be significantly degraded, especially for small benchmarks. On the other hand,

dividing data array into too small segments will result in a short vector length

that cannot maintain high throughput in the VENICE pipeline. The initiation of

memory transfer will also introduce additional delays.

Taking another look at the VENICE execution example in figure 2.4, vector

execution time is shown taking longer than the memory transfers. Most of the

overhead comes from transferring the first segment of the input data to scratchpad

and transferring the last segment of the result back to main memory. A smaller

vector length might actually reduce these overheads and improve performance.

In contrast, applications can also be memory-bound as demonstrated in fig-

ure 4.1. Memory transfers become dominant, and vector executions are hidden by

the memory latency. The total runtime is basically the time for transferring all the

inputs to scratchpad and transferring the results back. Due to the additional latency

introduced by each data transfer instruction, the less data transfer instructions ini-

tiated, the less time it takes to complete transferring the entire input and output.

In these cases, a larger vector length is preferred to reduce the total overhead of

initiating all data transfers.

Based on these observations, an assumption can be made that for each con-

figuration of VENICE, there should always be an optimal vector length for each

application that will achieve the best balance of the data transfer and vector execu-

tion and yields a minimal total runtime.

As mentioned in chapter 2, VENICE has 7 pipeline stages in total, which causes

54

Figure 4.1: VENICE execution flow for memory-bound applications

a 6 cycle delay between any consecutive instructions with a data dependency. Since

Accelerator does not require the programmer to be aware of any hardware details,

which may affect parallelism, data dependencies are prevalent in many bench-

55

marks. 1 The VENICE back-end does not perform deep analysis on such data

dependencies as this would radically change the structure of a given computation

tree. Instead, this work focuses on the workload balancing optimization by care-

fully choosing a vector length that is large enough to limit the impact of pipeline

bubbles caused by data dependencies and also small enough to avoid long latencies

caused by the first and last piece of data transfers.

For each application, data-transfer time and vector-execution time can be ex-

pressed by complex equations based on the input data sizes, the number of opera-

tions performed on each data element, the number of vector lanes available, mem-

ory bandwidth, memory latency, function call overhead, and the to-be-determined

vector length. Each application can be further categorized into three different sit-

uations based on the data-transfer and vector-execution time – compute-bound,

memory-bound, and balanced. Each situation would use a different equation to cal-

culate a vector length that achieves the shortest total runtime. The calculation might

involve deciding clear boundaries of variables, calculating derivatives of equations,

and computing a vector length that minimizes the equation. However, the sensi-

tivity of this approach to the accuracy of the equations and detailed modeling of

the the VENICE architecture and application characteristics could easily make this

method imprecise or incorrect.

Therefore, instead of designing a complicated algorithm to compute the opti-

mal vector length for each program, a simple look-up table is created containing

selected vector lengths for each pair of input size and operations per data element

(instruction count). In order to achieve this goal, a synthetic benchmark is used

1Accelerator assumes there is sufficient data -level parallelism in each operation. Hence, it does
not focus on parallelism between operations.

56

with controllable input sizes and number of vector instructions. By sweeping on

each parameter, a performance table with runtime for each given input size and

number of instructions is derived. The vector length that results in the least run-

time is stored in the final look-up table.

Figure 4.2: Impact of vector length selection for input size of 8192 (words)
with different instruction counts

Figure 4.2 shows the number of clock cycles required when performing a dif-

ferent number of operations on each input array element with a fixed size (8192

words) of input data. The Y axis is the total cycle count; a smaller number indi-

cates better performance. The X axis is the vector length, aka the vector register

57

Figure 4.3: Impact of vector length selection for instruction count of 16 with
different input data sizes

size used. When there are only 1-2 vector instructions, the application is memory-

bound, and a vector length of 4096 (words) is preferred since it is the biggest size

that can be used with double-buffering. When more instructions are involved, for

example 5-8, the application moves towards compute-bound, and a vector length

of 1024 (words) has the best performance. This choice provides good balance be-

tween memory transfer and vector execution. When the input size changes, the

optimal vector length also changes.

Figure 4.3 shows cycle count per element when a fixed number of vector op-

58

erations (16) are performed with different input sizes, and different vector lengths.

Y axis is switched to cycle count per element in order to compensate the large total

cycle count differences. In figure 4.3, almost all cases are compute-bound. It shows

that the time for transferring the first and last piece of data becomes less noticeable

as input size increases to a large value. A larger vector length is again preferred for

fewer pipeline bubbles.

Optimal

Buffer Sizes

for V16

Input Data Sizes (words)

8192 16384 32768 65536 131072 262144 524288 1048576

Instru

-ction

Count

1 4096 8192 8192 8192 8192 8192 8192 8192

2 4096 8192 8192 8192 8192 8192 8192 8192

3 2048 2048 4096 4096 8192 8192 8192 8192

4 1024 2048 2048 4096 4096 8192 8192 8192

5 1024 2048 2048 4096 4096 8192 8192 8192

6 1024 2048 2048 4096 4096 8192 8192 8192

7 1024 2048 2048 4096 4096 8192 8192 8192

8 1024 2048 2048 4096 4096 8192 8192 8192

9 1024 2048 2048 4096 4096 8192 8192 8192

10 1024 2048 2048 4096 4096 8192 8192 8192

11 1024 2048 2048 4096 4096 8192 8192 8192

12 1024 2048 2048 4096 4096 8192 8192 8192

13 1024 2048 2048 4096 4096 8192 8192 8192

14 1024 2048 2048 4096 4096 8192 8192 8192

15 1024 2048 2048 4096 4096 8192 8192 8192

16 1024 2048 2048 4096 4096 8192 8192 8192

Figure 4.4: Vector length look-up table for V16

Several tables similar to figure 4.2 and figure 4.3 were collected for each

VENICE configuration. A set of these tables forms a final look-up table like the

one shown in figure 4.4 for each VENICE configuration. The best vector length

(in number of words) that gives the best performance is listed in the table. The

59

compiler hashes the computation tree into an entry in the table based on its input

size and number of operation nodes.

As can be seen from the table, when the instruction count exceeds a certain

number, the vector length will saturate. Since it is impossible to have a table with

an infinite number of rows, the table stops at 16 as a point where most of the vector

lengths are saturated. Similarly, when the input array exceeds a certain size, the

optimal vector length stops changing. Therefore, a 16×8 table like figure 4.4 is

used for each VENICE configuration. For values that fall outside of the boundaries

in the look-up table, they are simply rounded to the closest value in the table.

Vector lengths are chosen to be power of 2 because these values used most

often in hand-written code. A more fine-grained vector lengths might be beneficial.

However, the look-up tables only serve as references when choosing a vector length

for real applications. Pursuing a perfect optimal point from a synthetic program is

meaningless. In addition, curves in figure 4.3 and figure 4.2 become nearly flat

when they get close to the lowest point, which leaves a wide margin for a vector

length that leads to the near-optimal performance.

Using double-buffering will increase the total number of vector registers be-

cause two vector registers will be assigned to each user input data array.

4.2 Combining Operations

Although Accelerator and VENICE are both designed for operating on data arrays,

the two instruction sets do not match perfectly.

As mentioned in chapter 3, the back-end sometimes has to write a sequence

of code for certain Accelerator APIs. There are also opportunities where VENICE

benefits from combining certain short sequences of simple operators into a single

60

compound VENICE operation. For example, VENICE has an absolute-value unit

following each ALU within the pipeline. Taking an absolute value on the result of

most vector instructions is free. This does not apply to multiplication and shift op-

erations, which take place in the two-cycle multiply ALU. Therefore, the compiler

can take advantage of this feature, and reduce instruction count in order to increase

performance. For example, an Accelerator expression that takes an absolute differ-

ence of parallel array A and scalar value of 1 like:

D = Abs(A - 1);

can be translated into one vector instruction:

vector_abs_2D(SVW, VSUB, VD, 1, VA);

This also applies to accumulate operations as well, since VENICE has a ded-

icated accumulator inside the pipeline. The compiler will walk through all the IR

graphs, find these sequences of operations, and replace them with new VENICE

operations.

Out of the 6 selected benchmarks, motion estimation benefits the most from this

optimization, because it calculates the absolute differences of two image frames. A

total instruction count reduction of 30% is achieved, which saves the execution time

by 32% (a 1.47× speedup) on average across different VENICE configurations.

Table 4.1 shows the performance improvement for motion estimation in detail.

V4 V16 V64
runtime before combine operators (ms) 2.03 0.55 0.30

runtime after combine operators (ms) 1.36 0.37 0.21
speedups 1.49× 1.48× 1.43×

Table 4.1: Performance before and after combining operations for motion es-
timation

61

4.3 Summary

This chapter walks through a few target-specific optimizations made upon the ba-

sic implementation described in chapter 3. Experimental results showed solid evi-

dence on how the selection of vector length affects runtime. It demonstrated that,

for each application, there exists a vector length that achieves optimal performance

based on its input array sizes and the number of operations performed on each array

element. In addition, to take advantage of special function units in the VENICE

architecture, such as the absolute value unit, the compiler makes an additional pass

to combine certain sequences of Accelerator operations into a single VENICE in-

struction. This further improved performance on some of benchmarks. Figure 4.5

summarizes the final compiler flow with all the optimization stages.

62

Figure 4.5: Complete VENICE compiler flow

63

Chapter 5

Experimental Results

This chapter will introduce the benchmarks selected to test the quality of the com-

piler design followed by experimental strategy. Runtime results will be presented

showing that the compiler-generated code achieves performance close-to or better-

than human-optimized assembly. By comparing to execution time on a single Intel

core, VENICE is shown to be competitive with modern processors. Finally, evi-

dence is given to show that the VENICE target delivers better scalability than the

Multi-core target of Accelerator.

5.1 Benchmarks

To measure the quality of the compiler, a set of 6 highly data-parallel benchmarks

are selected to test how well it performs on a variety of applications on both small

and large size SVPs.

64

Benchmark
Name

Description Input Size
(words)

Output Size
(words)

Instruction
Count

Additional Information

fir Finite Impulse Re-
sponse filter

8192 8176 32 Fixed point arithmetic. Consists of
multiply and add operations on 16
shifted variants of a 1D input array.

2D fir Two-dimensional
fir filter

320×240 318×238 18 Fixed point arithmetic. Consists of
multiply and add operations with
tap size of 3x3.

life Conway’s game of
life

256×256 256×256 11 Integer arithmetic. Consists of sum
of values of neighbor grids and
comparison operations. Performs
one iteration on the initial state of
grid.

imgblend Image blend 320×240×2 320×240 4 Fixed point arithmetic. Combines
two images into one by multiplying
different coefficients to the pixels of
two input images.

median Median filter 128×128 124×124 678 Integer arithmetic. Replaces each
pixel of input image with the me-
dian of a 5×5 nearby window. The
median value is calculated using a
bubble sort algorithm.

motest Motion estimation 48×48 32×32 512 Integer arithmetic. Sum of absolute
differences between the input image
and a sample image within a 16×16
2D window.

Table 5.1: Benchmark descriptions

65

Table 5.1 lists the set of benchmarks used for performance evaluation. These

highly data-parallel applications are shown to scale fairly well. The selection of

benchmarks was also influenced by the ease of expressing the computation using

a subset of Accelerator APIs supported by the VENICE target. Other applications

are expected to benefit in the same way.

The benchmarks cover both 1D applications, such as fir, and 2D applications,

such as motest. Some of the benchmarks are memory-bound, such as imgblend,

where others are compute-intensive, such as median. The instruction count col-

umn indicates the number of operations performed on each element of the input

array. Medium input sizes are used for all benchmarks, which provides enough

data parallelism and fast collection of results.

5.2 Experimental Strategy

In order to demonstrate the validity, effectiveness and efficiency of the compiler,

experiments are designed in order to answer the following questions:

1. Is the generated code correct?

2. Is the generated code of good quality?

3. How well does the performance scale over SVPs with different sizes?

4. How much overhead does the compiler introduce?

To answer these questions, all the benchmarks are coded in both Accelerator

and native VENICE assembly. The assembly code is carefully optimized for per-

formance following the principles described in Chapter 2. During the result col-

lecting stage, some of the hand-written benchmarks were found to be much slower

66

than the compiler-generated ones. In these cases, they were re-written to get better

performance. Both compiler-generated code and human-optimized assembly are

run on VENICE with 4 different configurations – V1, V4, V16, and V64. The

number after V means the number of ALUs instantiated in the vector engine. This

also affects the size of scratchpad memory, since a fixed 8KB of memory is as-

signed to each vector lane. V64 is an exception with only 4KB memory available

for each vector lane. This is due to the limited on-chip memory in the Stratix III

FPGA used by this work. Due to a shortage of DSP blocks, V64 is also modified

to fit in a DE3 system by removing 8-bit and 16-bit multiply support; Accelerator

does not support these modes either.

The execution time for human-optimized assembly and compiler-generated

code are compared side by side to see if the compiler could intelligently translate

Accelerator code into VENICE assembly. Performance of the same benchmark

running on VENICE with a different number of ALUs also tests if the compiler

can generate scalable code.

The scalability of the code generated by the VENICE back-end is also com-

pared to performance of Accelerator’s Multi-core target. Ideally, the experiments

should show the scaling speedups from the Multi-core target when it uses a differ-

ent number of CPUs on the same machine. However, since Accelerator is designed

to completely hide hardware information from the user, it is impossible to directly

control resource usage. The Multi-core target always uses all resources available in

the hardware. Instead, the VirtualBox hypervisor is used. Varying hardware con-

figurations for the multi-core device is accomplished by assigning different number

of processors to the virtual machine.

67

Due to the inseparable JIT time and relatively high JIT overhead of the Multi-

core target, larger input arrays are used for multi-core execution. Since only scala-

bility is being compared, the change of input sizes should not affect the validity of

the results. The Multi-core target always generates SSE3-compliant code, which

mostly works with single-precision floating-point data. This lack of efficient inte-

ger arithmetic in SSE3 forces the Multi-core target to unpack values already loaded

to the SSE registers and send them to general purpose registers. The unpacking oc-

curred in almost every operation, which becomes a huge overhead. To avoid this

drawback, the benchmarks are re-written to use float data type for the Multi-core

target. This change of data type is considered to be harmless since float and inte-

ger types are of the same size (4 bytes), which puts the same burden on memory

accesses.

However, floating-point arithmetic is not supported by VENICE. Also because

Accelerator does not support the byte or short data types, integer is used as a unified

data type for all benchmarks in VENICE assembly and the VENICE Accelerator

back-end.

The best runtime results of VENICE produced by the compiler-generated code

are selected to compare to an Intel CPU to show that even running at a low fre-

quency, VENICE can be competitive with a modern CPU running at a much higher

frequency.

Each benchmark self-verifies the results of vector execution against a simple,

optimized sequential C solution. This sequential C code is used for both the single-

core Intel CPU and the Nios II execution baseline.

All soft processor results are measured by running the benchmarks on an Al-

tera DE3-150 development system with a Nios II/f processor running at 200MHz.

68

The Nios II/f processor is configured to use a 4kB instruction cache and a 4kB

data cache. All vector engines run at a fixed clock rate of 100MHz. (Small size

SVPs like V4 can run at a much higher frequency, but the maximum frequency

drops quickly when the vector engine increases to 64 lanes.) Single-CPU results

are derived from an Intel Xeon E5540 running at 2.53GHz. The Multi-core target

is tested on two machines. One is the same Intel Xeon machine used for sequential

execution. This Intel machine has 4 cores and 8MB cache; VirtualBox is config-

ured to use 16GB of memory. The other one is an AMD Opteron 6128 machine

with a total of 32 cores, each running at 2GHz. There is only a 512KB cache on

the AMD machine. The 32 cores are distributed among 4 sockets with 8 cores per

socket; 16GB of memory is assigned to the VirtualBox on AMD as well.

5.3 Results

5.3.1 Execution Time

Speedups for different VENICE configurations – V1, V4, V16, and V64, over the

serial Nios II/f implementation are shown in figure 5.1. All VENICE results are

a minimum runtime of 10 consecutive runs. For both hand-written and compiler-

generated code, only the part related to vector execution from allocating memories

in the scratchpad, until all scratchpad memory is freed, is timed. Time for code

generation and initialization of input arrays is not included.

Table 5.2 is a detailed listing of speedups of compiler-generated code versus

hand-written code on the 4 VENICE configurations. As shown, the compiler-

generated code out-performs the manually-written code in most cases. This is

because Accelerator puts more effort into the optimizing process than a human:

69

Figure 5.1: Speedups over Nios II implementation for compiler generated
code and hand-written code

fir 2Dfir life imgblend median motest geomean
V1 1.04 0.97 1.01 1.00 0.99 0.82 0.97
V4 1.01 1.12 1.10 1.02 1.07 1.01 1.05

V16 1.09 1.12 1.38 0.90 0.96 1.01 1.07
V64 1.30 1.42 2.24 0.92 0.81 1.04 1.22

Table 5.2: Speedups of compiler generated over hand-written code

1. Accelerator fully unrolls inner loops to reduce loop overhead;

2. Accelerator carefully chooses the vector length by a profiled look-up table

rather than conservatively rounding down or guessing;

3. Accelerator always double-buffers data transfers when necessary;

4. Accelerator inlines all function calls to avoid function call overhead.

The fastest, life, achieves 370× speedup compared to a Nios II/f, and a 2.24×

70

speedup compared to the hand-written code on V64. However, humans can some-

times do far better than the compiler: motion estimation can achieve another 1.5×

speedup if the VENICE accumulator is used in a clever way, where the compiler

cannot do so automatically.

1 input_type *v_min = v_input1;
2 input_type *v_max = v_input2;
3 // copy min values to tmp
4 vector(VVW, VOR, v_tmp, v_min, v_min);
5 // v_sub flags are set if max<min
6 vector(VVW, VSUB, v_sub, v_max, v_min);
7 // cond. move, min = (max<min)?max:min;
8 vector(VVW, VCMV_LTZ, v_min, v_max, v_sub);
9 // cond. move, max = (max<min)?min:max;
10 vector(VVW, VCMV_LTZ, v_max, v_tmp, v_sub);

Figure 5.2: Hand-written compare and swap

1 vector(VVW, VSUB, v_tmp, v_input1, v_input2);
2 vector(VVW, VCMV_GTEZ, v_min, v_input2, v_tmp);
3 vector(VVW, VCMV_LTZ, v_min, v_input1, v_tmp);
4 vector(VVW, VCMV_GTEZ, v_max, v_input1, v_tmp);
5 vector(VVW, VCMV_LTZ, v_max, v_input2, v_tmp);

Figure 5.3: Compiler generated compare and swap

The one benchmark that falls short of performance on compiler-generated code

is median, which only yields in 0.81× performance of the hand-written code

on V64. This is mainly because of the difference between hand-written code

and generated code for the compare-and-swap operation sequence. Figure 5.2

and figure 5.3 present the hand-written code and compiler-generated code for the

compare-and-swap, respectively. The hand-written code intelligently re-uses data

buffers and results in just 4 instructions instead of 5 produced by the compiler. This

difference also leads to a demand for 39 buffers for the compiler-generated code,

71

which are 12 more than the human-written program. Since median filter uses a bub-

ble sort algorithm, almost all the vector instructions are doing compare-and-swap.

This leads to an almost 25% instruction count increase in total for the compiler-

generated code, which is almost exactly the amount of performance degradation

seen in median on V64.

Table 5.3 compares runtime results of the VENICE compiler (not human) to

a single-core 2.5GHz Intel Xeon E5540 processor compiled with Visual Studio

2010 with -O2 optimization. Each benchmark kernel is run 1000 times for the

Intel execution, and average runtime is reported. Interestingly, VENICE is able

to beat the Intel CPU on 4 of the 6 benchmarks. Intel beats VENICE only on

imgblend, which is memory bandwidth limited.

CPU fir 2Dfir life imgblend median motest
Xeon-E5540 0.07 0.44 0.53 0.12 9.97 0.24

VENICE V64 0.07 0.29 0.23 0.33 2.50 0.15
Speedup 1.0× 1.5× 2.3× 0.4× 4.0× 1.6×

Table 5.3: VENICE and single-CPU runtimes (ms) and speedups of VENICE
vs. single CPU

Most of these benchmarks do not need to use 32-bit integers. Using a smaller

data type in VENICE gives better performance, because each 32-bit ALU can be

fractured into four 8-bit or two 16-bit ALUs. Table 5.4 listed the actual data type

originally used for each benchmark. To demonstrate the performance impact of

using smaller data types, the hand-written code is modified to express the same

benchmark in possible smaller data types. Input sizes (number of elements) are

kept the same with the ones in table 5.1. When using smaller data types, vector

lengths can also scale to a larger value.

72

In table 5.5, the three benchmarks operate on bytes are listed, along with

speedups over using word integer types on V1, V4, and V16.1 An up to 4× speedup

is achieved. In table 5.6, the two benchmarks that operate on half words are shown,

along with speedups over word integer types on V1, V4, and V16. Speedups of up

to 2× are shown. Unfortunately, these data types cannot be expressed in Accelera-

tor to get better performance. It is desirable for Accelerator to support custom data

types.

fir 2Dfir life imgblend median motest
byte half word byte half word byte word

Table 5.4: Benchmarks’ natural data types

fir life median geomean
V1 3.93 4.36 4.07 4.12
V4 3.54 3.83 4.03 3.79

V16 2.90 3.22 4.00 3.34

Table 5.5: Speedups for benchmarks operating on byte vs. word

2d fir imgblend geomean
V1 1.96 1.54 1.74
V4 2.00 1.46 1.71

V16 1.97 1.83 1.90

Table 5.6: Speedups for benchmarks operating on half word vs. word

5.3.2 Scalability

Figure 5.4 and figure 5.5 show how the Accelerator Multi-core target scales across

32 CPUs on an AMD machine and 4 CPUs on an Intel machine, respectively.

1V64 is not used because support for 8-bit and 16-bit multiply was removed.

73

Figure 5.4: Scaling performance of the Accelerator multi-core target on
AMD Opteron

Larger input sizes are used for multi-core execution due to processors’ much higher

frequency than VENICE. Table 5.7 lists the two sets of inputs used for multi-core

and VENICE execution. Figure 5.6 shows how VENICE target scales over a set of

VENICE configurations using 1, 4, 16, and 64 ALUs. In all figures, the dotted line

shows linear scaling performance for all cases.

For VENICE, V1 is used as baseline in figure 5.6, because the scalar Nios II

execution suffers from loop overhead and cache misses; VENICE directly operates

on scratchpad memory with Nios II handling all loop bounds in parallel. Results

in figure 5.1 indicate that V1 is up to 9× faster than Nios II alone.

On the AMD machine, there is no performance gain when using more than 4

cores for the benchmark imgblend, and performance stops scaling beyond 8 cores

74

Figure 5.5: Scaling performance of the Accelerator multi-core target on Intel
Xeon

fir 2d fir life imgblend median motest
Input size for
Multi-core (million
words)

481.92 1105.92 67.11 768 67.11 1.92

Input size for
VENICE (words)

8192 76800 65536 76800 16384 1024

Table 5.7: Input sizes used for Multi-core and VENICE execution

for benchmarks fir and 2D fir. The life benchmark also starts to slow down beyond

16 cores. The benchmark median suffers from significant slow-down on the AMD

machine, and it is omitted from figure 5.4 due to being too far away from all the

other curves. Only motest shows continuing speedups at 32 cores. However, there

is significant overhead introduced by the Multi-core target. Curves for most of the

benchmarks always keep a distance from the linear scaling line. Performance on

the Intel machine delivers similar messages. Median has better performance on

75

Figure 5.6: Scaling performance of the Accelerator VENICE target

the Intel machine, and is shown in figure 5.5. However, it keeps slowing down

when using more cores. On the other hand, the VENICE scales near-perfectly

up to 64 ALUs for most of the benchmarks. Only imgblend, which is memory-

bound, saturates early. Some of the benchmarks show super-linear speedups in

figure 5.6. This is because a larger VENICE configuration has a larger scratchpad

memory capacity, allowing near-optimal vector length being used. For example,

2D-fir requires 4 vector registers; with a scratchpad capacity of 4KB on a V1, only

256 words can be assigned to each one. However, in the profiled look-up table, a

vector length of 512 words is desired to get optimal performance. When executing

on a V4, 1024 words are available for each vector register, which is the desired

vector length.

76

5.3.3 Compile Time

All reported benchmark runtimes for VENICE in previous sections are kernel run-

times, while runtimes for the Multi-core target include the JIT time. This is an

unfair comparison due to the omitted VENICE compile time. Compile time here

refers to the time for running the Accelerator VENICE target to generate the output

C file. Table 5.8 records the compile time of all benchmarks.

The compile time is mostly determined by the complexity of the expression

graph, since the compiler walks the IR graphs several times to do conversions and

optimizations. Most of the benchmarks have a relatively simple expression graph

except for median, which consists of 678 operation nodes and 39 IR graphs in total.

For applications with small input sizes, the compile time could kill the perfor-

mance gained by VENICE parallelism. However, for large input sizes, compile

time will stay the same as it is independent from input data sizes. In this case, the

compile time will have a much smaller impact on performance. When applying

the same large input sizes used for multi-core execution, the compile times only

take about 17% of the total execution times on average. Total execution time is a

combination of compile time and kernel runtime. Furthermore, the compiler imple-

mentation could be optimized in many places to achieve a reduced compile time.

This is listed as a future work in the next chapter.

fir 2Dfir life img median motest geomean
4.7 5.1 4.5 4.4 92.7 24.3 10.1

Table 5.8: VENICE target compile time (ms)

Due to the lack of code access, compile time of the VENICE target cannot be

compared to JIT time for the Accelerator Multi-core target. It is mentioned in [22]

77

that overhead of Accelerator system does not impose a noticeable cost in execution

time.

5.4 Summary

This chapter reported some experimental results. Comparisons between runtimes

of hand-crafted code and compiler-generated code on VENICE show that the com-

piler is able to generate code with high quality that delivers performance close-to or

better-than hand-written code. The improved performance using a smaller integer

data type for some of the benchmarks demonstrates the further potential benefits

of supporting these data types in Accelerator. Speedups of the VENICE target ver-

sus a sequential implementation on an Intel single-core CPU show that VENICE

is competitive with modern processor architectures. The VENICE compiler also

deliver near-linear scaling up to 64 ALUs, where the performance of the Acceler-

ator Multi-core target stops scaling at a much earlier point on 5 of 6 benchmarks.

Compile time of the VENICE back-end is also reported. It could be larger than

the vector execution time for small applications. However, it does not impose sig-

nificant overhead on applications with much larger input sizes. In addition, the

compile time can be reduced by optimizing the compiler implementation.

78

Chapter 6

Future Work

In this chapter, some notable limitations of this work are enumerated. They are

caused by the Accelerator framework, or by VENICE architecture restrictions, or

by prioritizing implementation tasks within limited time. Ideas on further improv-

ing the system are also presented.

6.1 Limitations

Some of the compiler design limitations were mentioned in chapter 3. More will

be discussed in different aspects with more detail in this section.

6.1.1 Accelerator

Unlike a self-developed language and compiler co-design approach, the already-in-

the-market Microsoft Accelerator is used as high-level model, and supports plug-

gable 3rd-party back-ends. It greatly saves time for development. However, during

the process of the compiler implementation, the compiler design was held back by

several restrictions introduced by Accelerator APIs and its built-in front-end.

79

First, the CSE algorithm inside the Accelerator front-end can not be modified.

Benchmark code uses the Evaluate() API as a work-around to force breaking up

the IR graph. The user should not be aware of this limitation and be forced to alter

their programs.

Second, it is desirable for Accelerator to support extensible APIs and data

types. Custom APIs were listed as an upcoming feature of Accelerator in [28].

Due to the mismatched instruction set design between Accelerator and VENICE,

functionalities of VENICE are not fully utilized. All of the logic operations such

as bit-level AND, OR, XOR, SHIFT and ROTATE are completely missing from

the Accelerator APIs. These are very important for VENICE, which works mainly

on integer and fixed-point arithmetic.

As shown in chapter 5, smaller data types that take advantage of the fracturable

ALUs in VENICE can achieve another 2-4× performance boost. This is one of

the key assets of the VENICE architecture. Unfortunately, the compiler could not

offer these performance advantages. Also, there is no unsigned integer type in

Accelerator. This might affect applications that can be expressed in smaller data

types. Support for these new data types is mentioned in [28] as a potential future

work for Accelerator.

Another issue with data types was also found during the result collecting pro-

cess. The Accelerator Multi-core target produces SSE3-compliant instructions.

However, due to lack of integer support in SSE3, all integers have to be unpacked

and moved to General Purpose Registers (GPRS) from the packed 128-bit SSE reg-

isters to perform the operations. This unpacking and moving process hinders the

Multi-core target from getting any speedups over a single-CPU implementation on

integer applications. Floating point is used instead, resulting in a slightly longer

80

runtime than integer (less than 15% increase in runtime). The Accelerator Multi-

core target should be able to detect existence of SSE4.1 or SSE4.2 support on the

fly, and take the advantage of additional integer support in SSE4.1 and SSE4.2.

Third, due to the inseparability of JIT time from algorithm run-time in the

Multi-core target, the Multi-core target performance could not be deeply analyzed.

Supporting a pre-compilation mode, which separates the JIT-ing phase from exe-

cution, will be a nice feature for developers and researchers.

Fourth, since Accelerator is mainly used internally within Microsoft Research,

only an external release of the CUDA target is available, and there were troubles

collecting CUDA target results due to some technical issues. It will be interesting to

see the CUDA target performance since it is more similar to the FPGA architecture

with a separate device memory from the host memory.

Fifth, Accelerator is designed to completely hide hardware details from pro-

grammers, and target diverse platforms with portable code. This restricts the user

from managing any hardware resources. With Accelerator always using all avail-

able resources, it is impossible to directly test the scalability of the Multi-core

target. Instead, a virtual machine is used to control the resources that are exposed

to Accelerator. However, the virtual machine adds overhead to the thread man-

agement, and degrades the Multi-core performance. This overhead can be avoided

if Accelerator provides user-level control over the amount of hardware resources

used. Since the number of threads used by the CUDA target is also not controllable,

no further effort was made on getting the CUDA target to work.

81

6.1.2 VENICE

The VENICE architecture is still an on-going research project being developed

at the SoC lab in The University of British Columbia. The limitations described

below are under consideration to be improved for future generations.

Many compute-intensive applications require floating-point units for greater

dynamic range, but VENICE was designed to be area efficient and could not afford

a resource-expensive FPU for each vector lane. This prevented us from supporting

any floating-point in the Accelerator APIs, e.g., Log(), Sin(), and Cos(). These

operations can be found in many compute-intensive financial applications.

The support for scatter/gather operations in VENICE is still at the early ex-

perimental stage. Effective scatter/gather execution is usually needed, particularly

for doing data conversion (e.g., converging bytes to words) and for rearranging

data (e.g., de-interleaving r,g,b triplets). A lookup-table instruction is also needed

to assist with gathering data. These special memory access operations combined

together would enable VENICE to perform algorithms such as histograms and sort-

ing.

6.1.3 Compiler Design

Currently, only a subset of the complete Accelerator Instruction Set Architecture

(ISA) is supported. Part of this is due to lack of an FPU in VENICE. Also due to

time constraints of the project, some rarely used APIs are omitted from this work.

Therefore, supporting these APIs would make this work more complete.

Another drawback of the design is how memory transformations were handled.

It is mentioned in chapter 3 that out-of-bound memory accesses are handled by

extending the original array with appropriate values during initializaion. Extra

82

memory will also be allocated to these input arrays in the scratchpad. However,

the padding could be expensive. For example, if an 4×4 input array is shifted up

and down by 3 rows, the padding nearly triples the memory allocated to this input

array as shown in figure 6.1. With double buffering, a total of 4× 10× 2 words

of memory needs to be assigned to this input. For a much larger array, this cost

can increase dramatically. Therefore, a mechanism is needed to detect such cases

when padding might hinder the performance by taking too much on-chip memory,

and handle the memory transform differently.

Figure 6.1: Accelerator compiler flow

As mentioned in chapter 3, when partitioning the scratchpad memory, the

scratchpad is considered to have an infinite number of vector registers. As the

register count goes up, the compiler simply reduces the size of each one. There-

fore, the entire computation can be performed upon one segment of the input array,

which produces a segment of the final result. This saves the overhead of transfer-

ring temporary results back to main memory and loading to the scratchpad again

83

later. However, if the number of vector registers required by an application is ex-

ceptionally high, resulting in a vector length even shorter than the total lane width

of the vector engine, the situation should be handled by spilling partial results back

to main memory to maintain a reasonable level of data parallelism.

Details on how to decide the vector length according to a profiled look-up table

for each VENICE configuration are presented in chapter 4. Vector lengths selec-

tions are set to powers of 2, ranging from 512 words to the maximum value that

allows double buffering within scratchpad capacity. This only gives a near-optimal

solution; performance might be slightly improved by using sizes with finer granu-

larity.

Due to the time limit of this work, the compile time reported in chapter 5 can

take up to as much as the vector execution time on applications with small data

sizes. The compile time may be further reduced to have minimal performance

impact. Right now, the back-end does several walk-down passes to the IR and LIR

graphs for different optimization purposes or different steps of code generation.

Some of this can be eliminated if the Accelerator front-end code is accessable, e.g.

there is another round of constant folding in the back-end, which is repeated work

from the front-end. Some of this can be combined into one pass and thus save

compile time.

Although implemented in C++, Accelerator targets usually support multiple

primitive languages such as C++, C#, F#, and Fortran. One future work should

also be adding a wrapper for other languages besides the native C++.

84

6.1.4 Evaluation Methodology

When selecting benchmarks for this work, [5] is used as a reference. These bench-

marks provide an easy comparison of hand-written assembly between the old ar-

chitecture and the new one. In addition, some of this code is ready to use with

minor modifications. However, some of the benchmarks were omitted either due

to poor scalability, the requirement for small integer data types, or complicated

dimension changes and memory accesses that are hard to express in Accelerator.

Benchmarks in [22] and [29] are also taken into consideration, and the ones that

do not require floating-point operations are selected as well. However, the entire

benchmarks suite still does not cover enough diversity.

Most restrictions come from the existing Accelerator APIs and the off-line ap-

proach taken by the VENICE back-end. With custom data types and custom API

support by Accelerator, there will be more integer based or fixed-point compat-

ible applications that can be efficiently expressed in Accelerator. An FPU and

scatter/gather support by VENICE will open the door to an increased number of

compute-intensive applications.

A set of configurations of VENICE is selected for this work, which are V1, V4,

V16, and V64. In these configurations, a unified DMA queue length of 1 and a uni-

fied instruction queue length of 4 are used. However, these queues are configurable

components. Although configuring these components differently should not have

significant impact on performance, a detailed investigation should be conducted to

verify this theory. The commercial version of VENICE, which has an improved

hazard detection system, might also give more competitive results.

The VENICE system runs on a Stratix III FPGA on a DE3-150 board. The

85

limited on-chip memory and multiplier blocks forced us to use a modified version

of V64 with all 8-bit and 16-bit multipliers removed, and a reduced memory per

vector lane. Conducting experiments on a complete V64 with a larger FPGA might

provide more precise performance. Furthermore, it would be exciting to see if the

compiler can deliver continuous scaling performance beyond V64.

6.2 Ideas

6.2.1 JIT mode

The off-line approach taken by the VENICE target imposes some restrictions on

the compiler. A JIT mode for VENICE target would be really useful for further

extending the usability of the system. The JIT mode could enable analyzing loop

bounds on the fly, which the VENICE target is unable to do. This strikes out the

opportunity for implementing certain benchmarks. In addition, there is no direct

access to the host memory space in the off-line mode. This forces the VENICE

target to spend long time copying user data into the generated code.

Unlike the FPGA target, VENICE does not require a lengthy place-and-route

process for each run. The generated code only needs to be compiled by gcc and

downloaded to an FPGA board. This secondary compilation time and downloading

time is acceptable for a JIT mode. However, challenges remain with the difficulty

of reading and writing from and to the FPGA board. A standard for transferring

data on and off FPGA would be an ideal solution. Basic support for a file system

in Nios II will also be a solution.

86

6.2.2 Instruction Scheduling

It is mentioned in chapter 4 that data dependencies can produce pipeline bubbles

between vector instructions. With a relatively long vector length, this effect can

be minimized. However, when an application requires a large number of vector

registers forcing a small vector length, the instruction order might be transformed

by the compiler to greatly improve performance.

For example, when using a V64 with a VL of 64, each vector instruction could

be completed within 1 cycle. If there is data dependency holding up the next in-

struction, a 5 cycle bubble will be introduced after each instruction, resulting in

almost 6× more execution time.

6.3 Summary

Many possible limitations of this work were thoroughly considered in this chapter.

The lack of support for custom APIs and data types of the Accelerator framework

restricted some of the benchmarks from getting better performance. The bench-

mark suite could be enlarged with support of custom APIs. Some developing fea-

tures of VENICE could further widen the application range. The compiler design

suffers from some drawbacks as well, such as imcomplete support of entire Accel-

erator ISA and handling extreme cases. More aggressive ideas on the project, such

as supporting a JIT mode, and instruction scheduling to remove data dependencies

were discussed as well.

With all these limitations for Accelerator, VENICE architecture, and compiler

design resolved, more applications will be able to benefit from the system.

87

Chapter 7

Conclusions

This work presents a compiler design for the VENICE soft vector processor. It

translates Accelerator, which is a high-level abstract language, into the native as-

sembly of VENICE. The entire design is embedded inside the Microsoft Accelera-

tor system, serving as a new back-end target in addition to the existing Multi-core,

DX9, CUDA, and FPGA targets.

The compiler design greatly improves the programming and debugging expe-

rience for VENICE. The user can write simple expressions in Accelerator without

learning about architecture details of VENICE, and debug with Visual Studio de-

bugger instead of writing print statements required by assembly debugging.

One of the major challenges in compiler design is to efficiently manage the

scratchpad memory in VENICE, because the scratchpad can be divided into an ar-

bitrary number of vectors with arbitrary sizes. To simplify this task, the scratchpad

memory is treated as a ‘virtual vector registerfile’. The number of vector regis-

ters and their sizes are dynamically decided by the compiler. Each application

is presented as a computation tree internally. First, the back-end compiler uses

88

a modified version of Appel’s generalization of Sethi-Ullman’s algorithm to ob-

tain an optimal evaluation order of computation trees. Then, a reference-counting

method is adopted to precisely calculate the number of vector registers needed. To

further improve performance, the compiler takes a profiling approach to obtain an

optimal vector length for each application characterized according to its number

of instructions and input sizes. These vector lengths form a look-up table, which

is then referenced by the compiler to decide the vector register size to use. When

generating code, the compiler also applies a double-buffering technique to hide

memory latencies.

With all of these optimizations, the compiler can generate high-quality code

with comparable performance to human-optimized programs. Experimental results

show that compiler-generated code for VENICE can achieve speedups over 370×

using Nios II/f as a baseline, and speedups up to 2.24× versus the human-optimized

assembly. In addition, the compiler-generated code executing on VENICE operat-

ing at 100MHz is up to 3.s× faster than C code running on a 2.53GHz Intel Xeon

E5540. Compared to limited scalability of the Multi-core target of Accelerator, the

VENICE back-end delivers an almost linear scaling from 1 to 64 ALUs on 5 of 6

selected benchmarks.

Microsoft Accelerator is an excellent choice as a basis for developing a vec-

torizing back-end code generator. It provides an easy-to-use user interface and an

easy-to-extend developer interface. This work has demonstrated that systems like

Accelerator could be a sustainable solution for emerging architectures.

Limitations are discovered on both the software and hardware sides that would

be good to address with future work. These are extensively discussed in chapter 6.

For VENICE, most benchmarks are done with fixed-point arithmetic; the addi-

89

tion of floating-point would greatly expand the application base. Also, support for

irregular memory access is needed.

For Accelerator, the compiler implementation was held back by lack of support

for custom APIs and data types. Limited code access to the front-end also forces

repeated work in the back-end and increases the compiler runtime.

For the back-end implementation, future work includes finishing support for

the rarely-used Accelerator APIs that were omitted, adding support for primitive

languages other than C++, and reducing compiler runtime. Also, the benchmark

suite and methodology need to be expanded. A JIT mode for the VENICE target

can be a more aggressive goal to further improve the system.

90

Bibliography

[1] Z. Liu, A. Severance, S. Singh, and G. G. Lemieux, “Accelerator compiler
for the venice vector processor,” in Proceedings of the ACM/SIGDA
international symposium on Field Programmable Gate Arrays, ser. FPGA
’12. New York, NY, USA: ACM, 2012, pp. 229–232. [Online]. Available:
http://doi.acm.org/10.1145/2145694.2145732

[2] A. Severance and G. G. F. Lemieux, “VENICE: a compact vector processor
for FPGA applications,” 2011. [Online]. Available:
http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.
student-posters/HC23.19.p20-VENICE-Severence-UBC.pdf

[3] J. Yu, G. Lemieux, and C. Eagleston, “Vector processing as a soft-core CPU
accelerator,” in FPGA, Monterey, California, USA, 2008, pp. 222–232.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1344704

[4] J. Yu, C. Eagleston, C. H. Chou, M. Perreault, and G. Lemieux, “Vector
processing as a soft processor accelerator,” ACM TRETS, vol. 2, no. 2, pp.
1–34, 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1534916.1534922

[5] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and G. G. Lemieux,
“VEGAS: soft vector processor with scratchpad memory,” in Proceedings of
the 19th ACM/SIGDA international symposium on Field programmable gate
arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 15–24.
[Online]. Available: http://doi.acm.org/10.1145/1950413.1950420

[6] R. M. Russell, “The cray-1 computer system,” Commun. ACM, vol. 21,
no. 1, pp. 63–72, Jan. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359327.359336

[7] T. Zeiser, G. Hager, and G. Wellein, “The world’s fastest cpu and smp node:
Some performance results from the nec sx-9,” in Proceedings of the 2009

91

IEEE International Symposium on Parallel&Distributed Processing, ser.
IPDPS ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
1–8. [Online]. Available: http://dx.doi.org/10.1109/IPDPS.2009.5161089

[8] C. E. Kozyrakis and D. A. Patterson, “Scalable vector processors for
embedded systems,” IEEE Micro, vol. 23, no. 6, pp. 36–45, Nov. 2003.
[Online]. Available: http://dx.doi.org/10.1109/MM.2003.1261385

[9] “VESPA: portable, scalable, and flexible FPGA-based vector processors.”
[Online]. Available: http://portal.acm.org/citation.cfm?id=1450107

[10] P. Yiannacouras, J. G. Steffan, and J. Rose, “Data parallel FPGA workloads:
Software versus hardware,” in FPL, Progue, Czech Republic, 2009, pp.
51–58.

[11] S. Williams, “Preliminary analysis of vcc c/c++ compiler for viram.”

[12] D. Judd, K. A. Yelick, C. E. Kozyrakis, D. Martin, and D. A. Patterson,
“Exploiting on-chip memory bandwidth in the viram compiler,” in Revised
Papers from the Second International Workshop on Intelligent Memory
Systems, ser. IMS ’00. London, UK, UK: Springer-Verlag, 2001, pp.
122–134. [Online]. Available:
http://dl.acm.org/citation.cfm?id=648002.743085

[13] C. J. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. D. Toit, Z. G.
Wang, Z. H. Du, Y. Chen, G. Wu, P. Guo, Z. Liu, and D. Zhang, “Intel’s
array building blocks: A retargetable, dynamic compiler and embedded
language,” in Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, ser. CGO ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 224–235.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2190025.2190069

[14] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah, “Lime: a
java-compatible and synthesizable language for heterogeneous
architectures,” SIGPLAN Not., vol. 45, no. 10, pp. 89–108, Oct. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1932682.1869469

[15] C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink, “Compiling a
high-level language for gpus: (via language support for architectures and
compilers),” SIGPLAN Not., vol. 47, no. 6, pp. 1–12, Jun. 2012. [Online].
Available: http://doi.acm.org/10.1145/2345156.2254066

92

[16] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A language for
streaming applications,” in Proceedings of the 11th International Conference
on Compiler Construction, ser. CC ’02. London, UK, UK:
Springer-Verlag, 2002, pp. 179–196. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647478.727935

[17] T. Han and T. Abdelrahman, “hicuda: High-level gpgpu programming,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 22, no. 1, pp.
78 –90, jan. 2011.

[18] D. Cunningham, R. Bordawekar, and V. Saraswat, “Gpu programming in a
high level language: compiling x10 to cuda,” in Proceedings of the 2011
ACM SIGPLAN X10 Workshop, ser. X10 ’11. New York, NY, USA: ACM,
2011, pp. 8:1–8:10. [Online]. Available:
http://doi.acm.org/10.1145/2212736.2212744

[19] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke, “Sponge:
portable stream programming on graphics engines,” SIGPLAN Not., vol. 46,
no. 3, pp. 381–392, Mar. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1961296.1950409

[20] “Accelerator,” http://research.microsoft.org/en-us/projects/accelerator.

[21] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: Using data parallelism to
program gpus for general-purpose uses,” in ASPLOS, San Jose, California,
USA, 2006, pp. 325–355. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1168898

[22] B. Bond, K. Hammil, L. Litchev, and S. Singh, “FPGA circuit synthesis of
accelerator data-parallel programs,” in FCCM, Charlotte, North Carolina,
USA, 2010, pp. 167–170. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5474053

[23] Accelerator Team, “Microsoft accelerator target implementors’ guide,” 2010.

[24] r. sethi and j. d. ullman, “The generation of optimal code for arithmetic
expressions,” j. acm, vol. 17, no. 4, pp. 715–728, Oct. 1970. [Online].
Available: http://doi.acm.org/10.1145/321607.321620

[25] A. Appel and K. J. Supowit, “Generalizations of the sethi-ullman algorithm
for register allocation,” Software – Practice and Experience, vol. 17, pp.
417–421, 1987.

93

[26] L. Li, L. Gao, and J. Xue, “Memory coloring: A compiler approach for
scratchpad memory management,” in PACT, Sydney, Australia, 2005, pp.
329–338. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1515604

[27] B. Egger, J. Lee, and H. Shin, “Scratchpad memory management for
portable systems with a memory management unit,” in PACT, Seoul, Korea,
2006, pp. 321–330. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1176933

[28] Accelerator Team, “An introduction to microsoft accelerator v2,” 2011.

[29] B. Bond, A. Davidson, L. Litchev, and S. Singh, “From SMPs to FPGAs:
multi-target data-parallel programming,” 2010. [Online]. Available:
http://www.cs.bham.ac.uk/~drg/cuda/satnam.pdf

94

