
Configuration Bitstream Reduction for SRAM-based FPGAs
by Enumerating LUT Input Permutations

Ameer Abdelhadi and Guy G. F. Lemieux
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, B.C., V6T 1Z4, Canada

{ameer,lemieux}@ece.ubc.ca

Abstract— SRAM-based Field-Programmable Gate Arrays
(FPGAs) are configured from off-chip memory through a
serial link. Hence, a large configuration bitstream adversely
increases off-chip memory size as well as bitstream loading
time. The following work proposes a novel method to reduce
the number of programming bits required for look-up tables
(LUT), thereby reducing overall configuration bitstream size.
Alternatively, the identified redundancy may be used to hide
watermarking or security data. The proposed method does not
affect the critical timing paths, nor does it affect the internal
architecture of the LUT. The suggested method eliminates
⌊ log2(k!)⌋ configuration bits out of the 2k configuration bits
required by a k-input LUT (k-LUT). Hence, a 4-LUT, 5-LUT
and 6-LUT only requires 12, 26, and 55 bits, respectively, to be
stored in the external configuration bitstream, representing a
reduction of 25%, 18.75%, and 14% in LUT configuration
bits, respectively. Note the LUTs themselves still contain the
full 16, 32, and 64 bits, respectively, but the missing bits are
regenerated at bitstream load time. Furthermore, traditional
lossless compression methods can still be employed on top of
the proposed reduction technique.

Keywords-Reconfigurable Computing; Field-programmable
Gate Array (FPGA); Bitsream Compression; LUT optimization

I. INTRODUCTION
As FPGAs continue to grow in capacity, they require an

increasing number of configuration bits to program the
device. The cost of configuration takes the form of on-chip
configuration bits, data transmission or loading time, and off-
chip non-volatile storage. In particular, the bitstream loading
process is usually performed over a serial link with modest
speeds. For example, it takes approximately 35 seconds to
configure Altera’s DE4-530 board containing a Stratix IV
(4SGX530) chip through a USB 2.0 link using a Linux host.

Reducing the number of configuration bits leads directly

to a reduction in off-chip memory and faster loading of the
configuration bitstream. One way of reducing the bitstream
size is use of lossless compression techniques. However, in
addition to compression, it is also possible to remove
redundancies from the bitstream that can be easily
regenerated. This paper identifies one such redundancy
between the LUT and interconnect configuration bits that
allows the complete removal of 25% of the LUT
configuration bits in a traditional 4-LUT, for example.

In addition to bitstream reduction, there may be other
advantages to identifying this redundancy. For example, it
may be possible to encode watermarks or encryption/security
data into the bitstream instead of removing the bits.
Alternatively, there may be extensions of this method to
reduce the number of interconnect configuration bits, which
already dominate the number of LUT configuration bits.

This work identifies intrinsic redundancies in the LUT
configuration bits. Although all the 2 !! k-input logic
functions can be implemented, much fewer functions are
needed in practice. As shown in Fig. 1, FPGAs often allow
connecting any of the Configurable Logic Block (CLB)
inputs or the Basic Logic Element (BLE) feedbacks to any
LUT input. If any input permutation is allowed, reduced
LUTs which require arbitrary input permutations (P-class
LUTs [16][17]) can be used to reduce the required
configuration bits. However, the area and delay overhead of
the P-class LUTs make them impractical.

Our proposed technique exploits this input permutation
redundancy to eliminate a few bits in the stored
configuration bitstream. Instead, the bits are regenerated at
bitstream load time. Since there are !! possible orderings of
the inputs, one can remove ⌊!"#2(!!)⌋ bits from each LUT.
By enumerating each of the !! possible orderings, a circuit
can be used to detect the presented input ordering and
regenerate the missing ⌊!"#2(!!)⌋ LUT configuration bits.

Fig. 1. Traditional architecture of a cluster/SRAM-based FPGA

For example, a 2-LUT has two different configurations
for the logic function ! = ! · !’. In the first configuration,
the input multiplexers are configured to (!"! = !, !"! = !)
and the logic function to ! = !"1 · !"2’ . In the second
configuration, the LUT inputs are swapped, hence the input
multiplexers are configured to (!"! = !, !"! = !), with a
different logic function of ! = !"1’ · !"2. However, the input
permutations do not restrict the logic function. Since the 2-
LUT has two input permutations, one additional LUT
configuration bit can be eliminated, say e. The value of e can
depend upon the input permutation. For example, if ! = 0 is
required, the input order should be (!"! = !, !"! = !) ;
conversely of ! = 1 is required, the input order should be
(!"! = !, !"! = !) . 1 Hence, a tool like the router, or a
bitstream-adjuster after routing, can select an appropriate
input ordering to allow for the removal of the LUT
configuration bit. Note that we are not forcing inputs ! and !
to be on specific CLB input pins, which would be extremely
restrictive. Instead, we are restricting the ordering presented
to the LUT, such that ! appears before !. If the CLB is
internally fully connected, it already allows arbitrary
ordering of the LUT inputs. Generally, a k-LUT has !! such
input permutations, allowing ⌊!"#2(!!)⌋ configuration bits to
be removed from the bitstream and regenerated at load time.

Rather than constructing a new LUT architecture to
reduce a fully functional LUT into a P-class LUT, the
proposed method enumerates the input permutations and
regenerates several LUT configuration bits with this
enumeration. This reduces the number of LUT configuration
bits while keeping the same traditional LUT architecture as
shown in Fig. 2. Since ! inputs can be permuted in !!
different ways, log! !! configuration bits can be saved in
each LUT. This is not bitstream compression which encodes
frequently appearing patterns, this is removing a specific
form information redundancy prior to compression.

The new added enumeration logic is of minimal size and
can use minimum-size transistors, since it is not part of the
circuit timing paths. It can even be shared by all LUTs on the
device, since decompression occurs at bitstream load time.

Unfortunately, this bitstream reduction technique may
not be used in some situations. For example, some high-
performance FPGAs utilize the delay differences in LUT
inputs for prioritizing timing paths. Also, some FPGAs have
sparse connections between their CLB inputs and LUT
inputs, i.e. the LUT input multiplexers are not fully
connected to all of the CLB inputs. Since the proposed
bitstream-reduction technique relies upon reordering LUT
inputs, it may not be immediately applicable to either of
these situations. However, we note that hybrid solutions are
possible. For example, delay differences only matter on the
critical nets, so it may be possible to apply this selectively

1 Permuting the inputs of the current LUT based upon the current LUT’s
own function leads to a cyclic dependence: after the new input order is
determined, the LUT configuration bits must be rearranged accordingly,
which will likely change the value of the bits to be removed, which may
require a different input ordering. We suggest breaking this cyclic
dependence using a chain: the input ordering for the next LUT is
determined from the bits removed in the current LUT; this fixes the next
LUT’s configuration bits and enables the next removal.

only to non-critical nets. With sparse IIBs, removing k!
orderings may overly restrict the routability; in this case, it
may be possible to save a smaller number of bits by choosing
some !’ < ! such that routability is still good.

The rest of this paper is organized as follows. Current
configuration bitstream reduction methods are reviewed in
Section II. A mathematical background of indexing
permutation in lexicographic order is discussed in Section
III. The suggested method for enumerating LUT inputs is
presented in section IV. Verification of the proposed method
and results are described in Section V. Finally, this paper is
concluded in Section VI.

II. PREVIOUS WORK ON BITSTREAM REDUCTION
Several methods have been proposed to reduce the FPGA

configuration bitstream, since bitstream size adversely
affects configuration memory size and configuration time.
These methods can be categorized based on architecture
awareness. While some methods apply general data
compression methods, others exploit the internal FPGA or
bitstream architecture to reduce the required bits.

General compression techniques demonstrate a high
bitstream compression ratio. However, they incur high area
overhead due to complex compression and decompression
circuitry. These methods typically trade-off chip area and
circuit complexity for an increased compression ratio.

General text compression methods, e.g. Huffman,
Arithmetic, and LZ coding are adapted to bitstream
compression and compared together with "don't care",
readback, frame reordering, and wildcard techniques in [6].
A maximum compression factor of 4 is achieved by these
methods [6]. Runlength file compression technique is used to
reduce configuration bitstream by 3.6 times in [7], but bus
transfer and decompression hardware overhead is required.
Statistics on the Xilinx Virtex commercial FPGA family
shows that less than 3% of bitstream is changed due to
reconfiguration [8], hence data reuse between bitstreams of
successive configurations can be used to compress the
configuration bitstream [8][9].

Architecture-aware bitstream reduction techniques often
suggest improving the FPGA architecture itself to reduce
bits, e.g. switch boxes [10] or LUTs [11]-[17], or
configuration-efficient coarse-grained architectures [18].

Several methods suggest using Universal Logic Models
(ULMs) to generate optimal NPN-class LUTs [11][12].
However, ULMs with additional redundant inputs are

Fig. 2. Enumerating input permutations to reduce configuration bits for a

SRAM-based LUT

impractical for SRAM-based FPGAs since the additional
ULM pins require additional routing resources and steering
configuration bits which often swamp the LUT bit savings.

The current trend of ULM research is to investigate
functionally incomplete LUTs, namely, LUTs which
eliminate rarely-used functions [13][14]. These ULMs are
therefore incapable of generating all logic functions of the
input variables. The usefulness of functional NPN-classes is
usually investigated by statistical means, with only the most
useful classes considered for LUT implementation. Although
this method could save a large amount of LUT configuration
bits, it incurs an increased routing and area overhead.

Another method [12][15] proposes a functional-complete
ULM with no additional inputs to implement LUTs for
SRAM-based FPGAs. Binary Decision Diagrams (BDDs)
are employed to construct ULMs with reduced configuration
bits, while considering different input permutations and
negation (NP-classes). However, for ULMs with more than 3
inputs, this method suffers from increased overhead area and
design complexity.

Our method is based on LUT optimization. However, it
does not suffer from area overhead. Furthermore, the
proposed method can be applied together with existing
compression methods, hence, increasing bitstream reduction,
with minimal area overhead.

III. INDEXING ALL k! PERMUTATIONS IN LEXICOGRAPHIC
ORDER: MATHEMATICAL BACKGROUND

Methods from algebraic combinatoric theory [1][2][3]
are employed here to enumerate input permutations. A
structural and minimal circuit is then proposed to generate a
permutation enumeration code (Lehmer’s code) and to
convert this code into a binary representation. Rather than
using factorial mixed-radix representation to convert
Lehmer’s code into a binary representation, which consumes
high area due to factorial multiplications, an algorithmic
method is proposed to convert Lehmer’s code into a binary
representation using only a few logic gates. Input
permutation enumeration is then exploited to configure the
LUT logic function.

Inputs of a fully utilized k-LUT are routed to different !
inputs; hence the linear order of the chosen inputs represents
a permutation of the finite set, ! ≡ 0,1,… , ! − 1 . A
permutation ! is defined as a linear ordering of a set of
elements ! [2], and can be described notationally using a list
of different ! elements out of ! in square brackets

 ! = !!!!… !!!! ∀!,!∈! !! ∈ !,!! ≠ !! . (1)

However, in group theory, a permutation ! of a set ! is
described as a bijection from that set to itself [5]. Hence, the
k-permutation group is defined as the finite symmetric group
!!,

 !! ≡ ! !:! → !, !"#$%&"'$() . (2)

The set of Inversion [1][2][4][5] ! ! of a permutation !
is defined as a set of pairs representing the places of two
successive elements in a permutation, such that the values of
these two elements are reversed to their place order, namely,

 ! ! ≡ !, ! ∈ !! ! < !,!! > !! . (4)

The Inversion indicator 1!
(!,!) is 1; if and only if !, ! is

an inversion as defined previously

 1!
!,! ! ≡ 1, !" !, ! ∈ ! !

0, !"ℎ!"#$%! .
(5)

The Lehmer code [1][5] for a place ! in a permutation !
is defined as the amount of inversions in ! with ! as the first
ordered place in the inversion,

 !! ! ≡ ! < ! !! > !! ≡ 1!
!,! ! .

!∈!

 (6)

Hence, !! ! is the number of elements that are placed
after ! in a permutation !, but smaller than !.

Since 1!
!,! is 1, only if ! < !, the Lehmer code could be

defined as

 !! ! = 1!
!,! ! .

!|!!!

 (7)

The Lehmer code for a permutation ! is defined as a list
of the Lehmer code for the subsequent permutation elements,

 ! ! ≡ !! ! !! ! … !!!! ! , (8)

for example, ! [57024631] ≡ 56012210.
Since ! is known, and ! − 1 is the largest index, !!!! !

is zero and can be dropped from the Lehmer Code. Hence,
!! ! is defined as

 !! ! ≡ !! ! !! ! … !!!! ! , (9)

for example, !+ 57024631 ≡ 5601221.
To reconstruct a permutation back from a Lehmer code,

!! is the !! ! + 1 − !ℎ element of !,
!! is the !! ! + 1 − !ℎ element of ! !! ,
!! is the !! ! + 1 − !ℎ element of ! !!,!! ,
…etc.

Since there is only one way to convert from a
permutation to Lehmer’s code and vice versa, the Lehmer
code is a bijection between ! and !! ! in ℕ! [5], hence
Lehmer code is unique, and can be used to enumerate the
permutations [10] since the Lehmer code digits !! ! are
unrelated to each other. Furthermore, the following
properties are trivially true,

 ∀! ∈ !: !! ! ≤ ! − !. (10)

Hence, a Lehmer code for all permutations represents a
successive sequence of numbers in the factorial number
system, namely a lexicographic enumeration for all !!
permutations.

The factorial number system or Factoradic system is a
mixed radix numeral system [3], where the right ! − !ℎ digit
has a base of !, hence, should be less than !, as satisfied in
the previous inequality. The ! − !ℎ digit has a decimal place
value of ! − 1 ! , therefore the decimal value of the
Lehmer’s code, representing a factorial number is

 !! ! = !! ! ! − ! − 1
!!!

!!!

 (11)

Fig. 3 describes a full enumerator that produces binary
indexes of all the !! input permutations. The enumerator is
combined of three stages. In the first stage, each input is
compared with the successive inputs to generate inversion
indicators. The second stage sums up the active inversion
indicators (counts 1’s in inputs) for each input to generate
Lehmer’s code. The final stage converts Lehmer’s code into
a binary representation by multiplying each Lehmer’s code
digit with its factorial digit place value. Finally, all factorial
digits are added together to generate the permutation
representative index.

IV. ENUMERATING LUT INPUT PERMUTATIONS
Lehmer’s code provides an enumeration of all the !!

input permutations in lexicographic order and can be
represented as a factorial mixed-radix number in order to be
converted into decimal. The conversion from the factorial
mixed-radix system into a decimal requires significant
calculations which include multiplication of each digit with
its representative factorial number. Nevertheless, for LUT
configuration purposes, only 2 !"#! !! permutations out of
!! permutations need to be enumerated. Furthermore, the
lexicographic order is not essential. Reduced logic, which
includes only a few logic gates to generate 2 !"#! !!
permutations out of the !! total permutations in unspecified
order is proposed. The enumeration circuit is obtained by
structural algorithms for grouping Lehmer’s code digits then
mapping these digits into a binary representation.

A. Binary enumeration of ! !"#! !! out of !! permutation
in unspecified order
The previous permutation full enumerator consumes high

area due to the factorial multipliers and the wide adder at the
last stage. However, log! !! of the LUT configuration
bits will be replaced with a permutation enumeration vector.
Hence, this enumeration vector should include all binary
values, namely 2 !"#! !! binary values. Therefore, only
2 !"#! !! out of all !! permutation are needed. Furthermore,
the actual lexicographic order is not critical for correct LUT
functionality.

The generated Lehmer’s code numbers are independent,
namely, the value of any Lehmer’s code number !! ! is
unrelated to other numbers !! ! | ! ≠ ! . Therefore, each
Lehmer’s code digit can be enumerated separately. For each
Lehmer’s code digit !!, the maximum number of generated
binary bits is log! ! − ! . Hence, enumerating each
Lehmer’s code digit separately could generate fewer than the
log! !! number of required bits. To overcome this

problem, Lehmer’s code digits can be grouped before the
binary enumeration process. If two Lehmer’s digits !! and !!
are grouped together, they will supply log! ! − ! ∙
! − ! bits, which may be larger than the sum of

contribution of each bit separately.
The GroupDigits algorithm described in Fig. 4 aims to

find the minimal groups of Lehmer’s digits such that the
following equation will be satisfied

 !"#! ! − !
!∈!!∈!

= !"#!!! , (12)

Where G is the group of all digit groups.
The proposed algorithm starts with separated Lehmer’s

digits, and tries incrementally to group minimal digits such
that the overall bits will reach the required log! !! bound.

Fig. 3. Permutations fully-enumerator: (>?) are comparators, Σ’s count 1’s

in input

G	
 =	
 groupDigits(k):	

1	
 G	
 =	
 ∅;	

2	
 for	
 (i=k-­‐2	
 ;	
 i>=0	
 ;	
 i-­‐-­‐)	
 {	

3	
 	
 	
 totalBits	
 +=	
 ⌊log2(k-­‐i)⌋;	

4	
 	
 	
 G	
 ∪=	
 {	
 {i}	
 }	

5	
 }	

6	
 while	
 (totalBits	
 <	
 ⌊log2(k!)⌋)	
 {	

7	
 	
 	
 for	
 (i=k-­‐2	
 ;	
 i>=0	
 ;	
 i-­‐-­‐)	

8	
 	
 	
 	
 	
 if	
 ({i}∈G	
 AND	
 ⌊log2(k-­‐i)⌋<log2(k-­‐i))	

9	
 	
 	
 	
 	
 	
 	
 break;	

10	
 	
 	
 for	
 (j=i+1	
 ;	
 j>=0	
 ;	
 j-­‐-­‐)	

11	
 	
 	
 	
 	
 if	
 ({j}∈G	
 AND	
 ⌊log2((k-­‐i)*(k-­‐j))⌋	
 >	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ⌊log2(k-­‐i)⌋+⌊log2(k-­‐j)⌋){	

12	
 	
 	
 	
 	
 	
 	
 totalBits++;	

13	
 	
 	
 	
 	
 	
 	
 G	
 /=	
 {	
 {i},{j}	
 }	

14	
 	
 	
 	
 	
 	
 	
 G	
 ∪=	
 {	
 {i,j}	
 }	

15	
 	
 	
 	
 	
 	
 	
 break;	

16	
 	
 	
 	
 	
 }	

17	
 }	

18	
 return	
 G;	

(a)
	

groupDigits(k)	
 execution	
 example:	

	
 K = 2 à G = { {0} }	

	
 K = 3 à G = { {1} , {0} }
	
 K = 4 à G = { {2} , {1} , {0} }	

	
 K = 5 à G = { {3} , {2} , {1} , {0} }	

	
 K = 6 à G = { {4} , {3,0} , {2} , {1} }	

	
 K = 7 à G = { {5} , {4,1} , {3} , {2,0} , {1} }	

	
 K = 8 à G = { {6} , {5,2} , {4} , {3,1} , {1} , {0} }

(b)
Fig. 4. (a) groupDigits algorithm (b) execution example

B. Merging grouped digits into one binary representation
Grouped digits !! , !! should provide enumeration for

2 !"#! !!! ∙ !!! different numbers. This enumeration is
performed by mapping all of the log! ! − ! ∙ ! − !
enumeration binary numbers into !! and !!. The mergeDigits
algorithm needed to generate such a mapping is described in
Fig. 5. Without loss of generality, a maximum value of !! is
assumed to be closer to the maximal value that could be
represented by !!’s bits, compared to lj, namely,

 2 !"#! !!! − ! − ! < 2 !"#! !!! − ! − ! . (13)
For all values of the merged binary vector !:
• !! is mapped to the relevant LSB bits of ! modulo the

maximum value of !!
• if the previous modulo operation overflows, then

o !! is mapped to the rest of !, except !!′! MSB bit
which is mapped to ‘1’, all modulo the maximum
value of !!

o !!′! MSB bit is set to ‘1’
• otherwise, !! is mapped to the rest of !, except !!′!

MSB bit which is mapped to ‘0’
For !, !, ! = 6,3,0 , !, !, ! = 7,4,1 or !, !, ! =

8,5,2 the same mapping is achieved since ! − ! = 3 and
! − ! = 6 for all of them, as listed in Table I. For !, !, ! =
7,2,0 or !, !, ! = 8,3,1 the same mapping is achieved

since ! − ! = 5 and ! − ! = 7 for all of them, as listed in
Table II. The mapping function ! can be obtained manually
or by logic optimization tools.

f	
 =	
 mergeDigits(k,i,j):
1	
 for	
 (bi,j=0	
 ;	
 bi,j<=2

bits(li)+bits(lj)-­‐1	
 ;	
 bi,j++)	
 {
2	
 	
 	
 if	
 (2bits(li)-­‐max(li)	
 >	
 2

bits(lj)-­‐max(lj))
3	
 	
 	
 	
 	
 swap(i,j);
4	
 	
 	
 li⟦bits(li)-­‐1…0⟧ =	
 bi,j⟦bits(li)-­‐1…0⟧	
 %	
 max(li)+1;
5	
 	
 	
 if	
 (bi,j⟦bits(li)-­‐1…0⟧	
 >	
 max(li)+1)	
 {
6	
 	
 	
 	
 	
 lj⟦bits(lj)-­‐1…0⟧ =	
 ⟪’1’,bi,j⟦bits(lj)+bits(li)-­‐2…bits(li)⟧⟫	
 %	
 max(lj)+1;
7	
 	
 	
 	
 	
 lj⟦bits(lj)-­‐1⟧ =	
 ‘1’;
8	
 	
 	
 }	
 else	

9	
 	
 	
 	
 	
 	
 	
 lj⟦bits(lj)-­‐1…0⟧ =	
 ⟪‘0’,	
 bi,j⟦bits(lj)+bits(li)-­‐2…bits(li)⟧⟫;
10	
 }
11	
 Find	
 mapping	
 function	
 f,	
 s.t.	
 b=f(li,lj);	

12	
 return	
 f;

(a)
	

Notation:	

li	
 Digit	
 i	
 of	
 Lehmer’s	
 code	

max(li)	
 =	
 k-­‐i	
 Maximum	
 value	
 for	
 Lehmer	
 digit	
 li	

bits(li)	
 =	
 ⌈log2(k-­‐i)⌉	
 Number	
 of	
 bits	
 required	
 to	
 represent	
 Lehmer’s	
 digit	
 li	

⟪bn-­‐1,..,b0⟫	
 Encloses	
 a	
 binary	
 vector	

a⟦i⟧ The	
 i-­‐th	
 bit	
 of	
 a	
 binary	
 vector	
 ‘a’	
 (little	
 Indian;	
 a⟦0⟧	
 is	
 the	
 LSB)	

a⟦j…i⟧ ⟪a[j],a[j-­‐1],…,a[i]⟫	
 |	
 j<i	

bi,j the	
 combined	
 li	
 and	
 lj,	
 bits(li)+bits(lj)-­‐1	
 bits	

(b)
Fig. 5. (a) mergeDigits algorithm (b) notation

enumerate(k):	

1	
 eIndex	
 =	
 0;	

2	
 G	
 =	
 GroupDigits(k);	

3	
 foreach	
 g∈G	
 {	

4	
 	
 	
 if	
 (|g|	
 ==	
 1)	
 {	

	
 5	
 	
 	
 	
 	
 {i}	
 =	
 g;	

	
 6	
 	
 	
 	
 	
 for(lIndex=0	
 ;	
 lIndex<⌊log2(k-­‐i)⌋	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ;	
 lIndex++)	

7	
 	
 	
 	
 	
 	
 	
 e⟦eIndex++⟧	
 =	
 li⟦lIndex⟧;	

	
 8	
 	
 	
 }	
 else	

	
 9	
 	
 	
 	
 	
 {i,j}	
 =	
 g;	

10	
 	
 	
 	
 	
 f	
 =	
 mergeDigits(k,i,j);	

11	
 	
 	
 	
 	
 for	
 (lIndex=0	
 ;	
 lIndex<(⌊log2(k-­‐i)⌋	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +⌊log2(k-­‐j)⌋-­‐1)	
 ;	
 lIndex++)	

12	
 	
 	
 	
 	
 	
 	
 e⟦eIndex++⟧	
 =	
 f(li,lj)⟦lIndex⟧;	

13	
 	
 	
 }	

14	
 }	

(a)
	

Notation:	

e	
 Binary	
 vector	
 of ⌊log2(k!)⌋	
 bits;	

	
 contains	
 final	
 enumeration	

(b)
Fig. 6. (a) enumerate(k) algorithm (b) notation

C. Generating final enumeration vector
Mapping to the final enumeration vector is based on the

digits grouping procedure, achieved by groupDigits(k) and
shown in Fig. 6. If a Lehmer’s digit !! is grouped with
another Lehmer’s digit !! , these digits will be merged
together to achieve a mapping function f=mergeDigits(k,i,j),
then log! ! − ! ∙ ! − ! bits will be mapped through !
to the final enumeration vector. Examples of the generated
enumeration circuits and implementation details for k=3 to 8
are depicted in Fig. 7 and Fig. 8, respectively.

D. Mapping LUT’s logic functions to input permutations

To map 2 !! logic functions of a k-LUT to their
respective permutations, a list of all input permutations is
generated iteratively. The enumeration of each permutation
is calculated and attached to the relevant permutation in the
permutations list. The proposed permutation list should
contain 2 !"#! !! entries. Each entry contains a k-numbers
permutation, and is indexed by the permutation enumeration.
Assuming that a permutation number is one byte, the
mapping list size is ! ∙ 2 !"#! !! !"#$%. For instance, an 8-
LUT mapping list requires 256 KB. Another possible method
is backtracking the required enumeration through the
enumeration logic to detect the relevant permutation.

Table III gives a logic function-to-permutations mapping
list and Fig. 9 shows an implementation for a 2-LUT.

V. IMPLEMENTATION RESULTS
A single enumerator can decompress the bitstream for the

entire FPGA device. The proposed design has been
implemented in Verilog and synthesized using Synopsys
Design Compiler with the TSMC 65nm standard cell library.
The implementation area overhead is given in Table IV; only
1000 transistors are required for 6-LUT architectures.

The implementation has been verified by generating
output enumeration for all input permutations. The output
enumeration vector covers all possible binary combinations.
Gate-level simulation (GLS) on the synthesized netlist was
also done to verify the correctness of the logic.

Relevant C code, Verilog files, and synthesis scripts are
located on the authors’ website [19].

Fig. 7. Enumeration circuit for k=3…8; Σ’s can be implemented by custom logic as depicted in Fig. 8.

Fig. 8. Custom implementation of (a) Σ2..7 (b) low-area ripple comparator using CMOS majority gates

TABLE II: MERGEDIGITS FOR
(K,I,J)=(6,3,0), (7,4,1) OR (8,5,2)

 TABLE I: MERGEDIGITS FOR
(K,I,J)=(7,2,0) OR (8,3,1)

 bi,j⟦⟧ li⟦⟧ lj⟦⟧ bi,j⟦⟧ lj⟦⟧ li⟦⟧
 4 3 2 1 0 2 1 0 2 1 0 3 2 1 0 2 1 0 1 0
 0 0 0 0 0 à 0 0 0 0 0 0 0 0 0 0 à 0 0 0 0 0
 0 0 0 0 1 à 0 0 0 0 0 1 0 0 0 1 à 0 0 0 0 1
 0 0 0 1 0 à 0 0 0 0 1 0 0 0 1 0 à 0 0 0 1 0
 0 0 0 1 1 à 0 0 0 0 1 1 0 0 1 1 à 1 0 0 0 0
 0 0 1 0 0 à 0 0 0 1 0 0 0 1 0 0 à 0 0 1 0 0
 0 0 1 0 1 à 0 0 0 1 0 1 0 1 0 1 à 0 0 1 0 1
 0 0 1 1 0 à 0 0 0 1 1 0 0 1 1 0 à 0 0 1 1 0
 0 0 1 1 1 à 1 0 0 0 0 0 0 1 1 1 à 1 0 1 0 0
 0 1 0 0 0 à 0 0 1 0 0 0 1 0 0 0 à 0 1 0 0 0
 0 1 0 0 1 à 0 0 1 0 0 1 1 0 0 1 à 0 1 0 0 1
 0 1 0 1 0 à 0 0 1 0 1 0 1 0 1 0 à 0 1 0 1 0
 0 1 0 1 1 à 0 0 1 0 1 1 1 0 1 1 à 1 0 0 0 1
 0 1 1 0 0 à 0 0 1 1 0 0 1 1 0 0 à 0 1 1 0 0
 0 1 1 0 1 à 0 0 1 1 0 1 1 1 0 1 à 0 1 1 0 1
 0 1 1 1 0 à 0 0 1 1 1 0 1 1 1 0 à 0 1 1 1 0
 0 1 1 1 1 à 1 0 0 0 0 1 1 1 1 1 à 1 0 1 0 1
 1 0 0 0 0 à 0 1 0 0 0 0
 1 0 0 0 1 à 0 1 0 0 0 1 Mapping function f :
 1 0 0 1 0 à 0 1 0 0 1 0 bi,j⟦0⟧=li⟦0⟧ ˅ lj⟦2⟧
 1 0 0 1 1 à 0 1 0 0 1 1 bi,j⟦1⟧=li⟦1⟧ ˅ lj⟦2⟧
 1 0 1 0 0 à 0 1 0 1 0 0 bi,j⟦2⟧= lj⟦0⟧
 1 0 1 0 1 à 0 1 0 1 0 1 bi,j⟦3⟧=(lj⟦1⟧ ˅ lj⟦2⟧)
 1 0 1 1 0 à 0 1 0 1 1 0 ˄ li⟦0⟧
 1 0 1 1 1 à 1 0 0 0 1 0
 1 1 0 0 0 à 0 1 1 0 0 0
 1 1 0 0 1 à 0 1 1 0 0 1
 1 1 0 1 0 à 0 1 1 0 1 0 Mapping function f :
 1 1 0 1 1 à 0 1 1 0 1 1 bi,j⟦0⟧=lj⟦0⟧ ˅ li⟦2⟧
 1 1 1 0 0 à 0 1 1 1 0 0 bi,j⟦1⟧=lj⟦1⟧ ˅ li⟦2⟧
 1 1 1 0 1 à 0 1 1 1 0 1 bi,j⟦2⟧=lj⟦2⟧ ˅ li⟦2⟧
 1 1 1 1 0 à 0 1 1 1 1 0 bi,j⟦3⟧=(li⟦0⟧˅li⟦2⟧) ˄ lj⟦0⟧
 1 1 1 1 1 à 1 0 0 0 1 1 bi,j⟦4⟧=(li⟦1⟧˅li⟦2⟧) ˄ lj⟦0⟧

VI. CONCLUSIONS
A method for removing LUT configuration bits is

presented in this paper. By reducing the number of LUT bits
stored in the configuration bitstream, off-chip memory size
and bitstream loading time can be reduced. Minimal silicon
area is required for the decoder. The technique works by
removing information redundancy about the LUT input
ordering stored collectively in both the LUT configuration
bits and the internal CLB interconnect bits. The proposed
LUT input enumerator is synthesized into a gate-level netlist
and logically verified. The proposed method can be
employed together with existing bitstream compression
methods to achieve a maximal compression ratio.

Future improvements of the suggested method should be
considered. Generalization of the enumeration method for
CLBs with specific routing constraints, e.g. CLBs with
sparse connection or partially fixed routing, should be
considered. Furthermore, since the majority of the
configuration bits are dedicated for routing, extending the
technique for routing configuration bits may be helpful.
Alternatively, other uses for the information redundancy can
be explored, such as watermarking.

REFERENCES
[1] D. H. Lehmer, “Teaching combinatorial tricks to a computer,” Proc.

of Symp. in Applied Math., vol. 10: Combinatorial Analysis, Amer.
Math. Society, pp. 179-193, 1960.

[2] M. Bona, Combinatorics of Permutations. Chapman and Hall, 2004.
[3] D. E. Knuth, The art of computer programming, Volume 2:

Seminumerical Algorithms, 3rd Ed., Addison-Wesley, 1997.
[4] D. E. Knuth, The art of computer programming, Volume 3: Sorting

and Searching, 2nd Ed., Addison-Wesley, 1998.
[5] A. Kerber, Algebraic Combinatorics Via Finite Group Actions, B.I.

Wissenschaftsverlag, 1991.
[6] Z. Li and S. Hauck, “Configuration compression for Virtex FPGAs,”

IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 147–159, 2001.

[7] S. Hauck and W. Wilson, “Runlength compression techniques for
FPGA configurations,” IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM), pp.286-287, 1999.

[8] I. Kennedy, “Exploiting Redundancy to Speedup Reconfiguration of
an FPGA,” Field-Programmable Logic and Applications (FPL), pp.
262–271, 2003.

[9] J. H. Pan, T. Mitra, and W.-F. Wong, “Configuration bitstream
compression for dynamically reconfigurable FPGAs,” IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp.
766–773, 2004.

[10] W. Chong, M. Hariyama, and M. Kameyama,"Novel switch-block
architecture using reconfigurable context memory for multi-context
FPGAs", International Workshop on Applied Reconfigurable
Computing (ARC), pp.99–102, 2005.

[11] F. P. Preparata and D. E. Muller, “Generation of near-optimal
universal Boolean functions,” Journal Computer and System
Sciences, vol. 4, no. 2, pp. 93–102, 1970

[12] X. Chen and X. Wu, “Derivation of universal logic modules, for n≥3,
by algebraic means,” IEEE Computers and Digital Techniques, vol.
128, pp. 205–211, 1981.

[13] Y. Okamoto, Y. Ichinomiya, M. Amagasaki, M. Iida, and T.
Sueyoshi, “COGRE: A Configuration Memory Reduced
Reconfigurable Logic Cell Architecture for Area Minimization,”
Field Programmable Logic and Applications (FPL), pp. 304–309,
2010.

[14] J. Meyer and F. Kocan, “Sharing of SRAM tables among NPN-
equivalent LUTs in SRAM-based FPGAs,” IEEE Transactions on
Very Large Scale Integrated Syst., vol. 15, no. 2, pp. 182–195, 2007.

[15] Z. Zilic and Z. G. Vranesic, “Using Decision Diagrams to Design
ULMs for FPGAs,” IEEE Transactions on Computers, vol. 47, no. 9,
pp. 971–982, 1998.

[16] C.-C. Lin, M. Marek-Sadowska, and D. Gatlin, “Universal logic gate
for FPGA design,” IEEE/ACM Int’l Conference on Computer-Aided
Design (ICCAD), pp. 164–168, 1994.

[17] S. Thakur and D. F. Wong, “On Designing ULM-Based FPGA Logic
Modules,” ACM/SIGDA FPGA, pp. 3–9, 1995.

[18] R. Hartenstein, "A decade of reconfigurable computing: A visionary
retrospective", Proceedings of Design, Automation and Test in
Europe (DATE), pp. 642–649, 2001.

[19] http://www.ece.ubc.ca/~lemieux/downloads

Fig. 9. 2-LUT with input permutation enumerator

TABLE IV: CELL AREA AND TRANSISTOR COUNT FOR PROPOSED CIRCUIT

k 3 4 5 6 7 8
Area (µm) 63.7 129.2 220.0 333.0 501.5 702.4
transistor 198 404 694 1058 1576 2208

TABLE III: MAPPING 2-LUT LOGIC FUNCTIONS TO INPUT PERMUTATIONS

	
 	
 	
 	
 	
 a,b	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

..f	

	
 	
 	
 	
 function	
 index	
 value	

00	
 01	
 10	
 11	
 e0	
 c2	
 c1	
 c0	
 permutation	

	
 f0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 (a,b)	

	
 f1	
 0	
 0	
 0	
 1	
 a∧b	
 0	
 0	
 0	
 1	
 (a,b)	

	
 f2	
 0	
 0	
 1	
 0	
 a∧¬b	
 0	
 0	
 1	
 0	
 (a,b)	

	
 	
 f3	
 0	
 0	
 1	
 1	
 a	
 0	
 0	
 1	
 1	
 (a,b)	

	
 f4	
 0	
 1	
 0	
 0	
 ¬a∧b	
 0	
 1	
 0	
 0	
 (a,b)	

	
 f5	
 0	
 1	
 0	
 1	
 b	
 0	
 1	
 0	
 1	
 (a,b)	

	
 f6	
 0	
 1	
 1	
 0	
 a⊕b	
 0	
 1	
 1	
 0	
 (a,b)	

	
 f7	
 0	
 1	
 1	
 1	
 a∨b	
 0	
 1	
 1	
 1	
 (a,b)	

	
 f8	
 1	
 0	
 0	
 0	
 ¬(a∨b)	
 1	
 0	
 0	
 0	
 (b,a)	

	
 f9	
 1	
 0	
 0	
 1	
 ¬(a⊕b)	
 1	
 0	
 0	
 1	
 (b,a)	

	
 f10	
 1	
 0	
 1	
 0	
 ¬b	
 1	
 0	
 1	
 0	
 (b,a)	

	
 f11	
 1	
 0	
 1	
 1	
 a∨¬b	
 1	
 0	
 1	
 1	
 (b,a)	

	
 f12	
 1	
 1	
 0	
 0	
 ¬a	
 1	
 1	
 0	
 0	
 (b,a)	

	
 f13	
 1	
 1	
 0	
 1	
 ¬a∨b	
 1	
 1	
 0	
 1	
 (b,a)	

	
 f14	
 1	
 1	
 1	
 0	
 ¬(a∧b)	
 1	
 1	
 1	
 0	
 (b,a)	

	
 f15	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 (b,a)	

