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Abstract

Overlay architectures are programmable logic systems that are compiled on

top of a traditional FPGA. These architectures give designers flexibility,

and have a number of benefits, such as being designed or optimized for spe-

cific application domains, making it easier or more efficient to implement

solutions, being independent of platform, allowing the ability to do partial

reconfiguration regardless of the underlying architecture, and allowing com-

pilation without using vendor tools, in some cases with fully open source

tool chains.

This thesis describes the implementation of two FPGA overlay archi-

tectures, ZUMA and CARBON. These overlay implementations include op-

timizations to reduce area and increase speed which may be applicable to

many other FPGAs and also ASIC systems. ZUMA is a fine-grain over-

lay which resembles a modern commercial FPGA, and is compatible with

the VTR open source compilation tools. The implementation includes a

number of novel features tailored to efficient FPGA implementation, includ-

ing the utilization of reprogrammable LUTRAMs, a novel two-stage local

routing crossbar, and an area efficient configuration controller. CARBON
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is a coarse-grain, time-multiplexed architecture, that directly implements

the coarse-grain portion of the MALIBU architecture. MALIBU is a hy-

brid fine-grain and coarse-grain FPGA architecture that can be built using

the combination of both CARBON and ZUMA, but this thesis focuses on

their individual implementations. Time-multiplexing in CARBON greatly

reduces performance, so it is vital to be optimized for delay. To push the

speed of CARBON beyond the normal bound predicted by static timing

analysis tools, this thesis has applied the Razor dynamic timing error tol-

erance system inside CARBON. This can dynamically push the clock fre-

quency yet maintain correct operation. This required developing an exten-

sion of the Razor system from its original 1D feed-forward pipeline to a 2D

bidirectional pipeline. Together the ZUMA and CARBON implementations

demonstrate new types of area and delay enhancements being applied to

FPGA overlays.
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Preface

[1] A. Brant and G. Lemieux. ZUMA: An Open FPGA Overlay Architec-
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Machines, April 2012.
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Chapter 1

Introduction

1.1 Motivation

The logic capacity of modern FPGAs continues to grow with advances in

fabrication processes. This growth presents a number of challenges in the de-

sign and application of FPGA technologies. Increasing problem sizes lead to

higher CAD runtimes which can impede designer productivity and lower the

quality of results. Larger capacities also allow many new applications, from

replacing highly parallel and word oriented software, to emulating ASIC de-

signs in prototyping stages, which must be considered when designing FPGA

architecture and tools. The structure of the word oriented circuits is lost

when compiling down to the FPGA resources, increasing FPGA compile

times. The flexibility needed to meet all demands of these designs entails

compromise.

Due to their complexity and cost, FPGA devices themselves are imple-

mented only by a few large companies. Hence, access to low-level details
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about commercial FPGAs is often limited or simply unavailable. There

have been calls for a completely open and portable tool flow that allows

true portability of designs across all FPGA devices offered by major ven-

dors. This would enable third parties to develop very powerful high-level

tools that offer significant gains in productivity and yet can still be efficiently

mapped to FPGAs. However, the highly optimized and complex structures

in modern FPGAs cannot always be exposed to end users, making creation

of such tools difficult.

FPGA overlays are designs loaded into an FPGA that are themselves

configurable yet highly optimized for particular problem domains. They

can range from simple processors to highly configurable logic arrays. Some

advantages of overlays are the ability to use open source tools that enable

new features such as lightweight compilation; productivity gains obtained

from using pre-optimized structures; and the ability to draw new users to

FPGAs who find their current complexity too daunting to use.

In this thesis, we develop two overlay architectures. The first, ZUMA, is

a fine-grain architecture based on an island-style FPGA architecture. The

second, CARBON, is a coarse-grain architecture implementing the time mul-

tiplexed processing elements of the MALIBU architecture [9]. MALIBU it-

self is a time-multiplexed FPGA which integrates both fine and coarse-grain

processing elements into each logic cluster. Together, ZUMA and CARBON

implement the fine and coarse-grain logic of MALIBU, respectively.

The development and improvement of the FPGA-like overlay architec-

ture ZUMA is motivated by needs in the research of reconfigurable logic,

the desire for flexible reconfiguration in FPGA applications, and the oppor-
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tunity for improved designer productivity. ZUMA can help address these

goals by providing open access to all of the underlying details of an FPGA

architecture without the need for custom silicon fabrication.

ZUMA acts as a compatibility layer, allowing interoperability of designs

and bitstreams between different vendors and parts, in an analogous man-

ner to a virtual machine in a computing environment. ZUMA can also be

used to embed small amounts of programmable logic into existing FPGA

based systems without relying upon the vendor’s underlying partial recon-

figuration infrastructure, which has traditionally been hard to use, and non-

existent in many cases (e.g. most FPGAs by Altera and Microsemi). The

embedded logic will be customizable for specific tasks. More importantly,

it can be made portable across different FPGA vendors that have different

mechanisms for partial reconfiguration. This also allows for sections of the

design, such as glue logic, to be reconfigured without going through an entire

CAD iteration with vendor-specific tools. This logic is also sandboxed from

the rest of the design, allowing users to safely reconfigure the logic without

affecting the rest of the system.

ZUMA is partly intended as a prototyping vehicle for the research and

development of future programmable logic architectures. Although incom-

patible with some architectural features such as bidirectional routing, ZUMA

is useful for testing features that go beyond simple density or speed im-

provements and offer new functionality. In particular, the open nature of

the design allows for an open tool flow from HDL-to-bitstream, amenable to

current FPGA CAD research. For example, one possible application would

be ultra-lightweight place-and-route tools that can run on a soft processor
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implemented in the same FPGA as ZUMA, which would allow the FPGA

to place and route its own ”virtual machine”. These tools can be based

upon VTR, an open source framework that has been modified to target

ZUMA. Alternatively other approaches based on JHDL [2], Lava [21], Torc

[22], OpenRec [10], or RapidSmith [14] can also be created.

ZUMA was initially implemented as a generic architecture in Verilog.

This was very large in area, so details of the ZUMA overlay were tailored

for implementation on modern FPGAs. One key to this is utilizing low-

level elements known as LUTRAMs to implement both routing and logic

structures in ZUMA. The final area usage of the ZUMA architecture is

less than one-third of the generic design, and less than one-half of previous

research attempts [17].

The development of the coarse-grain overlay CARBON is motivated by

the functional advantages of previous coarse-grain architectures, as well as

the opportunity to improve upon them. It is an implementation of the

coarse-grain resources found in the time-multiplexed architecture MALIBU.

MALIBU was designed to deal with problems of growing FPGA logic ca-

pacities. The benefits of MALIBU include much faster compile times, the

ability to trade off density and speed by varying the time-multiplexed sched-

ule length, and better performance on word-oriented circuits. However, the

use of time-multiplexing can place the coarse-grain elements of MALIBU

at a disadvantage in overall clock frequency compared to a normal FPGA.

Hence, methods for increasing the clock frequency of MALIBU are highly

desired.

Although MALIBU is a hybrid system of both fine-grain and coarse-grain
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elements, the MALIBU tools and architecture can both work perfectly using

only the coarse-grain elements. Hence, CARBON is an implementation of

the coarse-grain only mode, and we can still take advantage of the compile

times and density of the architecture, as well as serving as a platform to

study further improvements in the MALIBU architecture.

In this thesis, have extended the CARBON architecture by integrating

an in-circuit timing error detection system based on Razor [8]. Razor is

a system used in pipelined processors to increase performance and reduce

power. With Razor, the circuit is operated at a higher frequency than what

is deemed safe by static timing analysis tools. This increases the probability

of timing errors. Timing errors are detected via shadow registers which

capture data a short time after the main clock. If the captured data differs

from that stored in the main register, a timing error has occurred. To recover

from the error, the circuit typically stalls one cycle and reloads the data from

the shadow register.

Although very few general purpose FPGA circuits can support the Razor

mechanism directly, we are able to integrate the Razor error correction into

the CARBON fabric itself. To do this, this thesis first extends the Razor

system to be compatible with a 2D array and implement it in our CARBON

FPGA overlay. By implementing this system on an FPGA, we are able to

verify the correctness of the architecture and timing error correction system.

Using the Razor design, we improve the effective compute speed by 3-20%

depending on the benchmark, or an average of 13%. If a hard system dead-

line is not required, and a consistent execution schedule is not needed, such

as when used as a compute accelerator, we can improve the throughput by
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5-21% overall, or an average of 14%.

This thesis concretely demonstrates significant area and real delay en-

hancements to fine-grain and coarse-grain FPGA overlays, respectively. The

first overlay developed was a fine-grain architecture based on a traditional

FPGA, which was found to suffer from large area overheads. To address this

we make contributions towards implementing logic and routing networks

in FPGAs using programmable LUTRAMs, an area efficient configuration

controller and a novel two-stage local interconnect. The second overlay, a

coarse-grain array of processing elements, is inherently slow due to time

multiplexing. To improve performance we extend a circuit level technique

for pipelined circuits called Razor to detect and correct timing errors cause

by overclocking.

1.2 Statement of Contributions

Individual contributions in this thesis are summarized as follows:

• Area efficient implementation of fine-grain routing networks and LUTs

on an FPGA via the utilization of LUTRAMs as both multiplexers and

logic

• Design of an area efficient 2-stage local routing network and an area

efficient configuration controller for implementation on an FPGA

• An extension of Razor circuit level error tolerance from pipelined pro-

cessors to 2D processing arrays

• Design of on overclockable coarse-grain FPGA overlay with in-circuit

detection and correction of timing errors
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1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 outlines previous work in

FPGA overlay systems and related work. Chapter 3 describes the ZUMA

fine-grain overlay architecture and improvements incorporated in its imple-

mentation. Chapter 4 describes the implementation of CARBON coarse-

grain architecture as an overlay, the extension of Razor error detection and

correction to a 2D array, and the integration of Razor error tolerance into

CARBON. Chapter 5 includes performance and results for both overlays.

Finally, Chapter 6 presents conclusions.
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Chapter 2

Background

This chapter first presents an overview of FPGAs and FPGA architectures,

used as the basis for ZUMA. Previous examples of FPGA overlays are then

detailed. The last sections give background information on the MALIBU

hybrid FPGA architecture, and the Razor error tolerance system.

2.1 FPGA Overview

Field Programmable Gate Arrays (FPGAs) are configurable integrated cir-

cuits that can be programmed to implement nearly any digital circuit. They

are attractive to designers due to their fast time-to-market and lower de-

velopment cost compared to fabricating an application specific integrated

circuit (ASIC), as well as the ability to change logic functionality in the

field if a bug is discovered or new functionality is desired. Their disadvan-

tages include higher per part cost, lower performance, and higher power

consumption.

FPGA are increasingly being used for many functions, including imple-
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menting general computation accelerators, and emulating ASIC functional-

ity before they are fabricated.

2.1.1 FPGA Architecture

The general island-style FPGA architecture is shown in Figure 2.1. It is

used by many commercial vendors, and is the basis for much research in

CAD and architecture [3].

From a high level, the architecture looks like an array of clusters con-

necting to a global routing network running on each side and between each

cluster. The chip is surrounded by IOs which connect to external signals.

Signals travel through the global routing network and are processed in the

cluster or other heterogeneous blocks. Processed signals will either be routed

back to the IO as an output or routed to another destination for further pro-

cessing.

Each cluster is composed of multiple (N) k-input LUTs. Each LUT is

capable of implementing any k-input, 1-output combinational function. A

LUT is paired with a flip-flop for sequential designs. The inputs to the

cluster, as well as outputs of the LUTs are fed to the LUT inputs through

a local interconnect. The global routing tracks are connected to the inputs

and outputs of the clusters using sparse crossbars, the connectivities of which

are defined by the parameters Cin and Cout. The number of inputs to the

cluster is given by the parameter I.

The global routing architecture of the FPGA is defined by a number of

parameters. The number of tracks in each channel is the width (W). The

number of clusters spanned by each wire is the length (L). The wires can
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be either driven by a single driver, in which case they are unidirectional, or

driven by multiple drivers, in which case they may be bidirectional.

Modern FPGAs also feature heterogeneous blocks, such as memories and

DSPs. These blocks can be connected much like normal clusters, but may

span several blocks to achieve sufficient input and output connectivity.

Parameters such as cluster size and routing width can vary, and differ-

ent configurations may be better for specific applications, leading to many

architectures and chips released by one vendor.

2.1.2 FPGA Implementation in ASICs

Previous research has been conducted on creating FPGAs using ASIC tools.

In [11], programmable logic architectures suitable for implementation in

ASICs are considered, which include directional architectures used to im-

plement small functions. Implementation issues arising during creation of

programmable logic are presented in [25]. In [1], the ASIC CAD flow for

implementing programmable logic cores implemented from RTL or HDL

descriptions is considered. Issues related to the back-annotation of timing

paths for the FPGA CAD flow are presented in [24].

2.2 FPGA Overlays

An FPGA overlay maps an FPGA into another type of programmable archi-

tecture. Overlay architectures were first used to describe the design of time-

multiplexed and packet-switched routing networks implemented on FPGAs

[12]. Previous designs of overlay architectures have mapped the FPGA to

a number of different categories. A soft processor can be considered a form

10
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Figure 2.1: Island-style FPGA architecture

of overlay architecture, as it allows a user design in the form of a program

to be run on the FPGA. There are many soft processor designs for FPGAs

that run the gamut from RISC processors (e.g. Nios II or MicroBlaze), to

multiprocessor systems [18], to vector processors [6][26]. There has also been

work done on mapping coarse grain reconfigurable arrays (CGRAs) to FPGA

systems. CGRAs are similar to FPGAs, but with a larger resource such as

an ALU as its basic element, which usually is scheduled between various

computations at different time slices. The QUKU CGRA overlay [20] is an

example of a system designed to run on top of an FPGA, which runs user

applications utilizing many coarse grain logic elements in parallel. There

has also been previous work on using FPGAs to implement custom FPGA

architectures. The virtual FPGA (vFPGA) [17] is an FPGA overlay archi-

tecture that is meant to work with just-in-time (JIT) compilation of FPGA

designs for acceleration of sequences extracted from the dataflow graphs of
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compiled programs. The vFPGA architecture uses a cluster comprised of

four 3-LUTs, and a routing width of 32 with length 1 wires per channel.

The design has a 100x area overhead (on 4-LUT Xilinx Spartan-IIe FPGA),

meaning each embedded LUT (eLUT) in the vFPGA architecture requires

100 real LUTs from the host Spartan IIe FPGA. Another FPGA-like archi-

tecture, called an Intermediate Fabric [23], resembles an island-style FPGA

architecture, but replaces the logic cluster with coarse-grain operators such

as an adder, and routes data on 8 to 32 bit buses.

2.3 MALIBU Overview

FPGA capacities now can exceed one million LUTs, making them capable

of implementing the highly parallel, word-oriented computation demanded

by software. As a result, software-to-hardware tools are increasingly used

to convert C or other domain-specific languages into HDLs such as Verilog,

which can then be compiled by standard FPGA tools. The FPGA tools opti-

mize everything down to the bit level, destroying the word-oriented structure

in the original source and needlessly increasing tool run-time. To address

this, MALIBU [9], a coarse-grained FPGA that is more amenable to di-

rectly implementing parallel software systems, has been developed. In its

full form, MALIBU (Figure 2.2) adds a time-multiplexed ALU to every clus-

ter of LUTs, resulting in a system that mixes parallel simulation-like CPU

execution with direct LUT implementation. Note that only the coarse-grain

ALU (CG), is time-multiplexed, while the fine-grain LUTs are not. On

coarse-grained circuits, the tool run-time is up to 300× faster, and a fully

custom implementation of MALIBU can perform up to 2× faster compared
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to a comparable Altera system [9].

The MALIBU CG includes an ALU capable of performing operations

on two 32-bit operands. In addition, the ALU accepts a third input for

each operation, called the ’width’, which determines how the result of the

operation is truncated. This preserves the functionality required for Verilog

operations on signals that are less than 32 bits in width.

Four memories (N,S,E,W), store results from neighbouring CGs. The

CG also includes a local ’R’ memory which is used to store intermediate

results, data to be used in later cycles, and constants up to 32 bits. Routing

of word-width data is performed by the CG’s crossbar. The crossbar takes

in values from the four neighbouring CGs, the R memory, and the ALU

result, and routes them to a destination CG.

Also shown in the figure is the local instruction memory. The instruction

memory stores the schedule of operations to be performed by the CG over

all cycles of the schedule. Each instruction is 81 bits in length, and specifies

the operation to be performed by the ALU, its source operands and width,

as well as routing information for the crossbar for passing operands between

the CGs. The CG performs one instruction per system clock cycle. The user

clock is the system clock divided by the number of cycles in the schedule.

The fine-grain portion of MALIBU is similar to a traditional FPGA

without flip-flops, and with additional inputs and outputs in each cluster to

connect to the coarse-grain logic.

The MALIBU architecture has a number of advantages when compared

to a standard FPGA. Circuits that contain a high amount of word-oriented

computation can run more quickly on MALIBU compared to a standard
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FPGA. As the word-oriented operations are extracted from the circuit and

implemented with separate hardware that is placed and scheduled using

new CAD algorithms, overall compile time can run as much as 300 times

faster than on a commercial FPGA [9]. The MALIBU architecture can also

achieve a higher density than traditional FPGAs. By sacrificing perfor-

mance (roughly 2.5× the density for half the performance), it can increase

the density by increasing the amount of time-multiplexing of the CGs. Sim-

ilar density trade-offs are possible with traditional FPGAs by varying the

physical architecture and transistor sizes [13]. In comparison, the advantage

of the MALIBU architecture is that the performance versus density trade off

is possible without changing the underlying architecture or device design.

2.4 Razor Overview

Razor is a system for circuit-level detection and correction of timing errors,

aimed at low power operation of pipelined processors. A shadow register,

shown in Figure 2.3, is fed by a delayed clock and paired with each register

of a pipeline stage. For very low power operation, the supply voltage is

reduced below the minimum needed to meet timing requirements. Values

are captured by the main register, and passed to the next pipeline stage.

Slightly later, the values are captured by the shadow register. It must be

ensured that the shadow register will hold the correct value, so the minimum

and maximum delay through the circuit must be constrained to meet setup

and hold requirements to this shadow register.

When a timing error does occur, it is detected by a mismatch between

the main register and the shadow register. One way to correct the error is
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to switch the input of the next pipeline stage to the output of the shadow

register. The pipeline is then stalled for one cycle, allowing the next pipeline

stage time to re-execute with the correct data. Forward progress in the

pipeline is ensured, with a worse case performance loss of 50% if an error

occurs every other cycle.

Razor was introduced in 2003 [8], and in 2011 an ARM microprocessor

was developed with Razor pipelining [5]. To our knowledge, our project

is the first to integrate Razor registers in an FPGA architecture, and to

produce the first FPGA that can offer timing error correction.
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Chapter 3

ZUMA

3.1 Introduction

This chapter describes the fine-grain ZUMA architecture. Initially a generic

architecture was created in pure Verilog, which was used as a baseline for

the development as detailed in Section 3.2. Improvements to the ZUMA

architecture tailored for area efficient implementation on modern FPGAs are

described in Section 3.3. The novel contributions include the utilization of

FPGA LUTRAMs as the basis of fine-grain routing networks, a unique two-

stage local routing crossbar, and an area-efficient configuration controller.

A CAD flow is in place for this architecture utilizing the VTR (VPR 6)

project [19], and is detailed in Section 3.4.

Throughout this chapter, the term embedded Look-up table (eLUT) is

used to refer to the LUTs in the ZUMA architecture. In contrast the term

’host LUT(s)’ is used to refer to the physical resource of a commercial FPGA

such as a Virtex 5 device. Efficiency of implementation is measured as host
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LUTs per eLUT, with a lower value being better.

3.2 Generic Baseline Architecture

In designing the ZUMA FPGA architecture, we first created a simple LUT-

based FPGA architecture supported by VTR. The initial generic architec-

ture design was created as a parameterized Verilog description, similar to

the standard architectures used in classical VPR experiments [3]. This sec-

tion details the design of the logic cluster, global routing and input/output

blocks. Initial resource usage was found to be high, and is documented at

the end of the section.

3.2.1 Cluster Design

The generic logic cluster is comprised of a first stage depopulated input block

for cluster inputs, followed by a fully populated internal crossbar, which is

connected to the N k-LUTs. A total of I inputs are fed into the cluster
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Figure 3.2: Global interconnect with width of 6 and length of 3

by the input block, while all I inputs and N feedback signals are available

to any basic logic element (BLE) input pin. The BLEs are single k-LUTs,

followed by a single flip-flop which can be bypassed using a MUX. This

generic version contains configuration bits stored in shift registers.

The input interconnect block, or IIB, connects the global routing wires

and feedback signals to the inputs of the LUTs. The C block forms part of

the IIB, while the rest of it is formed by the internal connections from the

I+N signals to the k*N BLE inputs. Normally, these internal connections

comprise a significant percentage of the area of a modern FPGA [16]. Many

FPGA CAD tools, such as VPR, also expect fully populated internal connec-

tions. Depopulated clusters can reduce the area significantly, but complicate

the placement and routing of designs, and can lead to much higher CAD

runtimes [15]. To retain tool compatibility, we chose to allow full routability

internal to the cluster.
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3.2.2 Global Interconnection Network

The routing architecture of the ZUMA eFPGA is designed with a number

of constraints introduced by the FPGA fabric on which it is built. In the

ZUMA architecture, a unidirectional interconnection network is constructed

using the LUTRAMs as drivers. Bidirectional wires can be implemented

from Verilog descriptions on FPGAs, but with significant overhead incurred

as they are emulated with unidirectional wires. As such wires can have a

vast number of drivers, bidirectional wires are not practical to include in

ZUMA.

As each wire can have only one driver, one of the major impacts of

unidirectional routing is the combination of the Switch Block and Output

Connection Block. Each direction (north, south, east, and west) is driven

by a single MUX located in the S-Block, which takes inputs from both other

routing wires and neighbouring logic blocks, as in Figure 3.2.

FPGA I/Os are included at the periphery of the array. They follow

roughly the same design as the inputs and outputs of the cluster, integrating

with the switch block to drive wires, and connecting to a subset of wires to

drive outputs.

3.2.3 Initial Resource Usage

The generic architecture was created entirely from standard, portable, fully

synthesizable Verilog. All configuration bits are stored in a shift register,

which is inferred to use FFs of the host FPGA. The results of synthesizing

a single layout tile of the generic architecture on a Virtex 5 part for an

architecture with cluster size of N=8, eFPGA LUT size of k=6, wire length
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of L=4, and channel width of W=112, are given in Table 3.1.

The biggest use of resources are the embedded BLEs, or eBLEs, which

contain the embedded LUTs, or eLUTs. Each requires almost 64 host LUTs

and over 64 flip-flops per eLUT. The fully connected internal crossbar is the

next-largest use of resources, at about 36 host LUTs per eLUT. Next, the

switch and input blocks use many host FFs to hold their configuration data.

3.3 ZUMA Architecture

The implementation of the ZUMA FPGA takes the baseline architecture

outlined in the previous section, and utilizes the unique resources available

on a modern FPGA to minimize the area overhead. First, programmable

LUTRAMS are adopted, both for the user logic, and the routing multiplex-

ers. The LUTRAMS are then used to implement an area efficient two-stage

local interconnect in each cluster. An area efficient configuration controller

is then designed. Profiling and modeling is done to find the parameters

to achieve the highest logic density. Finally, compatibility with the vendor

CAD tools for Xilinx and Altera FPGAs is discussed.

Area Host LUTs Host FFs

Switch Block 121 156

Input Block 56 288

Internal 288 248
Crossbar

eBLEs 528 520

Total 993 1212

per eLUT 124.125 151.5

Table 3.1: Implementation of generic FPGA architecture on Xilinx
Virtex 5 (for cluster size N=8)
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3.3.1 LUTRAM Usage

The ZUMA architecture takes advantage of the reprogrammability of LUTs

in the host architectures to create space-efficient configurable logic and rout-

ing. In new generations of Altera and Xilinx FPGAs, logic LUTs can be

configured as distributed RAM blocks, called LUTRAMs. Both vendors al-

low fully combinational read paths for these RAMs, permitting them to be

used as normal k-input LUTs (Figure 3.3). These are useful for directly im-

plementing the programmable eLUTs of the ZUMA architecture, but they

can also be used to improve the implementation efficiency of the routing

network. By limiting the LUTRAM configurations to a simple pass-through

of one input, a k-input LUTRAM becomes equivalent to a k:1 routing mul-

tiplexer. The advantage is the MUX select lines do not need to come from

external signals (external configuration flip-flops, but are instead internal-

ized by the LUTs configuration bits. Hence while a 3-LUT would normally

only be able to implement a 2:1 MUX if external select lines are needed,

it can actually implement a 3:1 MUX. Likewise a 6-LUT can implement a

4:1 MUX with normal approaches, or a 6:1 MUX using the new LUTRAM

approach. These MUXs will be the backbone of the global and local inter-

connection networks of the ZUMA FPGA. These LUTRAM MUXs consume

fewer resources than MUXs implemented with generic Verilog constructs, as

they require fewer host LUTs and configuration flip-flops due to the lack of

configuration bits. As well, to save power by preventing unneeded switching

when a routing MUX is inactive, each MUX in the generic version needs

to be able to be configured to output ground, which can also increase re-
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source usage, while the LUTRAMs can simply be configured by setting all

configuration bits to zero. The difference in resource usage for a 4:1 MUX

is illustrated in Figure 3.4.

3.3.2 Two-Stage Local Interconnect

The design of the internal connection block of the FPGA cluster is driven

by a need for area efficiency, flexibility, and CAD compatibility. To address

this, an IIB based on a Clos network was designed. This modified shuffle

network is paired with a depopulated first level connection block of MUXs,

in order to allow sufficient routing flexibility and compatibility with modern

CAD tools.

A Clos network (Figure 3.5), is composed of three stages of connected

crossbars. The number of inputs and outputs are identical. It is defined by

three parameters: n, m and r, which define the number and dimensions of the
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crossbar stages. As long as m is greater than or equal to n, the network can

route any permutation of all inputs [7]. Given that we have 6:1 MUXs as our

basic switching element for a 6-LUT host FPGA, a first approach is to set

the parameters as r=n=m=6. This allows us to build a 36 x 36 Clos network

out of 108 LUTs. If we take the outputs of the network to be the inputs of

the 6-LUTs, we can see that the last stage can be eliminated, as the order

of the input to each LUT is unimportant (see Figure 3.6), and the inputs to

each LUT will always be different. We then have a two-stage network with

72 MUXs, feeding into a possible 6 ZUMA eLUTs, giving a total cost of 12

LUTs per eLUT for the IIB, with no reduction in routability. In contrast, a

full crossbar implemented in a generic fashion requires 42 LUTs per eLUT.

If the inputs are connected directly to the global routing tracks, only

36 - N tracks will have access to the LUT, since N of the inputs will be

reserved for LUT feedback connections. Instead, additional MUXs are added

before the first stage to give adequate flexibility, giving an overall design that

can be routed by VPR without extensive modification.

When implemented, we found that building a single 6-to-N memory from

LUTRAMs is more efficient than N 6-to-1 memories on the Altera platform,

as each LUTRAM has overhead for write ports. All LUTRAMs used in

a crossbar have the same input signals, and each output, when configured

properly will only depend on the value of one of the inputs. As a result,

each crossbar can be constructed out of a single multi-bit wide memory to

increase density without changing the functionality.
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3.3.3 Configuration Controller

The design of the eFPGA also requires a configuration controller to rewrite

the LUTRAMs and flip-flops that control the functionality of ZUMA’s logic

and routing. A configuration controller was designed to program all of the

base elements of the eFPGA. The implementation is parameterized, allowing

for tradeoff between resource usage and configuration speed. For a ZUMA

overlay comprised of k-input LUTRAMs, each LUTRAM has k address sig-

nals, one write-enable, and one write-data signal that must be driven by the

configuration controller. The k-bit write address can be shared by all LU-
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TRAMs in the design. However, to initialize each LUTRAM independently,

a set of LUTRAMs can either share a write-enable, or share a write-data

signal, but not both. Each unique write-data or write-enable will require

at least one additional LUT or flip-flop on the FPGA to drive the signal.

ZUMA’s LUTRAMs are divided into groups by location, made up of one

or more ZUMA tile, and given separate write-data signals, while sharing a

write-enable. The groups are written to serially, therefore a shift chain is

used to propagate the write-enable between each group. This will utilize

only one additional flip-flop per write-enable signal. A 6-bit counter is then

used to set the LUTRAM write addresses. For a large design, each group

will add only one additional flip-flop to the design. By increasing the num-

ber of LUTRAMs programmed simultaneously, faster configuration can be

achieved at a higher area cost.
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3.3.4 Architectural Model for Area and Routing Efficiency

The correct choice of architectural parameters is very important for the effi-

ciency of the eFPGA, due to the coarseness of the resources of the underlying

fabric. Modeling studies were performed to explore optimal settings for the

ZUMA FPGA parameters as well as the impact of the host FPGA architec-

ture on the overall mapping efficiency. Given the base resource used in our

design, for example a 6 input LUTRAM, parameters that create structures

that fit exactly into these LUTs will be most efficient. The internal connec-

tion network is most efficient for a 6-input host LUT when the number of

inputs is 36 or lower. The formula for an adequate number of inputs to a

cluster is given in [3] as (N+1)*k/2. Given that N inputs that must be feed-

back connections for each LUT, we have the formula (N+1)*k/2+N = 36.

Fixing k at 6 and solving for N, we get a cluster size of eight 6-LUTs, which
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requires 27 inputs, and a 35 input crossbar. The resource requirements

for the ZUMA architecture were modeled by profiling each building blocks

resource usage at various configurations, and minimum area overhead was

obtained at N=8 eLUTs per cluster. The routing width is varied based on

estimates determined from the maximum routing width needed to route all

MCNC benchmarks while varying the cluster size. Which was determined

by experiments in VPR to find the minimum width allowing the routing of

all MCNC benchmarks for this architecture.

3.3.5 Vendor CAD Tool Limitations

In our experimentation, compiling into the host FPGA required some care

to ensure the unique requirements of the ZUMA FPGA architecture are

mapped efficiently using the vendor CAD tools. The compilation of the

ZUMA system to the host FPGA may require additional configuration of

the CAD tools used. Naturally occurring features such as combinatorial

loops in FPGA structures are not handled well by FPGA CAD tools

In early tests with Altera tools, compilation failed after 2+ days when

compiling designs that utilized 50%+ of the host FPGA. Similarly slow com-

pilation time occurred with Xilinx tools. We expect that FPGA CAD tools

are tuned to compile generic logic circuits, not the combinational loops and

interconnect-intensive properties found in FPGA architectures. As a result,

many features of the CAD tools must be bypassed to allow the ZUMA design

to be compiled to a host FPGA. Turning off timing analysis and compiler

features reduced compile times to roughly one day, but was eventually suc-

cessful. In Quartus, ’timing driven synthesis’ was turned off, and CAD effort
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was reduced. In Xilinx ISE, ’timing driven placement’ was turned off, the

optimization target was set to area, and the ’Optimization effort’ was set to

’fast’. Manually partitioning the ZUMA design into smaller sub-arrays can

also reduce compile time for larger arrays, but requires an initial synthesis

to complete.

3.4 ZUMA Software

This section details the software for mapping of the user design from HDL

to the bitstream that is needed by users of the ZUMA architecture. A CAD

flow utilizing the VTR framework was created, and is detailed. The current

timing models used in the ZUMA architecture are then discussed.

3.4.1 CAD Flow

ZUMA compilation is performed using slightly modified versions of existing

tools, and a newly developed tool. The open source VTR CAD Framework

is used up to the place and route stage, and the new tool, RTOBITS is used

to generate the bitstream. The VTR project contains an entire toolchain

that comprises the flow from ”Verilog to Routing” [19]. The outputs of the

technology mapping, packing, placement and routing stages are all required

to generate the bitstream. Each element of the configuration is read in

and entered into a data structure corresponding to the architecture of the

eFPGA. This description is then serialized into a binary bitstream. The

ZUMA tool flow from Verilog to bitstream is summarized in Table 3.2.

A number of files from each stage of the CAD tools are used to generate

the bitstream. A shell script was written to generate the correct command
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Tool Purpose Changes Input Files Output Files

ODIN II Front-end synthesis None design.v odin.blif

ABC Tech mapping None odin.blif abc.blif

AAPack Clustering None abc.blif aa.netlist

VPR Place and route Modified to abc.blif route.r
output routing aa.netlist place.p
resource graph arch.xml rr.graph

RTOBITS Building bitstream New tool abc.blif bitstream.hex
and ZUMA global aa.netlist ZUMAglobal.v

routing Verilog place.p
route.r

rr.graph

Table 3.2: Summary of tools used in ZUMA CAD flow

line options for each tool, as well as generating the VPR architecture file,

given a set of architectural parameters for ZUMA. The configuration of the

ZUMA eLUTs is determined using the output of the ABC technology map-

ping tool, after the elaboration of the input Verilog by the front end synthesis

tool ODIN-II. These configurations are written to a blif file, and then packed

into clusters by AApack, which outputs a netlist file of logic clusters. The

cluster locations are determined from the output of the placement stage, in

the VPR place file. The generation of the global routing LUTRAM configu-

rations is determined from the VPR route file. VPR was modified to output

the routing resource graph used for the global routing of the FPGA. This

graph is read into the RTOBITS tool to generate the connectivity of the

global routing switches for bitstream generation, as well as to generate the

global routing Verilog design file used to compile the ZUMA architecture.

The RTOBITS tool reads in the technology mapped blif from ABC,

the clustered netlist from AAPack, and the place file, route file, and routing
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graph from VPR. Initially the routing graph is parsed to generate a model of

the FPGA global routing network used to determine the bitstream settings,

and if needed, output a Verilog file for compilation of ZUMA to the FPGA.

The RTOBITS tool follows each net in the route file, and stores the switch

setting for each MUX along the way in the routing data structure. Once

all nets have been read, the drivers for all remaining (unused) tracks are

configured to logic 0. This way, unused wires don’t toggle unnecessarily

and waste power. The local interconnect bitstream is then generated. The

location of all input pins and LUTs is determined from the placement file,

and the Clos network configuration is determined from the connectivity.

Routing of the two-stage crossbar was performed by routing each connection

individually. If no second stage crossbar is available to route a connection,

a wire is randomly selected to be rerouted to allow. Over 1000,000 full

capacity crossbar mappings were used to test this algorithm, which was able

to route them all successfully. Although this works, a more robust solution

is needed. Once all of the configurations have been generated, they must

be packed into a serial bitstream. The packing is performed based on the

configuration controller data width, and the ordering of the LUTRAMS in

the design. The bitstream is output as a HEX file.

The latest version of VPR, 6.0, allows user specification of more complex

logic blocks and architectures. However, the ZUMA architecture does not

currently utilize any advanced architectural features such as multipliers or

block RAMs; these are left for future work.
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3.4.2 ZUMA Timing

Since the timing can differ from compilation to compilation, some re-computation

of timing may be needed to port a bitstream between different host FPGAs.

Though the bitstream is portable, timing will not be guaranteed on any

new device. Current timing performance of ZUMA is found by on-board

frequency sweeping and verification. The worst-case delay is extracted from

the routing fabric and LUTs from the vendor timing tools, and used in the

CAD and final timing of the user design. The worst-case delay for the con-

figuration path of each component is also used for the configuration of all

elements in the design.

A better approach in the future would be to extract timing information

from the host FPGA compilation and use it in the timing models of the

ZUMA CAD tools. Back annotation of timing was performed for an FPGA

synthesized by ASIC tools in [24]. As the beta of VPR 6.0 is being used

for placement and routing, which does not currently allow timing analysis,

timing is not considered in this thesis.

3.5 Summary

This chapter presented the ZUMA overlay architecture. ZUMA is an open,

cross-compatible embedded FPGA architecture that compiles onto Xilinx

and Altera FPGAs. It is designed as an open architecture for open CAD

tools. The ZUMA overlay is intended to enable both applications for FPGAs

and further research into FPGA CAD and architecture.

Starting from an island-style FPGA architecture, modifications to in-

crease density and resource usage when compiled to a host FPGA were
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introduced, while preserving the functionality and CAD tool compatibility

with VPR. Through utilization of LUTRAMs as reprogrammable MUXs

and LUTs, we are able to reduce the resource overhead of implementing the

overlay system by two thirds. Our modified Clos network internal crossbar

makes use of these elements, as well as taking advantage of the routing re-

quirements of the cluster architecture, to allow the use of CAD tools such

as VPR while reducing resource usage. An area efficient configuration con-

troller was designed to reprogram the architecture. Modeling was performed

to find efficient parameters. A CAD flow was developed using the VTR

framework.

This new optimized version of ZUMA will be compared to the baseline

in Chapter 5. First, however, we present the CARBON overlay in Chapter

4.
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Chapter 4

CARBON

4.1 Introduction

This chapter describes the implementation of the coarse-grain CARBON ar-

chitecture. An initial implementation of CARBON on an FPGA is described

in Section 4.2, which included modifying the MALIBU CG to map to FPGA

memories, and designing a configuration controller to re-program the overlay

without impacting performance. We extend the Razor error tolerance sys-

tem to work with a 2D array of processing elements in Section 4.3, showing

potential performance benefit and improved error recovery. The integration

of Razor shadow registers into the MALIBU architecture is described in

Section 4.4, and includes modification of the CARBON memories, and error

control circuitry to ensure proper data computation and movement.
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4.2 CARBON Implementation

The MALIBU CG was implemented in Verilog and compiled to an Altera

Stratix III FPGA. The fine grain resources are not included in this imple-

mentation, but can be integrated into the design using the ZUMA architec-

ture.

The limitations of the host FPGA necessitated several changes to CAR-

BON from the MALIBU architecture and when implementing memories in

the overlay. A configuration controller was developed to re-program the

overlay with minimal area overhead and without impacting the speed of the

computation path, by utilizing the programmable datapath of the overlay.

4.2.1 FPGA Limitations

The limitations of FPGA block RAMs used as memories in the implemen-

tation caused several changes to the functionality of the architecture.

As reads on Altera Block RAMs need to be performed synchronously,

the read addresses, which are part of the instruction, must be present at

the memory one cycle early. The instruction memory, which contains the

addresses must also be read synchronously, so the instruction read must

occur two cycles before the instruction is performed. This entails an initial

two cycle delay before computation occurs. On subsequent user cycles, the

two initial instructions can be loaded at the end of the previous cycle, so no

overall impact on the performance occurs.

The synchronous read of the memories also causes problems with user

memories located in R memory and accessed with LOAD and STORE oper-

ations. As the LOAD operation reads from an address which itself is located
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in memory, an extra cycle of latency is needed. Store operations can still be

done in one cycle. The datapath controller in CARBON performs a LOAD

in two cycles, but further changes to the MALIBU CAD tools are needed

to take the extra cycle into consideration. Hence, loads and stores are not

fully supported.

Due to the block RAMs inability to emit data written on the previous

cycle, changes were needed to the CARBON memories. A 32 bit bypass

register was added to each of the CARBON CG memories (N,S,E,W,R).

When a write occurs, the written data is stored to the bypass register as

well as the memory. In case the address of the current cycle read and

previous cycles written register are the same, the data stored in the bypass

register is read instead of the memory.

4.2.2 Configuration Controller

The CARBON overlay needs the ability to reconfigure at runtime through

a configuration controller. The MALIBU architecture must initialize the

instruction memory in each CG, as well as constants in R memory. Addi-

tionally, the memory controller that tracks the used and unused addresses

in the R memory must be initialized so the constants are not overwritten.

By utilizing the programmable datapath of the CG, the configuration

of the constants was achieved with minimal impact to area or speed. As

the write port of the R memory is already in use, adding another port to

re-program the R memory would entail adding a multiplexer to the write

path, thus impacting speed. A similar change to be able to load the memory

controller could also impact performance. To work around this, initialization
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of the R memory and memory controller is performed by loading a separate

bootstrap program into the instruction memory which performs writes to

R memory from the immediate value in the instruction, thus initializing

both the memory and controller. This also simplifies the design as the R

memory controller state does not need to be generated with the bitstream.

Constants of over 16 bits can require multiple instructions to be constructed,

and large numbers of constants may require multiple blocks of instruction

memory to be loaded and executed. This memory initialization program is

prepared during compilation, but could be easily constructed on the fly via

a state machine or embedded processor to save space from a more compact

representation.

A 81 bit wide write port is added to each instruction memory, and each

instruction is loaded into memory one instruction per cycle. All other logic

is the same as for running a program on the array. Like the ZUMA over-

lay, each CG can be loaded in parallel or serially, with a higher hardware

overhead for the parallel implementation. A block RAM is used to store

the instructions for each CG. Each instruction RAM can be addressed and

written individually from the configuration controller.

4.3 Razor Error Tolerance

To increase the performance of the CARBON architecture, we will introduce

Razor error correction to the system to allow frequency boosting. The Razor

system, as outline in Chapter 2, works with feed-forward pipelined circuits.

We extend the Razor methodology to work with 2D arrays of processing

elements. This extension requires the development of a more complex control
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scheme, but has the benefit of allowing more errors to be tolerated given the

same impact on performance.

In the original Razor system, when an error occurs, a stall occurs in

the pipeline, and is passed on to each succeeding stage. In a 2D array, the

stall must be passed on to all neighbours. This entails a more complex

control mechanism, which we detail in later sections. It also allows more

errors to be tolerated when certain conditions are met. In particular, when

multiple errors occur in close proximity, their stall signals propagate until

they collide and merge. If two error regions collide, the stall does not need

to be propagated back, so the two cycles can be tolerated by a single stall

cycle. As a result, more errors can be tolerated than the number of spare

cycles added to the time-multiplexing schedule.

4.3.1 Simulation Study

A simulation study was performed by another group of students [Douglas

Sim, Michael Yui, Tom Tang, private communication, 2012.] to analyze

the benefit of this extra error tolerance. This work is presented here as

demonstration of the design’s potential. Figure 4.1 plots the probability of

failure as a function of the number of injected errors. This baseline case is

for a 10 × 10 array with a ten instruction schedule as the number of spare

clock cycles is varied.

Of course, the CARBON-Razor system can always tolerate any e errors,

where e is the number of spare cycles added to the instruction schedule.

However, it can sometimes tolerate more errors if they are merged as a

result of occurring within close proximity to each other in both time and
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Figure 4.1: Sensitivity of failure to spare cycles, (Array Size 10x10,
instruction schedule 10 slots)

space. By close proximity, we mean that the stall signal wavefronts collide

and the stall cycles needed to tolerate the errors merge. Although not shown,

shorter schedules can tolerate more errors because the errors are more likely

to be located closely in time.

Viewed another way, in some applications it may be possible to extend

the schedule length dynamically only if needed. Figure 4.2 uses the same

parameters as the previous graph to show the average number of spare cycles

required to tolerate up to ten errors.
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4.4 CARBON-Razor Design

This section details the design of the CARBON-Razor architecture. First,

the modification of the CARBON memories is detailed. We demonstrate

how the Altera block memory is utilized in a special mode to allow read-

back of the word just written. Behaviour of the stall propagation is then

discussed, followed by details of the error propagation logic used. Finally,

the timing properties of the error tolerance system are discussed.
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4.4.1 Shadow Register For Error Detection

A Razor-style circuit-level error detection and correction system is intro-

duced to the CARBON system to allow for further speedup with error de-

tection and recovery. As the CARBON system uses memories for storing

state rather than latches or flip-flops, the Razor design must be modified

to shadow and correct values stored in memories rather than registers. The

FPGA memories used in CARBON were configured to use an additional

read port that emits the written data from the previous cycle. This is com-

pared to a shadow register that captures any word written to the memory

a fraction of a cycle late. Another register stores the previous address. If a
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mismatch occurs between the Shadow register and read port, an error signal

is asserted. This error signal triggers a number of behaviours. First, the

data stored in the shadow register is written to the memory at the end of

the cycle. The error prevents the current instruction from being executed on

the CG, and a stall signal is sent to the four neighbouring CGs on the next

cycle. The next cycle, the error will be corrected, and the next instruction

is executed, one cycle late. Propagation of the stall signal is discussed in a

following section.

4.4.2 Altera RAM Output

In most cases when using Stratix III RAMs, reading and writing from the

same address in one cycle is not possible. However, we exploit a property

of true dual port RAMs in the Stratix III architecture: they can output the

previously written data on the read-output data lines that correspond to the

write port that was written in the previous cycle. By utilizing this readout

capability, we can ensure the data is stored correctly with low hardware

overhead. To enable this immediate read back, we assert the read enable

signal along with the write enable when a write occurs. The result in memory

is then latched at the read output of the same port.

As CARBON requires three read ports to each of its memories, this is

done by replicating the values into three parallel block RAMs. Each of these

RAM outputs, as well as the data stored in the bypass register(as described

in Section 4.2.1), is compared to the shadow register and ‘OR’ed to produce

an error signal.
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4.4.3 2D Razor Stall Propagation

The CARBON-Razor system extends the stall-propagation of the Razor

pipeline to a 2D array of processors. The stall propagation logic must ensure

correctness of each memory block being read, as well as deal with multiple

errors occurring independently or in groups in the array. A global stall

signal would allow for correct functionality and error recovery, but would

result in lower performance. The performance reduction is a result of the

time needed to propagate the error signal to all CGs, and the inability to

recover from multiple independent errors occurring at different timesteps

while only extending the schedule by one cycle.

As results from a single ALU operation can be written to memories

that communicate with neighbouring CGs, any error recovery that takes

place in one CG must be communicated to neighbouring CGs so they cam

resynchronize. This is done by propagating a stall signal to the immediate

neighbours. This stall must propagate away from the error only, and not

come back towards the originator.

Two CGs may stall at nearly the same time and propagate their stall

signals. Errors propagate one block at a time to the four immediate neigh-

bours, creating an expanding “diamond” shaped wavefront, as shown in

Figure 4.4. In the CARBON system, if two independent errors occur closely

in time and with enough distance, it may be sufficient to stall for just one

cycle in each CG. This occurs if the second error is detected before the first

error propagates all the way to source of the second error. In this case,

only one cycle is needed to stall on any one block, and the schedule is only
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Figure 4.4: Error propagation in the 2D CARBON array. Numbers
represent the relative clock period when the CG stalls, centering
on the CG where the error occurred

extended by one cycle.

Figure 4.5 conceptually demonstrates the error propagation wavefront

when two errors occur in close proximity, followed by a third that is not

close enough. Each error occurs at one location and spreads to surrounding
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CGs one cycle at a time. When two errors occur at or around the same time,

then the two error wavefronts will collide and merge. They will become a

unified region of CLBs executing one cycle behind the schedule. If an error

occurs at a CG after the first error has reached it, it creates a new region

that executes two cycles behind schedule. That new region will expand until

it reaches every CG in the array. The stall propagation logic is explained in

the next section.

Care must be taken to ensure that all memories in a CG store the correct

operands for the next scheduled operation before executing. When an error

is propagating, data entering into the wavefront must be delayed, also using

the shadow register, to prevent data from being overwritten before a CG

has the chance to use it.

Consider the case when tile A detects an error at cycle X and reloads its

memories. All CGs are initially performing instruction Y of the schedule.

When tile B receives a stall signal at cycle X+1, its unstalled neighbour

C will have written data from instruction Y at cycle X, but its stalling

neighbour A was unable to. During cycle X+1, B will not execute anything,

while the data from A for instruction Y is written to the memory, and it will

also prevent its neighbour C from writing to B’s memory. Instead the data

that C would have written at cycle X+1 is captured in the shadow register,

to be written at cycle X+2.

At X+2, B has the correct data from both A and C from instruction Y, A

is executing the instruction Y+1 and the data C write from instruction Y+1

is being written from the shadow register. B can then execute instruction

Y+1 normally and writes the correct data to C. As C does not have the data

47



Sy
st

em
 C

lo
ck

 C
yc

le

Manhattan Distance

2 Cycle Stall

1 Cycle Stall

Timing Error

Figure 4.5: Conceptual graph demonstrating how 2 separate errors
join to form one stall region, and a later error creates a second
stall

from B yet it must wait, and thus will not write more data to B, and the

data in the shadow register can be loaded in the memory without blocking

a write. The error propagation will continue on until it reaches the edges of

the array each CG having stalled one cycle, or until the end of the schedule

is reached By the end of the schedule, errors have propagated as far as they

need to go. Hence, when the schedule is restarted, all error history is also

reset.

4.4.4 Stall Propagation Logic

Stall propagation logic is added to each CG, and controls the recovery actions

when an error occurs. The stall propagation logic for one direction is shown

in Figure 4.6. When a memory that belongs to a CG encounters an error,

the CG initiates a stall that will spread through the array. The stall will
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Figure 4.6: Control logic used to control the stall signals (note: only
east direction stall out and load shadow reg shown, logic struc-
ture is the same for all sides)

affect the operation of a CG for two cycles: one while it is stalling, and one

while its neighbours stall. We first detail the signals used in the stall logic.

This is followed by an explanation of how the stalling occurs on CG that

detects an error, and on CGs that stall due to an error from another tile.

Finally, the merging of separately occurring errors is discussed.

The circuit monitors ’mem error’ signals which are asserted when an

error occurs at a local memory, and ’stall in’ signals from neighbouring

CGs. The circuit outputs ’stall out’ signals triggering neighbours to stall,

’load shadow reg’ triggering memories to load their shadow register values,

and a ’count stall’ signal that holds the instruction counter and prevents

writes being made to neighbours memories from the CG.

A stall begins with an error being detected. If on cycle X a value is

written incorrectly to memory, part of the way through cycle X+1 the cor-

rect value is latched into the shadow register and compared to the memory

contents. If the values differ, an error has occurred, and the ’mem error’

signal is asserted. All 5 ’mem error’ signals(from the N,S,E,W and R mem-
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ories) for a CG are ORed (along with the stall in signals) to trigger the

’count stall’ signal for the CG.

In the cycle in which the error is detected (x+1), the logic triggers a

number of events in the CG. The ’count stall’ signal prevents instruction

counter from being incremented, and the current instruction from being

updated, and deasserts any write enables to any memory from that CG. The

’load shadow reg’ signal is sent to all memories, which loads the last cycles

data into the memory, correcting any errors, and preventing any writes from

the neighbours. These writes must be prevented as they may overwrite data

needed in the next instruction executed. The data from the neighbours is

not lost though, as it will still be stored in the memory’s shadow register.

In the cycle after the stall is detected (x+2), the CG executes the in-

struction it tried to execute previously. The execution happens normally,

but the ’load shadow reg’ is still asserted to the NSEW memories. This

writes any data that neighbouring CGs tried to write previously. No write

will be performed on these memories from the neighbours this cycle, as they

will be stalling.

CGs that do not encounter an error also need to stall to synchronize with

the ones who encounter the error. On the cycle after an error is detected, the

CG with the error asserts a ’stall out’ signal to its immediate neighbours on

the next cycle. When a CG receives a valid stall signal, it behaves similarity

to the CG when a memory error is detected. The instruction counter is not

incremented, and no values are written to memory from that CG. Any writes

to the CGs memories from neighbours are also delayed, being stored in the

shadow register and performed the following cycle, except from neighbours
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that requested the stall. These memories are not loaded from the shadow

register, as the neighbour who triggered a stall may need to write a result

from the instruction it is catching up on. The ’load shadow reg’, is also

registered and used to trigger the ’stall out’, as the signal is not being sent

to the originating CG.

When multiple errors occur in the array independently and must be

merged, the logic ensures operation occurs correctly. Depending on the

distance and timing of the errors, one of two situations will occur: the stalls

reach the same tile at once, or two neighbouring tiles stall simultaneously.

If the stalls reach the same tiles at once, the tile will stall, but will only

propagate the error back to tiles that did not send it a stall, so the regions

will merge and be synchronized. If the neighbours stall simultaneously, on

the cycle following the stall both will receive the ‘stall in’ signal from each-

other, but it can be ignored as they are already synchronized.

4.4.5 Performance Tradeoffs

The Razor error detection system performance is determined by both the

increase in the clock frequency and the increase in schedule length due to the

Razor error correction. The schedule length must be increased sufficiently to

allow for the circuit to complete operations, which will depend on the error

rate. The error rate will depend on the timing variations in the circuit, the

clock frequency, the circuit being executed, and data-dependent results.

The relationship between the minimum safe clock period Tmin and the

Razor clock period Trzr is shown in Figure 4.7. The clock shift (∆rzr) allows

the same result that arrives by the period Tmin to be latched by the shadow
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Figure 4.7: Timing comparison for baseline design without error cor-
rection vs. Razor enabled design

register. Increases in clock frequency must be accompanied by an increase in

delay to the shadow register (∆rzr). This delay must not exceed the short

path through the circuit, from any register fed by the main clock to the

shadow registers. This delay is ensured by adding constraints to the Quartus

fitter. In practice, as this minimum delay is increased, the nominal Fmax of

the circuit decreases, so the value must be carefully selected to achieve the

optimal performance. If the nominal Fmax of the circuit is given by Finit

and the minimum path delay to the shadow register is tmin, the theoretical

safe limit of the system Fsafe is reached when the sum of the new period

and tmin equals the period of Finit. The safe maximum frequency can be

calculated by:

Fsafe =
Finit

1 − Finit × tmin
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In practice the circuit frequency might be increased beyond this point,

but testing is needed to ensure correct operation.

In addition to the minimum path delay to the shadow registers, we must

also consider the maximum delay from the shadow register to the rest of the

circuit. Once the data is latched it is compared to the data in memory, and

if different, the error signal is asserted. The error signal travels to the Razor

control unit, and prevents the write enable signal to the CGs memories,

as well as preventing the instruction from incrementing. The maximum

delay from the output of the shadow register must be less than the clock

period minus the shadow register delay in order for the error to be corrected

properly (Trzr - ∆rzr) .

Both these path delays can be constrained using the Quartus Timing An-

alyzer to maximize performance. Many configurations of timing constraints

were swept to find the best performing values in practice.

4.5 Summary

This section outlined the design of the coarse-grain FPGA overlay CAR-

BON, and the application of in-circuit error correction to the overlay. Initial

implementation of the CARBON overlay was based on the MALIBU CG,

and included modifications needed for the Stratix memories, and a high

performance configuration controller. The Razor error tolerance system was

extended from 1D pipelines to 2D arrays. The Razor registers were applied

to the CARBON overlay, which included utilization of Stratix memory prop-

erties, and design of an error propagation network. We have developed a

unique time-multiplexed FPGA architecture that can recover from timing
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errors, as well as the novel application of Razor error detection to a design

on a commercial FPGA.
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Chapter 5

Results

5.1 Introduction

This chapter describes the area and speed improvements achieved by the

two overlay architectures described in previous chapters. First, the results

and area reduction achieved by the ZUMA architecture is presented. The

final resource usage of the ZUMA architecture is less than one-third of the

generic design, and less than one-half of previous research attempts [17]. As

few as 40 host LUTs per ZUMA embedded LUT are required.

In addition, the speedup achieved by the CARBON-Razor architecture is

presented and analyzed. Results are compared to the unmodified CARBON

architecture. When the schedule is extended by a fixed number of cycles,

which the number of errors will not extend, performance was increased from

3-20%, depending on the benchmark. When no fixed error cycles are used,

and the schedule is extended as needed, the performance is increased from

5-21%.
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5.2 ZUMA Results

This section begins with an outline of the parameters chosen for the most

efficient architecture with justifications. We then present the area results for

the Xilinx Virtex 5, with the efficiency gained by each of our implementation

optimizations. This is followed by the resource usage for the configuration

controller. We then present area results for the Altera Stratix IV version,

which suffers due to CAD limitations.

5.2.1 Architecture Parameters

Architectural parameters are derived from modeling presented in Chapter

3. The plot in Figure 5.1 shows the relationship between the cluster size (N)

and the area usage derived from that modeling. A cluster size of 8 is found

to have the best area usage. The routing width of the architecture is 112,

with a wire length of 4. The channel width is determined by the highest

width needed by the MCNC benchmarks when routed in VTR, as presented

in Table 5.1. The final architecture is given as eight 6-LUTs per cluster

(k=6,N=8), a routing width of 112 and routing wire length of 4, 28 inputs,

an absolute cluster input flexibility of 6, a fractional cluster output flexibility

of 3/8 and a switch block flexibility of 3. The input and output flexibilities

are greater than what is used in the generic design, as the extra flexibility is

supported by the fixed sizes of the LUTRAMs without an increase in logic

usage. The IIB then distributes 36 (28 + 8 feedback) inputs to 48 outputs,

which we can build using LUTRAM crossbars as shown in Chapter 3.
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Figure 5.1: Modeled logic usage vs cluster size

5.2.2 Xilinx Results

The Table 5.2 presents Xilinx Virtex 5 results for the baseline, and the

improvements from both LUTRAM utilization and the new IIB separately.

The LUTRAMs resulted in an over 50% reduction in LUT resources, coming

largely from the eLUT. The new IIB reduced the area another 20%, all from

the IIB. Together, the results are a two thirds reduction in LUT usage, and

an almost complete elimination of all flip-flop usage, in comparison to the

generic implementation.

In comparison, a ZUMA architecture corresponding to the vFPGA pa-

rameters was also implemented, and is presented in Table 5.3, using a Spar-

tan 3 architecture. The original vFPGA was implemented on a Spartan IIe

FPGA, which also uses 4-input LUTs. The Spartan IIe could not be used

for ZUMA, as it does not support LUTRAMs. The vFPGA architecture

uses a cluster comprised of four 3-LUTs, and a routing width of 32. The

57



Benchmark 6-LUTs Array Size Minimum Routing Track Width

alu4 1173 13x13 60

apex2 1478 14x14 102

bigkey 907 16x16 46

des 554 18x18 50

diffeq 1245 11x11 80

dsip 904 16x16 50

elliptic 3255 17x17 100

ex1010 3093 20x20 110

ex5p 740 10x10 98

frisc 3814 20x20 112

misex3 1158 13x13 78

pdc 3629 22x22 104

s298 1309 13x13 74

s38417 4501 21x21 78

Seq 1325 13x13 104

Spla 3005 20x20 106

Tseng 1182 10x10 76

Maximum - - 112

Table 5.1: Track utilization for ZUMA architecture using VPR 6.0

ZUMA design makes use of 4-input LUTRAMs for all logic and routing.

As the global routing tracks are connected directly to the LUT inputs, the

two-stage crossbar is not used in this design. In the vFPGA results, all

resources used for the switch box and input box is presented as one number,

as they are presented in the table. As shown in the table, ZUMA shows

a large reduction in both routing resources, as well as the resources used

to implement the eLUTs. The resource usage is less than one-half of the

previous results, a significant improvement over the 90x overhead from the

vFPGA paper.
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5.2.3 Configuration Controller

The area usage for the configuration controller is presented in Table 5.4,

versus a baseline design, both compiled to a Xilinx Virtex 5 FPGA. The

baseline design is composed of a simple counter and address decoder for each

memory. Our design increases the usage of flip-flops, but reduces the usage

of logic significantly, which is the limiting resource in ZUMA. Although the

controller uses a larger number of flip-flops, these can be packed into LUTs

with unused flip-flops in most new architectures. Hence the flip-flops will be

free resources. Hence, the configuration controller is small compared to the

entire ZUMA design.

5.2.4 Altera Results

The Altera version is currently less efficient than Xilinx, as a LAB can

only be used to implement one LUTRAM, regardless of the width of the

LUTRAM. As well it uses additional registers for the write port. This

greatly restricts the size of the array that can be implemented on a single

FPGA, though we are hopeful that a more efficient LUTRAM mapping may

ZUMA Architecture vFPGA Architecture

Area Host LUTs Host FFs Host LUTs Host FFs

Switch Block 64 0 332 158

Input Block 66 0 x x

eBLEs 4 4 22 42

Total 134 4 354 200

per eLUT 33.5 1 88.5 50

Table 5.3: Implementation of ZUMA FPGA architecture on Xilinx
Spartan 3 (both hosts use 4-LUTS, both architectures configured
with identical parameters k=3,N=4,w=32,L=1)
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Controller ZUMA

Controller Type Array Size Host FFs Host LUTs Host FFs Host LUTs

Baseline 2x2 13 160 32 1280

ZUMA 2x2 128 13 32 1280

Baseline 8x8 32 2960 512 20480

ZUMA 8x8 2048 32 512 20480

Table 5.4: Resource usage of ZUMA configuration controller com-
pared to the rest of ZUMA overlay on Xilinx Virtex 5

be available in future software releases. Altera has been contacted about this

limitation, but did not have time to add a workaround. Given this drawback,

the switch block and input block are implemented in the Altera ZUMA

version using generic Verilog multiplexers. Given the same architectural

details used to produce the Xilinx results, the resources consumed per tile

are presented in Table 5.5, as compiled to an Altera Stratix IV FPGA. Host

LUT usage is reduced similarly to Xilinx when compared to the generic

version, while flip-flop usage is only halved.

5.2.5 Verification and Timing Performance

The ZUMA overlay was verified in simulation and compiled on board Xilinx

and Altera FPGAs. Several Verilog circuits were compiled to a bitstream

and configured in the overlay from an external memory. The outputs were

compared against the benchmark Verilog, which was also compiled or sim-

ulated. The outputs were found to be identical.

On-board testing of timing was performed on an Altera Stratix III EP3SL150F1152C3ES

FPGA, as a Stratix IV board was not available at the time. Two bench-

marks, a 32 bit OR and a 32 bit AND circuit were compiled to the overlay
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and configured into a n=8,k=6, 3x3 ZUMA overlay. The inputs and outputs

of the circuit were registered, and the inputs were fed with a set of randomly

generated test vectors set by a NIOS processor. One clock cycle after the

inputs are set, the outputs of the circuit are captured, and read by the

processor, which determined if they were correct. The clock frequency was

swept to determine when incorrect results are captured. The circuits worked

correctly until the frequency reached 70-100 MHz, varying from compilation

to compilation. In comparison, the same benchmarks achieve 500-700 MHz

when compiled directly to the host FPGA.

5.3 CARBON-Razor Results

The results of the CARBON Razor architecture are presented in this section.

The area and performance of implementing the CARBON architecture with

Razor timing error detection and correction on an FPGA is presented first.

Then, observations about the impact of the instruction schedule properties

are observed.

5.3.1 Area

Both the unmodified CARBON and CARBON-Razor architectures were

compiled onto an Altera DE3 evaluation board with a Stratix III EP3SL150F1152C3ES

FPGA. Logic and register usage are reported for both architectures in Ta-

ble 5.6. The ALM and register usage goes up slightly to implement Razor,

but RAM and DSP usage is identical for both architectures. With this area

footprint, a 10 × 10 array of CGs can fit into the largest Stratix III, which

has 337,500 ALMs. The current implementation supports a schedule length
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Area ALMs Registers BRAM Bits DSP 18-bit Elements

CARBON CG 2,958 304 15,688 4

CARBON-Razor CG 3,082 517 15,688 4

Table 5.6: Resource usage of CARBON implementation per tile

(SL) up to 256 instructions.

5.3.2 Performance

Tests were performed by overclocking both the base CARBON design, and

CARBON with Razor error tolerance. The designs were compiled, and the

maximum frequency from the static timing analyzer (STA) was recorded.

The designs were then loaded into the FPGA, and a set of benchmarks were

run. The frequency, and the shadow register delay for the Razor version,

were modified to find the maximum performance, which was compared.

The CARBON system was paired with a Nios II processor to perform

a large number of tests using random data sets as depicted in Figure 5.2.

The data sets are first run with the CARBON-Razor system fed by a slower

clock. In each user cycle the inputs are changed and the outputs are read.

The frequency and Razor clock delay of the clock is then increased until

the circuit fails to produce the correct result, determined by comparison

to results obtained at a lower speed. The Quartus STA initially gave an

Fmax of 90 MHz for the baseline CARBON, and 88 MHz to the CARBON-

Razor, which loses speed due to the extra multiplexer in the write path of

the memories. The STA results are also presented in Table 5.7.

Thousands of iterations of each benchmark were run at various frequen-

cies, and the maximum performance (clock speed divided by the maximum
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Array Size Fmax

Baseline 2x2 90

CARBON-Razor 2x2 88

Table 5.7: Maximum operating frequency determined using Quartus
STA

schedule length) was chosen. The baseline designs frequency was swept

from the STA result to the point of failure. The CARBON-Razor designs

frequency was swept until it failed, but when a failure occurred the delay to

the shadow register was increased. Increases in the frequency and shadow

register delay were performed until the design would not pass at a frequency

regardless of the shadow register delay. The maximum overall performance,

which is determined by the frequency divided by the minimum schedule

length when used with a hard system deadline, and the frequency divided

by the average schedule length when used as a compute accelerator for each

benchmark was recorded.

Four benchmarks were used to gauge the performance of the circuit.

The first benchmark is composed of a chain of random operations on input

data. The dataflow and DSP computational circuits PR and WANG were

also used. The final benchmark is a calculation of the mean of 256 circuit

inputs. Each benchmark was compiled from Verilog into a schedule, which

is used to generate the instruction memories. The compilation takes less

than five seconds in total.

The results in Table 5.8 show performance of each of the benchmarks.

The circuit was run for thousands of cycles with random inputs. The

CARBON-Razor frequency and phase lag (∆1) controlling the shadow reg-
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isters was modified. The amount of improvement possible is shown to be

highly benchmark-dependent and data-dependent. For example, bench-

marks where the multiplier is never used, or only narrow data is multiplied

should get much higher speedups. The harmonic mean of each Fmax is

calculated in the final column. On average, the user Fmax increases by 13%.

If a hard system deadline is not needed for the outputs, for example if

the CARBON overlay is used as a compute accelerator to a processor, we no

longer need to budget for recovery cycles, and can stall only when needed.

In this case, the average Fmax of the circuit improves more with the Razor

system, especially for the benchmarks with lower speedups. As in the pre-

vious case, thousands of iterations of each benchmark were run at various

frequencies, and the maximum performance (clock speed divided by the av-

erage schedule length) was chosen. Table 5.9 demonstrates the improvement

of the average Fmax compared to the unmodified circuit. Overall, bench-

marks that achieved lower results show better speedups compared to the

hard system deadline version. In this case, the average Fmax improves from

6-21% for each benchmark. The harmonic mean of each Fmax is calculated

in the final column. On average, the user Fmax increases by 14%.

5.3.3 Error Probability Observations

From the experiments done in the previous section, a number of observations

can be made about the distribution of Razor errors. The number of errors

is influenced by the operations performed by the circuit, as well as the data

operated on. The four benchmarks used are individually discussed.

From the analysis of the Quartus Static Timing Analyzer it is clear the
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Figure 5.2: CARBON-Razor testing system

longest register-to-register delays run through the multiplier. When paths

through the multiplier are removed, other operations also show significantly

higher delays than average. The probability of failure thus will depend on the

operation performed. The probability of the path failing is also determined

by the value of the inputs to the circuit, as higher order bits of data will

take longer to propagate to the registers for a multiply operation. This was

observed in our tests, as when inputs vectors were all set to high, the worst

case error count was achieved in many cases.

The error rate is determined primarily by the program being run, but

also by the data being used. If the errors occurred reliably at a certain

instruction, the CARBON CAD system and architecture can be arranged

to give the offending operation another cycle to complete at compile time.

In this case, the run-time error detection would not be needed, and could
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be disabled.

The ’Random Operation’ benchmark is composed of a series of random

operations, using most paths through the ALU. This leads to a wide range of

delays to the shadow register, including a number with high delays. Accord-

ingly, this allows the frequency to be increased a significant amount before

a large number of errors are detected, leading to many error cycles being

needed, and causing slowdown.

Both PR and WANG both use a number of multiply and addition oper-

ations. Since most operations occur on the same paths, the frequency can

only be increased a small amount before many error cycles are needed, and

the circuit begins to slow down.

The ’Mean’ benchmark is composed of a large number of addition op-

erations, and a final shift. The shift goes through a multiplier, so it is

much slower than the additions. Therefore the shift operation will limit the

amount of overclocking for the base design. This error can be tolerated us-

ing just one cycle of slack. Since the schedule is also longer than the other

benchmarks, it results in the best speedup overall.

5.3.4 Summary

This chapter presented results for both the fine and coarse grain architec-

tures. The final resource usage of the ZUMA architecture is less than one

third of the generic design, and less than one-half of previous research at-

tempts [17], at as little as 40 host LUTs per ZUMA embedded LUT. The

addition of Razor error detection to the CARBON overlay resulted in a

speedup of up to 20% percent versus the baseline, depending on benchmark
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used.
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Chapter 6

Conclusions and Future

Work

6.1 Conclusions

In this thesis, we developed two overlay architectures. The first, ZUMA, is

a fine-grain architecture based on a traditional island-style FPGA architec-

ture. The second, CARBON, is a coarse-grain architecture implementing

the time multiplexed processing elements of the MALIBU architecture.

The fine-grain ZUMA architecture enables a number of applications and

addresses research needs. ZUMA can help address these goals by providing

open access to all of the underlying details of an FPGA architecture, as an

instrument for study and for implementation. Initial implementation was

found to suffer from large area overheads. To address this we make novel

contributions towards implementing logic and routing networks in FPGAs

using programmable LUTRAMs. The final resource usage of the ZUMA
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architecture is less than one-third of the original generic design, and less

than one-half of previous research attempts [17]. It uses as little as 40 host

LUTs per ZUMA embedded LUT.

The second overlay, CARBON, is a coarse-grain array of processing el-

ements based on the coarse-grain component of the MALIBU architecture.

The MALIBU architecture addresses a number of problems that occur as

FPGAs grow and evolve, and features better mapping of word-oriented cir-

cuits and faster compile times. By using an FPGA to implement the MAL-

IBU CG, we can take advantage of these properties in a real system, as

well as enabling us to explore changes to improve performance. This imple-

mentation allowed us to implement circuit level timing improvements and

error detection to increase performance. We have extended Razor circuit

level timing error detection, which achieves error tolerance through com-

paring registered data to a shadow register fed by a delayed clock, from

1D pipelines to 2D arrays. The Razor error tolerance is integrated into

CARBON, with development of a Razor enabled memory block and a 2D

error propagation controller. Performance was increased by 3-20% over our

base design depending on the benchmark, or 13% on average. If a hard

system deadline is not required, and a consistent execution schedule is not

needed, benchmarks that showed less speedup improve significantly, and we

can improve the performance by 6-21% overall, or 14% on average.

This thesis concretely demonstrates significant area and delay enhance-

ments to fine-grain and coarse-grain FPGA overlays. The first overlay de-

veloped was a fine grain architecture based on a traditional FPGA, which

was found to suffer from large area overheads. To address this we made
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contributions towards implementing logic and routing networks in FPGAs

using programmable LUTRAMs, and a novel two-stage local interconnect.

The second overlay, a coarse-grain array of processing elements, which is

inherently slow due to time multiplexing. To improve performance we ex-

tend a circuit level technique for pipelined circuits called Razor to detect

and tolerate timing errors introduced by overclocking.

6.2 Future Work

Future work can be done to integrate the clock skewing approach to hide

read and write latency to memory we developed in [4] into the CARBON

architecture. This would entail clocking the read and write ports of the

CARBON memories with separate clocks that are skewed slightly ahead

or behind of the memory. As memory is written to a bypass register, one

cycle communication is still possible, while hiding all memory latency. This

approach could be implemented alone, or along with Razor for additional

performance benefit.

By further analysis of data dependencies, additional logic could be added

to CARBON to prevent stalls from being propagated to neighbours when no

data dependencies are present. If an error occurs a stall may not be needed

if two conditions are met: the memory is not being written to on cycle X+1,

and the value is not being read in cycle X+1. In this case, the value can

be written from the shadow register to the memory without stalling the

processing element. Dependencies however could occur through multiple

neighbours, for example if the stall is not passed to the east neighbour, it

may travel north, east and south in three cycles and the stall would occur
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on that cycle. More logic would then be needed to prevent the errors being

passed back to the first CG. The benefits of this logic are highly dependent

on the properties of the design being run, and are left for future work.

The timing variation exploited in the CARBON-Razor design could also

be utilized with other methods. Architecture and CAD can be modified to

utilize the distribution of timing path delays in the CARBON and MAL-

IBU systems, to increase performance without requiring error detection. If

the maximum delay of an operation can be calculated based on instruction

parameters, such as the operation and result width, a technique such as

multicycle paths could be used to boost performance deterministically.

More work can still be done to add features and capabilities both on

the CAD and architecture design of ZUMA. Timing can be further con-

sidered, both to increase the speed of the underlying architecture, and the

ability of the CAD tools to exploit timing variation. The addition of more

architectural features, such as multiple clock networks, and asynchronous

set and reset of registers, and further work on integrating heterogeneous ele-

ments into the CAD flow will further increase the applicability of the ZUMA

architecture. More work can be done to integrate the CAD tools and con-

figuration to enable compilation to the fully hybrid MALIBU system.
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