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Multi-ported RAMs are essential for high-performance parallel computation systems. VLIW and vector pro-
cessors, CGRAs, DSPs, CMPs and other processing systems often rely upon multi-ported memories for par-
allel access. Although memories with a large number of read and write ports are important, their high im-
plementation cost means they are used sparingly. As a result, FPGA vendors only provide dual-ported block
RAMs (BRAM) to handle the majority of usage patterns. Furthermore, recent attempts to create FPGA-
based multi-ported memories suffer from low storage utilization. While most approaches provide simple
unidirectional ports with a fixed read or write, others propose true bidirectional ports where each port dy-
namically switch read and write. True RAM ports are useful for systems with transceivers and provide high
RAM flexibility; however, this flexibility incurs high BRAM consumption. In this paper, a novel, modular
and BRAM-based switched multi-ported RAM architecture is proposed. In addition to unidirectional ports
with fixed read/write, this switched architecture allows a group of write ports to switch with another group
of read ports dynamically, hence altering the number of active ports. The proposed switched-ports architec-
ture is less flexible than a true-multi-ported RAM where each port is switched individually. Nevertheless,
switched memories can dramatically reduce BRAM consumption compared to true-ports for systems with
alternating port requirements. Previous live-value-table (LVT) and XOR approaches are merged and opti-
mized into a generalized and modular structure we call an invalidation-based live-value-table (I-LVT). Like
a regular LVT, the I-LVT determines the correct bank to read from, but it differs in how updates to the table
are made; the LVT approach requires multiple write ports, often leading to an area-intensive register-based
implementation, while the XOR approach suffers from excessive storage overhead since wider memories are
required to accommodate the XOR-ed data. Two specific I-LVT implementations are proposed and evaluated,
binary and thermometer coding. The I-LVT approach is especially suitable for deep memories because the
table is implemented only in SRAM cells. The I-LVT method gives higher performance while occupying less
BRAMs than earlier approaches: for several configurations, BRAM usage is reduced by over 44% and clock
speed is improved by over 76%. The I-LVT can be used with fixed ports, true-ports or the proposed switched
ports architectures. Formal proofs for the suggested methods, resources consumption analysis, usage guide-
line and analytic comparison to other methods are provided. A fully parameterized Verilog implementation
is released as an open source library. The library has been extensively tested using Altera’s EDA tools.
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1. INTRODUCTION
Multi-ported memories are the cornerstone of all high-performance CPU designs. They
are often used in the register files, but also in other shared-memory structures such
as caches and coherence tags. Hence, high-bandwidth memories with multiple par-
allel reading and writing ports are required. In particular, multi-ported RAMs are
often used by wide superscalar processors [Tseng and Asanović 2003], VLIW proces-
sors [Tseng and Asanović 2003],[Fisher 1983], multi-core processors [Fetzer and Orton
2002],[Bajwa and Chen 2007], vector processors, coarse-grain reconfigurable arrays
(CGRAs) [Kwok and Wilton 2005], and digital signal processors (DSPs). For example,
the second generation of the Itanium processor employs a 20-port register file con-
structed from SRAM bit cells with 12 read ports and 8 write ports [Fetzer and Orton
2002]. The key requirement for all of these designs is fast, single-cycle, and concurrent
access from multiple requesters for performance reasons.

One way of synthesizing a multi-ported RAM is to build it from registers and logic.
However, this is only feasible for very small memories. Another way is to alter the
basic SRAM bit cell to provide extra access ports, but area growth is quadratic with
the number of ports, so this requires a custom design for each unique set of parameters
(number of ports, width and depth of RAM). Since FPGAs must fix their RAM block
designs for generic designs, it is too costly to provide highly specialized RAMs with a
large number of ports. A multi-ported RAM can also be emulated through banking or
multi-pumping. Banking uses hashing and arbitration to provide access, but it leads to
unpredictable (multi-cycle) access latencies under collisions; this complicates system
design and compromises performance. Multi-pumping provides a few extra ports, but
it is limited by the amount of overclocking. Hence, a method of composing arbitrary,
multi-ported RAMs from simpler RAM blocks is required.

Recently, a few FPGA-based modular simple/true-multi-ported RAM designs have
been proposed. Live-value-table (LVT) is used together with multi-banking to create
simple-multi-ported RAM [LaForest and Steffan 2010]. While each writing port writes
to a different bank, the LVT tracks the latest written bank for each memory address,
allowing to read the latest data. However, the LVT is composed of registers, a limited
and area-intensive resource. Alternatively, The XOR-based cancellation method re-
trieves the latest written data by utilizing logical XOR properties [Laforest et al. 2012].
The XOR-based method overcomes the register-based memory limitation by storing all
data in BRAMs; however, this incurs excessive memory overhead since wide memories
are required to accommodate all the XOR-ed data. Instead, An SRAM-based LVT is
proposed by utilizing invalidation-table data structure [Abdelhadi and Lemieux 2014].
Similar to a regular LVT, the invalidation-based live-value-table (I-LVT) determines
the correct bank to read from, but it differs in how updates to the table are made.
In contrast to register-based LVTs, the I-LVT is composed of BRAMs only, hence it
is capable of constructing deep LVTs. Choi et al. changed the data bank connectiv-
ity in the LVT-based approach to support bidirectional true-ports [Choi et al. 2012].
Their design has two main shortcomings. First, the LVT is still register-based and
does not scale well for deep memories. Second, all ports are true bidirectional ports;
this flexibility incurs high BRAM consumption, especially for memories with mixed
simple/true-port requirements. Hence, a method of composing modular BRAM-based
and storage-efficient multi-ported RAM supporting both simple and switched ports is
required.

As described in Figure 1 (left), RAM ports can be classified into three categories
based on their functionality: (1) simple/unidirectional ports with fixed read/write func-
tionality, (2) true/bidirectional ports, where each port can switch read/write function-
ality, and (3) switched ports, where a group of write ports can switch with another
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Fig. 1. (left) RAM port classification. (right) Example of mixed simple and switched ports.

group of read ports dynamically, hence altering the number of active ports. Figure 1
(right) provides an example of RAM module with mixed simple and switched port re-
quirements; specifically, one simple write (W1) and three simple reads (R1..3) have fixed
functionality, while two write ports (W2..3) are switched with three read ports (R4..6).

In this paper, a novel, modular and parametric switched multi-ported RAM is con-
structed out of basic dual-ported BRAMs while keeping minimal area and perfor-
mance overhead. The proposed method provides a modular architecture that supports
mixed simple/switched port requirements and significantly reduces BRAM consump-
tion and improves performance compared to previous attempts. Despite being less flex-
ible than true RAM ports, switched ports dramatically reduce BRAM consumption if
mixed-ports are required. The suggested switched data banks employs an SRAM-based
invalidation-live-value-table (I-LVT) [Abdelhadi and Lemieux 2014] to track the latest
written data banks for each RAM address, hence this architecture is purely SRAM-
based. To verify correctness, the proposed architecture is fully implemented in Verilog,
simulated using Altera’s ModelSim, and compiled using Quartus II. A large variety of
different architectures and parameters, e.g. bypassing, memory depth, width and num-
ber of ports are simulated in batch, each with over a million random memory cycles.
Stratix V, Altera’s high-end performance-oriented FPGA, is used to implement and
compare the proposed approach with previous techniques. In addition to the suggested
switched multi-ported RAM architecture, major contributions of this paper are:

— A bypassing circuitry for both simple (unidirectional) and true (bidirectional) ports.
The bypassing circuit is capable of producing new data for read-after-write (RAW)
and read-during-write (RDW) data dependencies.

— A detailed analytic comparison of the proposed and previous methods. A guideline for
choosing the most efficient architecture based on design parameters is also provided.

— A fully parameterized Verilog implementation of the suggested methods, together
with previous approaches. A flow manager to simulate and synthesize designs with
various parameters in batch using Altera’s ModelSim and Quartus II is also pro-
vided. The Verilog modules and the flow manager are available online [Abdelhadi
and Lemieux 2015].

Notation and abbreviations used for the rest of the paper are listed in Table I. The
rest of this paper is organized as follows. In section 2, conventional RAM multi-porting
techniques in embedded systems are reviewed. Previous attempts to provide multi-
ported memories are reviewed in section 3. The proposed invalidation-based live-value-
table method with switched ports is described in detail and compared to previous meth-
ods in section 4. The experimental framework, including simulation and synthesis and
results, are discussed in section 5, and conclusions are drawn in section 6.

2. RAM MULTI-PORTING TECHNIQUES IN EMBEDDED SYSTEMS
This section provides a review of current methods of creating multi-ported RAMs in
embedded systems. Creating multi-ported access to register-based memories is de-
scribed in subsection 2.1. Multi-pumping is described in subsection 2.2. Replicating
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Table I. List of notations and abbreviations

nW , nR, nt Write/read/true ports number WAddr/RAddr Write/read address
nW,f , nR,f Write/read simple (fixed) ports number WData/RData Write/read data
nW,s, nR,s Write/read switched-ports number RWData Bidirectional read/write data
d, w Memory depth, data width RBankSel Read bank selector
nM20K , nBReg M20K blocks / bypass registers number LVT Live-value-table
ffb, fout LVT feedback/out functions I-LVT Invalidation LVT
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a memory bank to increase the number of read and write ports is described in subsec-
tions 2.3 and 2.4, respectively.

2.1. Register-based RAM
Multi-ported RAM arrays can be constructed using basic flip-flop cells and logic. As
depicted in Figure 2, each writing port uses a decoder to steer the relevant written
data into the addressed row. Each read port uses a mux to choose the relevant register
output. This method is not practical for large memories due to area inflation, fan-out
increase, performance degradation, and a decline in routability.

2.2. RAM Multi-pumping
A time-multiplexing approach can be applied to a single dual-ported SRAM block to
reuse access ports and share them among several clients, each during a different time
slot. As depicted in Figure 3, addresses and data from several clients are latched then
given round-robin access to a dual-ported RAM. The RAM must operate at a higher
frequency than the rest of the circuit. If the maximum RAM frequency is similar to the
pipe frequency, or a large number of access ports are required, then multi-pumping
cannot be used. A number of designs utilize multi-pumping to gain additional ac-
cess ports while keeping area overhead minimal [Chappell et al. 1996],[Yokota 1990].
The 2.3GHz Wire-Speed POWER processor uses double-pumping to double the writing
ports [Ditlow et al. 2011].

2.3. Multi-read RAM: Bank Replication
To provide more reading ports, the whole memory bank is replicated while keeping
common write address and data as shown in Figure 4. Data will be written to all
bank replicas at the same address, hence reading from any bank is equivalent. This
method incurs high SRAM area and consumes more power. However, the replication
approach has two strong advantages over other multi-porting approaches. The first
is the simplicity and modularity of bank replication. The second is that read access
time is unaffected as the number of ports increases; only write delays increase due
to fan-out, but this can be hidden by pipelining and bypassing. The bank replication
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technique is commonly used in state-of-the-art processors to increase parallelism. The
2.3GHz Wire-Speed POWER processor replicates a 2-read SRAM bank to achieve 4
read ports [Ditlow et al. 2011]. Each of the two integer clusters of the Alpha 21264
processor has a replicated 80-entry register file, thus doubling the number of read ports
to support two concurrent integer units. Similarly, the 72-entry floating-point register
file is duplicated, supporting two concurrent floating-point units [Kessler 1999].

2.4. Multi-write RAM: Emulation via Multi-banking
Multi-ported memories are very expensive in terms of area, delay, and power for a
large number of ports. The overhead of multi-porting can be reduced by multi-banking
if one relaxes the guaranteed access delay constraint. As depicted in Figure 5, the total
RAM capacity can be divided into several banks, each with few ports (e.g. dual-port). A
fixed hashing scheme is used to match each access to a single bank; often, the address
MSBs are used. Arbitration logic steers access from multiple ports to each bank. Since
two ports can request access to data in the same bank at the same time, a conflict
resolving circuit determines which port grants access to a specific bank. The other
port will miss the arbitration and is required to request access again. Not only does
this approach provide unpredictable access latency due to the arbitration miss, but
it also increases delay due to the additional circuitry. Several approaches have been
proposed to improve multi-banking [Tseng and Asanović 2003],[Mattausch 1997],[Ji
et al. 2007],[Zuo et al. 2008]. State-of-the-art memory controllers and caches are based
on multi-banking due to area and power efficiency. For example, Intel’s i486 CPU has
a data cache with 8 interleaved banks and two access ports [Alpert and Avnon 1993].

3. MULTI-PORTED SRAM-BASED MEMORIES: PREVIOUS WORK
In this section a review of two previous multi-ported SRAM-based memories are pro-
vided. The first approach is based on multi-banking with a live-value-table (LVT)
[LaForest and Steffan 2010], [Laforest et al. 2014] and is described in subsection 3.1.
The second approach retrieves the latest written data by utilizing logical XOR proper-
ties [Laforest et al. 2012], [Laforest et al. 2014] and is described in subsection 3.2.

3.1. LVT-based Multi-ported RAM
For each RAM address, the LVT stores the ID of the bank replica that holds the latest
data. As depicted in Figure 6 (left), an LVT-based multi-ported RAM uses a different
bank replica for each writing port, while each bank has several reading ports. All banks
are accessed by all read addresses in parallel; the LVT helps to steer the read data out
of the correct bank since it holds the ID of last accessed (written) bank for each address.

Actually, the LVT itself is a multi-ported RAM with the same depth and number of
writing ports as the implemented multi-ported memory. However, since the LVT stores
only bank IDs, the data (line) width of the LVT table is only dlog2e of the number of
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banks, which is equal to the number of writing ports. As described in Figure 6 (right),
the LVT doesn’t have write data, instead it writes a fixed bank ID for each port.

Since an LVT is a narrow, multi-port memory, it is implemented as a registered-
based, multi-ported RAM. As explained in subsection 2.1, register-based RAM is not
suitable for building deep memories. While the LVT width is only log2 of the number of
writing ports, the depth of the LVT is still identical to the depth of the original RAM.
This is the main cause of the area overhead. In this paper, to reduce this area overhead,
two methods of constructing SRAM-based LVTs are described. The methodology of
constructing SRAM-based LVTs is also generalized. To the authors’ best knowledge
this is the first attempt to build an LVT out of SRAM blocks only.

Assuming that bank IDs are binary encoded, the total number of registers required
to implement the LVT is

d · dlog2 nW e. (1)

For deep memories, the large number of registers and huge read multiplexers make
register-based LVTs impractical. For example, a Stratix V GX A5 device (185k ALMs)
can fit up to 16k-deep memory with four write ports.

A register-based LVT with SRAM banks requires nW multi-read banks for each write
port. Each multi-read bank supports nR reading ports, allowing the LVT to select the
required data block. The total number of SRAM cells is

d · w · nW · nR. (2)

Using Altera’s Stratix M20K BRAMs, the total number of required M20K blocks is

nM20K(d,w) · nW · nR. (3)

Where nM20K(d,w) is the number of M20K Blocks required to construct a RAM with
a specific depth and data width. This value, described by Equation (4), is derived from
Figure 8, which shows how Altera’s M20K blocks can be configured into several RAM
depth and data width configurations [Altera Corp. 2013]. The total amount of utilized
SRAM bits can be either 16Kbits, or 20Kbits. Assuming that the RAM packing process
minimizes the number of blocks cascaded in depth to avoid additional address decod-
ing, each 16K lines will be packed into single bit-wide blocks, and the remainder will
be packed into the minimal required configuration as follows

nM20K(d,w) =

⌊
d

16k

⌋
·



w d%16k > 8k

bw/2 c 8k ≥ d%16k > 4k

bw/5 c 4k ≥ d%16k > 2k

bw/10c 2k ≥ d%16k > 1k

bw/20c 1k ≥ d%16k > 1
2k

bw/40c 1
2k ≥ d%16k

. (4)
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Two papers [Choi et al. 2012], [Laforest et al. 2014] introduce a modification to LVT’s
data bank to support bidirectional (true) ports. This is achieved by utilizing the bidi-
rectional functionality of true-dual-port BRAMs. Figure 9 (left) illustrates a general-
ization of this method. Each port either writes to a set of data banks, or reads from
them. Every port of ports has one data bank in common, hence, when a port reads, it
can access data written from any other port. A register-based LVT determines which
bank holds the latest data. Figure 9 (right) describes an example of a RAM with 3
true-ports. This problem is identical to the mathematical handshakes problem, where
each port must connect (handshake) to all other ports via a RAM. Hence, a total of

1

2
· nt · (nt − 1) (5)

data copies are required, where nt is the number of bidirectional (true) ports. Never-
theless, this true-port RAM architecture is still based on a register-based LVT, hence
it suffers from the same shortcomings.

3.2. XOR-based Multi-ported RAM
While the LVT-based multi-port RAM just shown implements its LVT as a register-
based multi-ported RAM, the XOR-based multi-ported RAM is implemented using
SRAM blocks [Laforest et al. 2012], [Laforest et al. 2014]. This makes it more effi-
cient for deep memories. However, as will be shown, it is inefficient for wide memories.
The XOR-based method utilizes the special properties of the XOR function to retain
the latest written data for each write port. XOR is commutative a ⊕ b = b ⊕ a, asso-
ciative (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c), zero is the identity a ⊕ 0 = a, and the inverse of each
element is itself a⊕ a = 0.

As illustrated in Figure 7, each write port has a bank with multi-read and a single
write. Part of the read ports are used as a feedback to generate new data and rewrite a
specific bank, while the other read ports generate the data outputs. To perform a write,
the new data is XOR’ed together with all the old data from the other banks; the result
is rewritten to the corresponding bank. Hence if an address A is written through write
port i with data WDatai, Banki will be rewritten with

Banki[A]← Bank0[A]⊕Bank1[A]⊕ · · · ⊕WDatai ⊕ · · · ⊕BanknW−1[A]. (6)
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A read is performed by XOR’ing all the data for the corresponding read address from
all the banks, hence,

RDatai[A]← Bank0[A]⊕Bank1[A] · · · ⊕BanknW−1[A]. (7)

Substituting Banki[A] from (6) into (7) and applying commutative and associative
properties of the XOR shows that each bank appears twice in the XOR equation, hence
will be cancelled since XORing similar elements is 0. The only remaining item will be
WDatai, the required data.

The XOR-based multi-ported RAM requires nW multi-read banks for each write port.
Each multi-read bank supports nW −1 read ports to feedback the other ports via XORs,
and nR read ports. Each feedback read port is of width d, to match the write data, so
these feedback memories can be quite large. The number of required SRAM cells is

d · w · nW · (nR + nW − 1). (8)

Using Altera’s Stratix M20K BRAMs, the total number of required M20K blocks is

nM20K(d,w) · nW · (nR + nW − 1). (9)

Since FPGA block RAM is synchronous, data feedbacks are read with a one-cycle read
delay. Hence, the written data, their addresses and write-enables must be retimed to
match the feedback data. This requires the following number of registers

nW · (w + dlog2 de+ nW ). (10)

4. INVALIDATION TABLE
As described in the previous section, the XOR-based multi-ported memories requires
nW · (nR + nW − 1) manipulated copies of the RAM content, while the LVT approach
requires another register-based multi-ported memory with the same number of read
and write ports for bank IDs.

This work proposes to implement LVTs using SRAM blocks only, which has a major
advantage over register-based LVTs and a lower SRAM area compared to the XOR-
based approach. Instead of requiring multiple write ports to each multi-read bank
in the regular LVT method, we suggest a design with a single write port each like
the XOR method. This makes it feasible to implement the LVT using standard dual-
ported RAMs. However, writing an ID to one bank requires also invalidating the IDs
in the other banks, which produces the need for the multiple write ports. Instead, we
suggest writing an ID to only one specific bank and invalidating all the other IDs with
a single write by using an invalidation table. Since the invalidation table has the same
functional behavior as an LVT, we call it an invalidation-based LVT, or I-LVT.

The I-LVT doesn’t require multiple writes to indicate the last-written bank. Instead,
as described in Figure 10, the I-LVT reads all other bank IDs as feedback, embeds the
new bank ID into the other values through a feedback function ffb, then rewrites the
specific bank. To extract back the latest written bank ID, all banks are read and data
is processed with the output function fout to regenerate the required ID. Selection of
the ffb and fout functions is what distinguishes different I-LVT implementations.

The I-LTV requires nW multi-read banks, each with nR read ports for output ex-
traction. Furthermore, an additional nW − 1 read ports are required in each bank for
feedback rewriting. The data width of these read ports varies depending on the feed-
back method and the bank ID encoding. In this paper, two bank ID encoding meth-
ods are presented, binary and thermometer. The binary method employs exclusive-OR
functions to embed the bank IDs, while the second uses mutual-exclusive conditions to
invalidate table entries and generate one-hot-coded bank selectors. The two methods
are described in subsections 4.1 and 4.2, respectively.
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4.1. Bank ID Embedding: Binary-coded Bank IDs and Selectors
This approach attempts to reduce the SRAM cell count in the I-LVT by employing
binary-coded bank IDs. The special properties of the exclusive-OR function are utilized
to embed the latest written bank ID, hence invalidating all other IDs. The current
written bank ID is XOR’ed with the content of all the other banks from the same write
address as described in the following feedback function,

ffb,k = k
⊕

0≤i<nW ;i6=k

Banki[WAddrk], (11)

where k is the ID of the currently written bank.
Similar to the XOR-based method described in subsection 3.2, the last written bank

ID is extracted by XOR’ing the content of all the banks from the same read address as
described in the following output extraction function

fout,k =
⊕

0≤i<nW

Banki[RAddrk]. (12)
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Without loss of generality, if address A in bank k is written with the feedback function
from Equation (11), then

Bankk[A] = k
⊕

0≤i<nW ;i 6=k

Banki[A]. (13)

If one of the read ports, say read port r, is trying to read from the same address,
namely RAddrr = A, then the read bank selector will be generated using the same
output extraction function from (12), hence

RBankSelr =
⊕

0≤i<nW

Banki[A]. (14)

Due to XOR operation associativity, RBankSelr from (14) can be expressed as

RBankSelr = Bankk[A]
⊕

0≤i<nW ;i 6=k

Banki[A], (15)

Substituting Bankk[A] from (13) into (15) provides

RBankSelr = k
⊕

0≤i<nW ;i 6=k

Banki[A]
⊕

0≤i<nW ;i 6=k

Banki[A]. (16)

The last two series in (16) can be reduced revealing that RBankSelr = k, the ID of the
latest writing bank into address A, as required.

Figure 11 provides an example of 2W/2R binary-coded I-LVT. As will become appar-
ent in the next section, in case of 2 write ports only, the binary-coded and thermometer-
coded I-LVTs are identical. Figure 12 (left) shows a 3W/2R binary-coded I-LVT.

The required data width of the I-LVT SRAM blocks is dlog2 nW e. Also, nW multi-read
banks are required each with nR output ports for ID extraction and nW − 1 feedback
ports for ID rewriting. Hence, the number of required SRAM cells is

d · dlog2 nW e · nW · (nW + nR − 1). (17)

Respectively, the number of required M20k block RAMs is

nM20K(d, dlog2 nW e) · nW · (nW + nR − 1). (18)

Similarly, the number of registers required for retiming is

nW · (dlog2 de+ 1). (19)
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4.2. Mutual-exclusive Conditions: Thermometer-coded Bank IDs with One-hot-coded
Selectors

The previous binary-coded I-LVT incurs a long path delay through the feedback and
output extraction functions due to the nW -wide XOR gates used to generate these
functions, which causes a performance reduction in structures with more ports. On
the other hand, employing a thermometer ID encoding reduces the feedback paths to
a single inverter at most, compared to the nW -wide XOR used earlier.

Mutual-exclusive conditions are used to rewrite the RAM contents. A specific bank
is written data that contradicts all the other banks, hence only this specific bank will
be valid and all the others are invalid. By checking the appropriate mutual-exclusive
condition for each bank, only the latest written bank will hold the valid data.

Equations (20) and (21) describe mutual-exclusive feedback functions for nW = 2, 3,
respectively. The angle brackets in theses equations are used for bit selection and con-
catenation, while the square brackets in other equations are used for RAM addressing.
As can be seen from these equations, writing to one bank will invalidate all the other
banks at the same address since one mutual negated bit is shared between each two
lines. For example, writing to bank2 when nW = 3 will write Bank1〈0〉 ← Bank0〈0〉
which will invalidate bank 0, and Bank1〈1〉 ← Bank2〈1〉 which will invalidate bank2.

nW = 2 :

{
ffb,0 : Bank0〈0〉 ← Bank1〈0〉
ffb,1 : Bank1〈0〉 ← Bank0〈0〉

(20)

nW = 3 :


ffb,0 : Bank0〈1 : 0〉 ← 〈Bank2〈0〉, Bank1〈0〉〉
ffb,1 : Bank1〈1 : 0〉 ← 〈Bank2〈1〉, Bank0〈0〉〉
ffb,2 : Bank2〈1 : 0〉 ← 〈Bank1〈1〉, Bank0〈1〉〉

(21)
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Equation (22) generalizes the feedback function to

ffb,k〈i〉|0≤i<nW−1 : Bankk[WAddrk]〈i〉 ←

{
Banki[WAddrk]〈k − 1〉 i < k

Banki+1[WAddrk]〈k〉 otherwise
(22)

This equation shows that each bank is using bits from all other banks to write its own
content. To prove that each two banks are mutually exclusive, one bit of these banks
should be mutually negated. Suppose 0 ≤ k0 ≤ nW −1 a bank ID, and 0 ≤ i0 ≤ nW −1 a
bit index. From Equation (22) if i0 ≥ k0 then another bank ID k1 and bit index i1 exist
such that Bankk0〈i0〉 ← Bankk1〈i1〉, k1 = i0 + 1, and i1 = k0. Hence, i1 < k1 and from
(22) Bankk1

〈1〉 ← Bankk0
〈i0〉 as required. The proof in case of i0 < k0 is identical.

The output extraction function checks for each one-hot output selector if the read
data from a specific bank matches the mutual-exclusive case. Hence, only one case will
match due to exclusivity. The output extraction function consists of an nW − 1 bit wide
comparator for each one-hot selector.

An example of a 2W/2R thermometer-coded I-LVT is shown in Figure 11, while a
3W/2R thermometer-coded I-LVT is depicted in Figure 12 (right).

The thermometer-coded I-LVT requires nW − 1 SRAM bits to save the mutually ex-
clusive cases. However, the feedback read ports requires only one bit, since only one
bit is used by the feedback function from each bank. nW multi-read banks are required
each with nR output ports for one-hot selectors extraction and nW − 1 feedback ports
for mutually exclusive cases rewriting. Hence, the number of required SRAM cells is

d · (nW − 1) · nW · nR + d · nW · (nW − 1). (23)

Respectively, the number of required M20k block RAMs is

nM20K(d, nW − 1) · nW · nR +BM20K(d, 1) · nW · (nW − 1). (24)

Similarly, the number of registers required for retiming is equal to the binary-coded
case and is described by (19).

4.3. Switched-ports Support
The I-LVT multi-ported RAM, similar to other previous register-based LVT [LaFor-
est and Steffan 2010] and XOR [Laforest et al. 2012] cancellation methods, offers
a fixed number of simple writing and reading ports. However, the vast majority of
computation applications use different numbers of reading and writing ports for each
computation cycle. On the other hand, Choi et al. multi-ported RAM architecture sup-
ports bidirectional true-ports only [Choi et al. 2012]; this excessive port flexibility in-
curs high BRAM consumption, especially for memories with mixed simple/true-port
requirements. For instance, Figure 13 (left) provides an example of a CPU–RAM pair-
ing where the CPU operations are mutual-exclusive; namely, only one operation can be
active at a single cycle. The mutual-exclusive operations in Figure 13 (left) are: f with
3 operands and 3 results, and g with 6 operands and a single result. when f is active,
3 RAM writes and 3 RAM reads are required, while a single RAM write and 6 RAM
reads are required when g is active. At any given cycle, a maximum of 3 writes and
6 reads are required, hence using a multi-ported RAM with fixed ports requires three
writing ports (nW = 3) and 6 reading ports (nR = 6). On the other hand, true ports
can be configured into writes or reads, hence using true-ports requires the maximum
of total writes and reads at any given cycle, namely 7 true-ports (nt = 7). Since RAM
ports will not be active at the same cycle, a multi-ported RAM with switched write/read
ports as illustrated in Figure 13 (right) can be used to reduce SRAM consumption.

The configurability of true dual-ported BRAMs is utilized to construct RAM ports
with exchangeable read and write functionality. The proposed switched ports archi-
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tecture has two sets of ports. The first set is nR,f and nW,f read and write simple
(fixed) ports, respectively. As their name suggest, these are fixed simple unidirectional
ports. The second set is nR,s and nW,s read and write switched ports, respectively. The
functionality of these ports alternates at runtime dynamically in two modes, read and
write, as follows. If the write mode is chosen, the nW,s switched write ports are active,
while the nR,s read ports are inactive. On the other hand, if the read mode is chosen,
the nR,s switched read ports are active, while the nW,s write ports are inactive. The
suggested architecture reconfigures dual-ported BRAM write ports into reads when
more reads and less writes are required (read mode). As depicted in Figure 15 (right),
dual-ported BRAMs in switched banks are replicated nR,f times to provide nR,f reads
in write mode. Each instance of the nR,f replicas reconfigures its write into a read (in
addition to the other read port) in the read mode. Hence, up to nR,f additional switched
reads can be generated, namely nR,s ≤ nR,f .

The key idea behind the SRAM savings is reconfiguring unused writing ports into
reading ports. Figures 15 illustrates the suggested architecture. Only data banks
whose writing ports are unused in read mode are altered, namely nW,s banks. The
writing ports of each of these banks are redirected to serve as reading ports in read
mode as depicted in Figure 15 (lower right). Other banks that will keep writing ports
in read mode (nW,f banks) must increase the number of reading ports to nR,f + nR,s

to match read ports requirement in read mode as described in Figure 15 (upper right).
Compared to a fixed ports multi-ported RAM with the maximum number of writing
ports nW = nW,f + nW,s and the maximum number of reading ports nR = nR,f + nR,s,
the proposed switched architecture reduces the number of data banks by nW,s · nR,s.
Hence, this reduces the number of BRAMs by

nW,s · nR,s · nM20K(d,w). (25)

Figure 14 describes an example of a switched multi-ported RAM with (nW,f , nR,f ) =
(1, 3) fixed ports and (nW,s, nR,s) = (2, 3) switched ports. Therefore, in read mode, there
is only one write port and double the fixed read ports. Figure 14 (left) shows the write
mode configuration, while Figure 14 (right) shows the read mode configuration. In this
example, the upper multi-read bank keeps the minimal single write operation, while
the other banks sacrifice write ports to provide additional read ports. According to
equation 25, if the switched RAM in Figure 14 has 32-bits in width (w = 32) and 32
k-lines in depth (d = 32k), 384 BRAM blocks are saved compared to fixed-ports RAM.
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Fig. 15. (left) Switched ports architecture. Data banks: (upper right) simple, and (lower right) switched.

4.4. Data Dependencies and Bypassing
The new I-LVT structure and the previous XOR-based multi-ported RAMs incur data
dependencies due to feedback functions and the latency of reading the I-LVT to decide
about the last written bank. Data dependencies can be handled by employing bypass-
ing, also known as forwarding.

Figure 16 illustrates two types of bypassing based on write data and address pipelin-
ing. Bypassing is necessary because Altera’s dual-port block RAMs cannot internally
forward new data when one port reads and the other port writes the same address
on the same clock edge, constituting a read-during-write (RDW) hazard. Both bypass-
ing techniques are functionally equivalent, allowing reading of the data that is being
written on the same clock edge, similar to single register functionality. However, the
fully-pipelined two-stages bypassing shown in Figure 16 (lower left) can overcome an
additional cycle latency, namely an additional pipe stage on writing data and address
(not shown in the figures). This capability is required if a block RAM has pipelined
inputs (e.g., cascaded from another block RAM) that need to be bypassed.

The single-stage and the two-stage bypass circuitry for a w bits data width and
d lines depth block RAM requires w registers for data bypassing, two dlog2 de wide
address registers and one enable register, for a total of

nBReg,unidirectional(d,w) = w + 2dlog2 de+ 1. (26)

The switched multi-ported RAM described in section 4.3 utilizes true-dual-port
BRAMs to switch port functionality. However, since writing and reading operations
in true-dual-ported RAMs are exchangeable, the bypassing circuitry requires special
handling. As described in Figure 16 (right), the bypass circuit of the bidirectional RAM
is mirrored compared to the unidirectional RAM. Thus, it can bypass written data from
any direction. However, the control logic that drives the bypassing mux selectors need
to be altered to detect the direction of writing. Since the bidirectional bypassing circuit
is a mirroring of the unidirectional bypassing circuit, it requires twice the registers
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Fig. 16. Single-stage and two-stage bypassing for simple and true dual-port RAM.

used for the unidirectional bypass circuit, hence

nBReg,bidirectional(d,w) = 2 · nBReg,unidirectional(d,w). (27)

The most severe data dependency the I-LVT design suffers from is write-after-write
(WAW), namely, writing to the same address that has been written before in the previ-
ous cycle. This dependency occurs because of the feedback reading and writing latency.
A single-stage bypassing for the feedback banks should solve this dependency.

Two types of reading hazards are introduced by the proposed I-LVT design, read-
after-write (RAW) and read-during-write (RDW). RAW occurs when the same data
that have been written in the previous clock edge are read in the current clock edge.
RDW occurs when the same data are written and read on the same clock edge.

Due to the latency of the I-LVT, reading from the same address on the next clock edge
after writing (RAW) provides the old data. To read the new data, the output banks of
the I-LVT are bypassed by a single-stage bypass to overcome the I-LVT latency.

The deepest bypassing stage is reading new data on the same writing clock edge
(RDW), which is similar to a single register stage latency. This can be achieved by 2-
stage bypass on the output extract ports of the I-LVT or the XOR-based design to allow
reading on the same clock edge. The data banks, which are working in parallel with
the I-LVT, are bypassed by a single-stage to provide new data. Table II summarizes
the required bypassing for data banks, feedback banks and output banks for each type
of bypassing of the XOR-based, binary-coded and thermometer-coded I-LVT.

Since XOR-based multi-ported RAM requires bypassing for all the nW ·(nW +nR−1)
banks to read new data when RAW or RDW, the additional registers required for the
bypassing are

nW · (nW + nR − 1) · nBReg(d,w). (28)

RAW for binary-coded method requires bypassing the I-LVT only. Since the I-LVT is
built out of nW ·(nW +nR−1) blocks, each with dlog2 nW e bits width data, the following
amount of additional registers is required

nW · (nW + nR − 1) · nBReg(d, dlog2 nW e). (29)

RAW for thermometer-coded method requires bypassing the whole I-LVT, nW ·(nW −1)
feedback banks with 1 bit width and nW · nR output banks with nW − 1 bits width,
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Table II. Bypassing for XOR-based and binary/thermometer-coded I-LVT multi-ported memories

XOR-based I-LVT-based
Feedback banks Output banks Data banks Feedback banks Output banks

Allow WAW 1-stage None None 1-stage None
New data RAW 1-stage 1-stage None 1-stage 1-stage
New data RDW 1-stage 2-stage 1-stage 1-stage 2-stage
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Fig. 17. Initial value for (left) I-LVT-based (right) XOR-based. (0: zeros, I: initial content, U: uninitialized)

hence a total registers of

nW · (nW − 1) · nBReg(d, 1) + nW · nR · nBReg(d, nW − 1). (30)

RDW for both binary and thermometer-coded methods require bypassing the nW · nR
data banks in addition to the I-LVT, hence the following amount of registers is added
to the previous count in (29) and (30)

nW · nR · nBReg(d,w). (31)

4.5. Initializing Multi-ported RAM Content
Due to the special structure of the proposed I-LVT-based multi-ported memories and
the previously proposed XOR-based method, RAM data may have replicas in several
banks. Hence, initializing the multi-ported RAM with a specific content requires spe-
cial handling. For the XOR-based multi-ported RAM, the first multi-read bank should
be initialized to the required initial content; all the other multi-read banks should
be initialized to zero. On the other hand, the binary/thermometer-coded I-LVT-based
multi-ported RAM requires initializing all the I-LVT banks with zeros. The binary-
coded I-LVT will generate a selector to the first data bank (indexed zero), since XOR’ing
all the initial values (zeros) will generate zero. Similarly, the thermometer-coded I-
LVT will be initialized to the first mutually exclusive case, hence the first bank will
be selected. Only the first bank holds the initial data; the remaining banks are left
uninitialized. The initial values of each bank in the binary/thermometer-coded I-LVT
and XOR-based designs are shown in Figure 17.

4.6. Comparison and Discussion
In this section, we compare SRAM and register consumption of our proposed ap-
proaches with previous approaches based on RAM architecture and ports functionality.
A usage guideline based on the required RAM parameters is also provided. These an-
alytical results are in agreement with experimental results in section 5.

4.6.1. SRAM Usage based on RAM Architecture. In this section, we compare the previ-
ous LVT and XOR approaches to the new I-LVT approaches for building multi-port
memories. Using the equations provided, we will illustrate why the I-LVT approach
is superior in terms of number of BRAMs required, and number of registers required.
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Also, between the two I-LVT methods proposed, we will inspect the number of BRAMs
and registers used by each bypassing method.

Table 3 summarizes SRAM resource usage for each of the three multi-ported RAM
approaches: the XOR-based and the binary/thermometer-coded I-LVT. Both the gen-
eral SRAM cell count and the number of Altera’s M20K blocks are described. Compar-
ing the SRAM cell counts, the XOR-based approach consumes fewer SRAM cells than
the thermometer-coded I-LVT if

w < nR + 1. (32)

This inequality is unlikely to be satisfied, since for a single byte data width, the num-
ber of reading ports nR would need to be larger than 8, which is very rare except for
systems with multiple requesters requiring a concurrent access to few bits of data (e.g.
mutex or mailbox system). Hence, for typical use cases, the thermometer-coded I-LVT
approach will consume fewer SRAM cells.

Comparing the XOR-based approach to the binary-coded approach, the XOR-based
approach consumes fewer SRAM cells only if

w <
dlog2 nW e · (nW + nR − 1)

nW − 1

∣∣∣∣
nW>1

. (33)

Both (32) and (33) show that the XOR-based approach will consume less SRAM cells
only for a very narrow data widths which are uncommonly used. Hence, the I-LVT ap-
proach will be the choice for most applications. Comparing the two I-LVT approaches,
Table III shows that the thermometer-coded I-LVT consumes fewer SRAM cells than
the binary-coded I-LVT if

1 < nW ≤ 3 OR nR <
(nW − 1) · (dlog2 nW e − 1)

(nW − 1)− dlog2 nW e

∣∣∣∣
nW>3

. (34)

Figure 18 illustrates a guideline for choosing a multi-ported RAM architecture based
on area efficiency. For shallow memories, register-based RAM and LVT offer the best
area efficiency. However, their area rapidly inflates as RAM goes deeper. The usage
of BRAMs alleviates the problem since SRAM-based memories have higher capaci-
ties that register-based memories. The XOR-based method is suitable for memories
narrower than α which is determined by the minimum of Equations (32) and (33).
Choosing binary-coded or thermometer-coded I-LVT is based on nW and nR only and
is determined by Equation (34).

4.6.2. Register Usage based on RAM Architecture. Table V summarizes register usage for
all multi-ported RAM architectures and bypassing. Only the register-based LVT archi-
tecture is directly proportional to memory depth. As a consequence, it consumes much
more registers than other architectures, making register-based LVTs impractical for
deep memories. With a single-stage bypassing, the XOR-based design consumes fewer
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registers than the binary-coded if
w < dlog2 nW e. (35)

Equation (35) is unlikely to be satisfied. Even if the data width is just one byte (w = 8),
the number of write ports nW would need to be larger than 256, which is impractical.
On the other hand, with a single-stage bypass, the XOR-based design consumes fewer
registers than the thermometer-coded I-LVT design if

w <
1 + nR

1 + nR

nW−1

∣∣∣∣∣
nW>1

. (36)

In a typical compute-oriented designs, nR = 2 · nW . Assuming that nR = 2 · (nW − 1)
requires that 3 · w − 1 < nR; even for a one byte data width, this requires 23 < nR to
satisfy (36), which is impractical. Therefore, for a single-stage bypass, the I-LVT based
designs will consume fewer registers than the XOR-based design.

Considering two-stage bypassing, I-LVT based designs will consume nW · nR ·
nBReg(d,w) more registers, as described in (31). In this case, XOR-based design con-
sumes fewer registers than the binary-coded I-LVT design only if

w < dlog2 nW e ·
(
1 +

nR
nW − 1

)
. (37)

On the other hand, XOR-based design consumes fewer registers than the
thermometer-coded I-LVT design only if

w < nR + 1. (38)
Similar to (32), which is equal to (38), this is unlikely to be satisfied in practical de-
signs. Hence, in the case of two-stage bypassing, the I-LVT-based design will consume
fewer bypassing registers than the XOR-based method.

4.6.3. SRAM Usage based on Port Functionality. The previous analysis provides a guide-
line for using XOR, LVT, binary-coded or thermometer-coded I-LVT. However, a guide-
line for using simple, true, or switched port architectures as illustrated in Figure 1 is
required. A multi-ported RAM with the following mixed port requirements is used for
comparison: (1) nW,f write / nR,f read simple (fixed) ports, (2) nt true-ports, and (3)
nW,s write / nR,s read switched ports. To implement the mixed-port multi-ported RAM
using different port architectures, the following transformations are required: (1) A
true-port can be emulated as two simple ports, a write and a read sharing the same
address. (2) A switched port can be emulated as nW,s simple write ports and nR,s sim-
ple read ports, or max(nW,s, nR,s) true-ports. The M20K count of the mixed-port RAM
for each port architecture is provided by:

Simple : nM20K(d,w)
(
(nR,f + nt + nR,s) · (nW,f + nt + nW,s)

)
True : nM20K(d,w)

(na(na−1)
2

∣∣
na=nW,f+nR,f+nt+max(nW,s,nR,s)

)
Switcheded : nM20K(d,w)

(
(nW,f + nt + nW,s)(nR,f + nt) + (nW,f + nt)nR,s

)
.

(39)

To simplify the comparison, we assume that the number of read ports is twice the
number of write ports for simple and switched ports, hence nR,f = 2nW,f and nR,s =
2nW,s. Figure 19 shows a linear approximation of the BRAM consumption equilibrium.
These plots form guidelines for choosing the most area efficient architecture. Figure
19 (left) shows that the true-ports architecture is more efficient in BRAM usage only if
the number of true-ports is more than

√
5 times the simple write ports count. On the

other hand, Figure 19 (right) shows that the true-ports architecture is more efficient
only if the number of true-ports is more than

√
5nW,f + (

√
5− 1)nW,s.
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Table III. Summary of SRAM bits usage

Data banks LVT feedback banks LVT output banks
Register-based LVT d w nW nR N/A N/A
XOR-based d w nW (nR + nW − 1) N/A N/A
Binary-coded I-LVT d w nW nR d dlog2 nW e nW (nW − 1) d dlog2 nW e nW nR

Thermometer-coded I-LVT d w nW nR d nW (nW − 1) d (nW − 1 ) nW nR

Table IV. Summary of M20K blocks usage

Data banks LVT feedback banks LVT output banks
Register-based LVT nM20K(d,w) nW nR N/A N/A
XOR-based nM20K(d,w) nW (nR+nW−1) N/A N/A
Binary-coded I-LVT nM20K(d,w) nW nR nM20K(d,dlog2nW e) nW (nW−1) nM20K(d, dlog2 nW e) nW nR

Thermometer-coded I-LVT nM20K(d,w) nW nR nM20K(d, ) nW (nW−1) nM20K(d, nW − 1 ) nW nR

Note: BM20K(d,w) is the number of Altera’s M20Ks required to construct a d deep by w wide RAM as described in (4).

Table V. Summary of register usage

No bypass Additional registers for RAW bypass Additional for RDW
Register-based LVT d dlog2 nW e None None
XOR-based nW (w + dlog2 de+ 1) nW (nR + nW − 1)nBReg(d,w ) None
Binary-coded I-LVT nW ( dlog2 de+ 1) nW (nR + nW − 1)nBReg(d, dlog2 nW e) nW nR nBReg(d,w)

Thermometer-coded I-LVT Same as binary-coded nW ((nW−1) nBReg(d,1) + nR nBReg(d,nW−1)) Same as binary-coded

Note: nBReg(d,w) is the number of additional registers required to bypass a d deep by w wide RAM as described in (26) and
(28); use nBReg,bidirectional if the proposed switched architecture is used, otherwise use nBReg,unidirectional.

Table VI. Resources consumption for a 4W/8R multi-ported RAM test-case with 8k-entries of 32-bit words

Register-based LVT Binary-coded I-LVT Thermometer-coded I-LVT
XOR-
based

Simple Switched % Change
from XOR

Simple Switched % Change
from XOR

Simple Switched % Change
from XOR

M20K’s 704 512 384 -45.5% 556 428 -39.2% 588 460 -34.7%
Registers 2781 18288 17816 +540.6% 3220 2748 -1.2% 3240 2768 -0.5%
ALM’s 2010 61662 61333 +2951.4% 1454 1290 -35.8% 1604 1445 -28.1%
Fmax(Mhz) 270 213 213 -21.1% 325 338 +25.2% 390 388 +43.7%

Note a: This test-case consists of 2 fixed and 2 switched write ports (nW,f , nW,s) = (2, 2), 4 fixed and 4 switched read
ports (nR,f , nR,s) = (4, 4) and new data RDW bypassing.

Note b: A register-based multi-ported RAM with the same parameters does not fit in the same device.

Table VII. Register consumption for a 4W/8R multi-ported RAM test-case with 8k-entries of 32-bit words

Register-based LVT Binary-coded I-LVT Thermometer-coded I-LVT
XOR-
based

Simple Switched % Change
from XOR

Simple Switched % Change
from XOR

Simple Switched % Change
from XOR

No Bypass 184 16400 16400 +8813.0% 56 56 -69.6% 56 56 -69.6%
Allow WAW 892 16400 16400 +1738.6% 404 404 -54.7% 392 392 -56.1%
New Data RAW 2780 16400 16400 +489.9% 1332 1307 -53.0% 1352 1352 -51.4%
New Data RDW 2781 18288 17816 +540.6% 3220 2748 -1.2% 3240 2768 -0.5%

Note a: This test-case consists of 2 fixed and 2 switched write ports (nW,f , nW,s) = (2, 2) with 4 fixed and 4 switched read
ports (nR,f , nR,s) = (4, 4).

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: November 2014.



0:20 Ameer M.S. Abdelhadi and Guy G.F. Lemieux

5. EXPERIMENTAL RESULTS
In order to verify and simulate the suggested approach and compare to previous at-
tempts, fully parameterized Verilog modules have been developed. Both the previous
XOR-based multi-ported RAM method, and the proposed I-LVT method have been im-
plemented. To simulate and synthesize these designs with various parameters in batch
using Altera’s ModelSim version 10.1e and Quartus II version 14.0, a run-in-batch
flow manager has also been developed. The Verilog modules and the flow manager are
available online [Abdelhadi and Lemieux 2015]. To verify correctness, the proposed ar-
chitecture is simulated using Altera’s ModelSim. A large variety of different memory
architectures and parameters are swept, e.g. bypassing, memory depth, data width,
number of ports, and simulated in batch, each with over million random memory ac-
cess cycles.

All different multi-ported design modules are implemented using Altera’s Quartus
II on Altera’s Stratix V 5SGXMA5N1F45C1 device. This is a high-performance de-
vice with 185k ALMs, 2304 M20K blocks and 1064 I/O pins. We performed a general
sweep and test all combinations of the following parameters: nW = 2..4, nR = 3..6,
d = 16k, 32k, w = 8, 16, 32, bypassing: None, RAW and RDW. Following this, we analyze
the full set of results. In this paper, we omit many of the in-between settings because
they behaved as one might expect to see via interpolation of the endpoints.

Figure 20 plots the maximum frequency derived from Altera’s Quartus II
STA at 0.9V and temperature of 0 ◦C. The results show a higher Fmax for
binary/thermometer-coded I-LVT compared to the XOR-based approach for all design
cases. With 3 or more writing ports, the thermometer-coded I-LVT supports a higher
frequency compared to all other design styles. Compared to the XOR-based approach,
the thermometer-coded I-LVT improves Fmax by 38% on average for all design config-
urations, while the maximum Fmax improvement is 76%.

Figure 21 (top) plots the number of Altera’s M20K blocks used to implement each
multi-ported RAM configuration. The proposed binary/thermometer-coded I-LVT con-
sumes the least BRAM blocks in all cases. The average reduction of the best of
binary/thermometer-coded I-LVT compared to XOR-based approach is 19% for all
tested design configurations, while it can reach 44% for specific configurations. The
difference of consumed Altera’s M20Ks between binary-coded I-LVT and thermometer-
coded I-LVT is less than 6%. To clarify the difference in BRAM consumption, Figure
21 (bottom) shows the percentage of BRAM overhead above the register-based LVT,
which uses the fewest possible BRAMS overall. The XOR-based design consumes more
BRAMs in all cases, up to twice the BRAMs compared to register-based LVT. On the
other hand, I-LVT-based methods consume only 12.5% more BRAMs in the case of
32-bit wide memories.

Figure 22 shows the number of ALMs consumed by each design with different
bypassing methods. New data RAW bypassing consumes more ALMs than the non-
bypassed version due to address comparators and data muxes. On the other hand,
new data RDW bypassing requires an additional address comparator and a wider mux;
hence it consumes more ALMs than a new data RAW bypass. In all bypass modes, as
memory data width goes higher, the XOR-based method consumes more ALM’s than
the I-LVT methods due to wider XOR gates.

The number of registers required for various designs and bypassing styles is shown
in Figure 23. The I-LVT-based methods consume fewer registers compared to the XOR-
based method for no bypassing or new data RAW bypass. For new data RDW bypass,
the I-LVT based methods must bypass the data banks, hence the register consumption
goes higher than the XOR-based method. However, the register consumption of the
register-based LVT method is the highest overall and can be three orders of magnitude
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higher since it is directly proportional to memory depth. Furthermore, register-based
LVT memories with 4 write ports and over 16k-entries failed to synthesize on our
Stratix V with 185k ALMs.

Since the register-based LVT approach is not feasible with the provided deep mem-
ory test-cases, the register-based LVT trends are derived analytically from Table III,
IV and V and not from experimental results. Hence, the register-based LVT trend was
added as a reference baseline to Figure 21 and 23 only.

The switched multi-ported RAM is demonstrated with several design cases and nom-
inal parameters of d = 32K and w = 32. The total number of write ports is fixed to 3
(nW = nW,s + nW,f = 3), while the number of switched write ports is a sweep of 1, 2
and 3 ports (nW,s = 1, 2, 3); hence the number of simple write ports is a sweep of 2,
1, and 0 (nW,f = 2, 1, 0), respectively. On the other hand, the number of simple read
ports is set to 3 (nR,f = 3), while the number of switched ports is a sweep of 1, 2,
and 3 ports (nR,s = 1, 2, 3); hence the number of total read ports is a sweep of 4, 5,
and 6 (nR = nR,s + nR,f = 4, 5, 6), respectively. Figure 24 (top and middle) is a plot of
Fmax increase and ALMs overhead percentages, respectively, compared to a simple-
ports baseline design (without the switched ports mechanism) and with the maximum
available ports, namely nW writing ports and nR reading ports. Figure 24 (bottom)
shows the M20K reduction for the equivalent design with simple-ports only (nW writ-
ing ports and nR reading ports), and for the equivalent design with true-ports only
(nW,f + nR,f +max(nR,s, nW,s) true-ports, as described in Section 4.6.3). For the given
test case, using switched-ports can save up to 45% of the BRAM consumption com-
pared to the equivalent simple-port or true-port designs. The BRAM consumption can
be anticipated from Equations 25 and 39. The BRAM reduction relieves the routing
resources hence an Fmax increase is observed as shown in Figure 24 (top). The Fmax
increase is more significant in thermometer-based I-LVT, achieving over 22% improve-
ment. Additional data multiplexing causes an increase of ALMs. However, the increase
percentage is lower than 31% in all designs as shown in Figure 24 (middle).

6. CONCLUSIONS AND FURTHER DIRECTIONS
In this paper, we have proposed a novel, modular, BRAM-based and switched-multi-
ported RAM architecture. In addition to unidirectional ports with fixed read/write,
this switched architecture allows a group of write ports to switch with another group
of read ports dynamically. The proposed switched-ports architecture is less flexible
than a true-multi-ported RAM where each port is switched individually. Nevertheless,
switched memories can dramatically reduce BRAM consumption compared to true or
simple ports for systems with alternating port requirements.

An invalidation-based live-value-table (I-LVT) is used to determine the latest writ-
ten data banks for our suggested multi-ported RAM. The I-LVT generalizes and re-
places two prior techniques, the LVT and XOR-based approaches. A general I-LVT is
described, along with two specific implementations: binary-coded and thermometer-
coded. Both methods are purely SRAM based. While the original LVT demand use of
an infeasible number of registers, the I-LVT register usage is not directly proportional
to memory depth; hence it requires orders of magnitudes fewer registers. Furthermore,
the proposed I-LVT can reduce BRAM consumption up to 44% and improve Fmax by
up to 76% compared to previous approaches. The thermometer-coded I-LVT method ex-
hibits the highest Fmax, while keeping BRAM consumption within 6% of the minimal
required BRAM count.

A detailed analysis and comparison of resource consumption of the suggested meth-
ods and previous methods is provided. With this information we develop a guideline
for choosing the most area efficient approach. Generally, past approaches of XOR and
LVT are only recommended for narrow data widths or shallow depths, respectively.
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In all other cases, the new I-LVT approaches are superior. A fully parameterized and
generic Verilog implementation of the suggested methods is provided as open source
hardware [Abdelhadi and Lemieux 2015].

As future work, the new multi-ported memories can be tested with various other
FPGA vendors’ tools and devices. Furthermore, these methods can also be tested
for ASIC implementation using dual-ported RAMs as building blocks, and compared
against memory compiler results. Also, to improve Fmax, time-borrowing techniques
can be utilized. The goal would be to recover the frequency drop due to the multi-ported
RAM additional logic, feedback and bank selection logic. One possible approach uses
shifted clocks to provide more reading and writing time [Brant et al. 2012]. However,
adapting this method to multi-ported memories is not trivial due to internal timing
paths across the I-LVT. The true-multi-pored RAM proposed by others [Choi et al.
2012], [Laforest et al. 2014] can utilize our I-LVT method to implement BRAM-based
LVT instead of register-based LVT, which eliminated the need of register-based mem-
ories and allows higher RAM capacities.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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Online Appendix to:
Modular Switched Multi-ported SRAM-based Memories

AMEER M.S. ABDELHADI, The University of British Columbia
GUY G.F. LEMIEUX, The University of British Columbia

This appendix is a user guide for the Switched Multi-ported RAM (SMPRAM) mod-
ule Verilog package provided with this paper. The SMPRAM module is compatible with
Verilog-2001. The provided Verilog is generic, however, it has been tested using Altera’s
ModelSim (version 10.0d) only. The SMPRAM module, including interface signals and
configuration parameters is described in Figure 25. Table VIII lists all interface ports
while Table IX lists all configuration parameters for the SMPRAM module. The code
in Listing 1 describes an SMPRAM module instantiation. Furthermore, to instantiate
the SMPRAM module, all *.v & *.vh files in this package should present in your work
directory. The following commandline clones the package from a GitHub repository.
git clone https://github.com/AmeerAbdelhadi/Switched-Multiported-RAM.git

(nWPF+nWPS)
·DATW

WData RData

WAddr RAddr

WEnb

(nRPF+nRPS)
·DATW

(nWPF+nWPS)
·log2MEMD

(nRPF+nRPS)
·log2MEMD

clk rst RdWr

SMPRAM

MEMD: Memory depth
DATW: Data width
nRPF: # Read  ports / fixed
nWPF: # Write ports / fixed
nRPS: # Read  ports / switched
nWPS: # Write ports / switched
ARCH: Architecture type
BYPS: Bypass mode
FILE: Initialization mif file

nWPN
Configuration Parameters
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Fig. 25. Switched Multi-ported RAM (SMPRAM) module block.

Table VIII. List of SMPRAM module interface ports

Port I/O width Description
clk Input 1 Global clock.
rst Input 1 Global synchronous reset.
rdWr Input 1 If high, enables switched read ports and disables switched

write ports; vice versa otherwise.
WEnb Input nWPF + nWPS Write enable for nWPF (LSB) fixed write ports and nWPS

switched write ports.
WAddr Input (nWPF + nWPS) · log2(MEMD) Write addresses: packed fromnWPF(LSB) fixedwriteports

and nWPS switched write ports; log2(MEMD) bits each.
WData Input (nWPF + nWPS) ·DATW Write data: packed from nWPF (LSB) fixed write ports

and nWPS switched write ports; DATW bits each.
RAddr Input (nRPF + nRPS ) · log2(MEMD) Read addresses: packed from nRPF (LSB) fixed read ports

and nRPS switched read ports; log2(MEMD) bits each.
RData Output (nRPF + nRPS ) ·DATW Read data: packed from nRPF (LSB) fixed read ports and

nRPS switched read ports; DATW bits each.

c© 2014 ACM 1539-9087/2014/11-ART0 $15.00
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Table IX. List of SMPRAM module parameters

Parameter Type Default
value

Value range Description

MEMD Integer N/A Power of 2 Memory depth.
DATW Integer N/A 1 ≤ DATW Data width.
nRPF Integer N/A 1 ≤ nRPF Number of fixed read ports.
nWPF Integer N/A 0 ≤ nWPF Number of fixed write ports.
nRPS Integer 0 0 ≤ nRPS ≤ nRPF Number of switched read ports.
nWPS Integer 0 0 ≤ nWPS

1 ≤ nWPS + nWPF
Number of switched write ports.

ARCH String ”AUTO” ”AUTO”,
”REG”,
”XOR”,
”LVTREG”,
”LVTBIN”, or
”LVTTHR”

Multi-port RAM architecture: use
”AUTO” to choose automatically,
”REG” for register-based RAM, ”XOR”
for XOR-based, ”LVTREG” for register-
based LVT, ”LVTBIN” for binary-
coded I-LVT-based, or ”LVTTHR” for
thermometer-coded I-LVT-based.

BYPS String ”RAW” ”NON”,
”WAW”,
”RAW”, or
”RDW”

Bypassing type: use ”NON” to prevent
additional bypassing circuit, ”WAW” to
allow Write-After-Write, ”RAW” to read
new data when Read-After-Write, or
”RDW” to read new data when Read-
During-Write.

FILE String Not
initialized

”mif” file name /
without extension

Initialization file in ”mif” format, op-
tional.

Listing 1. Switched Multi-ported RAM (SMPRAM) module instantiation
// ins tant ia t e a multiported−RAM
smpram #(

.MEMD (MEMD ) , // integer : memory depth

.DATW (DATW ) , // integer : data width

.nRPF (nRPF ) , // integer : # f i xed read ports

.nWPF (nWPF ) , // integer : # f i xed write ports

.nRPS (nRPS ) , // integer : # switched read ports

.nWPS (nWPS ) , // integer : # switched write ports

.ARCH (ARCH ) , // str ing : multi−port RAM archi t e c ture

.BYPS (BYPS ) , // str ing : bypass mode

. FILE ( ” ” ) // str ing : I n i t i a l i z a t i o n f i l e , opt ional
) smpram inst (

. c lk ( c lk ) , // global c lock

. r s t ( rs t ) , // global r e s e t

. rdWr (rdWr ) , // enables read or write switched ports

.WEnb (WEnb ) , // write enables [ (nWPF+nWPS)−1:0 ]

.WAddr(WAddr) , // write addresses [ (nWPF+nWPS)∗ log2 (MEMD)−1:0]

.WData(WData) , // write data [ (nWPF+nWPS)∗DATW −1:0]

. RAddr (RAddr ) , // read addresses [ (nRPF+nRPS)∗ log2 (MEMD)−1:0]

. RData (RData ) // read data [ (nRPF+nRPS)∗DATW −1:0]
) ;
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