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Abstract— SRAM-based Field-Programmable Gate Arrays 
(FPGAs) are configured from off-chip memory through a 
serial link. Hence, a large configuration bitstream adversely 
increases off-chip memory size as well as bitstream loading 
time. The following work proposes a novel method to reduce 
the number of programming bits required for look-up tables 
(LUT), thereby reducing overall configuration bitstream size. 
Alternatively, the identified redundancy may be used to hide 
watermarking or security data. The proposed method does not 
affect the critical timing paths, nor does it affect the internal 
architecture of the LUT. The suggested method eliminates 
⌊ log2(k!)⌋  configuration bits out of the 2k configuration bits 
required by a k-input LUT (k-LUT). Hence, a 4-LUT, 5-LUT 
and 6-LUT only requires 12, 26, and 55 bits, respectively, to be 
stored in the external configuration bitstream, representing a 
reduction of 25%, 18.75%, and 14% in LUT configuration 
bits, respectively. Note the LUTs themselves still contain the 
full 16, 32, and 64 bits, respectively, but the missing bits are 
regenerated at bitstream load time. Furthermore, traditional 
lossless compression methods can still be employed on top of 
the proposed reduction technique. 

Keywords-Reconfigurable Computing; Field-programmable 
Gate Array (FPGA); Bitsream Compression; LUT optimization 

I.  INTRODUCTION 
As FPGAs continue to grow in capacity, they require an 

increasing number of configuration bits to program the 
device. The cost of configuration takes the form of on-chip 
configuration bits, data transmission or loading time, and off-
chip non-volatile storage.  In particular, the bitstream loading 
process is usually performed over a serial link with modest 
speeds. For example, it takes approximately 35 seconds to 
configure Altera’s DE4-530 board containing a Stratix IV 
(4SGX530) chip through a USB 2.0 link using a Linux host. 

Reducing the number of configuration bits leads directly 

to a reduction in off-chip memory and faster loading of the 
configuration bitstream. One way of reducing the bitstream 
size is use of lossless compression techniques. However, in 
addition to compression, it is also possible to remove 
redundancies from the bitstream that can be easily 
regenerated. This paper identifies one such redundancy 
between the LUT and interconnect configuration bits that 
allows the complete removal of 25% of the LUT 
configuration bits in a traditional 4-LUT, for example. 

In addition to bitstream reduction, there may be other 
advantages to identifying this redundancy. For example, it 
may be possible to encode watermarks or encryption/security 
data into the bitstream instead of removing the bits. 
Alternatively, there may be extensions of this method to 
reduce the number of interconnect configuration bits, which 
already dominate the number of LUT configuration bits. 

This work identifies intrinsic redundancies in the LUT 
configuration bits. Although all the 2 !!  k-input logic 
functions can be implemented, much fewer functions are 
needed in practice. As shown in Fig. 1, FPGAs often allow 
connecting any of the Configurable Logic Block (CLB) 
inputs or the Basic Logic Element (BLE) feedbacks to any 
LUT input. If any input permutation is allowed, reduced 
LUTs which require arbitrary input permutations (P-class 
LUTs [16][17]) can be used to reduce the required 
configuration bits. However, the area and delay overhead of 
the P-class LUTs make them impractical. 

Our proposed technique exploits this input permutation 
redundancy to eliminate a few bits in the stored 
configuration bitstream. Instead, the bits are regenerated at 
bitstream load time. Since there are !! possible orderings of 
the inputs, one can remove ⌊!"#2(!!)⌋ bits from each LUT. 
By enumerating each of the !! possible orderings, a circuit 
can be used to detect the presented input ordering and 
regenerate the missing ⌊!"#2(!!)⌋ LUT configuration bits. 

 
Fig. 1. Traditional architecture of a cluster/SRAM-based FPGA 



For example, a 2-LUT has two different configurations 
for the logic function ! = ! · !’. In the first configuration, 
the input multiplexers are configured to (!"! = !, !"! = !) 
and the logic function to ! = !"1 · !"2’ . In the second 
configuration, the LUT inputs are swapped, hence the input 
multiplexers are configured to (!"! = !, !"! = !), with a 
different logic function of ! = !"1’ · !"2. However, the input 
permutations do not restrict the logic function. Since the 2-
LUT has two input permutations, one additional LUT 
configuration bit can be eliminated, say e. The value of e can 
depend upon the input permutation. For example, if ! = 0 is 
required, the input order should be (!"! = !, !"! = !) ; 
conversely of ! = 1 is required, the input order should be 
(!"! = !, !"! = !) . 1  Hence, a tool like the router, or a 
bitstream-adjuster after routing, can select an appropriate 
input ordering to allow for the removal of the LUT 
configuration bit. Note that we are not forcing inputs ! and ! 
to be on specific CLB input pins, which would be extremely 
restrictive. Instead, we are restricting the ordering presented 
to the LUT, such that ! appears before !. If the CLB is 
internally fully connected, it already allows arbitrary 
ordering of the LUT inputs. Generally, a k-LUT has !! such 
input permutations, allowing ⌊!"#2(!!)⌋ configuration bits to 
be removed from the bitstream and regenerated at load time. 

Rather than constructing a new LUT architecture to 
reduce a fully functional LUT into a P-class LUT, the 
proposed method enumerates the input permutations and 
regenerates several LUT configuration bits with this 
enumeration. This reduces the number of LUT configuration 
bits while keeping the same traditional LUT architecture as 
shown in Fig. 2. Since !  inputs can be permuted in !! 
different ways, log! !!  configuration bits can be saved in 
each LUT. This is not bitstream compression which encodes 
frequently appearing patterns, this is removing a specific 
form information redundancy prior to compression. 

The new added enumeration logic is of minimal size and 
can use minimum-size transistors, since it is not part of the 
circuit timing paths. It can even be shared by all LUTs on the 
device, since decompression occurs at bitstream load time. 

Unfortunately, this bitstream reduction technique may 
not be used in some situations. For example, some high-
performance FPGAs utilize the delay differences in LUT 
inputs for prioritizing timing paths. Also, some FPGAs have 
sparse connections between their CLB inputs and LUT 
inputs, i.e. the LUT input multiplexers are not fully 
connected to all of the CLB inputs. Since the proposed 
bitstream-reduction technique relies upon reordering LUT 
inputs, it may not be immediately applicable to either of 
these situations. However, we note that hybrid solutions are 
possible. For example, delay differences only matter on the 
critical nets, so it may be possible to apply this selectively 

                                                             
1 Permuting the inputs of the current LUT based upon the current LUT’s 
own function leads to a cyclic dependence: after the new input order is 
determined, the LUT configuration bits must be rearranged accordingly, 
which will likely change the value of the bits to be removed, which may 
require a different input ordering. We suggest breaking this cyclic 
dependence using a chain: the input ordering for the next LUT is 
determined from the bits removed in the current LUT; this fixes the next 
LUT’s configuration bits and enables the next removal.  

only to non-critical nets. With sparse IIBs, removing k! 
orderings may overly restrict the routability; in this case, it 
may be possible to save a smaller number of bits by choosing 
some !’ < ! such that routability is still good. 

The rest of this paper is organized as follows. Current 
configuration bitstream reduction methods are reviewed in 
Section II. A mathematical background of indexing 
permutation in lexicographic order is discussed in Section 
III. The suggested method for enumerating LUT inputs is 
presented in section IV. Verification of the proposed method 
and results are described in Section V. Finally, this paper is 
concluded in Section VI. 

II. PREVIOUS WORK ON BITSTREAM REDUCTION 
Several methods have been proposed to reduce the FPGA 

configuration bitstream, since bitstream size adversely 
affects configuration memory size and configuration time. 
These methods can be categorized based on architecture 
awareness. While some methods apply general data 
compression methods, others exploit the internal FPGA or 
bitstream architecture to reduce the required bits. 

General compression techniques demonstrate a high 
bitstream compression ratio. However, they incur high area 
overhead due to complex compression and decompression 
circuitry. These methods typically trade-off chip area and 
circuit complexity for an increased compression ratio. 

General text compression methods, e.g. Huffman, 
Arithmetic, and LZ coding are adapted to bitstream 
compression and compared together with "don't care", 
readback, frame reordering, and wildcard techniques in [6]. 
A maximum compression factor of 4 is achieved by these 
methods [6]. Runlength file compression technique is used to 
reduce configuration bitstream by 3.6 times in [7], but bus 
transfer and decompression hardware overhead is required. 
Statistics on the Xilinx Virtex commercial FPGA family 
shows that less than 3% of bitstream is changed due to 
reconfiguration [8], hence data reuse between bitstreams of 
successive configurations can be used to compress the 
configuration bitstream [8][9]. 

Architecture-aware bitstream reduction techniques often 
suggest improving the FPGA architecture itself to reduce 
bits, e.g. switch boxes [10] or LUTs [11]-[17], or 
configuration-efficient coarse-grained architectures [18]. 

Several methods suggest using Universal Logic Models 
(ULMs) to generate optimal NPN-class LUTs [11][12]. 
However, ULMs with additional redundant inputs are 

 
Fig. 2. Enumerating input permutations to reduce configuration bits for a 

SRAM-based LUT 



impractical for SRAM-based FPGAs since the additional 
ULM pins require additional routing resources and steering 
configuration bits which often swamp the LUT bit savings. 

The current trend of ULM research is to investigate 
functionally incomplete LUTs, namely, LUTs which 
eliminate rarely-used functions [13][14]. These ULMs are 
therefore incapable of generating all logic functions of the 
input variables. The usefulness of functional NPN-classes is 
usually investigated by statistical means, with only the most 
useful classes considered for LUT implementation. Although 
this method could save a large amount of LUT configuration 
bits, it incurs an increased routing and area overhead. 

Another method [12][15] proposes a functional-complete 
ULM with no additional inputs to implement LUTs for 
SRAM-based FPGAs. Binary Decision Diagrams (BDDs) 
are employed to construct ULMs with reduced configuration 
bits, while considering different input permutations and 
negation (NP-classes). However, for ULMs with more than 3 
inputs, this method suffers from increased overhead area and 
design complexity. 

Our method is based on LUT optimization. However, it 
does not suffer from area overhead. Furthermore, the 
proposed method can be applied together with existing 
compression methods, hence, increasing bitstream reduction, 
with minimal area overhead. 

III. INDEXING ALL k! PERMUTATIONS IN LEXICOGRAPHIC 
ORDER: MATHEMATICAL BACKGROUND 

Methods from algebraic combinatoric theory [1][2][3] 
are employed here to enumerate input permutations. A 
structural and minimal circuit is then proposed to generate a 
permutation enumeration code (Lehmer’s code) and to 
convert this code into a binary representation. Rather than 
using factorial mixed-radix representation to convert 
Lehmer’s code into a binary representation, which consumes 
high area due to factorial multiplications, an algorithmic 
method is proposed to convert Lehmer’s code into a binary 
representation using only a few logic gates. Input 
permutation enumeration is then exploited to configure the 
LUT logic function. 

Inputs of a fully utilized k-LUT are routed to different ! 
inputs; hence the linear order of the chosen inputs represents 
a permutation of the finite set, ! ≡ 0,1,… , ! − 1 . A 
permutation ! is defined as a linear ordering of a set of 
elements ! [2], and can be described notationally using a list 
of different ! elements out of ! in square brackets 

 ! = !!!!…   !!!! ∀!,!∈!   !! ∈ !,!! ≠ !! . (1) 

However, in group theory, a permutation ! of a set ! is 
described as a bijection from that set to itself [5]. Hence, the 
k-permutation group is defined as the finite symmetric group 
!!, 

 !! ≡ ! !:! → !, !"#$%&"'$() . (2) 

The set of Inversion [1][2][4][5] ! !  of a permutation ! 
is defined as a set of pairs representing the places of two 
successive elements in a permutation, such that the values of 
these two elements are reversed to their place order, namely, 

 ! ! ≡ !, ! ∈ !!     ! < !,!! > !! . (4) 

The Inversion indicator 1!
(!,!) is 1; if and only if !, !  is 

an inversion as defined previously 

 1!
!,! ! ≡ 1, !"   !, ! ∈ ! !

0,                                !"ℎ!"#$%! . 
(5) 

The Lehmer code [1][5] for a place ! in a permutation ! 
is defined as the amount of inversions in ! with ! as the first 
ordered place in the inversion, 

 !! ! ≡ ! < ! !! > !! ≡ 1!
!,! ! .

!∈!

 (6) 

Hence, !! !  is the number of elements that are placed 
after ! in a permutation  !, but smaller than !. 

Since 1!
!,!  is 1, only if ! < !, the Lehmer code could be 

defined as 

 !! ! = 1!
!,! ! .

!|!!!

 (7) 

The Lehmer code for a permutation ! is defined as a list 
of the Lehmer code for the subsequent permutation elements, 

 ! ! ≡ !! ! !! ! …   !!!! ! , (8) 

for example, ! [57024631] ≡ 56012210. 
Since ! is known, and ! − 1 is the largest index, !!!! !  

is zero and can be dropped from the Lehmer Code. Hence, 
!! !  is defined as 

 !! ! ≡ !! ! !! ! …   !!!! ! , (9) 

for example, !+ 57024631 ≡ 5601221. 
To reconstruct a permutation back from a Lehmer code,  

!! is the !! ! + 1 − !ℎ element of !, 
!! is the !! ! + 1 − !ℎ element of ! !! , 
!! is the !! ! + 1 − !ℎ element of ! !!,!! , 
…etc. 

Since there is only one way to convert from a 
permutation to Lehmer’s code and vice versa, the Lehmer 
code is a bijection between ! and !! !  in ℕ!  [5], hence 
Lehmer code is unique, and can be used to enumerate the 
permutations  [10]  since the Lehmer code digits !! !  are 
unrelated to each other. Furthermore, the following 
properties are trivially true, 

 ∀! ∈ !:  !! ! ≤ ! − !. (10) 

Hence, a Lehmer code for all permutations represents a 
successive sequence of numbers in the factorial number 
system, namely a lexicographic enumeration for all !! 
permutations. 

The factorial number system or Factoradic system is a 
mixed radix numeral system [3], where the right ! − !ℎ digit 
has a base of !, hence, should be less than !, as satisfied in 
the previous inequality. The ! − !ℎ digit has a decimal place 
value of ! − 1 ! , therefore the decimal value of the 
Lehmer’s code, representing a factorial number is 



 !! ! = !! ! ! − ! − 1
!!!

!!!

 (11) 

Fig. 3 describes a full enumerator that produces binary 
indexes of all the !! input permutations. The enumerator is 
combined of three stages. In the first stage, each input is 
compared with the successive inputs to generate inversion 
indicators. The second stage sums up the active inversion 
indicators (counts 1’s in inputs) for each input to generate 
Lehmer’s code. The final stage converts Lehmer’s code into 
a binary representation by multiplying each Lehmer’s code 
digit with its factorial digit place value. Finally, all factorial 
digits are added together to generate the permutation 
representative index. 

IV. ENUMERATING LUT INPUT PERMUTATIONS 
Lehmer’s code provides an enumeration of all the !! 

input permutations in lexicographic order and can be 
represented as a factorial mixed-radix number in order to be 
converted into decimal. The conversion from the factorial 
mixed-radix system into a decimal requires significant 
calculations which include multiplication of each digit with 
its representative factorial number. Nevertheless, for LUT 
configuration purposes, only 2 !"#! !!  permutations out of 
!! permutations need to be enumerated. Furthermore, the 
lexicographic order is not essential. Reduced logic, which 
includes only a few logic gates to generate 2 !"#! !!  
permutations out of the !! total permutations in unspecified 
order is proposed. The enumeration circuit is obtained by 
structural algorithms for grouping Lehmer’s code digits then 
mapping these digits into a binary representation. 

A. Binary enumeration of  ! !"#! !!  out of !! permutation 
in unspecified order 
The previous permutation full enumerator consumes high 

area due to the factorial multipliers and the wide adder at the 
last stage. However, log! !!  of the LUT configuration 
bits will be replaced with a permutation enumeration vector. 
Hence, this enumeration vector should include all binary 
values, namely 2 !"#! !!  binary values. Therefore, only 
2 !"#! !!  out of all !! permutation are needed. Furthermore, 
the actual lexicographic order is not critical for correct LUT 
functionality. 

The generated Lehmer’s code numbers are independent, 
namely, the value of any Lehmer’s code number !! !  is 
unrelated to other numbers !! !   |  ! ≠ ! . Therefore, each 
Lehmer’s code digit can be enumerated separately. For each 
Lehmer’s code digit !!, the maximum number of generated 
binary bits is log! ! − ! . Hence, enumerating each 
Lehmer’s code digit separately could generate fewer than the 
log! !!  number of required bits. To overcome this 

problem, Lehmer’s code digits can be grouped before the 
binary enumeration process. If two Lehmer’s digits !! and !! 
are grouped together, they will supply log! ! − ! ∙
! − !  bits, which may be larger than the sum of 

contribution of each bit separately. 
The GroupDigits algorithm described in Fig. 4 aims to 

find the minimal groups of Lehmer’s digits such that the 
following equation will be satisfied 

 !"#! ! − !
!∈!!∈!

= !"#!!! , (12) 

Where G is the group of all digit groups. 
The proposed algorithm starts with separated Lehmer’s 

digits, and tries incrementally to group minimal digits such 
that the overall bits will reach the required log! !!  bound. 

 
Fig. 3. Permutations fully-enumerator: (>?) are comparators, Σ’s count 1’s   

in input 

G	
  =	
  groupDigits(k):	
  
1	
   G	
  =	
  ∅;	
  
2	
   for	
  (i=k-­‐2	
  ;	
  i>=0	
  ;	
  i-­‐-­‐)	
  {	
  
3	
   	
  	
  totalBits	
  +=	
  ⌊log2(k-­‐i)⌋;	
  
4	
   	
  	
  G	
  ∪=	
  {	
  {i}	
  }	
  
5	
   }	
  
6	
   while	
  (totalBits	
  <	
  ⌊log2(k!)⌋)	
  {	
  
7	
   	
  	
  for	
  (i=k-­‐2	
  ;	
  i>=0	
  ;	
  i-­‐-­‐)	
  
8	
   	
  	
  	
  	
  if	
  ({i}∈G	
  AND	
  ⌊log2(k-­‐i)⌋<log2(k-­‐i))	
  
9	
   	
  	
  	
  	
  	
  	
  break;	
  
10	
  	
  	
  for	
  (j=i+1	
  ;	
  j>=0	
  ;	
  j-­‐-­‐)	
  
11	
  	
  	
  	
  	
  if	
  ({j}∈G	
  AND	
  ⌊log2((k-­‐i)*(k-­‐j))⌋	
  >	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ⌊log2(k-­‐i)⌋+⌊log2(k-­‐j)⌋){	
  
12	
  	
  	
  	
  	
  	
  	
  totalBits++;	
  
13	
  	
  	
  	
  	
  	
  	
  G	
  /=	
  {	
  {i},{j}	
  }	
  
14	
  	
  	
  	
  	
  	
  	
  G	
  ∪=	
  {	
  {i,j}	
  }	
  
15	
  	
  	
  	
  	
  	
  	
  break;	
  
16	
  	
  	
  	
  	
  }	
  
17	
  }	
  
18	
  return	
  G;	
  

(a) 
	
  
groupDigits(k)	
  execution	
  example:	
  
	
   K = 2  à  G = { {0} }	
  
	
   K = 3  à  G = { {1} , {0} } 
	
   K = 4  à  G = { {2} , {1} , {0} }	
  
	
   K = 5  à  G = { {3} , {2} , {1} , {0} }	
  
	
   K = 6  à  G = { {4} , {3,0} , {2} , {1} }	
  
	
   K = 7  à  G = { {5} , {4,1} , {3} , {2,0} , {1} }	
  
	
   K = 8  à  G = { {6} , {5,2} , {4} , {3,1} , {1} , {0} } 

(b) 
Fig. 4. (a) groupDigits algorithm (b) execution example 



B. Merging grouped digits into one binary representation 
Grouped digits !! , !!  should provide enumeration for 

2 !"#! !!! ∙ !!!  different numbers. This enumeration is 
performed by mapping all of the log! ! − ! ∙ ! − !  
enumeration binary numbers into !! and !!. The mergeDigits 
algorithm needed to generate such a mapping is described in 
Fig. 5. Without loss of generality, a maximum value of !! is 
assumed to be closer to the maximal value that could be 
represented by !!’s bits, compared to lj, namely, 

 2 !"#! !!! − ! − ! < 2 !"#! !!! − ! − ! . (13) 
For all values of the merged binary vector !: 
• !! is mapped to the relevant LSB bits of ! modulo the 

maximum value of !! 
• if the previous modulo operation overflows, then 

o !! is mapped to the rest of !, except !!′! MSB bit 
which is mapped to ‘1’, all modulo the maximum 
value of !! 

o !!′! MSB bit is set to ‘1’ 
• otherwise, !! is mapped to the rest of !, except !!′! 

MSB bit which is mapped to ‘0’ 
For !, !, ! = 6,3,0 , !, !, ! = 7,4,1  or !, !, ! =

8,5,2  the same mapping is achieved since ! − ! = 3 and 
! − ! = 6 for all of them, as listed in Table I. For !, !, ! =
7,2,0  or !, !, ! = 8,3,1  the same mapping is achieved 

since ! − ! = 5 and ! − ! = 7 for all of them, as listed in 
Table II. The mapping function ! can be obtained manually 
or by logic optimization tools. 

f	
  =	
  mergeDigits(k,i,j): 
1	
   for	
  (bi,j=0	
  ;	
  bi,j<=2

bits(li)+bits(lj)-­‐1	
  ;	
  bi,j++)	
  { 
2	
   	
  	
  if	
  (2bits(li)-­‐max(li)	
  >	
  2

bits(lj)-­‐max(lj)) 
3	
   	
  	
  	
  	
  swap(i,j); 
4	
   	
  	
  li⟦bits(li)-­‐1…0⟧  =	
  bi,j⟦bits(li)-­‐1…0⟧	
  %	
  max(li)+1; 
5	
   	
  	
  if	
  (bi,j⟦bits(li)-­‐1…0⟧	
  >	
  max(li)+1)	
  { 
6	
   	
  	
  	
  	
  lj⟦bits(lj)-­‐1…0⟧  =	
  ⟪’1’,bi,j⟦bits(lj)+bits(li)-­‐2…bits(li)⟧⟫	
  %	
  max(lj)+1; 
7	
   	
  	
  	
  	
  lj⟦bits(lj)-­‐1⟧  =	
  ‘1’; 
8	
   	
  	
  }	
  else	
  
9	
   	
  	
  	
  	
  	
  	
  lj⟦bits(lj)-­‐1…0⟧  =	
  ⟪‘0’,	
  bi,j⟦bits(lj)+bits(li)-­‐2…bits(li)⟧⟫; 
10	
  } 
11	
  Find	
  mapping	
  function	
  f,	
  s.t.	
  b=f(li,lj);	
  
12	
  return	
  f; 

(a) 
	
  

Notation:	
  
li	
   Digit	
  i	
  of	
  Lehmer’s	
  code	
  
max(li)	
  =	
  k-­‐i	
   Maximum	
  value	
  for	
  Lehmer	
  digit	
  li	
  
bits(li)	
  =	
  ⌈log2(k-­‐i)⌉	
   Number	
  of	
  bits	
  required	
  to	
  represent	
  Lehmer’s	
  digit	
  li	
  
⟪bn-­‐1,..,b0⟫	
   Encloses	
  a	
  binary	
  vector	
  
a⟦i⟧   The	
  i-­‐th	
  bit	
  of	
  a	
  binary	
  vector	
  ‘a’	
  (little	
  Indian;	
  a⟦0⟧	
  is	
  the	
  LSB)	
  
a⟦j…i⟧   ⟪a[j],a[j-­‐1],…,a[i]⟫	
  |	
  j<i	
  
bi,j   the	
  combined	
  li	
  and	
  lj,	
  bits(li)+bits(lj)-­‐1	
  bits	
  

(b) 
Fig. 5. (a) mergeDigits algorithm (b) notation 

enumerate(k):	
  
1	
   eIndex	
  =	
  0;	
  
2	
   G	
  =	
  GroupDigits(k);	
  
3	
   foreach	
  g∈G	
  {	
  
4	
   	
  	
  if	
  (|g|	
  ==	
  1)	
  {	
  

	
  5	
   	
  	
  	
  	
  {i}	
  =	
  g;	
  
	
  6	
   	
  	
  	
  	
  for(lIndex=0	
  ;	
  lIndex<⌊log2(k-­‐i)⌋	
  

	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ;	
  lIndex++)	
  
7	
   	
  	
  	
  	
  	
  	
  e⟦eIndex++⟧	
  =	
  li⟦lIndex⟧;	
  

	
  8	
   	
  	
  }	
  else	
  
	
  9	
   	
  	
  	
  	
  {i,j}	
  =	
  g;	
  

10	
  	
  	
  	
  	
  f	
  =	
  mergeDigits(k,i,j);	
  
11	
  	
  	
  	
  	
  for	
  (lIndex=0	
  ;	
  lIndex<(⌊log2(k-­‐i)⌋	
  
	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  +⌊log2(k-­‐j)⌋-­‐1)	
  ;	
  lIndex++)	
  
12	
  	
  	
  	
  	
  	
  	
  e⟦eIndex++⟧	
  =	
  f(li,lj)⟦lIndex⟧;	
  
13	
  	
  	
  }	
  
14	
  }	
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  final	
  enumeration	
  

(b) 
Fig. 6. (a) enumerate(k) algorithm (b) notation 



 

C. Generating final enumeration vector 
Mapping to the final enumeration vector is based on the 

digits grouping procedure, achieved by groupDigits(k) and 
shown in Fig. 6. If a Lehmer’s digit !!  is grouped with 
another Lehmer’s digit !! , these digits will be merged 
together to achieve a mapping function f=mergeDigits(k,i,j), 
then   log! ! − ! ∙ ! − !  bits will be mapped through ! 
to the final enumeration vector. Examples of the generated 
enumeration circuits and implementation details for k=3 to 8 
are depicted in Fig. 7 and Fig. 8, respectively. 

D. Mapping LUT’s logic functions to input permutations 

To map 2 !!  logic functions of a k-LUT to their 
respective permutations, a list of all input permutations is 
generated iteratively. The enumeration of each permutation 
is calculated and attached to the relevant permutation in the 
permutations list. The proposed permutation list should 
contain 2 !"#! !!  entries. Each entry contains a k-numbers 
permutation, and is indexed by the permutation enumeration. 
Assuming that a permutation number is one byte, the 
mapping list size is ! ∙ 2 !"#! !! !"#$%. For instance, an 8-
LUT mapping list requires 256 KB. Another possible method 
is backtracking the required enumeration through the 
enumeration logic to detect the relevant permutation. 

Table III gives a logic function-to-permutations mapping 
list and Fig. 9 shows an implementation for a 2-LUT. 

V. IMPLEMENTATION RESULTS 
A single enumerator can decompress the bitstream for the 

entire FPGA device. The proposed design has been 
implemented in Verilog and synthesized using Synopsys 
Design Compiler with the TSMC 65nm standard cell library. 
The implementation area overhead is given in Table IV; only 
1000 transistors are required for 6-LUT architectures.  

The implementation has been verified by generating 
output enumeration for all input permutations. The output 
enumeration vector covers all possible binary combinations. 
Gate-level simulation (GLS) on the synthesized netlist was 
also done to verify the correctness of the logic. 

Relevant C code, Verilog files, and synthesis scripts are 
located on the authors’ website [19]. 

 
Fig. 7. Enumeration circuit for k=3…8; Σ’s can be implemented by custom logic as depicted in Fig. 8. 

Fig. 8. Custom implementation of (a) Σ2..7 (b) low-area ripple comparator using CMOS majority gates 

TABLE II: MERGEDIGITS FOR 
(K,I,J)=(6,3,0), (7,4,1) OR (8,5,2) 

 TABLE I: MERGEDIGITS FOR 
(K,I,J)=(7,2,0) OR (8,3,1)  

 bi,j⟦⟧  li⟦⟧ lj⟦⟧   bi,j⟦⟧  lj⟦⟧ li⟦⟧  
 4 3 2 1 0  2 1 0 2 1 0     3 2 1 0  2 1 0 1 0  
 0 0 0 0 0 à 0 0 0 0 0 0   0 0 0 0 à 0 0 0 0 0  
 0 0 0 0 1 à 0 0 0 0 0 1   0 0 0 1 à 0 0 0 0 1  
 0 0 0 1 0 à 0 0 0 0 1 0   0 0 1 0 à 0 0 0 1 0  
 0 0 0 1 1 à 0 0 0 0 1 1   0 0 1 1 à 1 0 0 0 0  
 0 0 1 0 0 à 0 0 0 1 0 0   0 1 0 0 à 0 0 1 0 0  
 0 0 1 0 1 à 0 0 0 1 0 1   0 1 0 1 à 0 0 1 0 1  
 0 0 1 1 0 à 0 0 0 1 1 0   0 1 1 0 à 0 0 1 1 0  
 0 0 1 1 1 à 1 0 0 0 0 0   0 1 1 1 à 1 0 1 0 0  
 0 1 0 0 0 à 0 0 1 0 0 0   1 0 0 0 à 0 1 0 0 0  
 0 1 0 0 1 à 0 0 1 0 0 1   1 0 0 1 à 0 1 0 0 1  
 0 1 0 1 0 à 0 0 1 0 1 0   1 0 1 0 à 0 1 0 1 0  
 0 1 0 1 1 à 0 0 1 0 1 1   1 0 1 1 à 1 0 0 0 1  
 0 1 1 0 0 à 0 0 1 1 0 0   1 1 0 0 à 0 1 1 0 0  
 0 1 1 0 1 à 0 0 1 1 0 1   1 1 0 1 à 0 1 1 0 1  
 0 1 1 1 0 à 0 0 1 1 1 0   1 1 1 0 à 0 1 1 1 0  
 0 1 1 1 1 à 1 0 0 0 0 1   1 1 1 1 à 1 0 1 0 1  
 1 0 0 0 0 à 0 1 0 0 0 0     
 1 0 0 0 1 à 0 1 0 0 0 1   Mapping function f :  
 1 0 0 1 0 à 0 1 0 0 1 0   bi,j⟦0⟧=li⟦0⟧ ˅ lj⟦2⟧  
 1 0 0 1 1 à 0 1 0 0 1 1   bi,j⟦1⟧=li⟦1⟧ ˅ lj⟦2⟧  
 1 0 1 0 0 à 0 1 0 1 0 0   bi,j⟦2⟧= lj⟦0⟧  
 1 0 1 0 1 à 0 1 0 1 0 1   bi,j⟦3⟧=(lj⟦1⟧ ˅ lj⟦2⟧)  
 1 0 1 1 0 à 0 1 0 1 1 0                             ˄ li⟦0⟧  
 1 0 1 1 1 à 1 0 0 0 1 0     
 1 1 0 0 0 à 0 1 1 0 0 0     
 1 1 0 0 1 à 0 1 1 0 0 1      
 1 1 0 1 0 à 0 1 1 0 1 0  Mapping function f :  
 1 1 0 1 1 à 0 1 1 0 1 1  bi,j⟦0⟧=lj⟦0⟧ ˅ li⟦2⟧  
 1 1 1 0 0 à 0 1 1 1 0 0  bi,j⟦1⟧=lj⟦1⟧ ˅ li⟦2⟧  
 1 1 1 0 1 à 0 1 1 1 0 1  bi,j⟦2⟧=lj⟦2⟧ ˅ li⟦2⟧  
 1 1 1 1 0 à 0 1 1 1 1 0  bi,j⟦3⟧=(li⟦0⟧˅li⟦2⟧) ˄ lj⟦0⟧  
 1 1 1 1 1 à 1 0 0 0 1 1  bi,j⟦4⟧=(li⟦1⟧˅li⟦2⟧) ˄ lj⟦0⟧  
       

      

     



VI. CONCLUSIONS 
A method for removing LUT configuration bits is 

presented in this paper. By reducing the number of LUT bits 
stored in the configuration bitstream, off-chip memory size 
and bitstream loading time can be reduced. Minimal silicon 
area is required for the decoder. The technique works by 
removing information redundancy about the LUT input 
ordering stored collectively in both the LUT configuration 
bits and the internal CLB interconnect bits. The proposed 
LUT input enumerator is synthesized into a gate-level netlist 
and logically verified. The proposed method can be 
employed together with existing bitstream compression 
methods to achieve a maximal compression ratio. 

Future improvements of the suggested method should be 
considered. Generalization of the enumeration method for 
CLBs with specific routing constraints, e.g. CLBs with 
sparse connection or partially fixed routing, should be 
considered. Furthermore, since the majority of the 
configuration bits are dedicated for routing, extending the 
technique for routing configuration bits may be helpful. 
Alternatively, other uses for the information redundancy can 
be explored, such as watermarking.  
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Fig. 9. 2-LUT with input permutation enumerator 

TABLE IV: CELL AREA AND TRANSISTOR COUNT FOR PROPOSED CIRCUIT 

k 3 4 5 6 7 8 
Area (µm) 63.7 129.2 220.0 333.0 501.5 702.4 
# transistor 198 404 694 1058 1576 2208 

TABLE III: MAPPING 2-LUT LOGIC FUNCTIONS TO INPUT PERMUTATIONS 
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   function	
   index	
   value	
  
00	
  01	
   10	
   11	
   e0	
   c2	
  c1	
   c0	
   permutation	
  

	
   f0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   0	
   (a,b)	
  
	
   f1	
   0	
   0	
   0	
   1	
   a∧b	
   0	
   0	
   0	
   1	
   (a,b)	
  
	
   f2	
   0	
   0	
   1	
   0	
   a∧¬b	
   0	
   0	
   1	
   0	
   (a,b)	
  
	
  	
   f3	
   0	
   0	
   1	
   1	
   a	
   0	
   0	
   1	
   1	
   (a,b)	
  
	
   f4	
   0	
   1	
   0	
   0	
   ¬a∧b	
   0	
   1	
   0	
   0	
   (a,b)	
  
	
   f5	
   0	
   1	
   0	
   1	
   b	
   0	
   1	
   0	
   1	
   (a,b)	
  
	
   f6	
   0	
   1	
   1	
   0	
   a⊕b	
   0	
   1	
   1	
   0	
   (a,b)	
  
	
   f7	
   0	
   1	
   1	
   1	
   a∨b	
   0	
   1	
   1	
   1	
   (a,b)	
  
	
   f8	
   1	
   0	
   0	
   0	
   ¬(a∨b)	
   1	
   0	
   0	
   0	
   (b,a)	
  
	
   f9	
   1	
   0	
   0	
   1	
   ¬(a⊕b)	
   1	
   0	
   0	
   1	
   (b,a)	
  
	
   f10	
   1	
   0	
   1	
   0	
   ¬b	
   1	
   0	
   1	
   0	
   (b,a)	
  
	
   f11	
   1	
   0	
   1	
   1	
   a∨¬b	
   1	
   0	
   1	
   1	
   (b,a)	
  
	
   f12	
   1	
   1	
   0	
   0	
   ¬a	
   1	
   1	
   0	
   0	
   (b,a)	
  
	
   f13	
   1	
   1	
   0	
   1	
   ¬a∨b	
   1	
   1	
   0	
   1	
   (b,a)	
  
	
   f14	
   1	
   1	
   1	
   0	
   ¬(a∧b)	
   1	
   1	
   1	
   0	
   (b,a)	
  
	
   f15	
   1	
   1	
   1	
   1	
   1	
   1	
   1	
   1	
   1	
   (b,a)	
  


