
Architecture of Block-RAM-Based Massively
Parallel Memory Structures:

Multi-Ported Memories and Content-Addressable Memories

by

Ameer M. S. Abdelhadi

B.Sc. Computer Engineering, Technion, 2007

M.Sc. Electrical Engineering, Technion, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL
STUDIES

(Electrical and Computer Engineering)

The University of British Columbia
(Vancouver)

September 2016

c© Ameer M. S. Abdelhadi, 2016

Abstract

Since they were first introduced three decades ago, Field-Programmable Gate Ar-

rays (FPGAs) have evolved from being merely used as glue-logic to implementing

entire compute accelerators. These massively parallel systems demand highly par-

allel memory structures to keep pace with their concurrent nature since memories

are usually the bottleneck of computation performance. However, the vast majority

of FPGA devices provide dual-ported SRAM blocks only. In this dissertation, we

propose new ways to build area-efficient, high-performance SRAM-based parallel

memory structures in FPGAs, specifically Multi-Ported Random Access Memory

and Content-Addressable Memory (CAM).

While parallel computation demands more RAM ports, leading Multi-Ported

Random Access Memory techniques in FPGAs have relatively large overhead in

resource usage. As a result, we have produced new design techniques that are

near-optimal in resource overhead and have several practical advantages. The

suggested method reduces RAM usage by over 44% and improves clock speed by

over 76% compared to the best of previous approaches. Furthermore, we propose

a novel switched-ports technique that allows further area reduction if some RAM

ii

ports are not simultaneously active. A memory compiler is proposed to generalize

the previous approach and allow generating Multi-Switched-Ports Random Access

Memory.

Content-Addressable Memories (CAMs), the hardware implementation of as-

sociative arrays, are capable of searching the entire memory space for a specific

value within a single clock cycle. CAMs are massively parallel search engines

accessing all memory content to compare with the searched pattern simultaneously.

CAMs are used in a variety of scientific fields requiring high-speed associative

searches. Despite their importance, FPGAs lack an area-efficient CAM implemen-

tation. We propose a series of scalable, area-efficient, and high-performance Binary

Content-Addressable Memories (BCAMs) based on hierarchical search and data

compression methods. Compared to current RAM-based BCAM architectures,

our BCAMs require a maximum of 18% the RAM storage while enhancing clock

speed by 45% on average, hence exhibiting a superior single-cycle search rate.

As a result, we can build faster and more cost-effective accelerators to solve

some of the most important computational problems.

iii

Preface

The major contributions of this dissertation have also been published in journal

papers and conference proceedings [1–5] as outlined below.

For all of these publications, I proposed the ideas, carried out the research,

performed all of the design methodology and implementation, conducted the

experiments, data generation and the analysis of the results. Furthermore, I prepared

the manuscripts for these publications under the supervision of Prof. Lemieux, who

also provided editorial support for all of these manuscripts and provided advice on

the research design methodology.

• Multi-ported memories

– Modular Multi-Ported SRAM-based Memories [1]

Published in the 2014 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays (FPGA 2014). Parts of this publication

appear in Chapter 3.

– Modular Switched Multi-ported SRAM-based Memories [2]

Accepted for publication in ACM Transactions on Reconfigurable Tech-

iv

nology and Systems (TRETS) Special Issue on Reconfigurable Compo-

nents with Source Code. Parts of this publication appear in Chapter 4.

– A Multi-Ported Memory Compiler Utilizing True Dual-port BRAMs

[3]

To be published in the 2016 IEEE International Symposium on Field-

Programmable Custom Computing Machines (FCCM 2016). Parts of

this publication appear in Chapter 4.

• Content-addressable memories

– Deep and Narrow Binary Content-Addressable Memories using

FPGA-based BRAMs [4]

Published in the 2014 International Conference on Field-Programmable

Technology (ICFPT 2014). Parts of this publication appear in Chap-

ter 5.

– Modular SRAM-based Binary Content-Addressable Memories [5]

Published in the 2015 IEEE International Symposium on Field-Programmable

Custom Computing Machines (FCCM 2015). Parts of this publication

appear in Chapter 6.

[1] A. M. S. Abdelhadi and G. G. F. Lemieux. Modular Multi-Ported SRAM-
Based Memories. In ACM/SIGDA International Symposium on Field-
programmable Gate Arrays (FPGA), pages 35–44, February 2014

v

[2] Ameer M.S. Abdelhadi and Guy G.F. Lemieux. Modular Switched Multi-
Ported SRAM-Based Memories. ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 9(3):22:1–22:26, July 2016

[3] A. M. S. Abdelhadi and G. G. F. Lemieux. A Multi-Ported Memory Com-
piler Utilizing True Dual-Port BRAMs. In IEEE International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages
200–207, May 2016

[4] A. M. S. Abdelhadi and G. G. F. Lemieux. Deep and Narrow Binary
Content-Addressable Memories Using FPGA-Based BRAMs. In Inter-
national Conference on Field-Programmable Technology (FPT), pages
318–321, December 2014

[5] A. M. S. Abdelhadi and G. G. F. Lemieux. Modular SRAM-Based Binary
Content-Addressable Memories. In IEEE International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 207–
214, May 2015

vi

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . vii

List of Tables . xiii

List of Abbreviations . xv

List of Notations . xx

Acknowledgments . xxiii

Dedication . xxv

1 Introduction . 1

1.1 Motivation . 1

1.1.1 Multi-Ported Random Access Memories (MPRAMs) . . . 3

1.1.2 Content-Addressable Memories (CAMs) 4

vii

1.2 Thesis Statement and Research Goals 6

1.3 Research Problem: On the feasibility of Parallel memory structures

in FPGAs . 7

1.3.1 Multi-Ported Random Access Memories (MPRAMs) . . . 7

1.3.2 Content-Addressable Memories (CAMs) 8

1.4 Research Contributions . 10

1.4.1 Invalidation-Based Live-Value Table (I-LVT) 10

1.4.2 Switched Ports . 11

1.4.3 2-Dimensional Hierarchical Search BCAM (2D-HS-BCAM) 12

1.4.4 Indirectly Indexed Hierarchical Search BCAM (II-HS-BCAM) 13

1.5 Research Methodology and Evaluation Metrics 13

1.5.1 Verilog Description . 13

1.5.2 Simulation and Synthesis 14

1.5.3 Results Collection . 15

1.5.4 BRAM Packing Approximation 15

1.6 Dissertation Organization . 16

2 Background and Related Work . 18

2.1 RAM Multi-Porting Techniques in Embedded Systems 18

2.1.1 Register-based RAM . 19

2.1.2 RAM Multi-Pumping . 19

2.1.3 Multi-Read RAM: Bank Replication 21

2.1.4 Multi-Write RAM: Emulation via Multi-banking 21

viii

2.2 Multi-ported SRAM-based Memories: Prior Work 23

2.2.1 LVT-Based Multi-ported RAM 23

2.2.2 Multi-Ported Random Access Memories with True Dual-

Ports . 25

2.2.3 XOR-Based Multi-Ported RAM 26

2.3 FPGA-Based Binary Content-Addressable Memories (BCAMs) . 29

2.3.1 Register-Based BCAMs 31

2.3.2 Brute-Force Approach via Transposed Indicators RAM

(TIRAM) . 32

2.3.3 BCAM Pattern Width Cascading and Scaling 35

2.3.4 Reconfiguration Memory Based Content-Addressable Mem-

ories (RCAMs) . 37

2.3.5 Algorithmic Heuristics 39

2.3.6 Vendor Support for BCAMs 40

3 Multi-Ported Random Access Memories via Invalidation-Based Live-

Value Table (I-LVT) . 42

3.1 Introduction . 43

3.2 Invalidation Table . 44

3.2.1 Bank ID Embedding: Binary-Coded Bank IDs and Selectors 46

3.2.2 Mutually-Exclusive Conditions: Thermometer-Coded Bank

IDs with One-hot-Coded Selectors 52

3.2.3 Data Dependencies and Bypassing 55

ix

3.2.4 Initializing Multi-Ported RAM Content 58

3.2.5 Comparison and Discussion 60

3.2.5.1 SRAM Usage based on RAM Architecture . . . 60

3.2.5.2 Register Usage based on RAM Architecture . . . 62

3.3 Experimental Results . 68

3.4 Conclusions . 75

4 Multi-Ported Random Access Memories with Switched Ports 77

4.1 RAM Port Classification . 79

4.2 Multi-Ported Memories with Single Switched-Port 81

4.2.1 Single Switched-Port Support 83

4.2.1.1 Data Dependencies and Bypassing 88

4.2.1.2 SRAM Usage based on Port Functionality 90

4.2.2 Experimental Results . 94

4.3 Multi-Switched-Ports . 96

4.3.1 Multi-Ported RAM with Multiple Switched Ports 97

4.3.1.1 Motivation and Key Idea 97

4.3.1.2 Port Assignment and Problem Definition 100

4.3.1.3 Modeling Data Banks with Data Flow Graph

(DFG) . 102

4.3.1.4 Multi-Switched-Ports DFG Optimization 104

4.3.1.5 Solving the Cover Problem 106

4.3.1.6 Data Dependencies and Bypassing 109

x

4.3.2 Experimental Results . 114

4.3.2.1 Experimental Framework 114

4.3.2.2 Methodology 115

4.3.2.3 Test Cases . 118

4.3.2.4 Results . 118

4.4 Conclusions . 123

5 2-Dimensional Hierarchical Search BCAMs (2D-HS-BCAMs) 124

5.1 Introduction . 125

5.2 The 2-Dimensional Hierarchical Search BCAM (2D-HS-BCAM)

Approach . 127

5.3 BCAM Bypassing . 135

5.4 Comparison and Discussion . 135

5.5 Experimental Results . 139

5.6 Conclusions . 144

6 Indirectly Indexed Hierarchical Search BCAMs (II-HS-BCAMs) . . 145

6.1 Introduction . 146

6.2 Motivation and Key Idea . 148

6.3 Design and Functionality . 150

6.4 Feasibility on Altera’s Stratix Devices 156

6.5 Comparison and Discussion . 156

6.6 Experimental Results . 161

6.7 Conclusions . 164

xi

7 Conclusions . 165

7.1 Dissertation Summary . 165

7.2 Future Directions . 168

7.2.1 Invalidation-Table Multi-Ported Memories 168

7.2.2 BRAM-Based Content-Addressable Memories 169

7.2.3 Parallel Reconfigurable Computing with Customizable

Concurrent Memories . 170

Bibliography . 171

A Brute-Force Transposed Indicators (BF-TI) BCAM Writing Mech-

anism . 184

B Wide Priority Encoders in FPGAs 187

C Verilog IPs User Guide . 189

xii

List of Tables

Table 3.1 Bypassing for XOR-based and binary/thermometer-coded I-

LVT multi-ported memories. 59

Table 3.2 Summary of SRAM bits usage. 65

Table 3.3 Summary of M20K blocks usage. 66

Table 3.4 Summary of register usage. 67

Table 4.1 Single-stage and two-stage bypassing for simple and true dual-

port RAM. 89

Table 4.2 Resources consumption for a 4W/8R multi-ported RAM test-

case with 8k-entries of 32-bit words and new data RDW bypassing. 92

Table 4.3 Register consumption for a 4W/8R multi-ported RAM test-case

with 8k-entries of 32-bit words 93

Table 4.4 Biclique patterns and their attributes. 105

Table 4.5 Comparison of purely fixed-ports versus multi-switched-ports

implementations of the example in Figure 4.8. 110

Table 4.6 Bypassing of multi-switched-ports. 112

xiii

Table 4.7 Single-stage and two-stage BRAM bypassing. 113

Table 4.8 Multi-switched-ports conversion (example from Figure 4.8). . . 117

Table 4.9 Heterogeneous multi-ported RAM testcases. 120

Table 4.10 Experimental results. 121

Table 4.11 Results comparison. 122

Table 6.1 BRAM usage of a single stage II2D-BCAM 154

Table 6.2 Storage efficiency µs (inversed). 157

Table C.1 List of SMPRAM module interface ports 191

Table C.2 List of SMPRAM module parameters 192

xiv

List of Abbreviations

The following lists all abbreviations that have been used in the dissertation.

MSPRAM Multi-Switched-Ports Random Access Memory

MPRAM Multi-Ported Random Access Memory

LVT Live-Value Table

I-LVT Invalidation-Based Live-Value Table

ALM Adaptive Logic Module

ESB Embedded System Block

MFB Multi-Function Block

ALU Arithmetic Logic Unit

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BRAM Block-RAM

xv

CAD Computer-Aided Design

CAM Content-Addressable Memory

BCAM Binary Content-Addressable Memory

TCAM Ternary Content-Addressable Memory

RCAM Reconfiguration Memory Based Content-Addressable Memory

PE Priority Encoder

PE Processing Element

LPME Longest-Prefix Match Encoder

LPM Longest-Prefix Match

CGRA Coarse-Grained Reconfigurable Array

CMOS Complementary Metal-Oxide Semiconductor

CPU Central Processing Unit

DFG Data Flow Graph

DSP Digital Signal Processing

FF Flip-Flop

FPGA Field-Programmable Gate Array

GUI Graphical User Interface

xvi

IC Integrated Circuit

LP Linear Programming

ILP Integer Linear Programming

IP Intellectual Property

IP Internet Protocol

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

LAB Logic Array Block

MLAB Memory Logic Array Block

LUT Look-Up Table

MSB Most Significant Bit

LSB Least Significant Bit

RAM Random Access Memory

ROM Read Only Memory

RTL Register Transfer Level

SRAM Static RAM

VLIW Very Large Instruction Word

xvii

LZD Leading Zero Detector

LZC Leading Zero Counter

WAW Write-After-Write

RAW Read-After-Write

RDW Read-During-Write

TLB Translation Lookaside Buffer

TIRAM Transposed Indicators RAM

STIRAM Set Transposed Indicators RAM

BF-TI Brute-Force Transposed Indicators

2D-HS-BCAM 2-Dimensional Hierarchical Search BCAM

II-HS-BCAM Indirectly Indexed Hierarchical Search BCAM

BST Binary Search Tree

BGP Border Gateway Protocol

MSPS Million Searches per Second

CMOS Complementary Metal-Oxide-Semiconductor

NMOS N-Type MetalOxideSemiconductor

ACM Association for Computing Machinery

xviii

SIGDA Special Interest Group on Design Automation

IEEE The Institute of Electrical and Electronics Engineers

TRETS Transactions on Reconfigurable Technology and Systems

FCCM Field-Programmable Custom Computing Machines

ICFPT International Conference on Field-Programmable Technology

NSERC Natural Sciences and Engineering Research Council of Canada

xix

List of Notations

The following lists all notations that have been used in the dissertation.

WAddr Write Address

RAddr Read Address

WData Write Data Bus

RData Read Data Bus

RWData Bidirectional Read/Write Data Bus

RBankSel Read Bank Selector

WPatt Write Pattern

WAddr Write Address

MPatt Match Pattern

MAddr Match Address

MIndc Match Indicators

xx

RmPatt Removed Pattern

MultiPatt Multiple Patterns

RefRAM Reference RAM

SetRAM Sets RAM

nW Number of Write Ports

nR Number of Read Ports

nt Number of True Ports

nW, f Number of Write Simple (Fixed) Ports

nR, f Number of Read Simple (Fixed) Ports

nW,s Number of Write Switched Ports

nR,s Number of Read Switched Ports

d Memory Depth

w Data Width

nM20K Number of M20K Blocks

nBReg Number of Bypass Registers

f f b I-LVT Feedback Function

fout I-LVT Output Extraction Function

xxi

P Ports Group

W Writes Group

R Reads Group

Es Switched Edges Set

RD RAM Depth

CD CAM Depth

DW Data Width

PW Pattern Width

SW Set Width

PW,opt Optimal Cascaded Pattern Width

Ip,a Match Indicator

A Address Set

S Set Set

RW,max Widest RAM Width

RD,min Shallowest RAM Depth

nC Number of Cascades

xxii

Acknowledgments

My gratitude begins with my research advisor Dr. Guy Lemieux, who have offered

consistent support, guidance, dedication and patience throughout my research

study and bringing this dissertation to fruition. Without his invaluable assistance,

encouragement, advice, and technical insight, this work would not have been

possible. I am very grateful for having him as my mentor and research advisor!

In addition, I would like to thank Dr. Mark Greenstreet, with whom I have

worked on several exciting and productive project. His brilliance and expertise

were a real inspiration. I am also thankful to Dr. Steve Wilton for the several

discussions we had on academia, research and teaching. His deep knowledge,

insights, support, and encouragement were invaluable.

I would also like to thank my external examiner, Dr. Paul Chow from the

University of Toronto, for providing valuable comments that helped improve the

quality of this dissertation and for being kind enough to travel and attend this

dissertation defence in person. I thank my university examiners, Dr. Alexandra

Fedorova and Dr. Jeremy Heyl and my supervisory committee Dr. Mieszko Lis

and Dr. Mieszko Lis for their constructive feedback and suggestions during this

xxiii

dissertation defence.

I thank the System-on-Chip technical support staff, Roozbeh Mehrabadi and

Dr. Roberto Rosales, for their help and dedication. I thank all my colleagues in the

System-on-Chip research group, and other friends whom I have had the pleasure

of working with. In particular, Rehan Ahmed, Usman Ahmed, Abdalrahman

Arafeh, Samer Al-Kiswany, Mohammed Al-Taha, Alex Brant, Anas Bsoul, Assem

Bsoul, Joydip Das, Stuart Dueck, Joseph Edwards, Abdullah Gharaibeh, Jeffrey

Goeders, David Grant, Eddie Hung, Keith Lee, Zhiduo Liu, Hossein Omidian,

Aaron Severance, Ahmad Sharkia, Douglas Sim, Tom Tang, Michael Yue, Chris

Wang, and others.

Financial support from the Natural Sciences and Engineering Research Council

of Canada (NSERC) is gratefully acknowledged. Thanks to Altera Corp. and CMC

Microsystems for donating hardware and software licenses.

Last but most important, thanks and love goes to my family –my parents,

Mohammad and Rasmia, my wife, Soaad, and our son, Mohammad– I am grateful

for your unwavering love, gracious support and continuous encouragement. Thank

you Soaad for being there for me again and again when I needed you the most. I

would never have gotten to this point without you. Thank you for reminding me of

my ability to accomplish this goal. I love you!

xxiv

To my parents, Mohammad and Rasmia,

my wife, Soaad,

and our son, Mohammad.

xxv

Chapter 1

Introduction

The following introductory chapter is organized as follows. The need for Block-

RAM-based massively parallel memory structures and the motivation behind our

work is described in detail in Section 1.1. The thesis statement and research

goals are provided in Section 1.2. Section 1.3 explains the feasibility problem of

parallel memory structures in Field-Programmable Gate Arrays (FPGAs). Our

research contributions are listed in Section 1.4. Section 1.5 describes the research

methodology and evaluation metrics used to evaluate and compare our design to

other techniques. The organization of the rest of this dissertation is summarized in

Section 1.6

1.1 Motivation

Since they were first introduced three decades ago, Field-Programmable Gate

Arrays (FPGAs) have evolved from being merely used as glue-logic to competing

1

with custom-designed Application-Specific Integrated Circuits (ASICs). Modern

FPGAs comprise hundreds of thousands of programmable logic gates augmented

with thousands of configurable Digital Signal Processing (DSP) blocks and memory

blocks, all on the same chip with flexible routing fabric. Routing and configuration

flexibility of these numerous hardware blocks grants FPGAs their inherent paral-

lelism; hence, FPGAs are exploited for massively parallel computing and can be

tailored as an accelerator for specific applications.

These massively parallel systems demand highly parallel memory structures to

keep pace with their concurrent nature since memories are usually the bottleneck of

computation performance. In this dissertation, we propose new ways to build two

key types of parallel memory structures in FPGAs, specifically Multi-Ported Ran-

dom Access Memories (MPRAMs) and Content-Addressable Memories (CAMs),

using the regular logic, registers and dual-ported memory blocks found in modern

FPGAs.

FPGA devices provide SRAM blocks with only one or two access ports. This

allows RAM content in one block to be accessed concurrently by one or two “users”

at the same time. To allow more concurrent access, a method is required to allow

potentially dozens of users to simultaneously read or write an SRAM in the same

clock cycle as depicted in Figure 1.1.

In addition, modern FPGAs do not provide hard CAM blocks. Instead, they

must be built from existing SRAM blocks; existing construction techniques do not

scale well, making large CAMs very inefficient.

Below, we elaborate further on MPRAMs and CAMs.

2

Multi-Ported Memory (Shared Memory)
D a t aReadReadD a t a

ALU
DSP

Network

D a t a
Address

Read
P o r t

D a t a
Address

D a t a
Address

D a t a
Address

Write
P o r t

Write
P o r t

Read
P o r t

Write
P o r t

D a t a
Address

Read
P o r t

D a t a
Address

Read
P o r t

D a t a
Address

Read
P o r t

D a t a
Address

Streaming
Network

D a t a
Address

Write
P o r t

Read
P o r t

D a t a
Address

Figure 1.1: Multi-Ported Random Access Memory (MPRAM) abstraction as
shared memory allowing concurrent access for several users.

1.1.1 Multi-Ported Random Access Memories (MPRAMs)

Multi-ported memories are the cornerstone of all high-performance Central Pro-

cessing Unit (CPU) designs. They are often used in register files, but also in other

shared-memory structures such as Translation Lookaside Buffers (TLBs), caches

and coherence tags. Hence, high-bandwidth memories with multiple parallel read-

ing and writing ports are required. In particular, multi-ported RAMs are often

used by wide superscalar processors [6], Very Large Instruction Word (VLIW)

processors [6, 7], multi-core processors [8, 9], vector processors, Coarse-Grained

Reconfigurable Arrays (CGRAs) [10], and Digital Signal Processors (DSPs). For

example, the second generation of the Itanium processor architecture employs a

20-port register file constructed from SRAM bit cells with 12 read ports and 8

write ports [8]. The key requirement for all of these designs is fast, concurrent,

single-cycle access from multiple requesters. These multiple requesters require

concurrent access for performance reasons. While there is demand for more RAM

3

ports, the two leading multi-ported RAM techniques in FPGAs have relatively

large overhead in (1) register usage or (2) total SRAM block count [11, 12]. This

dissertation introduces two new design techniques that are near-optimal in resource

overhead and have several practical advantages. Furthermore, it provides a mech-

anism to construct and optimize memory structures with time-switched ports. A

RAM compiler has also been developed to automate the construction of these

switched memories.

1.1.2 Content-Addressable Memories (CAMs)

CAMs, being a hardware implementation of associative arrays, are massively

parallel search engines accessing all memory content to compare with the searched

pattern simultaneously. An abstraction of a CAM is shown in Figure 1.2 where

CAM patterns are stored in a memory. To find a specific pattern in the CAM,

all CAM patterns are read simultaneously, then compared to the matched pattern.

Comparing all CAM patterns to the matched pattern generates match indicators (or

match lines) which indicated for each pattern in the CAM if this pattern matches

the searched pattern. A priority-encoder will detect if there is a match and generate

the address of the first matching pattern.

CAMs are considered heavy power consumers due to the very wide memory

bandwidth requirement and the concurrent compare. While a standard RAM returns

data located in a given memory address, a CAM returns an address containing a

specific given datum, thus performing a memory-wide search for a specific value.

To do this, it must perform a memory-wide search for a specific value, and there

4

Search for: “UBC”
(Match Pattern)CAM Patterns

“SFU”

“KPU”

“UBC”

“UBC”

0

1

2

4

0

1

2

4

Search for: “UBC”
(Match Pattern)

=?

=?

=?

=?

“UFV”3
3

=?

Match Indicators
(Match Lines)

Found in: “2”
(Match Address)

“UBC” is Found!
(Match/Match)

C
A

M
 A

d
d

r
e

s
s

e
s

CAM Patterns

“UBC”4 =?C
A

M
 A

d
d

r
e

s
s

e
s

Figure 1.2: Content-Addressable Memory (CAM) abstraction as a massively
parallel search engine accessing all memory content to compare with
the searched pattern simultaneously.

may be multiple addresses that all match the data.

Since a CAM is actually a high-performance implementation of a very basic

associative search, it can be used in many science fields [13]. CAMs are keystones

of network processors [14–17], specifically used for Internet Protocol (IP) lookup

engines for packet forwarding [18–24], intrusion detection [25–29], packet filtering

and classification [30–32]. In high-performance processors, CAMs are used for

memory management as coherence tag arrays for highly-associative caches [33]

and Translation Lookaside Buffers (TLBs) [34, 35]. CAMs are also used to

implement load and store queues in out-of-order instruction schedulers with a wide

scheduling window [36]. In addition, CAMs are used for pattern matching [37–39],

data compression [40], DSP [41, 42], databases [43, 44], bioinformatics [45, 46],

and logic minimization [47]. A variety of other scientific fields also use CAMs as

single-cycle associative search accelerators with millions of search entries.

Despite their importance, the high implementation cost of CAMs means they

are used sparingly. As a result, FPGA vendors do not provide any dedicated CAM

5

circuitry or any special infrastructure to enable a construction of efficient CAMs.

Furthermore, FPGAs lack an area-efficient soft CAM implementation. Current

CAM approaches in vendor IP libraries achieve a maximum of 64K entries and

utilize all the resources of a modern FPGA device. Instead, designers tend to use

algorithmic search heuristics causing a dramatic performance degradation.

1.2 Thesis Statement and Research Goals

This dissertation addresses the memory bottleneck of massively parallel reconfig-

urable systems by providing efficient, parallel and customizable embedded memory

structures. Although MPRAMs and CAMs are important, their high implementa-

tion cost means they are used sparingly. As a result, FPGA vendors only provide

standard dual-ported memories to handle the majority of usage patterns, and rely

upon a simplistic soft CAM implementation that does not scale. This dissertation

describes a novel, efficient and modular approach to construct MPRAMs and

CAMs out of basic dual-ported RAM blocks, logic and registers.

The main goal is to address scaling issues with both designs, to permit use of

deeper MPRAMs with more ports, as well as deeper and wider CAMs that can scale

better. These new designs must be practical as well, meaning they achieve high

clock rates and provide complete functionality such as initialization, bypassing,

and fast updates.

6

Word
B
it B
it

Word1..n

B
it
1
..
n

B
it
1
..
n

Figure 1.3: (left) A single-port SRAM cell using two cross-coupled CMOS
inverters. (right) Multi-ported access using additional pass-gates, word
and bit lines.

1.3 Research Problem: On the feasibility of
Parallel memory structures in FPGAs

In this section, we describe the limitations of creating area-efficient and performance-

oriented parallel memory structures in FPGAs, specifically multi-ported memories

and content-addressable memories.

1.3.1 Multi-Ported Random Access Memories (MPRAMs)

A Static RAM (SRAM) cell is a Complementary Metal-Oxide-Semiconductor

(CMOS) bi-stable circuit built out of CMOS cross-coupled inverters and access

pass-gates as illustrated in Figure 1.3 (left). To provide more access ports, the basic

basic SRAM bit cell can be altered to provide more bit lines, word lines, and access

transistors as described in Figure 1.3 (right), however, the area growth is quadratic

with the number of ports [48]. Furthermore, this requires a custom design for each

unique set of parameters (e.g., number of ports, width and depth of RAM).

7

Since FPGAs must fix their RAM block design for generic, most common

usage cases, it is too costly to provide highly specialized RAMs with a large

number of ports. In FPGAs, one way of synthesizing a multi-ported RAM is to

build it from registers and logic. However, this is only feasible for very small

memories. Other techniques, covered in Chapter 2, are inefficient and do not

scale well for deep or wide MPRAMs. Hence, a method of composing arbitrary,

multi-ported RAMs from simpler RAM blocks is required.

1.3.2 Content-Addressable Memories (CAMs)

CAMs are usually custom-designed at the transistor level [49–53]. As depicted

in Figure 1.4, four additional transistors over the standard 6-transistor SRAM cell

are required. The additional transistors form a comparison circuit, an XOR with

NMOS-stack only, since its output (the match line) is pulled-up. Other variations

of the BCAM cells are also available, e.g., the 9-T NAND-type BCAM cell [49].

However, the custom approach requires more engineering effort and longer delays

in time-to-market. This custom approach is unsuitable for FPGAs.

Older FPGA devices, including Altera’s FLEX, Mercury and APEX devices

[54] employed minor architectural features to directly construct small CAM blocks.

However, FPGA vendors do not provide dedicated hard cores for CAMs in modern

devices. These have been replaced with soft CAM cores that employ existing Block-

RAMs in a brute-force approach described in this dissertation as the traditional or

transposed-indicators RAM approach.

While modern databases can easily contain millions of entries, the area growth

8

WordLine
B
it
Li
n
e

MatchLine

Se
a
rc
h
Li
n
e

B
itLin

e

Sea
rch

Lin
e

Figure 1.4: CMOS 10-T NOR-type BCAM cell; solid lines form a 6-T
SRAM cell.

of traditional CAM techniques in FPGAs is high and is currently limited to 64k

entries. Wide and shallow RAMs are needed to efficiently implement brute-force

CAMs. Shallow RAMs are required because each extra bit in the CAM pattern

width doubles the required RAM depth, resulting in poor efficiency. In addition,

deeper CAMs can be built by increasing RAM width. However, FPGA RAM block

width is growing slowly. For example, M4K blocks in Stratix II devices have

minimal depth of 128 with maximal width of 36, M9K blocks in Stratix III and

Stratix IV devices have minimal depth of 256 and maximal width of 36, M20K

blocks in Stratix V devices [55] have minimal depth of 512 and maximal width of

40. With the increasing depth of RAMs, and limited width growth, the brute-force

approach is getting less efficient.

9

1.4 Research Contributions

This section lists the contributions of my dissertation. The multi-ported mem-

ory contributions can be categorized into the Invalidation-Based Live-Value Ta-

ble (I-LVT) work in Chapter 3 and the switched ports work in Chapter 4. Whereas

our preliminary work on BCAMs is the 2-Dimensional Hierarchical Search BCAM

(2D-HS-BCAM) work in Chapter 5 and the follow-up work is the Indirectly In-

dexed Hierarchical Search BCAM (II-HS-BCAM) in Chapter 6.

1.4.1 Invalidation-Based Live-Value Table (I-LVT)

Recently, a few FPGA-based multi-ported RAM designs have been proposed.

They use a Live-Value Table (LVT) together with multi-banking for data stor-

age [11]. While each writing port writes to a different bank, the LVT tracks the

last-written bank for each memory address, allowing reading of the latest data.

Since the LVT is composed of registers, it cannot build deep MPRAMs efficiently.

Alternatively, the XOR-based method retrieves the latest written data by utiliz-

ing cancellation properties of the XOR operator[12]. The XOR-based method

overcomes the register-based memory limitation by storing all data in BRAMs;

however, this incurs excessive memory overhead since wide memories are required

to accommodate all the XOR-ed data.

In Chapter 3, an SRAM-based LVT is proposed by utilizing an invalidation-

table data structure [1]. Similar to a regular LVT, the Invalidation-Based Live-Value

Table (I-LVT) determines the correct bank to read from, but it differs in how updates

to the table are made.

10

While previous approaches use registers to implement a live-value-table, the

breakthrough of this approach is that it is near-optimal and purely SRAM-based,

allowing it to efficiently scale to large depths. Compared to other multi-ported

approaches, the I-LVT also provides improved overall performance. This disser-

tation demonstrates the viability, area reduction, and performance benefits of the

proposed approach and provide an open source library with a fully tested, generic

and modular implementation that can be adopted in parallel computing systems.

1.4.2 Switched Ports

Switched ports, first introduced in [2], are a generalization of true (bidirectional)

ports, where a certain number of write ports can be dynamically switched into a

different number of read ports using a common read/write control signal. While

a true port is a pair of read/write ports, switched ports are best described as a

set of read ports and set of write ports. Furthermore, a given application may

have multiple sets, each set with a different read/write control. While previous

work generates multi-ported RAM solutions that contain only true ports [56], or

only simple (unidirectional) ports, this research demonstrates that using only two

models is too limiting and prevents optimizations from being applied. In particular,

the use of switched ports can lead to a reduction in the amount of storage needed

by the data banks. It does this by using the underlying true-dual-port capability of

FPGA Block-RAMs.

The general problem of switched ports is optimized by solving the correspond-

ing set cover problem via Integer Linear Programming (ILP). This is the first time

11

such an optimization model is used to construct multi-ported memories. A memory

compiler that automates the construction of a multi-ported RAM with switched

ports was released as an open source library.

1.4.3 2-Dimensional Hierarchical Search
BCAM (2D-HS-BCAM)

Due to the increasing amount of processed information, modern BCAM applica-

tions demand a deep searching space. However, traditional BCAM approaches in

FPGAs suffer from storage inefficiency. The 2-Dimensional Hierarchical Search

BCAM (2D-HS-BCAM) [4] is a novel and efficient technique for constructing

BCAMs out of standard SRAM blocks in FPGAs. To achieve high storage effi-

ciency, the suggested technique first searches for a row containing multiple patterns,

then a search is done within the row for a precise match.

Using Altera’s Stratix V device, the traditional design method achieves up to a

64K-entry BCAM while the proposed technique achieves up to 4M entries. For

the 64K-entry test-case, the traditional method consumes 43 times more Adaptive

Logic Modules (ALMs), 18 times longer mapping runtime, and achieves only

one-third of the Fmax of the proposed method. A fully parameterized Verilog

implementation is being released as an open source hardware library. The library

has been extensively tested using ModelSim and Altera’s Quartus tools.

12

1.4.4 Indirectly Indexed Hierarchical Search
BCAM (II-HS-BCAM)

The hierarchical search just described does not allow wide CAMs to be constructed;

it incurs an exponential growth as pattern width increases. The II-HS-BCAM [5] ap-

proach solves this by indirectly storing match indicators. This allows II-HS-BCAM

blocks to be cascaded in pattern width, allowing for linear growth. Our method

exhibits high storage efficiency and is capable of implementing up to nine times

wider BCAMs compared to other approaches.

1.5 Research Methodology and Evaluation Metrics

In the section, we describe the research methodology, including design methodol-

ogy, simulation and synthesis used throughout the dissertation. Furthermore, we

review the evaluation metrics used to evaluate and compare our design to other

techniques.

1.5.1 Verilog Description

All architectures which have been proposed in this dissertation, together with

previous and standard approaches, have been fully developed as parameterized

Verilog modules. The Verilog implementation is used to verify correctness and

evaluate characteristics of the suggested architectures and compare to standard

approaches and previous attempts.

Some modules could not be described with Verilog directly. Alternatively, a

Verilog generator was developed to generate these modules based on given design

13

parameters. For instance, the Priority Encoder (PE) which was used in Chapter 5

and Chapter 6 to generate CAM match addresses has a recursive definition. Since

Verilog is not capable of describing recursive modules, a generator was used to

create the Verilog code recursively. In addition, the memory compiler in Chapter 4

requires solving a set-cover problem via Linear Programming (LP) to optimize

the generated modules. Since performing this optimization process in Verilog is

not possible, a Verilog generator was used to create Verilog code based on the

optimized solution.

1.5.2 Simulation and Synthesis

In each chapter, a large variety of different architectures and design parameters

are swept and simulated in batch using Altera’s ModelSim version 10.1e, each

with over a million random cycles. All different design modules were compiled,

mapped and fit using Altera’s Quartus II version 14.0 [57] on Altera’s Stratix V

5SGXMABN1F45C2 device [55]. This is a high-end performance-oriented speed

grade 2 device with 360k ALMs, 2640 M20K blocks, and 1064 I/O pins. Half of

the ALMs can be used to construct Memory Logic Array Blocks (MLABs), where

a single MLAB consists of 10 ALMs.

A run-in-batch simulation and synthesis flow manager that simulates and syn-

thesizes various designs with various parameters in batch using Altera’s ModelSim

and Quartus II is also provided. The Verilog modules, the Verilog generators, the

algorithmic scripts, and the flow manager are available online as an open source

contribution [58].

14

1.5.3 Results Collection

A general sweep is performed to test all combinations. Following this, the full set

of results is analyzed. In this dissertation, we omit many of the in-between settings

because they behaved as one might expect to see via interpolation of the endpoints.

The run-in-batch flow manager was also used to collect design results of

the proposed and previous techniques. Performance evaluation (e.g., Fmax) was

generated by TimeQuest, the Quartus II Static Timing Analysis (STA) engine.

Resource consumption, such as registers, Look-Up Tables (LUTs), ALMs, Logic

Array Blocks (LABs), MLABs, and Block-RAMs (BRAMs), was collected after

the design was fit to the Stratix V device by the Quartus II fitter.

1.5.4 BRAM Packing Approximation

As shown in Figure 1.5, Altera’s M20K blocks can be configured into several

RAM depth and data width configurations [55]. The total amount of utilized

SRAM bits can be either 16Kbits, or 20Kbits. Assuming that the RAM packing

process minimizes the number of blocks cascaded in depth to avoid additional

address decoding, each 16K lines will be packed into single bit-wide blocks, and

the remainder will be packed into the minimal required configuration.

An estimation of the number of packed M20K blocks required to construct a

RAM with a specific depth, d, and data width, w, is nM20K(d,w). This value is

described as follows

15

5 10 20 40

½
1

2

4

Data width (bits)

B
R

A
M

 d
ep

th
 (

K
 li

n
es

)

1 2 4 8 16 32
½
1

2

4

8

16

Data width (bits)

B
R

A
M

 d
ep

th
 (

K
 li

n
es

)

Figure 1.5: Altera M20K configuration (left) 20Kb (right) 16Kb.

nM20K(d,w) =
⌊

d
16k

⌋
·



w d%16k > 8k

bw/2 c 8k ≥ d%16k > 4k

bw/5 c 4k ≥ d%16k > 2k

bw/10c 2k ≥ d%16k > 1k

bw/20c 1k ≥ d%16k > 1
2k

bw/40c 1
2k ≥ d%16k

. (1.1)

1.6 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 provides a back-

ground on multi-ported memories and content-addressable memories in FPGAs.

Standard and previous methods are surveyed and their limitations are discussed.

Chapter 3 provides a detailed description of our near-optimal Invalidation-Based

16

Live-Value Table (I-LVT) multi-ported memory. Multi-ported memories with

switched port and the Multi-Switched-Ports Random Access Memory (MSPRAM)

compiler are described in Chapter 4. The 2-Dimensional Hierarchical Search

BCAM (2D-HS-BCAM), an efficient and deep BCAM for narrow patterns is pro-

vided in Chapter 5. Chapter 6 describes the Indirectly Indexed Hierarchical Search

BCAM (II-HS-BCAM), an area-efficient and high-performance BCAM architec-

ture, based on hierarchical search and compression techniques that supports wide

patterns. Future directions and conclusions are drawn in Chapter 7.

17

Chapter 2

Background and Related Work

This chapter provides a background on multi-ported memories and content-addressable

memories in FPGAs. Standard and previous methods are surveyed and their limita-

tions are discussed.

2.1 RAM Multi-Porting Techniques in Embedded
Systems

This section provides a review of current methods of creating multi-ported memo-

ries in embedded systems. Creating multi-ported access to register-based memories

is described in Section 2.1.1. Multi-pumping is described in Section 2.1.2. Repli-

cating a memory bank to increase the number of read and write ports is described

in Section 2.1.3 and Section 2.1.4, respectively.

18

2.1.1 Register-based RAM

Multi-ported RAM arrays can be constructed using basic Flip-Flop (FF) cells

and logic. As depicted in Figure 2.1, each writing port uses a decoder to steer

the relevant written data into the addressed row. Each read port uses a mux to

choose the relevant register output. This method is not practical for large memories

due to area inflation, fan-out increase, performance degradation, and a decline in

routability.

2.1.2 RAM Multi-Pumping

A time-multiplexing approach can be applied to an SRAM block to reuse access

ports and share them among several clients, each during a different time slot. As

depicted in Figure 2.2, addresses and data from several clients are latched then

given round-robin access to a dual-ported RAM. The RAM must operate at a

higher frequency than the rest of the circuit. If the maximum RAM frequency is

similar to the pipe frequency, or a large number of access ports are required, then

multi-pumping cannot be used.

In FPGAs the process of generating multi-pumped memories can be automated

and tailored for heterogeneous applications [59–62]. Furthermore, the multi-

pumping methods can be combined with other techniques to save area [63]. A

number of designs utilize multi-pumping to gain additional access ports while keep-

ing area overhead minimal [64, 65]. The 2.3GHz Wire-Speed POWER processor

uses double-pumping to double the writing ports [66].

19

Register-based
Array

Width (w)

RDatanR-1

RAddrnR-1

WData1

WData0

D
ep

th
 (d
)

WAddr1

WAddr0

RData1

RAddr1

RData0

RAddr0

A
d

d
re

ss
 D

ec
o

d
e

rs Reg0

Regd-1

Reg1

En

D Q

Q

QD

En

En

D

Figure 2.1: Register-based multi-ported memory.

1 Write/1 Read
Dual-port RAM

RData1

RDatanR-1

RData0

RAddr1

RAddrnR-1

RAddr0

RAddr

RData

WAddr

WData

R
ea

d
-p

o
rt

W
ri

te
-p

o
rt

Mod nR
Counter ÷nR

Mod nW
Counter÷nW

WData1

WDatanW-1

WData0

en
d

d

d

d
ec

o
d

er

WAddr1

WAddrnW-1

WAddr0

en

en

Figure 2.2: Multi-pumping: RAM is overclocked, allowing multiple access
during one pipeline cycle.

20

2.1.3 Multi-Read RAM: Bank Replication

To provide more reading ports, the whole memory bank can be replicated while

keeping common write address and data as shown in Figure 2.3. Data will be

written to all bank replicas at the same address, hence reading from any bank

is equivalent. This method incurs high SRAM area and consumes more power.

However, the replication approach has two strong advantages over other multi-

porting approaches. The first is the simplicity and modularity of bank replication.

The second is that read access time is unaffected as the number of port increases;

only write delays increase due to fan-out, but this can be hidden by pipelining and

bypassing. The bank replication technique is commonly used in state-of-the-art

processors to increase parallelism. The 2.3GHz Wire-Speed POWER processor

replicates a 2-read SRAM bank to achieve 4 read ports [66]. Each of the two

integer clusters of the Alpha 21264 processor has a replicated 80-entry register

file, thus doubling the number of read ports to support two concurrent integer units.

Similarly, the 72-entry floating-point register file is duplicated, supporting two

concurrent floating-point units [67].

2.1.4 Multi-Write RAM: Emulation via Multi-banking

Multi-ported memories are very expensive in terms of area, delay, and power

for a large number of ports. The overhead of multi-porting can be reduced by

multi-banking if one relaxes the guaranteed access delay constraint. As depicted in

Figure 2.4, the total RAM capacity can be divided into several banks, each with

few ports (e.g., dual-port). A fixed hashing scheme is used to match each address

21

1W/1R Dual-port RAM Array

Read
Port 1

Write
Port W

ri
te

P
or

t

R
ea

d
P

or
t Addr

Data

Read
Port 2W

ri
te

P
or

t

R
ea

d
P

or
t Addr

Data

Addr

Data

Addr

Data

Read
Port 2W

ri
te

P
or

t

R
ea

d
P

or
t Addr

Data

Addr

Data

1W/nR Multi-read RAM

R
ea

d
P

or
t
1

Addr
Data

R
ea

d
P

or
t
2

Addr
Data

R
ea

d
P

or
t
n

Addr
Data

Addr

Data

W
r

i
t

e
P

o
r

t

Figure 2.3: (left) Replicated dual-ported banks with a common write port.
(right) Multi-read RAM symbol used in this dissertation.

RAM Bank m

Hashing, Arbitration, and Conflict resolving

RAM Bank 2RAM Bank 1

Port 1 2 n

Figure 2.4: Multi-banking: RAM capacity is divided into several banks. Ports
access with a fixed hashing scheme.

to a single bank; often, the address MSBs are used. Arbitration logic steers access

from multiple ports to each bank. Since two ports can request access to the same

bank at the same time, a conflict resolving circuit determines which port grants

access to a specific bank. The other port will miss the arbitration and is required to

request access again. Not only does this approach provide unpredictable access

latency due to the arbitration miss, but it also increases delay due to the additional

circuitry. Several approaches have been proposed to improve multi-banking [6, 68–

71]. State-of-the-art memory controllers and caches are based on multi-banking

due to area and power efficiency. For example, Intel’s i486 CPU has a data cache

with 8 interleaved banks and two access ports [72].

22

2.2 Multi-ported SRAM-based Memories: Prior
Work

In this section a review of three previous multi-ported SRAM-based memories

are provided. The first approach is based on multi-banking with a LVT [11, 73]

and is described in Section 2.2.1. The second approach retrieves the latest written

data by utilizing logical XOR properties [12, 73] and is described in Section 2.2.3.

Constructing data banks with true ports support are provided in Section 2.2.2.

These methods are surveyed and their limitations are discussed.

2.2.1 LVT-Based Multi-ported RAM

As depicted in Figure 2.5 (left), LVT-based multi-ported memories are compro-

mised of two portions, LVT and data storage. In the data storage, each storage

bank has a single write port and nR read ports. This bank is replicated nW times,

where nW and nR are the number of write ports and read ports respectively. When a

write port writes data to a specific address, the LVT is updated to indicate the port

of this latest write operation. When this address is later read, the LVT provides this

write port ID to retrieve the correct data.

For each RAM address, the LVT stores the ID of the bank replica that holds

the latest data. The data storage uses a different bank replica for each writing port,

while each bank replica has several reading ports. All banks are accessed by all

read addresses in parallel; the LVT helps to steer the read data out of the correct

bank since it holds the ID of last accessed (written) bank for each address.

Actually, the LVT itself is a multi-ported memory with the same depth and

23

W
A

d
d

r

R
A

d
d

r

LVT
BankSel

WAddr RAddr

nW write/nR read RAM

RA
dd

r

W
Ad

dr

RAM 0
1 Write/nR Read

W
A

d
d

r

RAM 1
1 Write/nR Read

RAM nW-1

BankSel
WAddr0

WData0

WAddr1

WData1

WAddrnW-1

WDatanW-1

RAddr0

RData0

RAddr1

RData1

RAddrnR-1

RDatanR-1

RA
dd

r

W
Ad

dr

Data Banks

RAM nW-1
1 Write/nR Read Bank IDs BankSelnW write/nR read LVT

Figure 2.5: (left) LVT-based multi-ported memory. (right) An LVT imple-
mented using multi-ported memory.

number of writing ports as the implemented multi-ported RAM. However, since

the LVT stores only bank IDs, the data (line) width of the LVT table is only dlog2e

of writing ports. As described in Figure 2.5 (right), the LVT doesn’t have write

data, instead it writes a fixed bank ID for each port.

Since an LVT is a narrow multi-port memory, it is implemented as a register-

based multi-ported memory. As explained in Section 2.1.1, register-based RAM

is not suitable for building deep memories. While the LVT width is only log2 of

the number of writing ports, the depth of the LVT is still identical to the depth

of the original RAM. This is the main cause of the area overhead. In Chapter 3

we present two methods for building the LVT out of Block-RAMs instead of

registers, allowing deep and wide multi-ported memories to be constructed much

more efficiently.

Assuming that bank IDs are binary encoded, the total number of registers

24

required to implement the LVT is

d · dlog2 nW e, (2.1)

where d is the depth of the memory.

For deep memories, the large number of registers and huge read multiplexers

make register-based LVTs impractical. For example, a Stratix V GX A5 device

(185k ALMs) can fit up to 16k-deep memory with four write ports.

For the data storage part, a total of nW multi-read banks are required for each

write port. Each multi-read bank supports nR read ports, allowing the LVT to select

the required data block. The total number of SRAM cells in the data storage is

d ·w ·nW ·nR, (2.2)

where w is width of data.

Using Altera’s Stratix M20K BRAMs , the total number of required M20K

blocks for the data storage is

nM20K(d,w) ·nW ·nR. (2.3)

2.2.2 Multi-Ported Random Access Memories with True
Dual-Ports

In the previous subsection, the data storage portion is built with simple read and

simple write parts. Two papers [56, 73] introduced a modification to the data banks

25

to build a multi-ported memory where all ports are true (bidirectional) ports. This

is achieved by utilizing the bidirectional functionality of underlying true-dual-port

BRAMs in the FPGA. Figure 2.6 (left) illustrates a generalization of this method.

Each port either writes to a set of data banks, or reads from them. Every pair of

ports has one data bank in common, hence, when a port reads, it can access data

written from any other port. A register-based LVT determines which bank holds

the latest data. Figure 2.6 (right) describes an example of a RAM with 3 true-ports.

This problem is identical to the mathematical handshakes problem, where each

port must connect (handshake) to all other ports via a RAM. Hence, a total of

1
2
·nt · (nt−1) (2.4)

data copies are required, where nt is the number of bidirectional (true) ports. In

contrast, the original LVT approach [11] requires n2
t data copies. Nevertheless, this

true-port RAM architecture is still based on a register-based LVT, hence it suffers

from the same shortcomings.

2.2.3 XOR-Based Multi-Ported RAM

While the two LVT-based multi-ported memories just shown implement their LVTs

as a register-based multi-ported memory, the XOR-based multi-ported memory is

implemented using SRAM blocks [12, 73]. This makes it more efficient for deep

memories. However, as will be shown, it is inefficient for wide memories.

The XOR-based method utilizes the special properties of the XOR function

26

RA
M

R
/W

D
ata

3

S
3

n Read / n Write
Register-based

LVT

S0 S1 S2 S3 Sn-1

R/WData1

RAM

3 Read / 3 Write
Register-based

LVT

Figure 2.6: Data banks with bidirectional true-ports support. Each port share
a single BRAM with any other port.(left) Generalized approach. (right)
A 3 true-ports example.

to retain the latest written data for each write port [74]. XOR is commutative

a⊕b = b⊕a, associative (a⊕b)⊕ c = a⊕ (b⊕ c), zero is the identity a⊕0 = a,

and the inverse of each element is itself a⊕a = 0.

Like the previous methods, the XOR-based method contains two structures:

one replaces the LVT and is used to encode written data, while the other is similar

to the data storage but it stores encoded data.

As illustrated in Figure 2.7, each write port has a bank with multi-read and a

single write. Some of the read ports are used as a feedback to encode the data to be

rewritten, while the remaining read ports generate the data output. To perform a

write, the new data is XOR’ed together with all the old data from the other banks;

this encoded value is written to the corresponding bank. Hence if an address A is

27

written through write port i with data WDatai, Banki will be written with

Banki[A]← Bank0[A]⊕Bank1[A]⊕·· ·⊕WDatai⊕·· ·⊕BanknW−1[A]. (2.5)

A read is performed by XOR’ing all the data for the corresponding read address

from all the banks, hence,

RDatai[A]← Bank0[A]⊕Bank1[A] · · ·⊕BanknW−1[A]. (2.6)

Substituting Banki[A] from (Equation 2.5) into (Equation 2.6) and applying com-

mutative and associative properties of the XOR shows that each bank appears twice

in the XOR equation, hence will be cancelled since XORing similar elements is 0.

The only remaining item will be WDatai, the required data.

The XOR-based multi-ported memory requires nW multi-read banks for each

write port. Each multi-read bank supports nW −1 read ports for feedback, and nR

read ports. Each feedback read port is of width d, to match the write data, so these

feedback memories can be quite large. The number of required SRAM cells for

the entire multi-ported memory is

d ·w ·nW · (nR +nW −1). (2.7)

Using Altera’s Stratix M20K BRAMs , the total number of required M20Ks is

nM20K(d,w) ·nW · (nR +nW −1). (2.8)

28

BRAM
0,0

BRAM
nW-2,0

BRAM
0,0

BRAM
1,0

BRAM
nR-1,0

WData0 Replicas
of read-

port

S i m p l e d u a l - p o r t R A M A r r a y s

BRAM
0,1

BRAM
nW-2,1

BRAM
0,1

BRAM
1,1

BRAM
nR-1,1

BRAM
0,nW-1

BRAM
nW-2,nW-1

BRAM
0,nW-1

BRAM
1,nW-1

WData1

RData0

RData1

BRAM
nR-1,nW-10,nW-1 nW-2,nW-1 0,nW-1 1,nW-1 nR-1,nW-1

XOR Cancellation
(LVT Replacement)

Data Banks
(Encoded Data)

Figure 2.7: XOR-based multi-ported memory.

Since FPGA Block-RAM is synchronous, data feedbacks are read with a one-cycle

read delay. Hence, the written data, their addresses and write-enables must be

retimed to match the feedback data. This requires the following number of registers

nW · (w+ dlog2 de+nW). (2.9)

2.3 FPGA-Based Binary Content-Addressable
Memories (BCAMs)

CAMs are usually designed at the transistor level [49–53]. Older FPGA devices,

including Altera’s FLEX, Mercury and APEX devices [54], employed minor

29

architectural features to support small CAM blocks. However, FPGA vendors

do not provide dedicated hard cores for CAMs in modern devices. These have

been replaced with soft CAM cores that employ a brute-force approach. While the

address space in modern databases can easily exceed millions of entries, traditional

CAM techniques in FPGAs cannot satisfy these requirements. Wide and shallow

RAMs are needed to efficiently implement brute-force BCAMs, yet BRAM width

is growing slowly.

CAMs can be classified into two major classes: Binary Content-Addressable

Memories (BCAMs) and Ternary Content-Addressable Memories (TCAMs). While

BCAMs hold binary values only, TCAMs can hold don’t care values (X’s) that can

match any value of the corresponding pattern bit. In this dissertation, we focus

on CAM architecture in FPGAs. As depicted in Figure 2.8, CAM architecture

in FPGAs can be classified into three categories, based on the FPGA memory

resources they utilize. The first is register-based where registers are used to store

patterns and concurrently compare all register values, however, register resources

are limited, a state-of the art Altera’s Stratix V device [55] can provide up to 32K-

entries of a single byte pattern BCAM. SRAM blocks are utilized in the second

approach to store for each pattern if it exists in any of the address individually,

hence the name transposed RAM, also known as the brute-force approach. The

same Altera Stratix V device can realize a CAM with byte-wide patterns up to

64K in depth. The third method is reconfigurable Reconfiguration Memory Based

Content-Addressable Memory (RCAM), where LUT configuration memory is

utilized. It is possible to implement a 128K-line single byte pattern RCAM on the

30

BCAM in FPGAs

SRAM-based Register-basedReconfiguration Memory (RCAM)

 Transposed-RAM (Brute-force)Set-Transposed-RAM (Hierarchical Search)

Figure 2.8: CAM classification in FPGAs.

same Stratix V device. However, a LUT’s SRAM configuration is written serially,

which adversely affects writing throughput. The following subsections provide a

detailed review for these categories.

This section provides a review of current BCAM architectures in FPGAs. Using

registers to create BCAMs is described in Section 2.3.1. The traditional brute-

force BRAM-based approach is described in Section 2.3.2. BCAM pattern width

cascading is described in Section 2.3.3. Reconfiguration Memory Based Content-

Addressable Memories (RCAMs) are explained in Section 2.3.4. Alternative

algorithmic searches are briefly described in Section 2.3.5. A review of FPGA

vendors’ supports of BCAMs is placed in Section 2.3.6.

2.3.1 Register-Based BCAMs

The flexibility of reading and writing flip-flops makes it possible to concurrently

read and compare all the patterns as depicted in Figure 2.9. Similar to a register-

based RAM, an address decoder is used to generate one-hot decoded address lines,

enabling a single line for writing. Each registered pattern is compared with the

Match Pattern (MPatt) simultaneously; the comparison results drive the match

31

PW

P
=

En Reg Match/
MIndc

⌊log2CD⌋ A
d

d
re

ss
 D

ec
o

d
er

PW

WAddr

PW

PW

PW

=

=

=

MAddr

C
D

1

En

D Q
Reg

0

En

D

En

Q
Reg

Reg
CD-1

⌊log2CD⌋

Match/
Match

⌊ ⌋

WPatt
PW

PW

=D Q
Reg

CD-1
MPatt

Figure 2.9: Register-based BCAM.

line, also called Match Indicators (MIndc) followed by a priority-encoder to detect

the first Match Address (MAddr). The high demand for limited resources such

as registers, comparators, address decoder and priority encoder (proportional to

BCAM depth), make this approach infeasible for deep BCAMs; using Altera’s

high-end Stratix V device [55], only a one byte-wide, 32K-depth BCAM can be

generated.

2.3.2 Brute-Force Approach via Transposed Indicators
RAM (TIRAM)

The brute-force approach creates BCAMs out of standard BRAMs. These BRAMs

are addressed with the match pattern, thus allowing a single cycle pattern match.

This approach is utilized by FPGA vendor IP libraries or application notes. As

depicted in Figure 2.10, a BRAM is addressed by the match pattern while each bit

of the RAM data bits indicates the existence of the pattern. The data bit position

corresponds to the BCAM address location. Thus, the depth of the CAM, CD, must

match the width of the data RAM, DW . Also, the pattern width, PW , of the CAM

32

Indicators RAM
 (Transposed) PE

PW

MPatt MAddr

⌊log2CD⌋

Indicators RAM
 (Transposed)

MIndc

DW=CD

PE

Addr Data
PW ⌊log2CD⌋DW=CD

0

1

1 2 3 4 5 6 7
CAM Locations (RAM Data)

M
at

ch
 P

at
te

rn

RAM Width = CAM Depth

R
A

M
 D

ep
th

 =
 2

Pa
tte

rn
 W

id
th

Figure 2.10: (left) CAM as a Transposed-RAM followed by a Priority En-
coder (PE). (right) Example of a pattern indicator for pattern ‘10’ in
address 4.

must match the address width of the data RAM, i.e., PW = dlog2RDe, where RD is

RAM depth.

In this dissertation, the Transposed Indicators RAM (TIRAM) structure in

Figure 2.10 (left) is described as a matrix of indicators

T IRAM =



I0,0 I0,1 · · · I0,CD−1

I1,0 I1,1 · · · I1,CD−1

...
...

I|P|−1,0 I|P|−1,1 · · · I|P|−1,CD−1


∀a ∈ A, p ∈ P : Ip,a =

(
RAM [a] EQ P

)
,

(2.10)

Where A is the address space set and P is the pattern set in the corresponding

RAM structure.

The complete system of the brute-force TIRAM approach is described in

Figure 2.11. Reading from the TIRAM is performed by providing the Match

Pattern (MPatt) as address to read the Match Indicators (MIndc) for the entire

BCAM address space for this specific match pattern. A priority encoder detects

33

the first Match Address (MAddr) from the match indicators. However, writing

(also called or updating) to the TIRAM structure requires more computation since

it requires setting the new match indicator and clearing the old match indicator.

Appendix A provides the detailed writing mechanism of the brute-force TIRAM

BCAM.

To implement a BCAM with CD entries and PW pattern width, namely a CD×

PW BCAM, The brute-force TIRAM approach requires CD ·PW SRAM cells for

the Reference RAM (RefRAM), shown in Figure 2.11, which stores a copy of the

Pattern written to at each CAM location. In contrast, the TIRAM requires 2PW ·CD

SRAM cells, for a total of:

CD ·PW +2PW ·CD. (2.11)

Assuming that RefRAM is fully utilized, and the TIRAM uses the widest

BRAM configuration, the BRAM count is estimated as

⌈
CD ·PW

RD,min ·RW,max

⌉
+

⌈
2PW

RD,min

⌉
·

⌈
CD

RW,max

⌉
, (2.12)

where RW,max and RD,min are BRAM parameters indicating the maximum width,

and minimum depth, respectively.

This BRAM-based brute-force approach is adopted by Xilinx [75–78] and

Altera [79] to create soft CAMs as described in their application notes. Zerbini and

Finochietto [80] apply the pattern width cascaded brute-force approach to emulate

TCAMs for packet classification; however updating the TCAM content is not dis-

34

⌊ ⌋

WPatt

WAddr
PW

WData

Addr

R e f R A M C D X P W

2 3
1 0
0 1

A
d

d
re

ss
es

Ex
am

p
le

W
rit

e
Co

nt
ro

lle
r

⌊log2CD⌋
WAddr

PW

0
1

Pr
io

rit
y

En
co

de
r

⌊log2PW⌋
MIndc

Addr

RData

Addr

W/R

T I R A M 2 P w X C D

CD

7 1
6 1
5 1
4 2
3 3
2 3

Addresses

P
a

tt
e

rn
s

4×8 Example

A
d

d
re

ss
es

8
×2

 E
xa

m
p

le
PW

Wr MPattMPatt

Addr
P

a
tt

e
rn

s

Figure 2.11: Brute-force TIRAM approach with 8 × 2 example.

cussed. Jiang [81] also uses the brute-force approach to emulate TCAMs, however,

a pattern update requires a sequential rewriting of all RAM addresses for each

pattern. Ullah et al. [82–85] also use the brute-force approach, but their TCAMs

can be partitioned, allowing the search of specific TCAM fragments. However, the

required storage is still similar to the brute-force approach. Furthermore, rewriting

the TCAM requires a serial rewriting of all RAM locations.

2.3.3 BCAM Pattern Width Cascading and Scaling

As shown in Equation 2.11, SRAM cell usage for the brute-force TIRAM approach

is exponential to pattern width PW . A wide pattern width will make the SRAM re-

quirements infeasible. BCAM pattern width cascading relaxes this SRAM growth

35

from exponential into linear. As depicted in Figure 2.12, the BCAM pattern (both

matched and written pattern) is divided into smaller pattern segments; each seg-

ment is associated with a separate BCAM. The BCAM pattern width cascading

technique is used by Xilinx[75–78] and Altera [79] to create soft scalable BCAMs

as described in their application notes.

The write operation writes every pattern segment into its corresponding BCAM,

while match operation matches each pattern segment with its corresponding BCAM.

A match for the entire pattern is found if a match is found for all segments individ-

ually at the same BCAM location (hence the bitwise AND). The optimal pattern

segment width is determined by the minimal depth RD,min of the BRAM, namely

the shallowest and widest configuration, since choosing a wider pattern requires ex-

ponential growth. The optimal pattern width is therefore PW,opt =
⌊

log2
(
RD,min

)⌋
and the total number of BCAM pattern segments cascades is nC =

⌈
PW

PW,opt

⌉
.

One stage of TIRAM will consume
⌈

CD
RW,max

⌉
BRAMs and the total BCAM

consumption of the TIRAM is therefore

nC ·

⌈ CD

RW,max

⌉
+

⌈
CD ·PW,opt

RD,min ·RW,max

⌉ . (2.13)

The linear relation to PW and CD in Equation 2.13 is clear, in contrast to the

uncascaded version in Equation 2.12 where the relation to PW is exponential.

36

Segment0Segment1Segmentn-1Matched Pattern:

CAM0CAM1CAMn-1Segment CAMs:

Segment Match Indicators:

Pattern Segments:

Bit-wise AND:

Pattern Match Indicators:

MIndc

MPatt

WAddr

CD

 PW

WPatt
 PW

B
it-

w
is

e
A

N
D

CD

CD

CD
WPatt
WAddr

CAM0

CDXPWWr

WPatt
WAddr

CAM1

CDXPWWr

WPatt
WAddr

CAMn-1

CDXPWWr

MIndc

MPatt

MIndc

MPatt

MIndc

MPatt

0

1

n-1

PW0

PW1

PWn -1

PW0

PW1

PWn -1

Figure 2.12: BCAM pattern width cascading: (top) abstraction, (bottom)
details.

2.3.4 Reconfiguration Memory Based Content-Addressable
Memories (RCAMs)

FPGA configuration memory is an SRAM chain loaded with the configuration

bit-stream via a serial link and is used to configure the device functionality, mainly

routing and logic (LUT) functionality. A segment of this configuration chain is

shown in Figure 2.13, where it used to configure a 4-input LUT. A modern FPGA

device accommodates several Mbits of configuration SRAM cells, for instance,

37

Altera’s Stratix V E device contains 22Mbits of configuration bits for LUTs only

[55].

The SRAM reconfiguration memory in FPGAs can be utilized as a wide and

shallow memory to generate Reconfiguration Memory Based Content-Addressable

Memories (RCAMs). As depicted in Figure 2.13, a LUT MUX chooses one SRAM

cell for each specific input that represents the LUT function for this input. Alterna-

tively, the LUT input is used as a BCAM match pattern, and the LUT configuration

SRAM cells indicates for a single CAM address if this specific pattern exists.

Hence, a 4-inputs LUT fits a single address BCAM with 4-bits pattern, namely a

1×4 BCAM. The address space can be increased by searching concurrently the

same pattern for several BCAMs, i.e., sharing LUT inputs. The pattern width can

be increased by cascading BCAM blocks as described in Section 2.3.3.

Due to its inherent nature, a variety of device-dependent RCAM approaches has

been proposed [86–92]. All these device-dependent methods utilize Xilinx devices

reconfiguration capabilities via JBits [93], a Java based Application Programming

Interface (API) to reconfigure Xilinx devices by accessing and modifying the

configuration bit-stream. However, RCAM writing requires rewriting the entire

bit-stream or parts of it, in case partial reconfiguration is supported. In addition,

using LUTs as RCAMs will block logic resources.

On the other hand, Altera’s Stratix devices provides full accessibility to LUT

configuration memory as SRAM blocks with decoded addresses called MLABs

[55]. However, the LUT configuration memory can be used either for LUT configu-

ration or as part of the MLABs. For example, each ALM of the Stratix V device can

38

accommodate a 6-input LUT, hence 64 configuration bits. Each 10 ALMs (a single

LAB) creates a simple dual-ported 64×10 or 32×20 MLAB block. MLABs can

be utilized to create BCAMs in a similar method as the reconfiguration memory,

although the writing mechanism is different.

Other approaches cascade logic LUTs to generate area-efficient CAM [94–97].

However, writing to these CAMs is either not supported or requires rewriting the

LUT content. Furthermore, logic resources are limited and incur increased delays.

The RCAM approach suffers from several drawbacks that make it impractical

in many cases. The RCAM writing requires rewriting the entire bit-stream or parts

of it, in case partial reconfiguration is supported. While some applications require

a single-cycle writing capability, RCAMs require several cycles to rewrite the

bit-stream, depending on the configuration mechanism. In addition, using LUTs as

RCAMs will consume logic resources; this is not the case in BRAM-based BCAMs

where the logic resource and the SRAM blocks are separate resources. Finally,

RCAMs are device-dependent, due to the usage of internal LUT parameters and

configuration. A redesign should be applied for different devices, which requires

more engineering effort.

2.3.5 Algorithmic Heuristics

Algorithmically, BCAMs are functionally equivalent to associative array data

structures where a set of keys is provided and each key is associated with a specific

value. Providing a specific key, an associative array will search for the key and

return the respective data associated with this key.

39

LU
T

M
U

X

LUT Output
(CAM match)

LU
T

In
p

u
ts

(C
A

M
 M

p
at

t)

LUT Configuration Bit-stream (BCAM Pattern Indicators)

Figure 2.13: FPGA LUT as BCAM.

A linear search or a scan will traverse the memory space sequentially, hence a

worst case runtime of O(n). Hash-tables [98] distribute entries across the memory

and reduce the average computation into O(1), while the worst case scenario is

O(n). Self-balancing or height-balanced Binary Search Tree (BST), e.g., AVL trees

and red-black trees [98], can also be used to algorithmically construct associative

arrays, with a worst case runtime of O(logn).

Algorithmic heuristics CAM emulation for specific applications are widely

available, often requiring multiple cycles per lookup. For instance, Trie and BST

based IP lookup engines [18–22], Bloom filters [99, 100], and Hash-table based

associative arrays [30, 33].

2.3.6 Vendor Support for BCAMs

Modern FPGAs provide plenty of embedded hard-coded blocks, such as Block-

RAMs, external memory controllers, processors, DSP blocks/multipliers, and fast

I/O transceivers. However, hard CAM blocks do not exist in modern FPGAs pre-

sumably due to their high area and power consumption, and their highly specialized

nature. While most FPGA vendors provide simple register-based or brute-force

40

SRAM-based CAMs, some old devices provide partial support for CAM construc-

tion. Altera’s legacy FLEX, Mercury and APEX [54] device family integrates

intrinsic BCAM support into their Embedded System Blocks (ESBs). The ESB can

be configured into several modes; a 2Kbits RAM/ROM mode with configurable

width and depth, 32 product terms with 32 literal inputs, or a 32×32 BCAM. These

BCAM blocks can be used in parallel to increase the address space, and can be

cascaded as described in the previous subsection to increase pattern width. Since

ESBs are limited to a few hundred blocks in these devices, and due to routing com-

plexity, deep CAMs are infeasible. Furthermore, BCAMs can only be implemented

as soft IP in modern Altera devices.

On the other hand, Xilinx devices do not provide native support for BCAMs.

However, partial configuration capabilities in Xilinx Virtex devices can be utilized

to create a CAM as described in Xilinx application notes [75, 101, 102], however

this approach is very slow at writing new patterns. Other Xilinx application notes

suggest utilizing the brute-force approach to create BCAMs [75, 76, 78].

Lattice ispXPLD devices [103] have an integrated support for CAMs via their

Multi-Function Blocks (MFBs) which can be configured into 128×48 Ternary

CAM block (with don’t care values). Alternatively, Actel application notes [104]

recommend using multi-cycle CAMs by searching BRAM in parallel. For a single-

cycle CAM, using registers is suggested.

41

Chapter 3

Multi-Ported Random Access

Memories via Invalidation-Based

Live-Value Table (I-LVT)

In this chapter, a novel and modular approach is proposed to construct multi-ported

memories out of basic dual-ported RAM blocks. Like other multi-ported RAM de-

signs, each write port uses a different RAM bank and each read port uses replication

within a bank. The main contribution of this work is an optimization that merges

the previous live-value-table (LVT) and XOR approaches into a common design

that uses a generalized, simpler structure we call an invalidation-based live-value-

table (I-LVT). Like a regular LVT, the I-LVT determines the correct bank to read

from, but it differs in how updates to the table are made; the LVT approach requires

multiple write ports, often leading to an area-intensive register-based implementa-

42

tion, while the XOR approach uses wider memories to accommodate the XOR-ed

data and suffers from lower clock speeds. Two specific I-LVT implementations are

proposed and evaluated, binary and thermometer coding. The I-LVT approach is

especially suitable for larger multi-ported RAMs because the table is implemented

only in SRAM cells. The I-LVT method gives higher performance while occupying

less block RAMs than earlier approaches: for several configurations, the suggested

method reduces the block RAM usage by over 44% and improves clock speed

by over 76% compared to the best of previous approaches. To assist others, we

are releasing our fully parameterized Verilog implementation as an open source

hardware library. The library has been extensively tested using ModelSim and

Altera’s Quartus tools.

3.1 Introduction

In this section, a modular and parametric multi-ported RAM is constructed out

of basic dual-ported RAM blocks while keeping minimal area and performance

overhead. The suggested method significantly reduces SRAM use and improves

performance compared to previous attempts. To verify correctness, the proposed

architecture is fully implemented in Verilog, simulated using Altera’s ModelSim,

and compiled using Quartus II. A large variety of different memory architectures

and parameters, e.g., bypassing, memory depth, data width, number of reading or

writing ports are simulated in batch, each with over one million random memory

access cycles. Stratix V, Altera’s high-end performance-oriented FPGA, is used

to implement and compare the proposed architecture with previous approaches.

43

Major contributions of this chapter are:

• A novel I-LVT architecture to produce modular multi-ported SRAM-based

memories. It is built out of dual-ported SRAM blocks only, without any

register-based memories. To the authors’ best knowledge, compared to other

multi-ported approaches, the I-LVT consumes the fewest possible SRAM

cells. It also provides improved overall performance.

• A fully parameterized Verilog implementation of the suggested methods,

together with previous approaches is released as an open source hardware

library. A flow manager to simulate and synthesize various designs with

various parameters in batch using Altera’s ModelSim and Quartus II is also

provided. The Verilog modules and the flow manager are available online

[105].

The rest of this section is organized as follows. The proposed invalidation-

based live-value-table method is described in detail and compared to previous

methods in Section 3.2. The experimental framework, including simulation and

synthesis and results, are discussed in Section 3.3, and conclusions are drawn in

Section 3.4.

3.2 Invalidation Table

As described in Section 2.2.3, to build an MPRAM, the XOR-based approach

requires nW · (nR +nW −1) encoded copies of the RAM content, while the LVT

approach requires another register-based multi-ported memory with the same

44

number of read and write ports for bank IDs.

This work proposes to implement LVTs using SRAM blocks only, which has

a major scaling advantage over register-based LVTs and a lower SRAM area

compared to the XOR-based approach. Instead of requiring multiple write ports

to each multi-read bank in the regular LVT method, we suggest a design with a

single write port each like the XOR method. This makes it feasible to implement

the LVT using standard dual-ported RAMs. However, writing an ID to one bank

requires also invalidating the IDs in the other banks, which produces the need for

the multiple write ports. Instead, we suggest writing an ID to only one specific

bank and invalidating all the other IDs with a single write by using an invalidation

table. Since the invalidation table has the same functional behavior as an LVT, we

call it an invalidation-based LVT, or I-LVT.

The I-LVT doesn’t require multiple writes to indicate the last-written bank.

Instead, as shown in Figure 3.1, the I-LVT reads all other bank IDs as feedback,

embeds the new bank ID into the other values through a feedback function f f b,

then rewrites the specific bank. To extract back the latest written bank ID, all

banks are read and data is processed with the output function fout to regenerate the

required ID. Selection of the f f b and fout functions is what distinguishes different

I-LVT implementations.

The I-LVT requires nW multi-read banks, each with nR read ports for output

extraction. Furthermore, an additional nW −1 read ports are required in each bank

for feedback rewriting. The data width of these read ports varies depending on the

feedback method and the bank ID encoding. In this section, two bank ID encoding

45

methods are presented, binary and thermometer. The binary method employs

exclusive-OR functions to embed the bank IDs, while the second uses mutually-

exclusive conditions to invalidate table entries and generate one-hot-coded bank

selectors. The two methods are described in Section 3.2.1 and Section 3.2.2,

respectively.

3.2.1 Bank ID Embedding: Binary-Coded Bank IDs and
Selectors

This approach attempts to reduce the SRAM cell count in the I-LVT by employing

binary-coded bank IDs. The special properties of the exclusive-OR function are

utilized to embed the latest written bank ID, hence invalidating all other IDs. The

current written bank ID is XOR’ed with the content of all the other banks from the

same write address as described in the following feedback function,

f f b,k = k
⊕

0≤i<nW ;i 6=k

Banki[WAddrk], (3.1)

where k is the ID of the currently written bank.

Similar to the XOR-based method described in Section 2.2.3, the last written

bank ID is extracted by XOR’ing the content of all the banks from the same read

address as described in the following output extraction function

fout,k =
⊕

0≤i<nW

Banki[RAddrk]. (3.2)

Without loss of generality, if address A in bank k is written with the feedback

46

Write-
Port

Write-
Port

Waddr0

Waddr1

WaddrnW-1

Raddr0
Raddr1
RaddrnR-1

RBankSelnR-1

Feedback Read-Ports (Address,Data) Pairs

f f
b,
nW

-1
f f
b,
0

Out Read- Addr
Port nR-1 Data

Out Read- Addr
Port 0 Data

Out Read- Addr
Port 1 Data

FB Read- Addr
Port 0 Data

FB read- Addr
port nW-2 Data

1 Write/nW+nR-1 Read Bank 0

Write-
Port

Data

Addr

Out Read- Addr
Port nR-1 Data

Out Read- Addr
Port 0 Data

Out Read- Addr
Port 1 Data

FB Read- Addr
Port 0 Data

FB read- Addr
port nW-2 Data

1 Write/nW+nR-1 Read Bank 1

Data

Addr

Out Read- Addr
Port nR-1 Data

Out Read- Addr
Port 0 Data

Out Read- Addr
Port 1 Data

FB Read- Addr
Port 0 Data

FB read- Addr
port nW-2 Data

1 Write/nW+nR-1 Read Bank nW-1

Data

Addr

f f
b,
1

0 nW-2

0

Port#

Bank#

0 nW-2

1

0 nW-2

nW-1

f o
u
t

f o
u
t

f o
u
t

RBankSel1

RBankSel0

Figure 3.1: Generalized approach for building the I-LVT.

47

function from Equation 3.1, then

Bankk[A] = k
⊕

0≤i<nW ;i6=k

Banki[A]. (3.3)

If one of the read ports, say read port r, is trying to read from the same address,

namely RAddrr = A, then the read bank selector will be generated using the same

output extraction function from Equation 3.2, hence

RBankSelr =
⊕

0≤i<nW

Banki[A]. (3.4)

Due to XOR operation associativity, RBankSelr from Equation 3.4 can be expressed

as

RBankSelr = Bankk[A]
⊕

0≤i<nW ;i 6=k

Banki[A], (3.5)

Substituting Bankk[A] from Equation 3.3 into Equation 3.5 provides

RBankSelr = k
⊕

0≤i<nW ;i6=k

Banki[A]
⊕

0≤i<nW ;i6=k

Banki[A]. (3.6)

The last two series in Equation 3.6 can be reduced revealing that RBankSelr = k,

the ID of the latest writing bank into address A, as required.

Figure 3.2 provides an example of a 2W/2R binary-coded I-LVT. As will

become apparent in the next section, in case of 2 write ports only, the binary-

coded and thermometer-coded I-LVTs are identical. Figure 3.3 shows a 3W/2R

binary-coded I-LVT.

48

Write-
Port

Data

Addr
WAddr0

WAddr1

RBankSel0

Write-
Port

Data

Addr

FB Read Addr
-Port 0 Data

Out Read Addr
-Port 1 Data

Out Read Addr
-Port 0 Data

FB Read Addr
-Port 0 Data

Out Read Addr
-Port 1 Data

Out Read Addr
-Port 0 Data

1 write/3 read bank 1 (1 bit width)

RAddr0
RAddr1

RBankSel1

1 write/3 read bank 0 (1 bit width)

Figure 3.2: A 2W/2R SRAM-based I-LVT; identical for binary-coded or
thermometer-coded bank IDs.

The required data width of the I-LVT SRAM blocks is dlog2 nW e. Also, nW

multi-read banks are required each with nR output ports for ID extraction and

nW − 1 feedback ports for ID rewriting. Hence, the number of required SRAM

cells is

d · dlog2 nW e ·nW · (nW +nR−1). (3.7)

Hence, the number of required M20K block RAMs is

nM20K(d,dlog2 nW e) ·nW · (nW +nR−1). (3.8)

Similarly, the number of registers required for retiming is

nW · (dlog2 de+1). (3.9)

49

Waddr0

Raddr0
Raddr1

RBankSel1

Feedback Read-Ports

Write
-Port

Data

Addr

1 Write/4 Read RAM
 Bank 0 - 2 Bits Width

‘00’

Port#

Bank#

0 1 0

1

1 0 1

20

{{{{{{
{ { {

FB Read Addr
-Port 1 Data‘10’

‘01’

Waddr1

Waddr2

FB Read Addr
-Port 0 Data

FB Read Addr
-Port 1 Data

FB Read Addr
-Port 0 Data

FB Read Addr
-Port 1 Data

FB Read Addr
-Port 0 Data

RBankSel0

Write
-Port

Data

Addr

1 Write/4 Read RAM
 Bank 1 - 2 Bits Width

Write
-Port

Data

Addr

1 Write/4 Read RAM
 Bank 2 - 2 Bits Width

OutRead Addr
-Port 1 Data

Out Read Addr
-Port 0 Data

Out Read Addr
-Port 1 Data

Out Read Addr
-Port 0 Data

Out Read Addr
-Port 1 Data

Out Read Addr
-Port 0 Data

Figure 3.3: A 3W/2R SRAM-based I-LVT with binary-coded bank IDs.

50

Waddr0

Raddr0
Raddr1

Feedback Read-Ports

Write
-Port

Data

Addr

1 Write/4 Read RAM
Bank 0 - 2 Bits Width

Port#

Bank#

0 1 0

1

1 0 1

20

{{{{{{
{ { {

Waddr1

Waddr2

FB Read Addr
-Port 1 Data

FB Read Addr
-Port 0 Data

<1>

<1>

<0>

<1>

<0>

<0>

a

b

c

RBankSel1<0>

Write
-Port

Data

Addr

1 Write/4 Read RAM
Bank 1 - 2 Bits Width

Write
-Port

Data

Addr

1 Write/4 Read RAM
Bank 2 - 2 Bits Width

<0>

<1>

<0>

<1>

<0>

<1>

RBankSel1<1>

RBankSel1<2>

a

b

c

RBankSel0<0>

<0>

<1>

<0>

<1>

<0>

<1>

RBankSel0<1>

RBankSel0<2>

FB Read Addr
-Port 1 Data

FB Read Addr
-Port 0 Data

Out Read Addr
-Port 1 Data

Out Read Addr
-Port 0 Data

FB Read Addr
-Port 1 Data

FB Read Addr
-Port 0 Data

Out Read Addr
-Port 1 Data

Out Read Addr
-Port 0 Data

Out Read Addr
-Port 1 Data

Out Read Addr
-Port 0 Data

Figure 3.4: A 3W/2R SRAM-based I-LVT with thermometer-coded bank
IDs.

51

3.2.2 Mutually-Exclusive Conditions: Thermometer-Coded
Bank IDs with One-hot-Coded Selectors

The previous binary-coded I-LVT incurs a long path delay through the feedback

and output extraction functions due to the nW -wide XOR gates used to generate

these functions, which causes a performance reduction in structures with more

ports. On the other hand, employing a thermometer ID encoding reduces the

feedback paths to a single inverter at most, compared to the nW -wide XOR used

earlier.

Mutually-exclusive conditions are used to rewrite the RAM contents. A specific

bank is written data that contradicts all the other banks, hence only this specific

bank will be valid and all the others are invalid. By checking the appropriate

mutually-exclusive condition for each bank, only the latest written bank will hold

the valid data.

Equation 3.10, Equation 3.11 and Equation 3.12 describe mutually-exclusive

feedback functions for nW values 1, 2, and 3, respectively. These feedback functions

are also illustrated in Figure 3.5. The angle brackets in theses equations are used

for bit selection and concatenation, while the square brackets in other equations

are used for RAM addressing. As can be seen from these equations, writing to

one bank will invalidate all the other banks at the same address since one mutual

negated bit is shared between each two lines. For example, writing to bank1 when

nW = 3 (Equation 3.11) will write Bank1〈0〉 ← Bank0〈0〉 which will invalidate

52

bank 0, and Bank1〈1〉 ← Bank2〈1〉 which will invalidate bank2.

nW = 2 :

 f f b,0 : Bank0〈0〉 ← Bank1〈0〉

f f b,1 : Bank1〈0〉 ← Bank0〈0〉
(3.10)

nW = 3 :


f f b,0 : Bank0〈1 : 0〉 ← 〈Bank2〈0〉,Bank1〈0〉〉

f f b,1 : Bank1〈1 : 0〉 ← 〈Bank2〈1〉,Bank0〈0〉〉

f f b,2 : Bank2〈1 : 0〉 ← 〈Bank1〈1〉,Bank0〈1〉〉

(3.11)

nW = 4 :



f f b,0 : Bank0〈2 : 0〉 ← 〈Bank3〈0〉,Bank2〈0〉,Bank1〈0〉〉

f f b,1 : Bank1〈2 : 0〉 ← 〈Bank3〈1〉,Bank2〈1〉,Bank0〈0〉〉

f f b,2 : Bank2〈2 : 0〉 ← 〈Bank3〈2〉,Bank1〈1〉,Bank0〈1〉〉

f f b,3 : Bank3〈2 : 0〉 ← 〈Bank2〈2〉,Bank1〈2〉,Bank0〈2〉〉

(3.12)

2 1 0

B a n k 0

210

Bank2

2
1

0

B
a
n
k

12
1

0

B
a
n
k

3

1 0

Bank0

1
0

B
a
n
k
11

0

B
a
n
k 2

Bank1Bank0 nw=4:

nw=3:

nw=2:

0 0

Figure 3.5: Feedback updates for nW = 2, 3 and 4.

53

Equation 3.13 generalizes the feedback function to

f f b,k〈i〉|0≤i<nW−1 : Bankk[WAddrk]〈i〉 ←


Banki[WAddrk]〈k−1〉 i < k

Banki+1[WAddrk]〈k〉 otherwise

(3.13)

This equation shows that each bank is using bits from all other banks to write

its own content. To prove that each two banks are mutually exclusive, one bit of

these banks should be mutually negated. Suppose 0≤ k0 ≤ nW −1 a bank ID, and

0≤ i0 ≤ nW −1 a bit index. From Equation 3.13 if i0 ≥ k0 then another bank ID k1

and bit index i1 exist such that Bankk0〈i0〉 ← Bankk1〈i1〉, k1 = i0 +1, and i1 = k0.

Hence, i1 < k1 and from Equation 3.13 Bankk1〈1〉 ← Bankk0〈i0〉 as required. The

proof in case of i0 < k0 is identical.

The output extraction function checks for each one-hot output selector if the

read data from a specific bank matches the mutually-exclusive case. Hence, only

one case will match due to exclusivity. The output extraction function consists of

an nW −1 bit wide comparator for each one-hot selector.

An example of a 2W/2R thermometer-coded I-LVT is shown in Figure 3.2,

while a 3W/2R thermometer-coded I-LVT is depicted in Figure 3.4.

The thermometer-coded I-LVT requires nW −1 SRAM bits to save the mutually

exclusive cases. However, the feedback read ports require only one bit, since

only one bit is used by the feedback function from each bank. nW multi-read

banks are required each with nR output ports for one-hot selectors extraction and

nW −1 feedback ports for mutually-exclusive case rewriting. Hence, the number

54

of required SRAM cells is

d · (nW −1) ·nW ·nR +d ·nW · (nW −1). (3.14)

Thus, the number of required M20K block RAMs is

nM20K(d,nW −1) ·nW ·nR +BM20K(d,1) ·nW · (nW −1). (3.15)

Similarly, the number of registers required for retiming is equal to the binary-

coded case and is described by Equation 3.9.

3.2.3 Data Dependencies and Bypassing

The new I-LVT structure and the previous XOR-based multi-ported RAMs incur

some data dependencies due to feedback functions and the latency of reading the

I-LVT to decide about the last written bank. Data dependencies can be handled by

employing bypassing, also known as forwarding.

Figure 3.6 illustrates two types of bypassing based on write data and address

pipelining. Bypassing is necessary because dual-port block RAMs in FPGAs

cannot internally forward new data when one port reads and the other port writes

the same address on the same clock edge, constituting a read-during-write (RDW)

hazard. Both bypassing techniques are functionally equivalent, allowing reading of

the data that is being written on the same clock edge, similar to single register func-

tionality. However, the fully-pipelined two-stage bypassing shown in Figure 3.6

(right) can overcome an additional cycle latency. This capability is required if a

55

block RAM has pipelined inputs (e.g., cascaded from another block RAM) that

need to be bypassed.

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

0
1

‘1’‘0’

Dout

AddrAddr
Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Dout

Addr
‘1’

Din

‘0’

00

1x

01

=

Addr

Figure 3.6: RAM bypassing (left) single-stage (right) 2-stages fully
pipelined.

The single-stage and the two-stage bypass circuitry for a Block-RAM with

w bits data width and d lines depth requires w registers for data bypassing, two

dlog2 de wide address registers and one enable register, for a total of

nBypReg(d,w) = w+2dlog2 de+1. (3.16)

The most severe data dependency the I-LVT design suffers from is Write-After-

Write (WAW), namely, writing to the same address that has been written before in

the previous cycle. This dependency occurs because of the feedback reading and

writing latency. A single-stage bypassing for the feedback banks should solve this

dependency.

Two types of reading hazards are introduced by the proposed I-LVT design,

Read-After-Write (RAW) and Read-During-Write (RDW). RAW occurs when the

same data that have been written in the previous clock edge are read in the current

56

clock edge. RDW occurs when the same data are written and read on the same

clock edge.

Due to the latency of the I-LVT, reading from the same address on the next

clock edge after writing (RAW) will provide the old data. To read the new data

instead, the output banks of the I-LVT should be bypassed by a single-stage bypass

to overcome the I-LVT latency.

The deepest bypassing stage is reading new data on the same writing clock

edge (RDW), which is similar to single register stage latency. This can be achieved

by 2-stage bypassing on the output extract ports of the I-LVT or the XOR-based

design to allow reading on the same clock edge. The data banks, which are working

in parallel with the I-LVT should also be bypassed by a single-stage bypass to

provide new data. Table 3.1 summarizes the required bypassing for data banks,

feedback banks and output banks for each type of bypassing of the XOR-based,

binary-coded and thermometer-coded I-LVT designs.

Since XOR-based multi-ported RAM requires bypassing for all the nW · (nW +

nR− 1) banks to read new data when RAW or RDW, the additional registers

required for the bypassing are

nW · (nW +nR−1) ·nBypReg(d,w). (3.17)

RAW for binary-coded method requires bypassing the I-LVT only. Since the

I-LVT is built out of nW · (nW + nR− 1) blocks, each with dlog2 nW e bits width

57

data, the following amount of additional registers is required

nW · (nW +nR−1) ·nBypReg(d,dlog2 nW e). (3.18)

RAW for thermometer-coded method requires bypassing the whole I-LVT,

nW · (nW − 1) feedback banks with 1 bit width and nW · nR output banks with

nW −1 bits width, hence a total registers of

nW · (nW −1) ·nBypReg(d,1)+nW ·nR ·nBypReg(d,nW −1). (3.19)

RDW for both binary and thermometer-coded methods require bypassing the

nW ·nR data banks in addition to the I-LVT, hence the following amount of registers

is added to the previous count in Equation 3.18 and Equation 3.19

nW ·nR ·nBypReg(d,w). (3.20)

3.2.4 Initializing Multi-Ported RAM Content

Since some applications require to initializing RAM content to a specific value

on power up to enable processing of this initial data during runtime. Dual-ported

BRAMs (e.g., Alteras M20K BRAMs [55]) allow initialization with a specific

content on power up. However, initializing multi-ported memories requires special

handling.

For the XOR-based multi-ported RAM, the first multi-read bank should be

58

Table 3.1: Bypassing for XOR-based and binary/thermometer-coded I-LVT
multi-ported memories.

XOR-based I-LVT-based

Fe
ed

ba
ck

ba
nk

s

O
ut

pu
t b

an
ks

Da
ta

ba
nk

s

Fe
ed

ba
ck

ba
nk

s

O
ut

pu
t b

an
ks

Allow WAW 1-stage None None 1-stage None
New data RAW 1-stage 1-stage None 1-stage 1-stage
New data RDW 1-stage 2-stage 1-stage 1-stage 2-stage

initialized to the required initial content; all the other multi-read banks should be

initialized to zero.

On the other hand, LVT-based multi-ported memories require storing the initial

content into a specific data bank (e.g., Bank 0), then initializing the LVT to the

same bank ID (zeros) points to the location of the initial data.

Considering that the initial data will be stored in data bank 0, the thermometer-

coded I-LVT-based multi-ported RAM requires initializing all the I-LVT banks

with zeros. The binary-coded I-LVT will generate a selector to the first data bank

(indexed zero), since XOR’ing all the initial values (zeros) will generate zero.

Similarly, the thermometer-coded I-LVT will be initialized to the first mutually

exclusive case, hence the first bank will be selected. Only the first bank holds the

initial data; the remaining banks are left uninitialized. The initial values of each

bank in the binary/thermometer-coded I-LVT and XOR-based designs are shown

in Figure 3.7.

59

I

W
A

d
d

r

R
A

d
d

r

RData0

RData1

RDatanR-1

WData0

WData1

WDatanW-1

U

U

 I-LVT

BankSel
0 I I I I I

0 0 0 0 0

0 0 0 0 0

WData 0

WData 1

WDatanW-1

RData0

RData1

RDatanR-1

Figure 3.7: Initial value for (left) I-LVT-based (right) XOR-based. (0: zeros,
I: initial content, U: uninitialized).

3.2.5 Comparison and Discussion

In this section, we compare SRAM and register consumption of our proposed

approaches with previous approaches based on RAM architecture and ports func-

tionality. A usage guideline based on the required RAM parameters is also provided.

These analytical results are in agreement with experimental results in Section 3.3.

3.2.5.1 SRAM Usage based on RAM Architecture

In this section, we compare the previous LVT and XOR approaches to the new

I-LVT approaches for building multi-port memories. Using the equations provided,

we will illustrate why the I-LVT approach is superior in terms of number of

BRAMs required, and number of registers required. Also, between the two I-LVT

methods proposed, we will inspect the number of BRAMs and registers used by

each bypassing method.

Table 3 summarizes SRAM resource usage for each of the three multi-ported

RAM approaches: the XOR-based and the binary/thermometer-coded I-LVT. Both

60

the general SRAM cell count and the number of Altera’s M20K blocks are de-

scribed. Comparing the SRAM cell counts, the XOR-based approach consumes

fewer SRAM cells than the thermometer-coded I-LVT if

w < nR +1. (3.21)

This inequality is unlikely to be satisfied, since for a single byte data width,

the number of reading ports nR would need to be larger than 8, which is very rare

except for systems with multiple requesters requiring a concurrent access to a few

bits of data (e.g., mutex or mailbox system). Hence, for typical use cases, the

thermometer-coded I-LVT approach will consume fewer SRAM cells.

Comparing the XOR-based approach to the binary-coded approach, the XOR-

based approach consumes fewer SRAM cells only if

w <
dlog2 nW e · (nW +nR−1)

nW −1

∣∣∣∣∣
nW>1

. (3.22)

Both Equation 3.21 and Equation 3.22 show that the XOR-based approach will

consume less SRAM cells only for a very narrow data widths which are uncom-

monly used. Hence, the I-LVT approach will be the choice for most applications.

Comparing the two I-LVT approaches, Table 3.2 shows that the thermometer-coded

I-LVT consumes fewer SRAM cells than the binary-coded I-LVT if

1 < nW ≤ 3 OR nR <
(nW −1) · (dlog2 nW e−1)
(nW −1)−dlog2 nW e

∣∣∣∣∣
nW>3

. (3.23)

61

Register-based RAM
Register-based LVT

XOR-
based I -L VT

d

wα

nW

nR binary

3

Figure 3.8: Multi-ported RAM usage guideline. α is determined by the
minimum of Equation 3.21 and Equation 3.22, while the trend f (nW)
is determined by Equation 3.23.

Figure 3.8 illustrates a guideline for choosing a multi-ported RAM architecture

based on area efficiency. For shallow memories, register-based RAM and LVT

offer the best area efficiency. However, their area rapidly inflates as RAM goes

deeper. The usage of BRAMs alleviates the problem since SRAM-based memories

have higher capacities that register-based memories. The XOR-based method is

suitable for memories narrower than α which is determined by the minimum of

Equation 3.21 and Equation 3.22. Choosing binary-coded or thermometer-coded

I-LVT is based on nW and nR only and is determined by Equation 3.23.

3.2.5.2 Register Usage based on RAM Architecture

Table 3.4 summarizes register usage for all multi-ported RAM architectures and

bypassing. Only the register-based LVT architecture is directly proportional to

memory depth. As a consequence, it consumes much more registers than other

architectures, making register-based LVTs impractical for deep memories.

With a single-stage bypassing, the XOR-based design consumes fewer registers

62

than the binary-coded if

w < dlog2 nW e. (3.24)

Equation 3.24 is unlikely to be satisfied. Even if the data width is just one byte

(w = 8), the number of write ports nW would need to be larger than 256, which is

impractical.

On the other hand, with a single-stage bypass, the XOR-based design consumes

fewer registers than the thermometer-coded I-LVT design if

w <
1+nR

1+ nR
nW−1

∣∣∣∣∣
nW>1

. (3.25)

In a typical compute-oriented design, nR = 2 · nW . Assuming that nR = 2 ·

(nW −1) requires that 3 ·w−1 < nR; even for a one byte data width, this requires

23 < nR to satisfy Equation 3.25, which is impractical. Therefore, for a single-stage

bypass, the I-LVT based designs will consume fewer registers than the XOR-based

design.

Considering two-stage bypassing, I-LVT based designs will consume nW ·nR ·

nBReg(d,w) more registers, as described in Equation 3.20. In this case, XOR-based

design consumes fewer registers than the binary-coded I-LVT design only if

w < dlog2 nW e ·
(

1+
nR

nW −1

)
. (3.26)

On the other hand, XOR-based design consumes fewer registers than the

63

thermometer-coded I-LVT design only if

w < nR +1. (3.27)

Similar to Equation 3.21, which is equal to Equation 3.27, this is unlikely to be

satisfied in practical designs. Hence, in the case of two-stage bypassing, the I-

LVT-based design will consume fewer bypassing registers than the XOR-based

method.

In the next sections, we will show these analytical results are in agreement with

experimental results.

64

Table 3.2: Summary of SRAM bits usage.

Data banks LVT feedback banks LVT output banks

Register-based LVT d w nW nR N/A N/A

XOR-based d w nW (nR +nW −1) N/A N/A

Binary-coded I-LVT d w nW nR d dlog2 nW e nW (nW −1) d dlog2 nW e nW nR

Thermometer-coded I-LVT d w nW nR d nW (nW −1) d (nW −1) nW nR

65

Table 3.3: Summary of M20K blocks usage1.

Data banks LVT feedback banks LVT output banks

Register-
based LVT

nM20K(d,w) nW nR N/A N/A

XOR-based nM20K(d,w) nW (nR+nW−1) N/A N/A

Binary-coded
I-LVT

nM20K(d,w) nW nR nM20K(d,dlog2nW e) nW (nW−1) nM20K(d,dlog2 nW e) nW nR

Thermometer-
coded I-LVT

nM20K(d,w) nW nR nM20K(d,) nW (nW−1) nM20K(d,nW −1) nW nR

66

Table 3.4: Summary of register usage2.

No bypass Additional registers for RAW bypass Additional for
RDW

Register-
based LVT

d dlog2 nW e None None

XOR-based nW (w+ dlog2 de+1) nW (nR +nW −1)nBReg(d,w) None

Binary-coded
I-LVT

nW (dlog2 de+1) nW (nR +nW −1)nBReg(d,dlog2 nW e) nW nR nBReg(d,w)

Thermometer-
coded I-LVT

Same as binary-coded nW ((nW−1) nBReg(d,1)+nR nBReg(d,nW−1)) Same as binary-
coded

67

3.3 Experimental Results

In order to verify and simulate the suggested approach and compare to previous

attempts, fully parameterized Verilog modules have been developed. Both the

previous XOR-based multi-ported RAM method, and the proposed I-LVT method

have been implemented. To simulate and synthesize these designs with various

parameters in batch using Altera’s ModelSim version 10.1e and Quartus II version

14.0, a run-in-batch flow manager has also been developed. The Verilog modules

and the flow manager are available online [105]. To verify correctness, the proposed

architecture is simulated using Altera’s ModelSim. A large variety of different

memory architectures and parameters are swept, e.g., bypassing, memory depth,

data width, number of ports, and simulated in batch, each with over one million

random memory access cycles.

All different multi-ported design modules are implemented using Altera’s

Quartus II on Altera’s Stratix V 5SGXMA5N1F45C1 device. This is a high-

performance device with 185k ALMs, 2304 M20K blocks and 1064 I/O pins. We

performed a general sweep and test all combinations of the following parameters:

• Writing ports (nW): 2, 3 and 4 writing ports.

• Reading ports (nR): 3, 4, 5 and 6 reading ports.

• Memory depth (d): 16 and 32 K-lines.

• Data width (w): 8, 16, and 32 bits.

• Bypassing: No bypassing, RAW and RDW.

68

Following this, we analyze the full set of results. In this section, we omit many

of the in-between settings because they behaved as one might expect to see via

interpolation of the endpoints.

Figure 3.9 plots the maximum frequency derived from Altera’s Quartus II STA

at 0.9V and temperature of 0 ◦C. The results show a higher Fmax for binary/thermometer-

coded I-LVT compared to the XOR-based approach for all design cases. With

three or more writing ports, the thermometer-coded I-LVT supports a higher fre-

quency compared to all other design styles. Compared to the XOR-based approach,

the thermometer-coded I-LVT improves Fmax by 38% on average for all design

configurations, while the maximum Fmax improvement is 76%.

Figure 3.10 (top) plots the number of Altera’s M20K blocks used to implement

each multi-ported RAM configuration. The proposed binary/thermometer-coded

I-LVT consumes the least BRAM blocks in all cases. The average reduction of the

best of binary/thermometer-coded I-LVT compared to the XOR-based approach

is 19% for all tested design configurations, while it can reach 44% for specific

configurations. The difference of consumed Altera’s M20Ks between binary-coded

I-LVT and thermometer-coded I-LVT is less than 6%. To clarify the difference

in BRAM consumption, Figure 3.10 (bottom) shows the percentage of BRAM

overhead above the register-based LVT, which uses the fewest possible BRAMS

overall. The XOR-based design consumes more BRAMs in all cases, up to twice

the BRAMs compared to register-based LVT. On the other hand, I-LVT-based

methods consume only 12.5% more BRAMs in the case of 32-bit wide memories.

Figure 3.11 shows the number of ALMs consumed by each design with different

69

bypassing methods. New data RAW bypassing consumes more ALMs than the

non-bypassed version due to address comparators and data muxes. On the other

hand, new data RDW bypassing requires an additional address comparator and

a wider mux; hence it consumes more ALMs than a new data RAW bypass. In

all bypass modes, as memory data width goes higher, the XOR-based method

consumes more ALMs than the I-LVT methods due to wider XOR gates.

The number of registers required for various designs and bypassing styles is

shown in Figure 3.12. The I-LVT-based methods consume fewer registers compared

to the XOR-based method for no bypassing or new data RAW bypass. For new

data RDW bypass, the I-LVT based methods must bypass the data banks, hence

the register consumption goes higher than the XOR-based method. However, the

register consumption of the register-based LVT method is the highest overall and

can be three orders of magnitude higher since it is directly proportional to memory

depth. Furthermore, register-based LVT memories with 4 write ports and over

16k-entries failed to synthesize on our Stratix V with 185k ALMs.

Since the register-based LVT approach is not feasible with the provided deep

memory test-cases, the register-based LVT trends are derived analytically from

Table 3.2, Table 3.3 and Table 3.4 and not from experimental results. Hence, the

register-based LVT trend was added as a reference baseline to Figure 3.10 and

Figure 3.12 only.

70

Figure 3.9: Fmax (MHz) T=0C (top) No bypass (bottom) new data RDW bypass.

71

�� �� �� ��

Figure 3.10: M20K blocks (top) total count (bottom) overhead percentage relative to register-based LVT.

72

0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

2 2

2 4

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

16 32 16 32 16 32 16 32 16 32 16 32

3 6 3 6 3 6

2 3 4

M
2

0
K

 T
o

ta
l B

lo
ck

s
C

o
u

n
t

(1
0

0
's

)

Width

Depth (k)

#Read

#Write

XOR-based
Binary-coded I-LVT
One-hot-coded I-LVT
Register-based LVT

0

10

20

30

40

50

60

70

80

90

100

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

16 32 16 32 16 32 16 32 16 32 16 32

3 6 3 6 3 6

2 3 4

M
20

K
 O

ve
rh

ea
d

 (%
)

Width

Depth (k)

#Read

#Write

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

16 32 16 32 16 32 16 32 16 32 16 32

3 6 3 6 3 6

2 3 4

Fm
ax

 (
M

H
z)

 -
N

o
 B

yp
as

s
Width

Depth (k)

#Read

#Write

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32 8 16 32

16 32 16 32 16 32 16 32 16 32 16 32

3 6 3 6 3 6

2 3 4

Fm
ax

 (
M

H
z)

 -
N

ew
 D

at
a

R
D

W

Width

Depth (k)

#Read

#Write

XOR-based
Binary-coded I-LVT
One-hot-coded I-LVT

0 . 1

1

1 0

1 0 0

1 0 0 0

8 16 32 8 16 32 8 16 32 8 16 32

16 32 16 32

3 6

2 4

R
e

gi
st

er
s

-
N

o
 B

yp
as

s
(1

00
's

)

Width

Depth (k)

#Read

#Write

XOR-based
Binary-coded I-LVT
One-hot-coded I-LVT
Register-based LVT

1

1 0

1 0 0

1 0 0 0

8 16 32 8 16 32 8 16 32 8 16 32

16 32 16 32

3 6

2 4

R
eg

is
te

rs
 -

N
ew

 D
at

a
R

D
W

 (
10

0'
s)

Width

Depth (k)

#Read

#Write

0

1

2

3

4

5

6

7

8

9

8 16 32 8 16 32 8 16 32 8 16 32

16 32 16 32

3 6

2 4

A
LM

s
-

N
o

 B
yp

as
s

(1
00

's
)

Width

Depth (k)

#Read

#Write

0

5

1 0

1 5

2 0

2 5

3 0

8 16 32 8 16 32 8 16 32 8 16 32

16 32 16 32

3 6

2 4

A
LM

s
-

N
ew

 D
at

a
R

D
W

 (
10

0'
s)

Width

Depth (k)

#Read

#Write

XOR-based [ref]
Binary-coded I-LVT
One-hot-coded I-LVT

- 8

- 3

2

7

1 2

1 7

2 2

4 5 6 4 5 6 4 5 6

0 1 2

Fm
ax

 In
cr

ea
se

 (
%

)

#Read ext.

#Write ext.

6

1 1

1 6

2 1

2 6

3 1

4 5 6 4 5 6 4 5 6

0 1 2

A
LM

s
O

ve
rh

ea
d

 (
%

)

#Read ext.

#Write ext.

Binary-coded I-LVT
One-hot-coded I-LVT

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

4 5 6 4 5 6 4 5 6

0 1 2

M
2

0
K

 R
ed

u
ct

io
n

 (
%

)

#Read ext.

#Write ext.

Simple
True

Figure 3.11: ALMs (top) no-bypass (bottom) new data RDW bypass.

73

���

�

��

���

����

� ���� � ���� � ���� � ����

�� �� �� ��

� �

� �

�
	

�
�

	
��
��
�
�
��
��
��
��
��
��
��
�

���
�

�	�
�����

��	��

����
	

 !"#$%&'(
)*+%,-#./('(01#234
!+'#5/6#./('(01#234
"'7*&6',#$%&'(0234

�

��

���

����

� ���� � ���� � ���� � ����

�� �� �� ��

� �

� �

�
	

�
�

	
��
��
�
	8
��
�

��
�
�
�
��
��
��
��

���
�

�	�
�����

��	��

����
	9:;<=>

Figure 3.12: Registers count (top) no-bypass (bottom) new data RDW bypass.

74

3.4 Conclusions

In this chapter, we have proposed the use of an invalidation-based live-value-table,

or I-LVT, to build modular SRAM-based multi-ported memories. The Invalidation-

Based Live-Value Table (I-LVT) is used to determine the latest written data banks.

This generalizes and replaces two prior techniques, the LVT and XOR-based

approaches. A general I-LVT is described, along with two specific implementations:

binary-coded and thermometer-coded. Both methods are purely SRAM based,

hence they scale efficiently with required memory depth. A detailed analysis

and comparison of resource consumption of the suggested methods and previous

methods is provided. The original LVT approach can use an infeasible number

of registers. In contrast, the I-LVT register usage is not directly proportional to

memory depth; hence it requires orders of magnitude fewer registers. Furthermore,

the proposed I-LVT method can reduce BRAM consumption up to 44% and

improve Fmax by up to 76% compared to the previous XOR-based approach.

The thermometer-coded I-LVT method exhibits the highest Fmax, while keeping

BRAM consumption within 6% of the minimal required BRAM count. Meanwhile,

the binary-coded I-LVT uses fewer BRAMs than the one-hot coded when there

are more than 3 write ports. A detailed analysis and comparison of resource

consumption of the suggested methods and previous methods is provided. With this

information we develop a guideline for choosing the most area efficient approach.

Generally, past approaches of XOR and LVT are only recommended for narrow data

widths or shallow depths, respectively. In all other cases, the new I-LVT approaches

75

are superior. A fully parameterized and generic Verilog implementation of the

suggested methods is provided as open source hardware [105].

76

Chapter 4

Multi-Ported Random Access

Memories with Switched Ports

Recent attempts to create FPGA-based multi-ported memories suffer from low

storage utilization. While most approaches provide simple unidirectional ports

with a fixed read or write, others propose true bidirectional ports where each port

dynamically switch read and write. True RAM ports are useful for systems with

transceivers and provide high RAM flexibility; however, this flexibility incurs high

BRAM consumption. In this chapter, a novel, modular and BRAM-based switched

multi-ported RAM architecture is proposed. In addition to unidirectional ports with

fixed read/write, this switched architecture allows a group of write ports to switch

with another group of read ports dynamically, hence altering the number of active

ports. Switched ports are a generalization of true ports, where a certain number

of write ports can be dynamically switched into a possibly different number of

77

read ports using one common read/write control signal. While a true port is made

up of a single read port and a single write port sharing a single read/write control,

switched ports are best described as a set. Furthermore, a given application may

have multiple sets, each set with a different read/write control. While previous work

generates multi-port RAM solutions that contain only true ports, or only simple

ports, we contend that using only these two models is too limiting and prevents

optimizations from being applied. The proposed switched-ports architecture is less

flexible than a true-multi-ported RAM where each port is switched individually.

Nevertheless, switched memories can dramatically reduce BRAM consumption

compared to true-ports for systems with alternating port requirements. The I-LVT

can be used with fixed ports, true-ports or the proposed switched ports architectures.

Most previous work has focused on the design of the LVT to reduce area and

improve performance. In this chapter, we instead reduce area by optimizing the

design of the data banks portion. The optimization is embedded into a memory

compiler that solves a set cover problem; the optimization can only reduce the

area of the data banks and never inflate it. When the set cover problem is solved

optimally, the data banks use minimum area. Experimental results on 10 random

instances of multi-port RAMs show 18% BRAM reduction on average compared

to the best of other approaches. In our experiments, the optimization is always

able to find an optimal cover and this results in minimum area for the data banks.

Formal proofs for the suggested methods, resources consumption analysis, usage

guideline and analytic comparison to other methods are provided. The compiler

and a fully parameterized Verilog implementation is released as an open source

78

library. The library has been extensively tested using Altera’s EDA tools.

The rest of this chapter is organized as follows. In Section 4.1, RAM port

classification is provided. Multi-ported memories with single switched port are

proposed in Section 4.2. In Section 4.3, the switched ports approach is generalized

to support multi-switched-ports. A multi-switched-ports memory compiler auto-

mates the generation of switched ports based on user’s requirements is described

in detail in Section 4.3. Conclusions are drawn in Section 4.4.

4.1 RAM Port Classification

As described in Figure 4.1 (top), RAM ports can be classified into two categories:

fixed ports and switched ports.

A fixed port is either a simple read port or a simple write port; the activity of

any write is not switched with any other read. Hence, for a set of fixed ports, all

writes and reads in the set can be concurrently active.

A true dual-port, or simply a true port, is a single port that can perform either

read or write under the control of a single read/write line. A true port is often

drawn as two distinct data ports (one for read, one for write), but they share address

lines in common. It is possible (but uncommon) to do a read at the same time as a

write to the same address, but the resulting data are implementation-specific.

A switched port is a collection or set of read ports and write ports. The number

of read and write ports may be different. The read-address lines are usually

distinct from the write-address lines. However, the entire set of ports share a single

read/write line that controls whether the write ports are active, or the read ports are

79

RAM Ports
Fixed Ports Switched Ports

Simple Read
(a single read)

Simple Write
(a single write)

True Ports
(a single write switched with a single read)

RW

D
e

ta
ils

True

W R

Switched

R
W

True

Addr RData1

RAddr1

RData2

RAddr2

WData1

WAddr1

WData2

WAddr2

Switched

R/W (shared)

W1

R2

Sy
m

b
o

ls

Switched
Simple Write

W E n

Simple
Write

Simple
Write

Simple
Read

Simple
Read

Addr
R / W

RData
WData

Addr
WData RData

W2

R1

Simple Read

Fixed

RData1

RAddr1

RData2

RAddr2

WData1

WAddr1

WData2

WAddr2

Fixed

W1

R2W2

R1

General
Fixed

General True

R
W

Figure 4.1: RAM port classification: (top) Venn diagram. (bottom) Symbols
and port assignment.

active. Reads and writes cannot be simultaneously active. Note that a true port is a

special case where a switched port consisting of a single read and a single write,

and the address lines are shared. A given application may have multiple switched

ports, each with an independent read/write line.

Figure 4.1 (bottom) shows symbols and black box connectivity for these dif-

ferent type of RAM ports. The switched port read/write activity is controlled by a

shared R/W control signal. Figure 4.2 shows the two modes of a switched port.

The first is the write mode where R/W = 0, writes are active and reads are inactive.

The second is the read mode, where R/W = 1, reads are active and writes are

inactive.

80

Read ModeWrite Mode

RData1

RAddr1

RData2

RAddr2

WData1

WAddr1

WData2

WAddr2

Switched

R/W=1

RData1

RAddr1

RData2

RAddr2

WData1

WAddr1

WData2

WAddr2

Switched

R/W=0

Read ModeWrite Mode

R
W

R
W

SwitchedSwitched

Figure 4.2: Switched-port modes; faint ports are inactive.

4.2 Multi-Ported Memories with Single
Switched-Port

In this section, a novel, modular and parametric switched multi-ported RAM is

constructed out of basic dual-ported BRAMs while keeping minimal area and

performance overhead. The proposed method provides a modular architecture

that supports mixed simple/switched port requirements and significantly reduces

BRAM consumption and improves performance compared to previous attempts.

Despite being less flexible than true RAM ports, switched ports dramatically reduce

BRAM consumption if mixed-ports are required. The suggested switched data

banks employs an SRAM-based invalidation-live-value-table (I-LVT) [1] to track

the latest written data banks for each RAM address, hence this architecture is

purely SRAM-based. To verify correctness, the proposed architecture is fully

implemented in Verilog, simulated using Altera’s ModelSim, and compiled using

Quartus II. A large variety of different architectures and parameters, e.g., bypassing,

memory depth, width and number of ports are simulated in batch, each with over a

million random memory cycles. Stratix V, Altera’s high-end performance-oriented

81

FPGA, is used to implement and compare the proposed approach with previous

techniques. In addition to the suggested switched multi-ported RAM architecture,

major contributions of this chapter are:

• A bypassing circuitry for both simple (unidirectional) and true (bidirectional)

ports. The bypassing circuit is capable of producing new data for Read-After-

Write (RAW) and Read-During-Write (RDW) data dependencies.

• A detailed analytic comparison of the proposed and previous methods. A

guideline for choosing the most efficient architecture based on design param-

eters is also provided.

• A fully parameterized Verilog implementation of the suggested methods,

together with previous approaches. A flow manager to simulate and synthe-

size designs with various parameters in batch using Altera’s ModelSim and

Quartus II is also provided. The Verilog modules and the flow manager are

available online [106].

The rest of this section is organized as follows. In Section 4.2.1, multi-ported

memories with a single switched port are discussed. Bypassing techniques of these

multi-ported memories are discussed in Section 4.2.1.1, whereas Section 4.2.1.2

provides an analysis of BRAM consumption based on port functionality. The

experimental framework, including simulation and synthesis results, are discussed

in Section 4.2.2.

82

4.2.1 Single Switched-Port Support

The I-LVT multi-ported RAM, similar to other previous register-based LVT [11]

and XOR [12] cancellation methods, offers a fixed number of simple writing and

reading ports. However, the vast majority of computation applications use different

numbers of reading and writing ports for each computation cycle. On the other

hand, Choi et al. multi-ported RAM architecture supports bidirectional true-ports

only [56]; this excessive port flexibility incurs high BRAM consumption, especially

for memories with mixed simple/true-port requirements.

For instance, Figure 4.3 (left) provides an example of a CPU–RAM pairing

where the CPU operations are mutual-exclusive; namely, only one operation can

be active at a single cycle. The mutual-exclusive operations in Figure 4.3 (left) are:

f with 3 operands and 3 results, and g with 6 operands and a single result. when f

is active, 3 RAM writes and 3 RAM reads are required, while a single RAM write

and 6 RAM reads are required when g is active. At any given cycle, a maximum

of 3 writes and 6 reads are required, hence using a multi-ported RAM with fixed

ports requires three writing ports (nW = 3) and 6 reading ports (nR = 6). On the

other hand, true ports can be configured into writes or reads, hence using true-ports

requires the maximum of total writes and reads at any given cycle, namely 7 true-

ports (nt = 7). Since RAM ports will not be active at the same cycle, a multi-ported

RAM with switched write/read ports as illustrated in Figure 4.3 (right) can be used

to reduce SRAM consumption.

The configurability of true dual-ported BRAMs is utilized to construct RAM

ports with exchangeable read and write functionality. The proposed switched ports

83

architecture has two sets of ports. The first set is nR, f and nW, f read and write

simple (fixed) ports, respectively. As their name suggest, these are fixed simple

unidirectional ports. The second set is nR,s and nW,s read and write switched ports,

respectively. The functionality of these ports alternates at runtime dynamically

in two modes, read and write, as follows. If the write mode is chosen, the nW,s

switched write ports are active, while the nR,s read ports are inactive. On the other

hand, if the read mode is chosen, the nR,s switched read ports are active, while the

nW,s write ports are inactive. The suggested architecture reconfigures dual-ported

BRAM write ports into reads when more reads and less writes are required (read

mode). As depicted in Figure 4.5 (right), dual-ported BRAMs in switched banks

are replicated nR, f times to provide nR, f reads in write mode. Each instance of the

nR, f replicas reconfigures its write into a read (in addition to the other read port)

in the read mode. Hence, up to nR, f additional switched reads can be generated,

namely nR,s ≤ nR, f .

The key idea behind the SRAM savings is reconfiguring unused writing ports

into reading ports. Figure 4.5 illustrates the suggested architecture. Only data

banks whose writing ports are unused in read mode are altered, namely nW,s banks.

The writing ports of each of these banks are redirected to serve as reading ports

in read mode as depicted in Figure 4.5 (lower right). Other banks that will keep

writing ports in read mode (nW, f banks) must increase the number of reading

ports to nR, f +nR,s to match read ports requirement in read mode as described in

Figure 4.5 (upper right). Compared to a fixed ports multi-ported RAM with the

maximum number of writing ports nW = nW, f +nW,s and the maximum number

84

of reading ports nR = nR, f +nR,s, the proposed switched architecture reduces the

number of data banks by nW,s ·nR,s. Hence, this reduces the number of BRAMs by

nW,s ·nR,s ·nM20K(d,w). (4.1)

Figure 4.4 describes an example of a switched multi-ported RAM with (nW, f ,nR, f)=

(1,3) fixed ports and (nW,s,nR,s) = (2,3) switched ports. Therefore, in read mode,

there is only one write port and double the fixed read ports. Figure 4.4 (left)

shows the write mode configuration, while Figure 4.4 (right) shows the read mode

configuration. In this example, the upper multi-read bank keeps the minimal single

write operation, while the other banks sacrifice write ports to provide additional

read ports. According to Equation 4.1, if the switched RAM in Figure 4.4 has

32-bits in width (w = 32) and 32 k-lines in depth (d = 32k), 384 BRAM blocks

are saved compared to fixed-ports RAM.

85

CPU

R0
R1
R2
R3
R4
R5

W0
WE0
W1
WE1
W2
WE2

‘1’

f/g

M
P-
RA
M

g(a,b,c
,d,e,f)

enb

f1(a)
f2(b)
f3(c)

W0 R0

R1

R2

W1

W2

R3

R4

R5

R
W

Figure 4.3: (left) Switched ports application example: CPU multi-ported
RAM pairing. (right) Symbol of th required switched ports RAM.

Normal Bank

Switched Bank

Switched Bank

W0

W1

W2

R0

R1

R2

W0

R0

R1

R2

R3

R4

R5

Normal Bank

Switched Bank

Switched Bank

Figure 4.4: switched ports example with (nW, f ,nR, f) = (1,3) and
(nW,s,nR,s) = (2,3) (left) Write configuration (right) Read configura-
tion.

86

WData
WAddr RAddr0

RData0

RAddr
RData

nR-1
nR-1

Simple Bank 0

Simple Bank nW,f-1

Switched Bank nW,f

Switched Bank nW-1

WData0

WAddr0

WData
WAddrnW,f-1

nW,f-1

WData
WAddrnW,f

nW,f

WData
WAddrnW

nW

Rd/Wr

nW write / nR read
(nW=nW,f+nW,s; nR=nR,f+nR,s)

I-LVT

RAddr0

RAddrnR-1

RData0

RDatanR-1

BankSel

W
A
dd

r’
s

RA
dd
r’s

WData
WAddr RAddr0

RData0

RAddr
RData

nR-1
nR-1

WData
WAddr RAddr0

RData0

RAddr
RData

nR-1
nR-1

WData
WAddr RAddr0

RData0

RAddr
RData

nR-1
nR-1

Rd/Wr

Rd/Wr

Sw
it

ch
ed

 R
ea

d
 P

or
ts

RAddr
RData
RAddr
RData

RAddr
RData N

o
rm

al
 R

ea
d

 P
o

rt
s

WAddr
Din

P
or

t
A

Dout

Addr
R/W

P
or

t
B

Din

Dout

Addr
R/W

WData BRAM
0

BRAM
nR-1

RAddr0

RData0

nR,f-nR,s-1

nR,f-nR,s-1

nR,f-nR,s

nR,f-nR,s

nR,f-1

nR,f-1

RAddr
RData

nR,f

nR,f

RAddr
RData

nR-1

nR-1

Din

P
or

t
A

Dout

Addr
R/W

P
or

t
B

Din

Dout

Addr
R/W

BRAM
nR,f-nR,s-1

Din

P
or

t
A

Dout

Addr
R/W

P
or

t
B

Din

Dout

Addr
R/W

BRAM
nR,f-nR,s

Din

P
or

t
A

Dout

Addr
R/W

P
or

t
B

Din

Dout

Addr
R/W

BRAM
nR,f-1

RAddr
RData

WAddr
WData

nR-1

nR-1

Din

P
or

t
A

Dout

Addr
R/W

P
or

t
B

Din

Dout

Addr
R/W

BRAM
0

Din

P
or

t
A

Dout

Addr
R/W

P
or

t
B

Din

Dout

Addr
R/W

BRAM
1

Din

P
or

t
A

Dout

Addr
R/W

P
or

t
B

Din

Dout

Addr
R/W

BRAM
nR-1

RAddr
RData

RAddr
RData

0

0

1

1

Sw
it

ch
e

d

B
an

k
Si

m
p

le

B
an

k

Figure 4.5: (left) Switched ports architecture. Data banks: (upper right) simple, and (lower right) switched.

87

4.2.1.1 Data Dependencies and Bypassing

The switched multi-ported RAM described in Section 4.2.1 utilizes true-dual-

port BRAMs to switch port functionality. However, since writing and reading

operations in true-dual-ported RAMs are exchangeable, the bypassing circuitry

requires special handling. As described in Table 4.1 (right), the bypass circuit of the

bidirectional RAM is mirrored compared to the unidirectional RAM. Thus, it can

bypass written data from any direction. However, the control logic that drives the

bypassing mux selectors need to be altered to detect the direction of writing. Since

the bidirectional bypassing circuit is a mirroring of the unidirectional bypassing

circuit, it requires twice the registers used for the unidirectional bypass circuit,

hence

nBReg,bidirectional(d,w) = 2 ·nBReg,unidirectional(d,w). (4.2)

88

Table 4.1: Single-stage and two-stage bypassing for simple and true dual-port RAM.

Unidirectional
(Simple-dual-port)

Bidirectional
(True-dual-port)

Si
ng

le
-s

ta
ge

Din
P

o
rt

 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

0
1

‘1’‘0’

Dout

AddrAddr
Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

Dout

Addr
R/W

Din

Dout

Addr
R/W

0
1

0
1

Tw
o-

st
ag

e Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Dout

Addr
‘1’

Din

‘0’

00

1x

01

=

Addr
Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Din

Dout

Addr
R/W

Din

Dout

Addr
R/W

00

1x

01

==

00

1x

01

89

4.2.1.2 SRAM Usage based on Port Functionality

The previous analysis provides a guideline for using XOR, LVT, binary-coded or

thermometer-coded I-LVT. However, a guideline for using simple, true, or switched

port architectures as illustrated in Figure 4.1 and Figure 4.2 is required. A multi-

ported RAM with the following mixed port requirements is used for comparison:

(1) nW, f write / nR, f read simple (fixed) ports, (2) nt true-ports, and (3) nW,s write /

nR,s read switched ports. To implement the mixed-port multi-ported RAM using

different port architectures, the following transformations are required: (1) A true-

port can be emulated as two simple ports, a write and a read sharing the same

address. (2) A switched port can be emulated as nW,s simple write ports and nR,s

simple read ports, or max(nW,s,nR,s) true-ports. The M20K count of the mixed-port

RAM for each port architecture is provided by:

Simple : nM20K(d,w)
(
(nR, f +nt +nR,s) · (nW, f +nt +nW,s)

)
True : nM20K(d,w)

(
na(na−1)

2

∣∣∣
na=nW, f+nR, f+nt+max(nW,s,nR,s)

)
Switched : nM20K(d,w)

(
(nW, f +nt +nW,s)(nR, f +nt)+(nW, f +nt)nR,s

)
.

(4.3)

To simplify the comparison, we assume that the number of read ports is twice

the number of write ports for simple and switched ports, hence nR, f = 2nW, f and

nR,s = 2nW,s. Figure 4.6 shows a linear approximation of the BRAM consumption

equilibrium. These plots form guidelines for choosing the most area efficient

architecture. Figure 4.6 (left) shows that the true-ports architecture is more efficient

in BRAM usage only if the number of true-ports is more than
√

5 times the

90

nt True
-ports

Switched
-ports√5nW,f

nW,s

nt True
-ports

Simple
-ports

nW,f

Figure 4.6: Port architecture usage guideline.

simple write ports count. On the other hand, Figure 4.6 (right) shows that the

true-ports architecture is more efficient only if the number of true-ports is more

than
√

5nW, f +(
√

5−1)nW,s.

91

Table 4.2: Resources consumption for a 4W/8R multi-ported RAM test-case with 8k-entries of 32-bit words
and new data RDW bypassing. 1 2.

Register-based LVT Binary-coded I-LVT Thermometer-coded I-LVT
XO

R-
ba

se
d

Si
m

pl
e

Sw
itc

he
d

%
Ch

an
ge

fr
om

XO
R

Si
m

pl
e

Sw
itc

he
d

%
Ch

an
ge

fr
om

XO
R

Si
m

pl
e

Sw
itc

he
d

%
Ch

an
ge

fr
om

XO
R

M20K’s 704 512 384 -45.5% 556 428 -39.2% 588 460 -34.7%

Registers 2781 18288 17816 +540.6% 3220 2748 -1.2% 3240 2768 -0.5%

ALM’s 2010 61662 61333 +2951.4% 1454 1290 -35.8% 1604 1445 -28.1%

Fmax(Mhz) 270 213 213 -21.1% 325 338 +25.2% 390 388 +43.7%

92

Table 4.3: Register consumption for a 4W/8R multi-ported RAM test-case with 8k-entries of 32-bit words 3.

Register-based LVT Binary-coded I-LVT Thermometer-coded I-LVT
XO

R-
ba

se
d

Si
m

pl
e

Sw
itc

he
d

%
Ch

an
ge

fr
om

XO
R

Si
m

pl
e

Sw
itc

he
d

%
Ch

an
ge

fr
om

XO
R

Si
m

pl
e

Sw
itc

he
d

%
Ch

an
ge

fr
om

XO
R

No Bypass 184 16400 16400 +8813.0% 56 56 -69.6% 56 56 -69.6%

Allow WAW 892 16400 16400 +1738.6% 404 404 -54.7% 392 392 -56.1%

New Data RAW 2780 16400 16400 +489.9% 1332 1307 -53.0% 1352 1352 -51.4%

New Data RDW 2781 18288 17816 +540.6% 3220 2748 -1.2% 3240 2768 -0.5%

93

4.2.2 Experimental Results

The switched multi-ported RAM is demonstrated with several design cases and

nominal parameters of d = 32K and w = 32. The total number of write ports is

fixed to 3 (nW = nW,s +nW, f = 3), while the number of switched write ports is a

sweep of 1, 2 and 3 ports (nW,s = 1,2,3); hence the number of simple write ports is

a sweep of 2, 1, and 0 (nW, f = 2,1,0), respectively. On the other hand, the number

of simple read ports is set to 3 (nR, f = 3), while the number of switched ports is a

sweep of 1, 2, and 3 ports (nR,s = 1,2,3); hence the number of total read ports is a

sweep of 4, 5, and 6 (nR = nR,s +nR, f = 4,5,6), respectively. Figure 4.7 (top and

middle) is a plot of Fmax increase and ALMs overhead percentages, respectively,

compared to a simple-ports baseline design (without the switched ports mechanism)

and with the maximum available ports, namely nW writing ports and nR reading

ports. Figure 4.7 (bottom) shows the M20K reduction for the equivalent design with

simple-ports only (nW writing ports and nR reading ports), and for the equivalent

design with true-ports only (nW, f +nR, f +max(nR,s,nW,s) true-ports, as described

in Section 4.2.1.2). For the given test case, using switched-ports can save up

to 45% of the BRAM consumption compared to the equivalent simple-port or

true-port designs. The BRAM consumption can be anticipated from Equation 4.1

and Equation 4.3. The BRAM reduction relieves the routing resources hence

an Fmax increase is observed as shown in Figure 4.7 (top). The Fmax increase is

more significant in thermometer-based I-LVT, achieving over 22% improvement.

Additional data multiplexing causes an increase of ALMs. However, the increase

percentage is lower than 31% in all designs as shown in Figure 4.7 (middle).

94

��

��

�

�

��

��

��

� � � � � � � � �

	 � �

�
�

���
��
��
��
��
�
�

���������

�!"#������

�

��

��

��

��

��

� � � � � � � � �

	 � �

$
%&
��
'
(�
�)
��
*
��
�
�

���������

�!"#������

+#,�"-./0����1.234
5,�.60�./0����1.234

�

�	

��

�	

��

�	

��

�	

��

�	

� � � � � � � � �

	 � �

&
�
	
7
�8
�*
9
�:
;<
�
��
�
�

=8��*��
:>

=?�;:���
:>

@#ABC�
4"D�

EFGHIJKLK

MNOPQR

STUVWXYZY

[\]

̂̀àb̂̀cb

defgfdefh

ijklmn opo

Figure 4.7: Switched-ports compared to simple-ports and true-ports.

95

4.3 Multi-Switched-Ports

In this section, we demonstrate how to build multi-port RAMs that contain any

number of swiched ports. As well, the multi-port RAM may contain any number

of simple read ports, simple write ports, and any number of true dual ports (each of

the latter will be treated as a switched port). Since a true port is a special case of a

switched port, we are effectively generalizing the techniques used in [56] and [2].

Under this new model, we show an optimization method that can minimize the use

of block RAMs in the data banks. We also note that for any given problem, there

may be multiple solutions. Our solution uses a minimum set cover algorithm to

map required read/write dependences into true dual-port block RAMs. In all of

our test cases, the set cover problem was solved optimally, leading to the use of

minimal block RAMs in the data banks.

This section constructs novel, generic, modular and parametric switched

BRAM-based multi-switched-ports RAMs. Compared to previous simple-port and

true-port methods, the proposed technique significantly reduces BRAM consump-

tion. The data banks are optimized to support mixed-port configuration by utilizing

true-dual-ported BRAMs. The data bank connectivity is converted into a Data

Flow Graph (DFG), where vertices represent ports and edges represent data banks,

respectively. Each block RAM deployed in the solution will cover one or more

DFG edges. An optimal set covering all of the DFG edges results in deploying a

minimal number of block RAMs. Our architecture is fully implemented in Verilog,

simulated using Altera’s ModelSim, and compiled using Quartus II. A large variety

96

of different architectures and parameters, bypassing, depth and width are simulated

in batch, each with over a million random memory cycles. Stratix V, Altera’s high-

end performance-oriented FPGA, is used to implement and compare the proposed

approach with previous techniques. A run-in-batch simulation and synthesis flow

manager is also provided. The Verilog modules and the flow manager are available

online [107].

The rest of this section is organized as follows. The proposed multi-switched-

ports synthesis method is described in detail in Section 4.3.1. The experimental

framework and results, are discussed in Section 4.3.2.

4.3.1 Multi-Ported RAM with Multiple Switched Ports

In this section, we describe how multiple switched ports may arise, and how to

design multi-ported RAMs with them.

4.3.1.1 Motivation and Key Idea

Consider the design of a Processing Element (PE) that has three distinct (non-

overlapping) states of operation:

1. Write to shared RAM using 4 write ports

2. Compute value in shared RAM with Arithmetic Logic Unit (ALU) using 2

read ports, 1 write port

3. Read from shared RAM using 4 read ports

97

In this example, it is necessary to build a shared RAM structure that has multiple

read and write ports. There are several approaches to building such a multi-port

RAM, including:

A. 4 fixed read ports and 4 fixed write ports

B. 4 true dual-ports

C. two switched ports, with the first having 1 read or 1 write port (ie, a true

port), and the second having 3 read or 3 write ports

D. 2 fixed read ports, 1 fixed write port, and one switched port containing 2 read

or 3 write ports

In addition, there are many other possible port assignment solutions, where

each port assignment may yield a solution requiring a different number of block

RAMs. In this dissertation, we do not consider the problem of computing an

optimal port assignment; that is left for future work. Instead, we must first be able

to compute the block RAM requirements for a given port assignment; that is the

purpose of this chapter.

The example above requires port assignment because there are multiple states.

Consider simpler problems, such as those in Figure 4.8, where each user of the

shared memory is under the control of a single read/write line. In such cases, there

exists only one possible port assignment with switched ports.

The one valid port assignment is illustrated on the right-hand side of Figure 4.8

and can broken down as follows. The ALU consists of two mutually-exclusive

98

functional blocks, f and g. First, the control signal f/g enables either f or g

functional blocks; in either case the R0 operand must always be read and can be

assigned to a fixed port R0,0. When f is selected, the R1 operand can be read from

switched read port R2,0, but when g is selected we do not need R2,0 but instead

need switched write ports W2,0 and W2,1. Thus, f/g is also the read/write control

signal for the P2 group of switched ports. Similarly, the bus has a read/write control

signal that directly controls the P1 group of switched ports with R1,0 and W1,0.

Thus, Figure 4.8 shows two possible implementations of the shared memory:

one with all fixed ports on the left, and one with switched ports on the right. This

leads to two possible ways to build the shared memory; we will show that the latter

way is more efficient in terms of block RAM usage.

The key idea of our methodology is based on constructing a Data Flow Graph

(DFG) to describe RAM port dependencies, where vertices represent ports and

edges represent data banks. Two types of edges exist: regular (solid) edges for

fixed ports, and dashed edges for switchable ports.

The goal is to cover all of these edges, and this cover directly describes an

implementation using BRAMs. For example, a single regular edge can be covered

by a simple dual-port BRAM with 1 fixed write port and 1 fixed read port (1W/1R).

However, true dual-port BRAMs have two terminals on each end (2W/2R), and

up to 4 edges between them. Thus, up to 4 edges in the graph can be covered by a

true dual-port BRAM. The objective is to cover all edges with minimal BRAMs.

This forms a set cover problem (SCP) which can be solved using special subgraph

patterns to indicate possible covers.

99

/
√ xf

g
1/x

ALU

f/g

0 1

>>

Shared Register-File
with Fixed Ports

W0 W1 W2 W3R0 R1 R2

bus
r/w

Shared bus

/
√ xf

g
1/x

ALU

f/g

0 1

>>

R1,0R0,0

bus
r/w

Shared bus

R2,0

Figure 4.8: Simplified parallel system with shared memory. (left) Multi-
ported RAM with fixed ports connection. (right) Multi-switched-ports
connection.

4.3.1.2 Port Assignment and Problem Definition

The problem input is a list of port requirements. Unlike switched ports, fixed

ports are unrelated and operate individually; hence, they can be aggregated into

a single port group (as in Figure 4.8) named P0. The superset of all port groups,

P, includes nP port groups, were the first port P0 is a fixed-port and each of the

remaining P1···nP−1 are switched port groups. Each Pi represents an ordered pair

with the number of writes nW,i and the number of reads nR,i for this specific port,

namely

P =
{

P0,P1, · · · ,PnP−1 | Pi =
(
nWi,nRi

)}
. (4.4)

For instance, port requirements for the example in Figure 4.8 is

P =
{

P0 = (1,1),P1 = (1,1),P2 = (2,1)
}
. (4.5)

100

Writes and reads in this RAM are indexed by two indices, the first index is

the port group index ranging 0 · · ·nP−1, while the second index is the write index

within a specific port i ranging 0 · · ·nW,i−1, or the read index within a specific port

i ranging 0 · · ·nR,i−1. The writes group W and the reads group R are defined as

W =
{

Wi, j | 0≤ i < nP; 0≤ j < nW,i

}
R =

{
Ri, j | 0≤ i < nP; 0≤ j < nR,i

} (4.6)

For instance, write and read sets for the example in Figure 4.8 are W ={
W0,0,W1,0,W2,0,W2,1

}
and R =

{
R0,0,R1,0,R2,0

}
, respectively.

The total number of writes and reads is denoted by nW and nR (without indices),

respectively, namely,

nw = |W |=
nP−1

∑
i=0

nW,i

nR = |R| =
nP−1

∑
i=0

nR,i

(4.7)

For instance, the example in Figure 4.8 consists of 4 writing ports and 3 reading

ports in total, hence nW = 4 and nR = 3.

Figure 4.9 generalizes the port assignment for the multi-switched-ports RAM.

Given these port requirements, and using true-dual-ported BRAMs, the objective

of our work is to construct the data banks to satisfy the given fixed and switched

ports with the fewest BRAMs.

101

 W, 0
W0 , n

W, Pn -1
W

W0 , 0

 W, 1
W1 , n

W1 , 0
W R

W R

R , 0
R 0 , n

R 0 , 0

R , 1
R 1 , n

R 1 , 0

Port nP-1 (Switched)Pn -1 , n

WPn -1 , 0

R , Pn -1
RPn -1 , n

RPn -1 , 0

Port 1 (Switched)

Port 0 (Fixed)

Figure 4.9: Multi-switched-ports RAM port assignment.

4.3.1.3 Modeling Data Banks with Data Flow Graph (DFG)

An LVT-based multi-ported RAM built using only fixed ports requires every write

port to write to a dedicated data bank, allowing concurrent writes. Furthermore,

every write-specific bank should be accessible by every read port, allowing all read

ports to read data written by any write port. This requirement can be modeled as a

complete bipartite graph (complete bigraph).

A bigraph is a graph G consisting of two disjoint sets of vertices, say U and

V . Each edge in a bigraph connects a vertex from U to another vertex in V . A

complete bigraph is a special case where every vertex in U is connected to every

vertex in V , in other words

G =
(

U,V,E |U ∩V = ø,E =
{
{u,v} | u ∈U,v ∈V

})
(4.8)

To model data bank connectivity, a bigraph DFG is constructed where source

vertices are writing ports U =W and sink vertices are reading ports V = R. Graph

102

R0

R1

R2

R0,0

R1,0

R2,0

Figure 4.10: Bigraph DFG representing data banks connectivity of the shared
memory in Figure 4.8 (left) fixed-ports data banks (right) multi-
switched-ports.

edges connect writes to reads, hence they represent 1W/1R simple-dual-port

BRAMs. Figure 4.10 (left) shows the bigraph of the fixed-port system in Fig-

ure 4.8 (left).

Similarly, Figure 4.10 (right) shows a bigraph of the switched-port system in

Figure 4.8 (right). However, the bigraph is slightly different from before; some

edges Es ⊆ E are labeled as switched edges using dashed lines in the figure. Except

for port group P0, which has only fixed ports, the other port groups give rise to

switched edges that connect the write vertices to read vertices within the same port

group. Formally, the switched edge set is described as follows

Es =
{{

Wp,i,Rp, j
}
| 1≤ p < nP,0≤ i < nW,p,0 j < nR,p

}
. (4.9)

For instance, in Figure 4.10 (right), the switched edges are

Es =
{{

W1,0,R1,0
}
,
{

W2,0,R2,0
}
,
{

W2,0,R2,1
}}

.

103

4.3.1.4 Multi-Switched-Ports DFG Optimization

Using a true dual-ported BRAM gives us the ability to cover several possible

subgraphs that appear in a bigraph DFG. Since these subgraphs are also complete

bigraphs, we call them biclique patterns, or BPs. All different biclique patterns are

described in Table 4.4.

For each BP in Table 4.4, we can identify several specific instances that it can

cover within the biclique DFG from Figure 4.10 (right). Figure 4.11 enumerates

all possible BP instances that occur within the original biclique DFG.

Once this full enumeration has occurred, all that is necessary is to select a

subset of these BP instances such that all edges in the original biclique DFG are

covered. Each BP instance requires a BRAM, so minimizing the number of BP

instances in the cover will minimize BRAM usage.

Biclique patterns must cover all the edges in the switched bigraph DFG. How-

ever, different BPs may have shared edges. Efficiently covering the bigraph DFG

edges is not trivial; simply choosing all largest 2W/2R-BPs may result in inefficient

results. Covering the edges of the bigraph DFG is actually equivalent to the set

cover problem. The set cover problem is an NP-complete problem [108].

104

Table 4.4: Biclique patterns and their attributes.

Pattern Name Biclique BRAM Connectivity

1W
/1

R

Fixed F1W1R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l

S1
W

1R
F1

W
2R

S1
W

2R
F2

W
1R

S2
W

1R
F2

W
2R

S2
W

2R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l
S1

W
1R

F1
W

2R
S1

W
2R

F2
W

1R
S2

W
1R

F2
W

2R
S2

W
2R

Switched S1W1R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l

S1
W

1R
F1

W
2R

S1
W

2R
F2

W
1R

S2
W

1R
F2

W
2R

S2
W

2R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l

S1
W

1R
F1

W
2R

S1
W

2R
F2

W
1R

S2
W

1R
F2

W
2R

S2
W

2R

1W
/2

R

Fixed F1W2R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l

S1
W

1R
F1

W
2R

S1
W

2R
F2

W
1R

S2
W

1R
F2

W
2R

S2
W

2R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l

S1
W

1R
F1

W
2R

S1
W

2R
F2

W
1R

S2
W

1R
F2

W
2R

S2
W

2R

Switched S1W2R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l
S1

W
1R

F1
W

2R
S1

W
2R

F2
W

1R
S2

W
1R

F2
W

2R
S2

W
2R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l

S1
W

1R
F1

W
2R

S1
W

2R
F2

W
1R

S2
W

1R
F2

W
2R

S2
W

2R

2W
/1

R

Fixed F2W1R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l
S1

W
1R

F1
W

2R
S1

W
2R

F2
W

1R
S2

W
1R

F2
W

2R
S2

W
2R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l

S1
W

1R
F1

W
2R

S1
W

2R
F2

W
1R

S2
W

1R
F2

W
2R

S2
W

2R

Switched S2W1R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l

S1
W

1R
F1

W
2R

S1
W

2R
F2

W
1R

S2
W

1R
F2

W
2R

S2
W

2R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l

S1
W

1R
F1

W
2R

S1
W

2R
F2

W
1R

S2
W

1R
F2

W
2R

S2
W

2R

2W
/2

R

Fixed F2W2R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l

S1
W

1R
F1

W
2R

S1
W

2R
F2

W
1R

S2
W

1R
F2

W
2R

S2
W

2R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l

S1
W

1R
F1

W
2R

S1
W

2R
F2

W
1R

S2
W

1R
F2

W
2R

S2
W

2RSwitched S2W2R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l

S1
W

1R
F1

W
2R

S1
W

2R
F2

W
1R

S2
W

1R
F2

W
2R

S2
W

2R

Biclique Pattern

F1
W

1R

Wp,i

Wp,j

Rp,k

Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rp,l

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

‘0’
Rq,l

W1 W2
W1/R1 W2/R2
R1 R2Rp,k

Rq,l

Rp,l

Rp,k

Rp,k

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’

Rp,k

W1 W2
W1/R1 W2/R2
R1 R2

‘0’
Rq,l

BRAM

Wp,i

Wq,j

Rp,k

Rq,l

Wp,i

Wp,j

Rp,k

Wp,i

Wq,j

Rp,k

Wp,i Rp,k

Rp,l

Wp,i Rp,k

Rq,l

Wp,i Rp,k

Wp,i

Rq,l

S1
W

1R
F1

W
2R

S1
W

2R
F2

W
1R

S2
W

1R
F2

W
2R

S2
W

2R

105

4.3.1.5 Solving the Cover Problem

The set cover problem takes a universe set U and another set S of subsets of U

whose union covers U (
⋃

s∈S s =U), namely,

SCP =

U,S | ∀s ∈ S : s⊆U,
⋃
s∈S

s =U

 . (4.10)

The objective of the set cover problem is to find a cover of U with the fewest

sets from S. Let T ⊆ S be such a subset of S, therefore the set cover problem

objective is,

min
T⊆S

|T | ∣∣∣∣∣⋃
t∈T

t =U

 (4.11)

The bigraph DFG optimization solves a set cover problem where all DFG edges

are the universe and all biclique patterns are the covering subsets, namely,

SCP =

U,S =

F1W1R ∪ S1W1R ∪ F1W2R ∪ S1W2R∪

F2W1R ∪ S2W1R ∪ F2W2R ∪ S2W2R


 . (4.12)

The set cover problem can be formulated and solved as the following binary

106

linear programming (BLP) problem

minimize ∑
s∈S

xs

subject to ∑
s:e∈s

xs ≥ 1 ∀e ∈U,

xs ∈ {0,1} ∀s ∈ S

(4.13)

Where xs is a binary decision variable, indicating whether s is part of the

solution or not. Figure 4.11 provides a synthesis example for the bigraph DFG

from Figure 4.10 (right). A set cover solution uses the highlighted biclique patterns

in Figure 4.11 (left), producing the final synthesized data bank shown in Figure 4.11

(right).

As a comparison, Table 4.5 compares solutions for the purely fixed-ports and

multi-switched-ports implementations of Figure 4.8 For this specific example, the

fixed-ports method consumes 12 BRAMs to construct the data banks while the

multi-switched-ports method consumes only 8 BRAMs, yielding a 25% BRAM

reduction.

107

F2W2R

S2W1R

F1W2R S1W1R

R1,0

R2,0

R2,1

R1,0

R0,0

R1,0

R2,0

R2,0

R0,0

R2,0

R1,0

R2,0

R0,0

R2,0

R1,0

R2,0

R1,0

R2,0

R1,0

R2,0

R0,0

BRAM5

R1,0

R2,0

R0,0

R2,0

R0,0

R1,0

R0,0

R1,0

BRAM1

BRAM3

BRAM6

BRAM0

BRAM7

R1,0

R1,0

R1,0

R2,0

R2,0

R2,0

R2,0

F1W1R F2W1R

BRAM4

BRAM2

W R

W1 R1

W2 R2

W1 R1

R2

BRAM0

W RBRAM1

W RBRAM3

W RBRAM5

W RBRAM6

W RBRAM7

BRAM4

BRAM2

R1,0

W2 , 0

W0 , 0

W1 , 0

W2 , 1

R2,0

R0,0

Figure 4.11: Synthesis example of the DFG from Figure 4.8 (left) All possible biclique patterns; optimal BP’s
are highlighted. (right) Synthesized data banks.

108

4.3.1.6 Data Dependencies and Bypassing

Due to the pipelined nature of building a full multi-switched-port RAM, data depen-

dencies due to internal latencies arise naturally. This requires internal forwarding

and bypassing to solve these hazards. The full multi-switched-port RAM design

consists of the data banks and the I-LVT. The I-LVT itself consists of feedback

banks and output extraction banks. For each of these three structures, Table 4.6

summarizes the type of bypassing required to produce a correct design that can

tolerate certain hazards. Further detail is provided below.

The I-LVT-based structure [1] is used to steer the read data out of the multi-

switched-ports data banks, however the I-LVT incurs data dependencies due to

the feedback functions and the latency of reading the I-LVT to decide about the

last written bank [1]. Data dependencies can be handled by employing bypassing,

also known as forwarding. Bypassing is necessary since dual-port BRAMs cannot

internally forward new data when one port reads and the other port writes the same

address on the same clock edge, constituting a Read-During-Write (RDW) hazard.

Table 4.7 shows two types of bypassing based on write data and address

pipelining. Both bypassing techniques are functionally equivalent, allowing reading

of the data that is being written on the same clock edge, similar to single register

functionality. However, the fully-pipelined two-stage bypassing shown in Table 4.7

(bottom) can overcome an additional cycle latency, namely an additional pipe stage

on writing data and address (not shown in the figures). This capability is required

if a BRAM has pipelined inputs (e.g., cascaded from another BRAM) that need to

be bypassed.

109

Table 4.5: Comparison of purely fixed-ports versus multi-switched-ports im-
plementations of the example in Figure 4.8.

Fixed-ports Multi-switched-ports

Po
rt

A
ss

ig
nm

en
t

/
√ xf

g
1/x

ALU

f/g

0 1

>>

Shared Register-File
with Fixed Ports

W0 W1 W2 W3R0 R1 R2

bus
r/w

Shared bus

/
√ xf

g
1/x

ALU

f/g

0 1

>>

R1,0R0,0

bus
r/w

Shared bus

R2,0

B
ic

liq
ue

D
FG

R0

R1

R2

R0,0

R1,0

R2,0

Sy
nt

he
si

ze
d

D
at

a
B

an
ks

W R

W1 R1

W2 R2

W1 R1

R2

BRAM0

W RBRAM1

W RBRAM3

W RBRAM5

W RBRAM6

W RBRAM7

BRAM4

BRAM2

R1,0

W2 , 0

W0 , 0

W1 , 0

W2 , 1

R2,0

R0,0

W R

W1 R1

W2 R2

W1 R1

R2

BRAM0

W RBRAM1

W RBRAM3

W RBRAM5

W RBRAM6

W RBRAM7

BRAM4

BRAM2

R1,0

W2 , 0

W0 , 0

W1 , 0

W2 , 1

R2,0

R0,0

110

The proposed multi-switched-ports RAM utilizes true-dual-port BRAMs to

provide switched port functionality. However, since writing and reading operations

in true-dual-ported RAMs are exchangeable, the bypassing circuitry requires spe-

cial handling. As described in Table 4.7 (right), the bypass circuit of the true/true

RAM configuration is mirrored compared to the true/simple RAM configuration.

Thus, it can bypass written data from any direction. However, the control logic

that drives the bypassing mux selectors need to be altered to detect the direction of

writing.

The most severe data dependency that I-LVT design [1] suffers from is Write-

After-Write (WAW), namely, writing to the same address that has been written

in the previous cycle. This dependency occurs because of the feedback reading

and writing latency. A single-stage bypassing for the feedback banks solves this

dependency.

Two types of reading hazards are also introduced by the I-LVT design, Read-

After-Write (RAW) and Read-During-Write (RDW). RAW occurs when the same

data that was written in the previous clock edge are read in the current clock edge.

RDW occurs when the same data are written and read on the same clock edge.

Due to the latency of the I-LVT, reading from the same address on the next clock

edge after writing (RAW) will provide the old data. To read the new data instead,

the output extraction banks of the I-LVT should be bypassed by a single-stage

bypass to overcome the I-LVT latency.

The deepest bypassing stage is reading new data on the same writing clock edge

(RDW), which is similar to a single register stage latency. This can be achieved by

111

Table 4.6: Bypassing of multi-switched-ports.

Data Banks I-LVT Banks

Feedback Output Extract

Allow WAW None 1-stage None
New Data RAW None 1-stage 1-stage
New Data RDW 1-stage 1-stage 2-stage

2-stage bypass on the output extraction banks of the I-LVT to allow reading on the

same clock edge. The data banks, which are working in parallel with the I-LVT

should be bypassed by a single-stage to provide new data.

112

Table 4.7: Single-stage and two-stage BRAM bypassing.

Simple/Simple Configuration True/Simple Configuration True/True Configuration

Si
ng

le
-s

ta
ge

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Din

Dout

Addr
R/W

Din

Dout

Addr
R/W

00

1x

01

==

00

1x

01

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

Dout

Addr
R/W

Din

Dout

Addr
R/W

0

1

0

1

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

Dout

Addr
Din

Dout

Addr
R/W

00

1x

01

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

Dout

Addr
Din

Dout

Addr
R/W

0

1

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

0

1

‘1’‘0’

Dout

AddrAddr

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Dout

Addr
‘1’

Din

‘0’

00

1x

01

=

Addr

‘1’

‘1’

=
=

=

Si
n

gl
e-

st
ag

e
Tw

o
-s

ta
ge

Simple/Simple Configuration True/Simple Configuration True/True Configuration

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Din

Dout

Addr
R/W

Din

Dout

Addr
R/W

00

1x

01

==

00

1x

01

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

Dout

Addr
R/W

Din

Dout

Addr
R/W

0

1

0

1

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

Dout

Addr
Din

Dout

Addr
R/W

00

1x

01

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

Dout

Addr
Din

Dout

Addr
R/W

0

1

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

0

1

‘1’‘0’

Dout

AddrAddr

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Dout

Addr
‘1’

Din

‘0’

00

1x

01

=

Addr

‘1’

‘1’

=
=

=

Si
n

gl
e-

st
ag

e
Tw

o
-s

ta
ge

Simple/Simple Configuration True/Simple Configuration True/True Configuration

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Din

Dout

Addr
R/W

Din

Dout

Addr
R/W

00

1x

01

==

00

1x

01

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

Dout

Addr
R/W

Din

Dout

Addr
R/W

0

1

0

1

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

Dout

Addr
Din

Dout

Addr
R/W

00

1x

01

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

Dout

Addr
Din

Dout

Addr
R/W

0

1

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

0

1

‘1’‘0’

Dout

AddrAddr

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Dout

Addr
‘1’

Din

‘0’

00

1x

01

=

Addr

‘1’

‘1’

=
=

=

Si
n

gl
e-

st
ag

e
Tw

o
-s

ta
ge

Simple/Simple Configuration True/Simple Configuration True/True Configuration

Tw
o-

st
ag

e

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Din

Dout

Addr
R/W

Din

Dout

Addr
R/W

00

1x

01

==

00

1x

01

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

Dout

Addr
R/W

Din

Dout

Addr
R/W

0

1

0

1

Din
P

o
rt

 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

Dout

Addr
Din

Dout

Addr
R/W

00

1x

01

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

Dout

Addr
Din

Dout

Addr
R/W

0

1

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

0

1

‘1’‘0’

Dout

AddrAddr

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Dout

Addr
‘1’

Din

‘0’

00

1x

01

=

Addr

‘1’

‘1’

=
=

=

Si
n

gl
e-

st
ag

e
Tw

o
-s

ta
ge

Simple/Simple Configuration True/Simple Configuration True/True Configuration

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Din

Dout

Addr
R/W

Din

Dout

Addr
R/W

00

1x

01

==

00

1x

01

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

Dout

Addr
R/W

Din

Dout

Addr
R/W

0

1

0

1

Din
P

o
rt

 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

Dout

Addr
Din

Dout

Addr
R/W

00

1x

01

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

Dout

Addr
Din

Dout

Addr
R/W

0

1

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

0

1

‘1’‘0’

Dout

AddrAddr

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Dout

Addr
‘1’

Din

‘0’

00

1x

01

=

Addr

‘1’

‘1’

=
=

=

Si
n

gl
e-

st
ag

e
Tw

o
-s

ta
ge

Simple/Simple Configuration True/Simple Configuration True/True Configuration

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Din

Dout

Addr
R/W

Din

Dout

Addr
R/W

00

1x

01

==

00

1x

01

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

Dout

Addr
R/W

Din

Dout

Addr
R/W

0

1

0

1

Din
P

o
rt

 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

Dout

Addr
Din

Dout

Addr
R/W

00

1x

01

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

Dout

Addr
Din

Dout

Addr
R/W

0

1

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=
Din

0

1

‘1’‘0’

Dout

AddrAddr

Din

P
o

rt
 A

Dout

Addr
R/W

P
o

rt
 B Din

Dout

Addr
R/W

=

Dout

Addr
‘1’

Din

‘0’

00

1x

01

=

Addr

‘1’

‘1’

=
=

=

Si
n

gl
e-

st
ag

e
Tw

o
-s

ta
ge

Simple/Simple Configuration True/Simple Configuration True/True Configuration

113

4.3.2 Experimental Results

4.3.2.1 Experimental Framework

The proposed multi-switched-port RAM approach, complete with bypassing, has

been fully implemented in parameterized Verilog. For a given design instance, we

developed a memory compiler to convert the RAM port assignment into a biclique

DFG, enumerate all of the biclique pattern instances in the DFG, and use these

to describe a set cover problem instance. The set cover problem is formulated

as a Binary Linear Programming (BLP) problem using AMPL (A Mathematical

Programming Language) [109], which is an algebraic modeling language used to

describe large-scale mathematical optimization problems. The BLP optimization

problem is solved using GLPK (GNU Linear Programming Kit) [110], an open

source large-scale linear programming solver. Finally, the selected biclique patterns

(covers) are used to automatically construct the data banks as described in Table 4.4

and shown for example in Figure 4.11.

A run-in-batch flow manager has also been developed to simulate and synthe-

size these designs with various parameters in batch using Altera’s ModelSim and

Quartus II. The Verilog modules, the algorithmic scripts and the flow manager are

available online as an open source contribution [107].

To verify correctness, each design instance is simulated using Altera’s Model-

Sim. A large variety instances with of different RAM port assignments and design

parameters, e.g., bypassing, RAM depth and data width, are swept and simulated

in batch, each with over a million random cycles. These multi-switched-port RAM

114

design modules were then compiled with Altera’s Quartus II into Altera’s Stratix V

5SGXEA7N1F45C1 device [55]. This is a speed grade 1 device with 234k ALMs

and 2560 M20K blocks.

4.3.2.2 Methodology

The proposed multi-switched-port RAM design process is generic and can support

any number of fixed and heterogeneous switched ports. This means all previous

multiport-RAM methods are actually special cases of this new proposed method.

For benchmarking purposes, we take a number of design instances, and for each

one we find a multi-switched port RAM using our new method. We then need to

generate comparative results using multiport RAM designed with fixed ports [1],

with true ports [56], and with a single switched port [2].

Then, we can compare results against the older fixed-port method [1] using

the same tooling. By treating switched ports as fixed ports, we thereby place all

read and write ports into the first port group P0 (the fixed port). This generates a

fixed-port solution that satisfies the same design instance requirements.

To compare against using the true-ports method [56], we must avoid using the

fixed port group P0. Instead, as described in Table 4.8, each fixed port must be

mapped into a true port (with a fixed RW control), hence nW,0 +nR,0 true ports are

required to implement the fixed ports. In addition, every read and write pair in a

switched port can be mapped into a single true port, hence, max(nW,i,nR,i) true

ports are required to implement a switched port group Pi. In total, the number of

115

the required true ports is

nt = nW,0 +nR,0 +
nP−1

∑
i=1

max(nW,i,nR,i) (4.14)

For example, the system in Figure 4.8 can be implemented using nt = 5 true

ports.

To compare against the single-switched-port method [2], the largest switched

port (say Pm) is chosen to be implemented as the single-switched port, and all the

other ports are implemented using fixed ports. This becomes

P =
{

P0 =
(
nW −nW,m,nR−nR,m

)
,P1 =

(
nW,m,nR,m

)}
(4.15)

where m is the index of the switched-port with the maximum writes and reads,

1≤ m < nP

∣∣∣nW,m +nR,m = max
1≤i<nP

(nW,i +nR,i) (4.16)

116

Table 4.8: Multi-switched-ports conversion (example from Figure 4.8).

Multi-switched Fixed [1, 11] True [56] Single-switched [2]

Po
rt

A
ss

ig
nm

en
t

R1,0

W0,0

R2,0

R0,0P0
Fixed

P1
 Switched

P2
Switched

R1/W1

R2/W2

W1,0

W2,0

W2,1

R1,0

W0,0

R2,0

R0,0
P0

Fixed

R1/W1

R2/W2

W1,0

W2,0

W2,1

(N/C)

(N/C)

W

W

R

R

W

W

R R1/W1

W0,0 P1
True

W R
R/W

P2
True

W R

W1,0 P3
True

W R

W2,0 P4
True

W R

W2,0 P5
True

W R

R0,0

R1,0

R2,0

‘0’

‘1’

R2/W2

R/W

R/W

R/W

R/W

(N/C)

(N/C)

(N/C)

W0,0 R0,0P0
Fixed

W R

W1,0 R1,0

R2,0
P1

Switched

R2/W2

W2,0

W2,1

W

W

R

R1/W1

R/W

R/W

(N/C)

R/W

R1,0

W0,0

R2,0

R0,0P0
Fixed

P1
 Switched

P2
Switched

R1/W1

R2/W2

W1,0

W2,0

W2,1

R1,0

W0,0

R2,0

R0,0
P0

Fixed

R1/W1

R2/W2

W1,0

W2,0

W2,1

(N/C)

(N/C)

W

W

R

R

W

W

R R1/W1

W0,0 P1
True

W R
R/W

P2
True

W R

W1,0 P3
True

W R

W2,0 P4
True

W R

W2,0 P5
True

W R

R0,0

R1,0

R2,0

‘0’

‘1’

R2/W2

R/W

R/W

R/W

R/W

(N/C)

(N/C)

(N/C)

W0,0 R0,0P0
Fixed

W R

W1,0 R1,0

R2,0
P1

Switched

R2/W2

W2,0

W2,1

W

W

R

R1/W1

R/W

R/W

(N/C)

R/W

R1,0

W0,0

R2,0

R0,0P0
Fixed

P1
 Switched

P2
Switched

R1/W1

R2/W2

W1,0

W2,0

W2,1

R1,0

W0,0

R2,0

R0,0
P0

Fixed

R1/W1

R2/W2

W1,0

W2,0

W2,1

(N/C)

(N/C)

W

W

R

R

W

W

R R1/W1

W0,0 P1
True

W R
R/W

P2
True

W R

W1,0 P3
True

W R

W2,0 P4
True

W R

W2,0 P5
True

W R

R0,0

R1,0

R2,0

‘0’

‘1’

R2/W2

R/W

R/W

R/W

R/W

(N/C)

(N/C)

(N/C)

W0,0 R0,0P0
Fixed

W R

W1,0 R1,0

R2,0
P1

Switched

R2/W2

W2,0

W2,1

W

W

R

R1/W1

R/W

R/W

(N/C)

R/W

R1,0

W0,0

R2,0

R0,0P0
Fixed

P1
 Switched

P2
Switched

R1/W1

R2/W2

W1,0

W2,0

W2,1

R1,0

W0,0

R2,0

R0,0
P0

Fixed

R1/W1

R2/W2

W1,0

W2,0

W2,1

(N/C)

(N/C)

W

W

R

R

W

W

R R1/W1

W0,0 P1
True

W R
R/W

P2
True

W R

W1,0 P3
True

W R

W2,0 P4
True

W R

W2,0 P5
True

W R

R0,0

R1,0

R2,0

‘0’

‘1’

R2/W2

R/W

R/W

R/W

R/W

(N/C)

(N/C)

(N/C)

W0,0 R0,0P0
Fixed

W R

W1,0 R1,0

R2,0
P1

Switched

R2/W2

W2,0

W2,1

W

W

R

R1/W1

R/W

R/W

(N/C)

R/W

117

4.3.2.3 Test Cases

A number of random multi-switched-ports test-cases are listed in Table 4.9. Ten

random test cases, TC1 to TC10, have been generated for illustrative purposes;

real cases are difficult to extract from applications without a precise understanding

of their use of multi-port RAMs and how their FSMs specify (possibly mutually

exclusive cases of) read/write behaviour. While our method can synthesize any

number ports, the test-cases are limited to 8 switched ports to avoid accidentally

exceeding device resources. These random test-cases use 4 to 8 switched ports,

where each switched port has 1 to 4 writes or reads. For each test case, we specify

a multi-port RAM that the multi-switched ports approach proposed in this chapter.

In addition, we show other multi-port RAM designs with fixed ports [1], true ports

[56], and a single switched-port [2] that address the same requirements.

4.3.2.4 Results

Table 4.10 lists the experimental results of the ten random test-cases defined in

Table 4.9, implemented using the four design styles. All synthesized test-cases have

one byte of data width and 8k-lines in depth, new-data-RAW bypassing and use a

binary-coded I-LVT [1]. BRAM consumption, ALMs and Fmax are given directly

in the table. Table 4.11 lists the change percentage in these parameters compared to

our proposed method. Compared to the single switched-port [2] and the fixed-port

[1] methods, ALM consumption and Fmax are similar while BRAM consumption

reduced by 18% on average. On the other hand, comparing our proposed method

to the true-ports method shows a 42% BRAM reduction, 53% fewer ALMs, and

118

15% higher Fmax.

119

Table 4.9: Heterogeneous multi-ported RAM testcases.

Testcase#

Writes and reads for each port;
(

nW,i,nR,i

)
from Equation 4.4

Multi-switched Fixed True Single-switched

P0 P1 P2 P3 P4 P5 P6 P7 P0 P0 P0 · · ·Pnt nt P0 P1

TC1 (1,1) (1,1) (2,1) (2,1) (1,2) (1,2) (2,3) (2,3) (11,13) (0,0) (1,1) 15 (9,10) (2,3)

TC2 (1,1) (1,1) (2,1) (1,2) (2,2) (2,3) (3,2) (3,3) (13,14) (0,0) (1,1) 15 (10,11) (3,3)

TC3 (1,2) (1,1) (1,2) (2,1) (2,2) (2,3) (3,2) - (12,12) (0,0) (1,1) 15 (9,10) (3,2)

TC4 (2,1) (1,1) (1,1) (1,2) (1,3) (2,3) (3,3) - (9,15) (0,0) (1,1) 15 (6,12) (3,3)

TC5 (1,1) (1,3) (2,1) (2,1) (2,2) (2,3) - - (10,10) (0,0) (1,1) 13 (8,7) (2,3)

TC6 (1,3) (1,1) (1,1) (1,3) (2,2) (3,3) - - (8,13) (0,0) (1,1) 13 (5,10) (3,3)

TC7 (2,2) (1,1) (2,4) (2,1) (1,3) - - - (8,11) (0,0) (1,1) 14 (6,7) (2,4)

TC8 (2,1) (1,1) (1,4) (2,1) (3,1) - - - (8,10) (0,0) (1,1) 14 (7,6) (1,4)

TC9 (2,3) (2,1) (1,4) (2,4) - - - - (7,12) (0,0) (1,1) 15 (5,8) (2,4)

TC10 (3,1) (1,2) (2,4) (3,4) - - - - (9,11) (0,0) (1,1) 14 (6,7) (3,4)

120

Table 4.10: Experimental results.
Te

stc
as

e# Multi-switched Single-switched [2] True [56] Fixed [1]
BR

AM
s

AL
M

s

F m
ax

(M
H

z)

BR
AM

s

AL
M

s

F m
ax

(M
H

z)

BR
AM

s

AL
M

s

F m
ax

(M
H

z)

BR
AM

s

AL
M

s

F m
ax

(M
H

z)

TC1 826 3417 247.4 1054 3349 242.25 1290 6222 215.84 1034 3271 235.29

TC2 1044 4781 224.16 1316 4828 228.1 1290 6222 215.84 1352 4840 225.33

TC3 904 3793 232.56 1104 3717 237.3 1290 6222 215.84 1080 3634 241.9

TC4 726 2732 250.75 882 2653 253.87 1290 6222 215.84 918 2617 245.04

TC5 628 2434 248.32 756 2441 244.38 962 4503 235.68 780 2414 253.94

TC6 568 2031 258 700 1948 260.42 962 4503 235.68 704 1916 246.37

TC7 540 1801 257.67 608 1746 265.32 1120 5483 214.13 608 1703 260.96

TC8 524 1675 265.82 576 1629 270.42 1120 5483 214.13 592 1614 266.03

TC9 504 1499 279.17 556 1502 270.27 1290 6222 215.84 560 1444 275.71

TC10 586 2321 252.33 690 2205 257.33 1120 5483 214.13 702 2154 247.46

Avg. 685 2648.4 251.62 824.2 2601.8 253 1173.4 5656.5 219.3 833 2560.7 249.8

121

Table 4.11: Results comparison.

Te
stc

as
e# Reduction compared to: ALM Reduction Compared to: Fmax Increase Compared to:

Si
ng

le-
sw

itc
he

d
[2

]

Tr
ue

[5
6]

Fi
xe

d
[1

]

Si
ng

le-
sw

itc
he

d
[2

]

Tr
ue

[5
6]

Fi
xe

d
[1

]

Si
ng

le-
sw

itc
he

d
[2

]

Tr
ue

[5
6]

Fi
xe

d
[1

]

TC1 22% 36% 20% -2% 45% -4% 2% 15% 5%

TC2 21% 19% 23% 1% 23% 1% -2% 4% -1%

TC3 18% 30% 16% -2% 39% -4% -2% 8% -4%

TC4 18% 44% 21% -3% 56% -4% -1% 16% 2%

TC5 17% 35% 19% 0% 46% -1% 2% 5% -2%

TC6 19% 41% 19% -4% 55% -6% -1% 9% 5%

TC7 11% 52% 11% -3% 67% -6% -3% 20% -1%

TC8 9% 53% 11% -3% 69% -4% -2% 24% 0%

TC9 9% 61% 10% 0% 76% -4% 3% 29% 1%

TC10 15% 48% 17% -5% 58% -8% -2% 18% 2%

Avg. 17% 42% 18% -2% 53% -3% -1% 15% 1%

122

4.4 Conclusions

In this chapter, we have proposed a novel, modular, BRAM-based switched-multi-

ported RAM architecture. In addition to unidirectional ports with fixed read/write,

this switched architecture allows a group of write ports to switch with another

group of read ports dynamically. The proposed switched-ports architecture is less

flexible than a true-multi-ported RAM where each port is switched individually.

Nevertheless, switched memories can dramatically reduce BRAM consumption

compared to true or simple ports for systems with alternating port requirements.

In addition, we propose a new idea of having multiple switched ports in multi-

ported RAM design. This method requires a memory compiler to create a specific

design instance, and solving a set cover problem to optimize its implementation.

Our Computer-Aided Design (CAD) approach always finds a minimal implemen-

tation for all of our test cases, but there is opportunity for further CAD research to

improve run-time while still being optimal. On average out of 10 random test-cases,

the suggested multi-switched-ports method reduces BRAM use by 18% compared

to the best of previous methods, while maintaining ALM count and Fmax. Future

research may address the RAM port assignment problem to more complex cases

where there are more than two states governing memory port usage.

The fully parameterized and generic Verilog modules, the algorithmic scripts,

the multi-switched-ports memory compiler, and the flow manager are available

online as an open source contribution [106, 107].

123

Chapter 5

2-Dimensional Hierarchical Search

BCAMs (2D-HS-BCAMs)

In this chapter, a novel and efficient technique for constructing BCAMs out of

standard SRAM blocks in FPGAs is proposed. The new technique divides a CAM

into wide rows or sets, instead of just being a single pattern wide. Using Altera’s

Stratix V device, the traditional design method achieves up to a 64K-entry BCAM

while the proposed technique achieves up to 4M entries. For the 64K-entry test-

case, the traditional method consumes 43 times more ALMs, 18 times longer

mapping runtime, and achieves only one-third of the Fmax of the proposed method.

A fully parameterized Verilog implementation is being released as an open source

hardware library. The library has been extensively tested using ModelSim and

Altera’s Quartus tools.

124

5.1 Introduction

In this section, a modular SRAM-based BCAM suitable for many storage entries is

proposed. The CAM storage is divided into equal-sizes sets. CAM lookup depends

upon two steps. First, a RAM structure stores hit or miss information for each set,

where a set stores several patterns. Second, the specific set is searched in parallel

for a match. The set data (the patterns themselves) are stored in a second RAM

structure. To achieve a write and a match of the same pattern in the same cycle, a

CAM bypassing mechanism is also provided.

The proposed method is device-independent; hence, it can be applied to any

FPGA device containing standard dual-ported BRAMs. The proposed approach

dramatically improves CAM storage efficiency and operation frequency compared

to conventional methods. In contrast to other attempts that require several cycles

to write or match [111–113], the proposed approach is high-throughput and can

perform a pattern read (match) every cycle and a pattern write every two cycles.

Major contributions of this work are:

• A novel BCAM architecture capable of producing millions of CAM entries.

Compared to other conventional BCAM approaches, the proposed technique

exhibits the highest storage efficiency while providing improved overall

performance. To the authors’ best knowledge, research and patent literature

do not have similar BCAM techniques.

• A CAM bypassing mechanism is also provided to write and match the same

pattern in the same cycle.

125

• A parameterized Verilog implementation of the suggested methods, together

with previous standard approaches. A flow manager to simulate and syn-

thesize various designs with various parameters in batch using Altera’s

ModelSim and Quartus II is also provided. The Verilog modules and the

flow manager are available online [114].

To verify correctness, the proposed BCAM architecture is fully implemented

in Verilog, simulated using Altera’s ModelSim, and compiled using Quartus II

[57]. A large variety of BCAM architectures and parameters, e.g., BCAM depth,

pattern width, bypassing, and pipelining are simulated in batch, each with over

one million random BCAM write and match cycles. Stratix V, Altera’s high-end

performance-oriented FPGA [55], is used to implement and compare the proposed

architecture with previous approaches.

The rest of this chapter is organized as follows. The motivation and method

of the proposed 2-Dimensional Hierarchical Search BCAM (2D-HS-BCAM) ap-

proach to generate deep BCAMs is described in detail in Section 5.2. BCAM

bypassing techniques are described in Section 5.3. Discussion of the suggested

method and comparison to previous techniques are provided in Section 5.4. The

experimental framework, simulation and synthesis results, are discussed in Sec-

tion 5.5. Conclusions are drawn in Section 5.6.

126

5.2 The 2-Dimensional Hierarchical Search
BCAM (2D-HS-BCAM) Approach

As shown in Figure 5.1, pattern lookup works in two stages. First, a RAM structure,

called the Set Transposed Indicators RAM (STIRAM), is indexed by the pattern;

for each pattern, it stores match information about where the pattern is present in

each possible set. This can be used by a priority encoder to identify the address

or ID of a set containing the pattern; the set ID forms the upper bits of the match

address. The set ID also indexes into a second RAM structure, called the Sets

RAM (SetRAM), to produce the set content. Second, the wide set is searched in

parallel for a match to the pattern; the location of the match within the set produces

the lower bits of the match address.

While pattern-cascadable BCAMs require indicators from every address loca-

tion at every stage, this requirement can be alleviated if the BCAM will not be

cascaded in pattern width. Instead of storing pattern indicators for each address

location separately, an indicator is generated for a group of addresses, indicating if

the pattern exists at any of these addresses. An address set of width SW is a group

of successive SW addresses, hence an address range of depth SW . For a CD-entry

BCAM, and a SW set width,
⌈

CD
SW

⌉
sets exist, and can be enumerated as

S =

{
0,1, · · · ,

⌈
CD

SW

⌉
−1

}
. (5.1)

A set indicator Ip,s indicates if any of the addresses in set s, hence addresses

127

=

=

=

PW
MPatt

log2(CD/SW)

CD/SW

MAddr

log2(SW)

log2(CD)

PW

PW

PW

SW·PW

In
tr

a-
se

t
Co

m
pa

re

Se
tR

A
M

 (
C

D
/S

W
)X

(S
W

·P
W

) Addr

RData

MPatt

MIndc

ST
IR

A
M

 (C
D
/S

W
)X

P W

Se
gm

en
ts

P
ri

o
ri

ty

En
co

d
er Match

In
tr

a-
Se

gm
en

t
P

ri
o

ri
ty

 E
n

co
d

er
Figure 5.1: The match portion of the 2D-HS-BCAM system.

SW · s upto SW · (s+1)−1 contains the pattern p, namely,

∀s ∈ S, p ∈ P : IP,S =

a=SW ·(s+1)−1∨
a=SW ·s

(
RAM [a] EQ p

)
. (5.2)

Where P is the patterns set. The STIRAM is therefore

ST IRAM =



I0,0 I0,1 · · · I0,|S|−1

I1,0 I1,1 · · · I1,|S|−1
...

...

I|P|−1,0 I|P|−1,1 · · · I|P|−1,|S|−1


. (5.3)

128

STIRAM provides information for matched patterns within a set, not the exact

location. To detect the exact pattern location, an auxiliary RAM stores the patterns

associated with each set, with all patterns for the set in one RAM address, hence

it is called the Sets RAM (SetRAM). If a match is found in a specific set, this

set will be fetched from the SetRAM and patterns within this set are compared

concurrently to the match pattern.

Figure 5.2 illustrates the complete 2D-HS-BCAM system, whereas an example

of an 8-entry, 2-bit BCAM with SW = 2 is given in Figure 5.3. Two RAM struc-

tures are required, the first is STIRAM, a transposed RAM, which is addressed

by patterns and stores set indicators. The second is SetRAM, which stores the

data patterns for each set in one RAM line. The reference RAM in Figure 5.3

describes the content of the BCAM, but is not required for the 2D-HS-BCAM

implementation. Instead, BCAM content is stored in the SetRAM as sets of data

patterns.

129

W
ri

te
 C

o
n

tr
o

lle
r

PW
MPatt

MAddr

PW

PW

MPatt

MIndc

STIRAM (CD/SW)XPW

WEnb

WPatt
Addr

Wr/Er

Wr/Er
MUX

Se
ts

P
ri

o
ri

ty

En
co

d
er Match

WData

=

=

WAddr

W
ri

te
 C

o
n

tr
o

lle
r

=

=

Se
t

P
ri

o
ri

ty
 E

n
co

d
er

log2(CD/SW)

MAddr

log2(SW)

PW

SW·PW

SW·PW

PW

P

PW

SW

log2SW

log2CD

log2(CD/SW)

M
ul

ti
Pa

tt

se
gm

en
t

M
at

ch
 C

om
pa

re

One-hot
Decoder

P
at

te
rn

 t
o

R
em

o
ve

 M
U

X

O
cc

u
rr

en
ce

s
In

d
ic

at
o

rs

M
as

ki
n

g

Addr

RData

WData
Addr

W/R

RData

ByteEn

MIndcAddrWr/Er
MUX

En
co

d
er

=

=

=

=

In
tr

a-
Se

t
P

ri
o

ri
ty

 E
n

co
d

er

PW

PW

PW

PW

SW

In
tr

a-
se

gm
en

t
M

at
ch

 C
om

pa
re

P
at

te
rn

 t
o

R
em

o
ve

 M
U

X

O
cc

u
rr

en
ce

s
In

d
ic

at
o

rs

M
as

ki
n

g

MatchWrite

Figure 5.2: The complete 2D-HS-BCAM system.

130

1 D
0 A

Patterns

S
e

tR
A

M
 4

×
4

A
d

d
re

ss
es

D
B set0

set1

BCAM Content
as 8×2

Reference RAM

3 B
2 B
1 D

S
e

tR
A

M

A
d

d
re

ss
es

B
D
D

1
1
0

0
0
0

0
1
0

0
1
0

0 1 2 3
A

B
C

P
a

tt
e

rn
s

Addresses

ST
IR

A
M

 4
×4

 (S
W

=2
)

set1

set2

set3

B

B

D

D

D

B
A

Pattern

A
d

d
re

ss
es

3

2

1

0

5

4

se
t 0

se
t 1

se
t 2

Reference RAM

0
0

0
1

0
1

0
0

C
DP

a
tt

e
rn

s

ST
IR

A
M

se
t 0

se
t 1

se
t 2

se
t 3

B
B

D

7

6
se

t 3

Figure 5.3: 8×2; SW = 2 example of the 2D-HS-BCAM.

The match operation checks STIRAM for a match within a set, detects the first

matching set using a priority encoder, then fetches the corresponding set patterns

(with a match) from SetRAM, then compares all patterns with the match pattern

in parallel to detect the exact match location. The match operation is described in

details as follows.

1. Detect match among sets:

1.1. MPatt is provided to STIRAM for search.

1.2. STIRAM detects which sets contains MPatt, outputting a match indica-

tor for each set.

1.3. Sets priority-encoder (PE) generates the binary address for the first

set with a matching pattern. This address composes the higher part of

MAddr.

131

1.4. Sets PE also generates the binary Match signal, which indicates that a

match was found.

2. Detect match exact location within the set:

2.1. The address of the first matched set (step 1.3) is provided to the

SetRAM to fetch the entire set.

2.2. Each pattern within the set is compared to MPatt

2.3. A priority-encoder (intra-set PE) detects the first matching pattern. The

address of the first matching pattern produces the lower part of MAddr.

While detecting a match is completed by reading the STIRAM in one cycle,

computing the exact match address requires another cycle to read the SetRAM.

Hence, the match operation latency is two cycles. The match operation throughput

is a single cycle since both STIRAM and SetRAM are read concurrently.

Similar to the Brute-Force Transposed Indicators (BF-TI) writing mechanism

(see Appendix A), writing to the 2D-HS-BCAM requires two cycles, one cycle for

new pattern insertion, and a second cycle for old pattern deletion. However, before

clearing the old data indicator in the STIRAM, the set should be checked to detect

other occurrences of the old data. If another occurrence of the deleted pattern

is found in the same set, the set indicator in the STIRAM should not be cleared.

Figure 5.2 illustrates the additional circuitry required for writing the BCAM. In

detail, the 2D-HS-BCAM writing is performed as follows.

1. Cycle 1: STIRAM write; SetRAM read

132

1.1. Write STIRAM with WPatt (also called WData) and the higher
⌈

log2
CD
SW

⌉
bits of WAddr to set the corresponding set indicator.

1.2. Read the entire corresponding set for SetRAM (addressed by the higher⌈
log2

CD
SW

⌉
bits of WAddr)

1.2.1. The Pattern to remove MUX selects the pattern that is being rewrit-

ten from the corresponding set. The selector is the lower
⌈
log2 SW

⌉
bits of WAddr.

1.2.2. The Occurrences Indicators are a compare of the currently rewrit-

ten pattern with all the other patterns in the set to detect other

occurrences.

1.2.3. The final masking stage masks the indicator of the currently rewrit-

ten pattern, since only other occurrences should be detected. All

the indicators are OR’ed to detect any other occurrence

2. Cycle 2: SetRAM write; STIRAM conditional erase

2.1. The SetRAM is written with WPatt. Byte-enable is used to write only

the corresponding pattern in the set.

2.2. If no other occurrences of the currently rewritten pattern are detected

(stage 1.2.3 above), the STIRAM indicator for the replaced pattern and

the current address is cleared.

The read and write operations described above rely upon an efficient imple-

mentation of a very wide priority encoder. The design we use is described in

133

Appendix B.

To implement a BCAM with CD entries and PW pattern width, namely a CD×PW

BCAM, the 2D-HS-BCAM approach requires
⌈

CD
SW

⌉
×PW ·SW SRAM cells for the

SetRAM and 2PW ×
⌈

CD
SW

⌉
SRAM cells for the STIRAM, a total of

⌈
CD

SW

⌉
×PW ·SW +2PW ×

⌈
CD

SW

⌉
. (5.4)

Assuming a wide RAM of RW,max, an upper bound estimate for the BRAMs

needed to construct the STIRAM is

⌈
2PW

RD,min

⌉
·


⌈

CW
SW

⌉
RW,max

 . (5.5)

The SetRAM is a true-dual-port RAM. RW,byte describes the width of data con-

trolled by a single byte-enable. A single BCAM accommodates RW,max
RW,byte

individual

byte-enable controlled data, and each pattern requires
⌈

PW
RW,byte

⌉
of them. Finally,

SW lines of this structure are required. Therefore, the number of BCAMs needed

to construct the SetRAM is

RW,max

RW,byte
·

⌈
PW

RW,byte

⌉
·

⌈
SW

RD,min

⌉
. (5.6)

134

5.3 BCAM Bypassing

Writing a new pattern to a register-based BCAM is immediate on the triggering

clock edge and it is ready to be matched immediately. In contrast, BRAM-based

BCAM methods, namely BF-TI and 2D-HS-BCAM, require two cycles for writing.

Hence, matching a pattern that is being written in the same cycle will match old

indicators, introducing a read-after-write hazard. However, some applications, e.g.,

caches and TLBs, require immediate matching of the recently written patterns,

hence, pattern bypassing is required.

Figure 5.4 shows the bypassing circuitry for both BF-TI and 2D-HS-BCAM. In

both, the writing address (WAddr) is one-hot encoded; the insertion mask (bitwise

OR) forces ‘1’ into the matched indicators (MIndc) in location MAddr. Similarly,

the removal mask (bitwise AND) forces ‘0’ into the matched indicators (MIndc)

in location MAddr. In the TIRAM approach, if the matched pattern (MPatt) is

equivalent to the written pattern (WPatt), the insertion mask output is passed to the

matching indicators output (MIndc); otherwise the removal mask output is passed.

In the 2D-HS-BCAM approach, there is another case. The removal mask output is

allowed to be passed only if MPatt equals to the removed pattern (RmPatt), and

there are no other occurrences of the removed pattern in the same set (negated

MultiPatt).

5.4 Comparison and Discussion

The BCAM storage efficiency µs is first introduced in this dissertation, and is

defined as the SRAM cell utilization for a specific BCAM implementation. In

135

WPatt

One-hot
encoder

=

Removal Mask

Insertion Mask

0

1

enb

enb

WEnb

MIndc

WAddr

MIndc

MPatt

(bypassed)(unbypassed)

WPatt

One-hot
encoder

=

Removal Mask

Insertion Mask

0

1

enb

enb

WEnb

MIndc

WAddr

MIndc

MPatt

(bypassed)

(unbypassed)

0

1

=RmPatt

MultiPatt

Figure 5.4: Bypassing logic for (top) Brute-Force Transposed Indicators
(BF-TI) approach, and (bottom) the proposed 2D-HS-BCAM approach.

other words, µs is the ratio between the total BCAM bits and the total SRAM cells

used to implement this BCAM. Using Equation 2.11 and Equation 2.13, µs for the

136

Brute-Force Transposed Indicators (BF-TI) is estimated as follows.

µs (BFT I)≈


1

1+ 2PW
PW

uncascaded

1
1+

RD,min
log2(RD,min)

pattern− cascaded
(5.7)

Equation 5.7 shows that the storage efficiency of the uncascaded BF-TI imple-

mentation is inversely proportional to the exponent of PW , hence, decays rapidly

with PW increase as shown in Figure 5.5.

The pattern width cascaded Brute-Force Transposed Indicators (BF-TI) is not

related to PW , hence the efficiency is not affected when PW increases. However, the

efficiency is affected by an intrinsic BRAM characteristic, namely, the minimal

depth RD,min (associated with the maximum width). The efficiency is inversely

proportional to RD,min, hence, shallow and wide BRAMs with smaller RD,min (and

larger RW,max) will exhibit higher storage efficiency.

Using Equation 5.4, µs for the 2D-HS-BCAM is estimated as follows.

µs (2DHS)≈ 1

1+ 2PW
SW ·PW

(5.8)

Similar to the uncascaded BF-TI, the efficiency of the proposed 2-Dimensional

Hierarchical Search BCAM (2D-HS-BCAM) approach is inversely proportional

to the exponent of PW . However, the exponential relation is mitigated by the set

width SW , an external and user-driven parameter.

For example, with SW = 4K, RD,min = 512 (as in Altera’s M20K), and a pattern

137

width of PW = 12, the storage efficiency of the proposed 2D-HS-BCAM is µs =

0.923 while using the pattern width cascaded BF-TI approach provides µs =

0.017. The 2D-HS-BCAM approach provides the highest efficiency up to PW = 22,

compared to the BF-TI. To generalize, 2D-HS-BCAM is superior to the BF-TI

method up to

PW =−
W−1

(
− ln2

a

)
ln2

, a = SW ·
RD,min

log2
(
RD,min

) , (5.9)

Where W−1 is the lower branch of the Lambert Product Logarithm function

(also called Omega function).

Practically, the set width SW has a limitation due to the minimal width of the

Block-RAM used in the SetRAM. The SetRAM depth is
⌈

CD
SW

⌉
and is limited by

RD,min, hence, to achieve maximum storage efficiency, SW is bounded by

SW ≤
CD

RD,min
. (5.10)

For deep memories, SW can be set to higher values, allowing higher storage

efficiency. Furthermore, providing shallow and wide BRAM, namely a lower

RD,min, will allow higher SW values, hence a higher storage efficiency.

To reduce ALM consumption it is recommended to divide the priority-encoders

in the 2D-HS-BCAM design equally, hence, SW ≈
√

CD. Each priority encoder will

be of width
√

CD. Furthermore, dividing the priority-encoders equally will balance

the priority-encoders depth, hence increasing Fmax and reducing the maximum

138

0

0.2

0.4

0.6

0.8

1

8 12 16 20 24

2D-HS(S =4096)
2D-HS(S =2048)
2D-HS(S =1024)
2D-HS(S =512)
2D-HS(S =256)
2D-HS(S =128)
2D-HS(S =64)
2D-HS(S =32)
BF-TI

Pattern Width (PW)

St
o

ra
ge

 E
ff

ic
ie

n
cy

 (
µ

s) W

W

W

W

W

W

W

W

Figure 5.5: Storage efficiency (µs) as function of pattern width (PW) for the
uncascaded BF-TI and 2D-HS-BCAM.

pipe stages in the pipelined design.

5.5 Experimental Results

To verify and simulate the suggested approach and compare to standard tech-

niques, fully parameterized Verilog modules have been developed. Register-based,

pattern width cascaded and uncascaded brute-force TIRAM, and the proposed

2D-HS-BCAM methods have been implemented. To simulate and synthesize these

designs with various parameters in batch using Altera’s ModelSim and Quartus II,

a run-in-batch flow manager has also been developed. The Verilog modules and

the flow manager are available online [114].

To verify correctness, the proposed architecture is simulated using Altera’s

ModelSim. A large variety of different BCAM architectures and parameters,

e.g., bypassing, depth, pattern width, and set width, are swept and simulated

in batch, each with over one million random cycles. All different BCAM de-

139

sign modules were implemented using Altera’s Quartus II on Altera’s Stratix V

5SGXMA7N1F45C1 device [55]. This is a high-performance device with 235k

ALMs and 2560 M20Ks.

Figure 5.6 and Figure 5.7 plot feasible BCAM depth and pattern width sweeps

implemented on Altera’s Stratix V device. Within the device limitation, the pro-

posed 2D-HS-BCAM approach is able to reach 4M entries of CAM, while the

BF-TI and the register-based BCAMs cannot exceed 64K and 32K entries, re-

spectively. The number of Altera’s M20K blocks used to implement each BCAM

configuration is plotted in Figure 5.6 (bottom). Even for shallow memories of

64K and 32K, the proposed approach demonstrates lower BRAM consumption

compared to the other methods. The columns in Figure 5.6 show the BRAM

consumption of the two RAM structures that compose the 2D-HS-BCAM; the

SetRAM and the STIRAM. The SetRAM stores the data patterns; hence, if the

SetRAM BRAM consumption is dominating the STIRAM consumption, the stor-

age efficiency will be higher.

The proposed 2D-HS-BCAM method exhibits significantly lower ALM count

and higher Fmax due to splitting the priority-encoder as shown in Figure 5.6 (middle

and top). The register-based BCAM consumes the highest ALMs due to massive

register usage. To achieve high Fmax, all testcases are fully pipelined. Pipelining

and BRAM access latency increase the overall system latency in both traditional

and proposed approaches. The latency overhead is reported in Figure 5.7 (bottom).

Brute-force TIRAM approach has a lower latency by maximum one cycle in some

shallow testcases. The latency of both approaches in these shallow testcases is 9 or

140

10 cycles. The growth of latency as depth increases is logarithmic, since PE depth

is logarithmic. The latency of the deepest 4M-entry 2D-HS-BCAM is 13 cycles.

Figure 5.7 (lower middle) plots the optimal set width. As the depth increases,

optimal set width is larger. Similar with pattern width; if pattern width increases,

optimal set width increases to overcome the increase in STIRAM BRAM consump-

tion to wide patterns.

The storage efficiency is plotted in Figure 5.7 (upper middle). The 2D-HS-BCAM

overcomes the brute-force TIRAM in 32K and 64K CAMs. Furthermore, storage

efficiency is inversely related to pattern width as expected from 2D-HS-BCAM.

As 2D-HS-BCAM goes deeper, the efficiency increases. The 4M × 9 BCAM test

case demonstrates a high storage efficiency of 0.9.

Figure 5.7 (top) plots the full Quartus II flow runtime. 2D-HS-BCAM synthesis

is faster than register-based or BF-TI BCAMs. 2D-HS-BCAM synthesis runs up

to 3 hours in its largest 4M testcase.

141

0

1

2

3

4

W 7 8 9 1011121314151617181920 7 8 9 10111213141516171819 7 8 9 101112131415161718 7 8 9 1011121314151617 7 8 9 10111213141516 7 8 9 101112131415 7 8 9 1011121314 7 8 9 10

D 32K 64K 128K 256K 512K 1M 2M 4M

M
2

0
K

s
(T

h
o

u
sa

n
d

s)

SetRAM Blocks
STIRAM Blocks
Device Limit

0

50

100

150

200

250

A
LM

s
(T

h
o

u
sa

n
d

s)

Reg-based
BF-TIRAM
2D-HS
Device Limit

100

200

300

400

500

600

Fm
ax

 (
M

H
z)

 T
=0

˚C

Figure 5.6: Results for several BCAM depth and pattern width sweeps (top) Fmax (middle) ALMs count
(bottom) M20K count.

142

64

128

256

512

1024

2048

Se
t

W
id

th
 -

S W

9

10

11

12

13

W 7 8 9 1011121314151617181920 7 8 9 10111213141516171819 7 8 9 101112131415161718 7 8 9 1011121314151617 7 8 9 10111213141516 7 8 9 101112131415 7 8 9 1011121314 7 8 9 10

D 32K 64K 128K 256K 512K 1M 2M 4M

M
at

ch
 L

at
en

cy
 (C

yc
le

s) Reg-based
BF-TIRAM
2D-HS

0

200

400

600

800

R
u

n
ti

m
e

 (
M

in
u

te
s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

St
o

ra
ge

 E
ff

ec
ie

n
cy

 -
µ

s

Figure 5.7: Additional results for several BCAM depth and pattern width sweeps (top) Runtime (upper middle)
Storage efficiency (lower middle) Set width (bottom) Match latency.

143

5.6 Conclusions

In this chapter, a novel BCAM architecture for FPGAs is proposed. The approach is

fully BRAM-based and employs hierarchical search to reduce BRAM consumption.

While traditional brute-force approach have a pattern match indicator for each

single address, the proposed approach maintains a single pattern match indicator

for each address set. The suggested method is capable of implementing a 4M-entry

CAM and significantly improves area and performance. In contrast, traditional

methods cannot exceed 64K in depth. For the 64K-entry test-case, the traditional

method consumes 43 times more ALMs, 18 times longer mapping runtime, and

achieves only one-third of the Fmax of the proposed method. The suggested

2D-HS-BCAM design completely dominates all past designs in BRAM and ALM

consumption, Fmax and runtime.

A fully parameterized and Verilog implementation of the suggested methods is

provided as open source hardware [114].

144

Chapter 6

Indirectly Indexed Hierarchical

Search BCAMs (II-HS-BCAMs)

In this chapter, a novel, efficient and modular technique for constructing BCAMs

out of standard SRAM blocks in FPGAs is proposed. Hierarchical search is em-

ployed to achieve high storage efficiency. While pattern width cascading requires

producing the match indicator of every single address in every cascaded stage, the

previous 2-Dimensional Hierarchical Search BCAM (2D-HS-BCAM) approach in

Chapter 5 provides a single matching address only. Hence, the 2-Dimensional Hi-

erarchical Search BCAM (2D-HS-BCAM) approach cannot be cascaded in pattern

width; this incurs an exponential increase of RAM consumption as pattern width

increases. The Indirectly Indexed Hierarchical Search BCAM (II-HS-BCAM) ap-

proach, however, efficiently regenerates a match indicator for every single address

by storing indirect indices for address match indicators. Hence, the proposed

145

method can be cascaded in pattern width and exponential growth is alleviated into

linear. Our method exhibits high storage efficiency and is capable of implementing

up to nine times wider BCAMs compared to the previous 2D-HS-BCAM approach.

Compared to brute-force techniques, this method requires a maximum of 18% the

RAM storage, while enhancing clock speed by 45% on average. A fully parame-

terized Verilog implementation is being released as an open source library. The

library has been extensively tested using Altera’s Quartus and ModelSim.

6.1 Introduction

In this chapter, a modular SRAM-based BCAM is proposed. Similar to 2-Dimensional

Hierarchical Search BCAM (2D-HS-BCAM), our approach arranges the mem-

ory into two-dimensional data sets. Our approach, however, is superior to the

2D-HS-BCAM approach since it efficiently regenerates match indicators for every

single address by storing indirect indices for address match indicators. Thus, unlike

hierarchical search, the proposed method can support wide patterns by pattern

width cascading; this transforms exponential RAM growth into linear.

The proposed method is device-independent; hence, it can be applied to any

FPGA device containing standard dual-ported BRAMs. The proposed approach

dramatically improves CAM area efficiency compared to conventional methods.

In contrast to algorithmic approaches (e.g., hashes and tries) or other BCAM

techniques that require several nondeterministic cycles to write or match [111–

113], our approach is high-throughput and can perform a pattern read (match) every

cycle and a pattern write every two cycles.

146

Major contributions of this chapter are:

• A novel highly efficient BCAM architecture. Compared to other BCAM

approaches, the proposed technique provides up to nine times wider BCAMs.

To the authors’ best knowledge, research and patent literature do not have

similar BCAM techniques.

• A parameterized Verilog implementation of our method, together with other

approaches. A flow manager to simulate and synthesize designs with various

parameters in batch using Altera’s ModelSim and Quartus II is also provided.

The Verilog modules and the flow manager are available online [115].

To verify correctness, the proposed BCAM architecture is fully implemented in

Verilog, simulated using Altera’s ModelSim, and compiled using Quartus II [57].

A large variety of BCAM architectures and parameters, e.g., BCAM depth and

pattern width are simulated in batch, each with over one million random BCAM

write and match cycles. Stratix V, Altera’s high-end FPGA, is used to implement

and compare the proposed architecture with previous approaches.

The rest of this chapter describes in detail the 2-Dimensional Hierarchical

Search BCAM (2D-HS-BCAM) approach and is organized as follows. The moti-

vation and key idea for this work are explained in Section 6.2. The design method

is described in Section 6.3. Section 6.4 describes a device-specific instance for

Altera’s Stratix device family. Discussion of the suggested method and comparison

to previous techniques are provided in Section 6.5. The experimental framework,

simulation and synthesis results, are discussed in Section 6.6. Conclusions are

147

drawn in Section 6.7.

6.2 Motivation and Key Idea

As shown in Chapter 5, the previous 2-Dimensional Hierarchical Search BCAMs

(2D-HS-BCAMs) cannot be cascaded in pattern width. Hence, the required mem-

ory size grows exponentially with pattern width. This limitation is crucial since

the vast majority of applications require wide patterns. To support BCAM pattern

width cascading, all match indicators for every single BCAM address shall be

generated, as in the brute-force approach (Section 2.3.2). However, storing all

match indicators requires wide RAM and incurs high memory overhead.

Our proposed Indirectly Indexed Hierarchical Search BCAM (II-HS-BCAM)

is based on 2-Dimensional Hierarchical Search BCAMs (2D-HS-BCAMs) and

utilizes the sparsity of the Set Transposed Indicators RAM (STIRAM) to store

only the required match indicators. It is able to regenerate all match indicators for

every BCAM address, allowing it to be cascaded in pattern width. The following

theorem is the basic keystone of our technique.

Lemma 6.2.1 (TIRAM column match indicators bound). The number of binary

‘1’ (matches) in each RAM column (CAM location) of the TIRAM matrix from

Equation 2.10, is exactly 1, namely

∀a ∈ A : ∑
p∈P

Ip,a = 1. (6.1)

Proof. Similar to RAM, each address of a BCAM contains one and only one valid

148

pattern. A pattern p′ located at address a′ means Ip′,a′ = 1 and Ip,a′ = 0 for every

p 6= p′. Hence, the corresponding column of address a′ in the TIRAM matrix has a

binary ‘1’ only in Ip′,a′ and zeros for all the other patterns.

Theorem 6.2.2 (STIRAM column match indicators bound). The number of binary

‘1’ (matches) in each column (set) of the STIRAM matrix from Equation 5.3 is

limited to the set width SW , namely,

∀s ∈ S : ∑
p∈P

ISW
p,s ≤ SW . (6.2)

Proof. A match indicator of a set is defined in Equation 5.2 and Equation 5.3

and indicates if any of the addresses in the set has a match. Given a set s′ of

SW addresses, Equation 5.2 and Equation 5.3 provides ISW
p,s′ =

∨a=SW ·(s′+1)−1
a=SW ·s′ Ip,a.

Lemma 6.2.1 ensures that each address a ∈
{

SW · s′, · · · ,SW ·
(
s′+1

)
−1
}

has one

and only one p such that Ip,a = 1. Since the set s′ has SW addresses, exactly SW

different Ip,a = 1 exist. Hence, in the entire set, a maximum of SW patterns have

a match (less than SW in the case where two addresses or more have the same

pattern).

The significance of Theorem 6.2.2 lies in the measurement it provides for the

STIRAM matrix sparsity. Namely, it provides an upper bound of the number of

binary ‘1’ (matches) for a set (a column in STIRAM). Instead of storing match

indicators for every address and pattern pair as in the brute-force approach (Fig-

ure 6.1 (left)), or set indicators as in the hierarchical search approach (Figure 6.1

(middle)), we store all address indicators only for sets with a match, as they are

149

Pa
tt

er
ns

A d d r e s s e s S e t s S e t s

Pa
tt

er
ns

Pa
tt

er
ns

Pa
tt

er
ns

Pa
tt

er
ns

Pa
tt

er
ns

Brute-force TIRAM

I n d i c a t o r s
BF-TI

Brute-force TIRAM

Figure 6.1: Indicators arrangement for three different approaches.

limited to SW . To reduce memory consumption, address match indicators are saved

in another auxiliary structure, while the original STIRAM will hold indices to the

auxiliary structure (Figure 6.1 (right)).

6.3 Design and Functionality

As depicted in Figure 6.2, a single-stage of the proposed II-HS-BCAM consists

of three parts. First, the match RAM where the set indices and match indicators

are stored; this is the most memory consuming structure. Second, the status RAM

where the system status is stored and feeds the control logic with system status.

Finally, the control and steering logic, which generates control signals to control

the entire structure (based on system status), feeds the match RAM with indicators

and indices, and updates the status RAM.

1. Match RAM: As described in the previous subsection, instead of storing

150

set match indicators in the STIRAM, we store only indirect indices for an

auxiliary RAM, which holds the match indictors for all the addresses in the

set, hence it is called the indicators RAM (IndRAM). Theorem 6.2.2 shows

that a maximum of SW different patterns can have a match in a set; hence,

the depth of IndRAM is SW at most. Each set has SW addresses, therefore

IndRAM should have SW address indicators for each set and its width should

also be SW . The address space consists of
⌈

CD
SW

⌉
sets; hence,

⌈
CD
SW

⌉
IndRAM

SW ×SW blocks are required.

The STIRAM holds indices for all pattern and set pairs. To represent all

patterns the required depth is 2PW . For each of the
⌈

CD
SW

⌉
sets,

⌈
log2 SW

⌉
bits

are required for each index. In total, the STIRAM width is
⌈

CD
SW

⌉
·
⌈
log2 SW

⌉
bits.

When a match operation is performed, all indices associated with the match

pattern are read from the STIRAM (a single STIRAM row). Next, these set

indices will address the IndRAM to fetch the complete address indicators for

every CAM location. Unlike STIRAM, every set in the IndRAM is stored in

a separate RAM structure. Hence, rows with different indices can be fetched

from each set, depending on the corresponding index from the STIRAM.

Figure 6.2 (bottom) shows an example where pattern ‘4’ is matched. The

STIRAM reveals one index in set1 pointing to address ‘2’ of the IndRAM

(shaded field in the STIRAM). Reading address ‘2’ from the IndRAM in set1

(shaded field in the IndRAM) shows a single match in offset address ‘2’ of

151

set1 (circled indicator in the IndRAM).

2. Status RAM: The status RAM is updated at each write to reflect the system

status and consists of three RAM structures as follows.

(a) Sets RAM (SetRAM): Similar to the hierarchical search method, this

RAM holds all CAM patterns, with each set’s patterns packed in one

row that can be fetched in a single cycle. Its size is therefore
⌈

CD
SW

⌉
×

(PW ·SW). At each write, the SetRAM will be updated with the new

pattern.

(b) Indices RAM (IdxRAM): The Indices RAM stores the index of each

pattern in the BCAM, arranged similar to the SetRAM, namely each

set’s indices in one row. Its size is
⌈

CD
SW

⌉
×
(⌈

log2 SW
⌉
·SW

)
At each write, the IdxRAM will be updated with the index that have

been assigned to the new pattern. For instance, Figure 6.2 (bottom)

shows an example where pattern ‘4’ is located in the SetRAM in set1,

the corresponding field in IdxRAM shows index ‘2’; the corresponding

index in STIRAM.

The IdxRAM is mainly used when two identical patterns are located in

the same set. In this case, the same index should be assigned these two

identical patterns. Hence, the index of the old pattern will be read from

the IdxRAM and assign back to the new (and identical) pattern.

(c) Vacancy RAM (VacRAM): The Vacancy RAM indicates for each row

of the IndRAM whether it is vacant or holds valid indicators. The

152

IndRAM consists of
⌈

CD
SW

⌉
RAM blocks (for each set), each with SW

rows. The Vacancy RAM hold the status of each IndRAM block in

one row, hence its depth is
⌈

CD
SW

⌉
and marks the validity of all the SW

IndRAM rows, hence its width is SW .

At each write, if a new index needs to be assigned to the new pattern,

the VacRAM will be used to detect the first available row of the cor-

responding set in IndRAM. The VacRAM will be updated to indicate

that this IndRAM row has been taken and is not vacant anymore.

For instance, the example in Figure 6.2 (bottom) shows that the corre-

sponding field in VacRAM of the recently written pattern ‘4’ hold a

binary ‘1’ (shaded field in VacRAM) to indicate that the corresponding

row in IndRAM has been taken.

3. Control and steering logic: Based on current system status and the required

write pattern and write address, it generates write indicators to IndRAM and

indices to IndRAM and STIRAM. Furthermore, it updates the IdxRAM and

VacRAM status.

153

Table 6.1: BRAM usage of a singlea stage II2D-BCAM.

Structure Blocks# Depth Width

STIRAM 1 2PW

⌈
CD
SW

⌉
·
⌈
log2 SW

⌉
IndRAM

⌈
CD
SW

⌉
SW SW

SetRAM 1
⌈

CD
SW

⌉
PW ·SW

IdxRAM 1
⌈

CD
SW

⌉ ⌈
log2 SW

⌉
·SW

VacRAM 1
⌈

CD
SW

⌉
SW

aFor pattern width cascaded II2D-BCAM, cascading method from Section 2.3.3. is employed;
PW = PW,opt =

⌊
log2 RD,min

⌋
is used for each stage, while nc =

⌈
Pw,total
Pw,opt

⌉
stages are required.

154

WIndc

WIndx

MIndc

MPatt

WPatt
WAddr

RA
dd

r

W
Ad

dr

WData

RData

Dual-port
RAM

Connectivity

Match
RAM

St
a

tu
s

R
A

M

S T I R A M

Ind
RAM

Ind
RAM

Ind
RAM

Set RAM

Vac RAM

Idx RAM

C
on

tr
o

l a
nd

 s
te

er
in

g
lo

gi
c

4

4

2

1

2

F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0
Pattern

A
d

d
re

ss
es

se
t 0

se
t 1

se
t 2

se
t 3

3
2
1
0

S
e

t
s

Intra-Set Locat ions

3
2
1
0

S
e

t
s

Intra-Set Locat ions

3
2
1
0

S
e

t
s

Se
tR

A
M

(c
on

ta
in

s
pa

tt
er

ns
)

Id
xR

A
M

V
ac

R
A

M
(v

ac
an

cy
 s

ta
tu

s)

3
2
1
0

In
d

ic
e

s

In
d

R
A

M
(m

at
ch

 in
di

ca
to

rs
) C A M L o c a t i o n s (a d d r e s s e s)

7
6
5
4
3
2
1
0

P
a

tt
e

rn
s

S e t s

ST
IR

A
M

(i
nd

ic
es

 t
o

 In
dR

A
M

 r
ow

s)3
0
2
2
1
0

7
7
5
5
5
0
0
0
0

3
1
7
0

0
0
5
0

2

5
0

2
7
5
0

2
1
1
0

0
0
0
0

1

0
0

1
3
0
0

1
1
1
1

1
1
1
0

1

0
0

0
1
0
0

--
--
--
--
2
1
--
0

3
--
--

--
--
1
0

1
--
0
--

--
--
--
--
--
--
--
0

--
--
--
--

0
1
0
0

0
0
0
1

0
0
1
0

0
0
1

0
0
0
1

0
0
0
1

0
0
0
1

0
0
0
1

0
0
1
0

0
0
0
1

0
0
0
1

0
0
0
1

0
0
1
0

0
0
0
1

0

0
0

1
0
0
0R

A
M

 C
o

n
te

n
t

(r
ef

er
en

ce
)

Set0 Set1 Set2 Set3

Set0 Set1 Set2 Set3
0 1 2 3

0 1 2 3

0 1 2 3

1

0

Figure 6.2: II2D-BCAM single-stage (top) high-level architecture (bottom) 8×3; SW = 4 example; pattern ‘4’
is highlighted with all related RAM content.

155

6.4 Feasibility on Altera’s Stratix Devices

An area efficient implementation of the proposed II2D-BCAMs requires hetero-

geneous BRAMs on the FPGA. The relatively small BRAMs will be used to

construct IndRAM and store match indicators. A perfect candidate is the LUT

configuration RAM, known as LUT RAM, and is supported by both Altera and

Xilinx devices. On the other hand, the relatively large BRAMs will be used to

construct other structures; M20K BRAMs will be used for this purpose.

Altera’s Stratix V memory architecture provides a 640-bit LUT RAM memory

called MLAB (Memory Logic Array Block) as well as 20Kb BRAMs called M20K.

Both MLABs and M20Ks are used in their shallowest//widest configuration

modes. Hence, the MLABs are 32× 20, and the M20Ks are 512× 40. Since

the depth of MLABs is 32, and they are used to implement the IndRAM, we set

SW = 32. With an index width of dlog2 SW e= 5, a single M20K line can store up

to 8 indices. To write a single 5-bit index in the STIRAM, M20K’s mixed-width

port is used to write a single 5-bit field [55].

6.5 Comparison and Discussion

Table 6.2 shows storage efficiency estimation for different BCAM architectures

and is derived from Equation 2.11, Equation 2.13, Equation 5.4 and Table 6.1. The

storage efficiency of the uncascaded (in pattern width) Brute-Force Transposed

Indicators (BF-TI) implementation is inversely proportional to the exponent of PW ,

hence, decays rapidly with PW increase, as shown in Figure 5.5.

The efficiency of BF-TI when cascading the pattern width is independent

156

Table 6.2: Storage efficiency µs (inversed).

Uncascaded Pattern Width Cascaded

Brute-force
TIRAM (BF-TI) µs(BFT I)−1 ≈ 1+ 2PW

PW
µs(BFT I)−1 ≈ 1+ RD,min

log2 RD,min

Hierarchical
Search (HS) µs(2DHS)−1 ≈ 1+ 2PW

PW ·SW
µs(IIHS)−1 ≈ 1+

1+SW+log2 SW ·
(

1+
RD,min

SW

)
log2 RD,min

of the value of PW . However, the efficiency is affected by an intrinsic BRAM

characteristic, the minimal depth RD,min (associated with the maximum width). As

shown in Figure 6.3 (top), the efficiency is inversely proportional to RD,min, hence,

shallow and wide BRAMs with smaller RD,min (and larger RW,max) will exhibit

higher storage efficiency.

Similar to the uncascaded BF-TI, the efficiency of the 2-Dimensional Hierar-

chical Search BCAM (2D-HS-BCAM) is inversely proportional to the exponent of

PW . However, the exponential relation is mitigated by the set width SW , an external

and user-driven parameter. On the other hand, the efficiency of our II-HS-BCAM

approach is not related to the pattern width PW , but is augmented by SW .

The 2D-HS-BCAM is more efficient than the II-HS-BCAM for narrow patterns,

namely, for patterns narrower than a specific pattern width threshold PW,th as

follows

µs(2DHS)≥ µs(IIHS)⇐⇒ PW ≤ PW,th. (6.3)

To solve the left side inequality, storage efficiency of the 2D-HS-BCAM and

157

the II-HS-BCAM in Table 6.2 are used, hence,

µs(2DHS) ≥ µs(IIHS)

⇐⇒ µs(2DHS)−1 ≤ µs(IIHS)−1

(substitute storage efficiencies from Table 6.2, where 2D-HS-BCAM has a

set width of SW,2D and II-HS-BCAM has a set width of SW,II)

⇐⇒ 1+ 2PW
PW ·SW,2D

≤ 1+
1+SW,II+log2 SW,II ·

(
1+

RD,min
SW,II

)
log2 RD,min

(subtract 1)

⇐⇒ 2PW
PW ·SW,2D

≤
1+SW,II+log2 SW,II ·

(
1+

RD,min
SW,II

)
log2 RD,min

(multiply by PW ·SW,2D)

⇐⇒ 2PW ≤ PW ·SW,2D ·
1+SW,II+log2 SW,II ·

(
1+

RD,min
SW,II

)
log2 RD,min

(isolate constants)

⇐⇒ 2PW ≤ a ·PW , a = SW,2D ·
1+SW,II+log2 SW,II ·

(
1+

RD,min
SW,II

)
log2 RD,min

(exponential inequality of the form bx ≤ ax can be solved with the

Lambert Product Logarithm function (Omega function), where W−1

denotes the lower branch of the Lambert Product Logarithm function)

⇐⇒ PW ≤−
W−1

(
− ln2

a

)
ln2 , a = SW,2D ·

1+SW,II+log2 SW,II ·
(

1+
RD,min
SW,II

)
log2 RD,min

.

(6.4)

From Equation 6.4 and the right side of Equation 6.3, the 2D-HS-BCAM is

more efficient than the II-HS-BCAM for pattern narrower than the threshold

PW,th =−
W−1

(
− ln2

a

)
ln2

, a = SW,2D ·
1+SW,II + log2 SW,II ·

(
1+ RD,min

SW,II

)
log2

(
RD,min

) . (6.5)

For the 2D-HS-BCAM approach, the set width SW has a limitation due to the

minimal width of the SetRAM it is stored in. The SetRAM depth is dCD
SW
e and is

158

limited by RD,min. Hence, to achieve maximum efficiency, SW is bounded by

SW ≤
CD

RD,min
. (6.6)

On the other hand, the set width SW for our II-HS-BCAM is bounded by

internal RAM parameters. Specifically, the depth of the MLAB (LUTRAM) and

the BRAM allowable write port width in mixed-width mode. As described in

Section 6.4, Altera’s Stratix V MLAB depth (for the widest configuration) is 32,

and the mixed-width mode of the M20K supports a native width oflog2 (32) = 5

for write data, so SW = 32 is a suitable set width. This restriction is in agreement

with Figure 6.3 (bottom) where the storage efficiency µs is given as function of

the set width SW . Figure 6.3 (bottom) shows that the storage efficiency decreases

for narrow sets since the STIRAM portion of the II-HS-BCAM is not efficiently

compressed using narrow sets. On the other hand, storage efficiency decreases for

wide sets due to the increase of the IndRAM portion.

Applying typical parameters of Altera’s Stratix V M20K BRAM and MLAB

LUTRAM, i.e., RD,min = 512, SW,II = 32, and SW,2D = 4k, into Equation 6.5 shows

that the previous 2D-HS-BCAM is more efficient than the II-HS-BCAM for up

to PW = 20 bits only. For these parameter settings, the storage efficiency of the

II-HS-BCAM is µs = 0.08. A sweep of different values is shown in Figure 6.3.

159

0

0.02

0.04

0.06

0.08

0.1

0.12

128 256 512 1024 2048 4096

II-HS(S =128)
II-HS(S =64)
II-HS(S =32)
II-HS(S =16)
II-HS(S =8)
BF-TI

BRAM Shallowest Depth (RD,min)

St
o

ra
ge

 E
ff

ic
ie

n
cy

 (
µ

s) W

W

W

W

W

A
lt

er
a'

s
M

2
0

K

0

0.02

0.04

0.06

0.08

0.1

0.12

8 16 32 64 128 256 512

II-HS(R =128)
II-HS(R =256)
II-HS(R =512)
II-HS(R =1024)
II-HS(R =2048)
II-HS(R =4096)

Set Width (SW)

St
o

ra
ge

 E
ff

ic
ie

n
cy

 (
µ

s) D,min

D,min

D,min

D,min

D,min

D,min

Figure 6.3: Storage Efficiency µs as function of (top) BRAM shallowest depth (RD,min), and (bottom) set width
(SW) for 2D-HS-BCAM and the pattern width cascaded BF-TI.

160

6.6 Experimental Results

To verify and simulate the suggested II-HS-BCAM approach and compare to

standard and previous techniques, fully parameterized Verilog modules have been

developed. Register-based, pattern width cascaded and uncascaded Brute-Force

Transposed Indicators (BF-TI), Hierarchical search BCAM, and the proposed

II-HS-BCAM methods have been implemented. A run-in-batch flow manager

has also been developed to simulate and synthesize these designs with various

parameters in batch using Altera’s ModelSim and Quartus II. The Verilog modules

and the flow manager are available online [115].

To verify correctness, the proposed architecture is simulated using Altera’s

ModelSim. A large variety of different BCAM architectures and parameters, e.g.,

BCAM depth and pattern width, are swept and simulated in batch, each with over

a million random cycles. All different BCAM design modules were implemented

using Altera’s Quartus II on Altera’s Stratix V 5SGXMABN1F45C2 device. This

is a speed grade 2 device with 360k ALMs and 2640 M20Ks. Half of the ALM’s

can be used to construct MLABs, while a single MLAB consists of 10 ALMs.

Figure 6.4 plots feasible BCAM depth and pattern width sweeps (both PW

and CD are the x-axis). Within the device limits, the proposed II-HS-BCAM

approach is able to reach a 153-bit pattern width, while other approaches cannot

exceed 45-bits for 16K entries. The number of Altera’s M20K blocks used to

implement each BCAM configuration is plotted in Figure 6.4 (bottom). The BF-TI

and our II-HS-BCAM exhibit a linear growth of M20K consumption as pattern

161

width increases since both methods are pattern width cascaded. However, the

II-HS-BCAM growth rate is lower since addresses are grouped as sets. On the

other hand, the 2D-HS-BCAM suffers from exponential growth, hence it cannot

exceed a very narrow pattern width of 20 bits.

As shown in Figure 6.4 (middle), the proposed II-HS-BCAM method and the

BF-TI also exhibit linear ALM count growth as pattern width increases. The

priority-encoder in the 2D-HS-BCAM approach is split in two, hence the ALM

count is lower. Furthermore, our II-HS-BCAM approach uses ALMs as MLABs,

hence it has higher ALM consumption. The register-based BCAM consumes the

most ALMs due to massive register usage.

Figure 6.4 (top) plots the Fmax of all BCAM architectures. The 2D-HS-BCAM

exhibits the highest Fmax for very narrow patterns, where it is feasible. However,

Fmax drops dramatically as the pattern width increases due to a massive increase of

M20K usage. On the other hand, II-HS-BCAM performs better than BF-TI and

register-based BCAM for shallow memory. As can be seen, Fmax decreases mildly

as pattern width increases due to pattern width cascading.

Similar to BF-TI and 2D-HS-BCAM, II-HS-BCAM is capable of matching a

pattern every cycle and writing a pattern every two. Pipelining is employed to

increase Fmax and this adversely increases latency. The longest combinational path

goes through the output priority-encoder, and is pipelined every stage. For the

device-specific PE described in Appendix B,
⌈

log4

⌈
CD
SW

⌉⌉
pipe stages are required.

2D-HS-BCAM benefits from higher SW , hence it can exhibit lower latency. On the

other hand, sets are not used in BF-TI, hence its match latency is
⌈
log4CD

⌉
.

162

0
0.5

1
1.5

2
2.5

3

9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

1
0

8

1
1

7

1
2

6

1
3

5

1
4

4

1
5

3 9

1
8

2
7

3
6

4
5

5
4

6
3

7
2 9

1
8

2
7

3
6 9

16K 32k 64k 128k

M
2

0
K

s
(1

0
0

0
's

)

0
50

100
150
200
250
300
350

AL
M

s (
10

00
's)

0

100

200

300

400

500

Fm
ax

 (
M

H
z)

Reg-based

BF-BCAM

HS-BCAM

II2D-BCAM

PW

CD

Figure 6.4: Results for several BCAM depth and pattern width sweeps (bottom) M20K count (middle) ALMs
count (top) Fmax at T=0◦C.

163

6.7 Conclusions

In this chapter, a novel BCAM architecture for FPGAs is proposed. The approach is

fully BRAM-based and employs hierarchical search to reduce BRAM consumption.

While traditional brute-force approaches have a pattern match indicator for every

single address, the proposed approach groups addresses into sets and maintains

a single pattern match indicator for every set. The hierarchical search BCAMs

from Chapter 5 cannot be cascaded in pattern width since they provide a single

matching address; this incurs an exponential increase of RAM consumption as

pattern width increases. On the other hand, the approach in this chapter efficiently

regenerates a match indicator for every single address by storing indirect indices for

address match indicators. Hence, the proposed method can be cascaded in pattern

width and the exponential growth is alleviated into linear. The storage efficiency

of our approach is five times the storage efficiency of the brute-force approach.

Furthermore, our technique supports up to nine times wider patterns compared to

the 2D-HS-BCAM approach in Chapter 5. Compared to brute-force techniques,

this method requires a maximum of 18% the RAM storage, while enhancing clock

speed by 45% on average.

A fully parameterized Verilog implementation of the suggested methods is

provided as open source hardware [115].

164

Chapter 7

Conclusions

In this chapter, we summarize the results of this dissertation, which show that the

proposed I-LVT dominates and should replace existing LVT and XOR methods

for MPRAM. Also, key results and contributions for CAMs are discussed. We

conclude with suggestions for future work.

7.1 Dissertation Summary

This dissertation provides an attempt to resolve the memory bottleneck of massively

parallel reconfigurable systems by providing efficient, parallel and customizable

embedded memory structures. Although concurrent multi-ported memories are

important, their high implementation cost means they are used sparingly. As

a result, FPGA vendors only provide standard dual-ported memories to handle

the majority of usage patterns. This dissertation describes a novel, efficient and

modular approach to construct multi-ported memories out of basic dual-ported

165

Block-RAMs.

Another massively parallel memory structure that is investigated in this disser-

tation is the content-addressable memory (CAM), a hardware implementation of

associative arrays. Despite their importance, FPGAs lack an area-efficient CAM im-

plementation. This dissertation proposes new methods to construct SRAM-based,

efficient and modular binary CAMs (BCAMs).

In Chapter 3, an invalidation-based live-value-table, or I-LVT, is used to build

modular SRAM-based multi-ported memories. The invalidation-based live-value-

table (I-LVT) determines the latest written data bank. The I-LVT generalizes and

replaces two prior techniques, the LVT and XOR-based approaches. A general

I-LVT is described, along with two specific implementations: binary-coded and

thermometer-coded. Both methods are purely SRAM based, so they scale well

with memory depth. The original LVT approach can use an infeasible number

of registers. In contrast, the I-LVT register usage is not directly proportional to

memory depth; hence it requires orders of magnitude fewer registers. Furthermore,

the proposed I-LVT method can reduce BRAM consumption up to 44% and

improve Fmax by up to 76% compared to the previous XOR-based approach. The

thermometer-coded I-LVT method exhibits the highest Fmax, while keeping BRAM

consumption within 6% of the minimal required BRAM count. Meanwhile, the

binary-coded I-LVT uses fewer BRAMs than the thermometer-coded when there

are more than 3 write ports. Based on our results, past approaches of XOR and

LVT are only recommended for narrow data widths or shallow depths, respectively.

In all other cases, the new I-LVT approaches are superior.

166

In Chapter 4, we have proposed a novel, modular, BRAM-based and switched-

multi-ported RAM architecture. In addition to unidirectional ports with fixed

read/write, this switched architecture allows a group of write ports to switch with

another group of read ports dynamically. The proposed switched-ports architecture

is less flexible than a true-multi-ported RAM where each port is switched individu-

ally. Nevertheless, switched memories can reduce BRAM consumption compared

to true or simple ports for systems with alternating port requirements.

When multiple switched ports exist in a multi-ported RAM design, a memory

compiler can be used to create a specific design instance. The compiler must solve

a set cover problem to optimize the implementation. Our CAD approach always

finds a minimal implementation for all of our test cases, but there is opportunity for

further CAD research to improve run-time while still being optimal. On average

out of 10 random test-cases, the suggested multi-switched-ports method reduces

BRAM use by 18% compared to the best of previous methods, while maintaining

ALM count and Fmax. Future research may address the RAM port assignment

problem to more complex cases where there are more than two states governing

memory port usage.

In Chapter 5, a novel BCAM architecture for FPGAs is proposed. The approach

is fully BRAM-based and employs hierarchical search to reduce BRAM consump-

tion. While the traditional brute-force approach has a pattern match indicator

for each single address, the proposed approach maintains a single pattern match

indicator for a set of addresses. The suggested method is capable of implementing

a 4M-line CAM and significantly improves area and performance. In contrast,

167

traditional methods cannot exceed 64K in depth. The suggested 2-Dimensional

Hierarchical Search BCAM (2D-HS-BCAM) design completely dominates all past

designs in BRAM and ALM consumption, Fmax and runtime. However, this hi-

erarchical search BCAM cannot be cascaded in pattern width since it provides a

single matching address; this incurs an exponential increase of RAM consumption

as pattern width increases. Hence, it only supports narrow pattern widths.

In Chapter 6, the narrow pattern width restriction is addressed. While traditional

brute-force approaches have a pattern match indicator for every single address, the

hierarchical approach groups addresses into sets and maintains a single pattern

match indicator for every set. The new approach here efficiently regenerates a

match indicator for every single address by storing indirect indices for address

match indicators. Hence, the proposed method can be cascaded in pattern width

and the exponential growth is alleviated into linear. Our technique supports up to

four times wider patterns compared to the brute-force BCAM and up to nine times

wider patterns compared to the hierarchical search BCAM.

7.2 Future Directions

Future directions of the parallel memory structures described in this dissertation

are explored in this section.

7.2.1 Invalidation-Table Multi-Ported Memories

The suggested multi-ported memories can be tested with various other FPGA

vendors’ tools and devices. Furthermore, these methods can also be tested for ASIC

168

implementation using dual-ported RAMs as building blocks, and compared against

memory compiler results. Also, to improve Fmax, time-borrowing techniques can

be utilized. The goal would be to recover the frequency drop due to the multi-ported

RAM additional logic, feedback and bank selection logic. One possible approach

uses shifted clocks to provide more reading and writing time [116]. However,

adapting this method to multi-ported memories is not trivial due to internal timing

paths across the I-LVT.

The true-multi-ported RAM proposed by others [56, 73] can utilize our I-LVT

method to implement BRAM-based LVT instead of register-based LVT, which

eliminates the need of register-based memories and allows higher RAM capacities.

There is opportunity for further CAD research to improve run-time of the

multi-switched-ports RAM compiler while still being optimal. Future research

may address the RAM port assignment problem to more complex cases where

there are more than two states governing memory port usage.

7.2.2 BRAM-Based Content-Addressable Memories

The suggested BCAMs can be tested with other FPGA vendors’ tools and devices.

Furthermore, these methods can be tested for ASIC implementation using dual-

ported RAMs as building blocks, and compared against custom-designed BCAMs.

Increased pipelining and time-borrowing techniques can be used to improve

Fmax. The goal would be to recover the frequency drop due to the comparators

and priority-encoder. One possible approach uses shifted clocks to provide more

reading and writing time [116]. However, adapting this method to BCAMs is not

169

trivial due to internal timing paths across the BCAM.

To fit some applications that require single-cycle writing, e.g., caches and TLBs,

the proposed technique can be enhanced to support single cycle write by using

multi-write RAM [1].

7.2.3 Parallel Reconfigurable Computing with Customizable
Concurrent Memories

Since FPGAs must fix their RAM block designs for generic designs, it is too costly

to provide highly specialized RAMs with a large number of ports. Due to this

restriction, state-of-the-art parallel reconfigurable systems support reconfigurable

distributed dual-ported memory blocks only. As future research, reconfigurable sys-

tems that can take advantage of the multi-ported memories and content-addressable

memories proposed in this dissertation can be investigated. Future research could

also perform a design space exploration for new parallel reconfigurable architec-

tures with customizable concurrent memories.

170

Bibliography

[1] A. M. S. Abdelhadi and G. G. F. Lemieux. Modular Multi-Ported
SRAM-Based Memories. In ACM/SIGDA International Symposium on
Field-programmable Gate Arrays (FPGA), pages 35–44, February 2014. →
pages iv, v, 10, 81, 109, 111, 115, 117, 118, 121, 122, 170

[2] Ameer M.S. Abdelhadi and Guy G.F. Lemieux. Modular Switched
Multi-Ported SRAM-Based Memories. ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 9(3):22:1–22:26, July
2016. → pages iv, vi, 11, 96, 115, 116, 117, 118, 121, 122

[3] A. M. S. Abdelhadi and G. G. F. Lemieux. A Multi-Ported Memory
Compiler Utilizing True Dual-Port BRAMs. In IEEE International
Symposium on Field-Programmable Custom Computing Machines (FCCM),
pages 200–207, May 2016. → pages v, vi

[4] A. M. S. Abdelhadi and G. G. F. Lemieux. Deep and Narrow Binary
Content-Addressable Memories Using FPGA-Based BRAMs. In
International Conference on Field-Programmable Technology (FPT), pages
318–321, December 2014. → pages v, vi, 12

[5] A. M. S. Abdelhadi and G. G. F. Lemieux. Modular SRAM-Based Binary
Content-Addressable Memories. In IEEE International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages
207–214, May 2015. → pages iv, v, vi, 13

[6] J. H. Tseng and K. Asanović. Banked Multiported Register Files for
High-Frequency Superscalar Microprocessors. In ACM/IEEE International
Symposium on Computer Architecture (ISCA), pages 62–71, June 2003. →
pages 3, 22

171

[7] J. A. Fisher. Very Long Instruction Word Architectures and the ELI-512. In
ACM/IEEE International Symposium on Computer Architecture (ISCA),
pages 140–150, June 1983. → pages 3

[8] E. S. Fetzer and J. T. Orton. A Fully-Bypassed 6-Issue Integer Datapath and
Register File on an Itanium Microprocessor. In IEEE International
Solid-State Circuits Conference (ISSCC), pages 420–478, February 2002.
→ pages 3

[9] H. Bajwa and X. Chen. Low-Power High-Performance and Dynamically
Configured Multi-Port Cache Memory Architecture. In International
Conference on Electrical Engineering (ICEE), pages 1–6, April 2007. →
pages 3

[10] Z. Kwok and S. J. E. Wilton. Register File Architecture Optimization in a
Coarse-Grained Reconfigurable Architecture. In IEEE International
Symposium on Field-Programmable Custom Computing Machines (FCCM),
pages 35–44, April 2005. → pages 3

[11] C. E. LaForest and J. G. Steffan. Efficient Multi-Ported Memories for
FPGAs. In ACM/SIGDA International Symposium on Field-programmable
Gate Arrays (FPGA), pages 41–50, February 2010. → pages 4, 10, 23, 26,
83, 117

[12] C. E. Laforest, M. G. Liu, E. R. Rapati, and J. G. Steffan. Multi-Ported
Memories for FPGAs via XOR. In ACM/SIGDA International Symposium
on Field-programmable Gate Arrays (FPGA), pages 209–218, February
2012. → pages 4, 10, 23, 26, 83

[13] Sateh M. Jalaleddine. Associative Memories and Processors: The Exact
Match Paradigm. Journal of King Saud University Computer and
Information Sciences, 11:45–67, January 1999. → pages 5

[14] M. Peng and S. Azgomi. Content-Addressable Memory (CAM) and its
Network Applications. In International IC–Taipei Conference, pages 1–3,
May 2001. → pages 5

[15] Qutaiba Ali. A Flexible Design of Network Devices Using Reconfigurable
Content Addressable Memory. International Arab Journal of Information
Technology (IAJIT), 8(3):235–243, July 2011. → pages

172

[16] H. Chen, Y. Chen, and D. H. Summerville. A Survey on the Application of
FPGAs for Network Infrastructure Security. IEEE Communications
Surveys Tutorials, 13(4):541–561, April 2011. → pages

[17] K. McLaughlin, N. O’Connor, and S. Sezer. Exploring CAM Design For
Network Processing Using FPGA Technology. In Advanced International
Conference on Telecommunications and International Conference on
Internet and Web Applications and Services (AICT-ICIW), pages 84–84,
February 2006. → pages 5

[18] I. Y.-L. Hsiao and C.-W. Jen. A New Hardware Design and FPGA
Implementation for Internet Routing Towards IP over WDM and Terabit
Routers. In IEEE International Symposium on Circuits and Systems
(ISCAS), pages 387–390 vol.1, May 2000. → pages 5, 40

[19] W. Jiang, Q. Wang, and V. K. Prasanna. Beyond TCAMs: An
SRAM-Based Parallel Multi-Pipeline Architecture for Terabit IP Lookup.
In IEEE Conference on Computer Communications (INFOCOM), April
2008. → pages

[20] H. Le, W. Jiang, and V. K. Prasanna. A SRAM-Based Architecture for
Trie-based IP Lookup Using FPGA. In IEEE International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 33–42,
April 2008. → pages

[21] H. Le, W. Jiang, and V. K. Prasanna. Scalable High-Throughput
SRAM-Based Architecture for IP-Lookup Using FPGA. In International
Conference on Field-Programmable Logic and Applications (FPL), pages
137–142, September 2008. → pages

[22] H. Le and V. K. Prasanna. Scalable High Throughput and Power Efficient
IP-Lookup on FPGA. In IEEE International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages
167–174, April 2009. → pages 40

[23] D. Unnikrishnan, R. Vadlamani, Y. Liao, A. Dwaraki, J. Crenne, L. Gao,
and R. Tessier. Scalable Network Virtualization Using FPGAs. In
ACM/SIGDA International Symposium on Field-programmable Gate Arrays
(FPGA), pages 219–228, February 2010. → pages

173

[24] N. Mudaliar. Design and Implementation of MobilityFirst Router on the
NetFPGA Platform. Master’s thesis, Dept. of Electrical and Computer
Engineering, Rutgers, The State University of New Jersey, New Brunswick,
NJ, May 2013. → pages 5

[25] L. Bu and J. A. Chandy. FPGA Based Network Intrusion Detection Using
Content Addressable Memories. In IEEE International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages
316–317, April 2004. → pages 5

[26] B.-K. Kim, Y.-J. Heo, and J.-T. Oh. High-Performance Intrusion Detection
in FPGA-Based Reconfiguring Hardware. In Asia-Pacific Network
Operations and Management Symposium (APNOMS), pages 563–573,
September 2005. → pages

[27] A. Kaleel Rahuman and G. Athisha. Reconfigurable Hardware Architecture
for Network Intrusion Detection System. American Journal of Applied
Sciences, 9(10):1618–1624, October 2012. → pages

[28] H. Song and J. W. Lockwood. Efficient Packet Classification for Network
Intrusion Detection Using FPGA. In ACM/SIGDA International Symposium
on Field-programmable Gate Arrays (FPGA), pages 238–245, February
2005. → pages

[29] F. Yu. High Speed Deep Packet Inspection with Hardware Support. Phd
thesis, Dept. of Electrical Engineering and Computer Sciences, University
of California, Berkeley, Berkeley, CA, November 2006. → pages 5

[30] V. Puš and J. Korenek. Fast and Scalable Packet Classification Using
Perfect Hash Functions. In ACM/SIGDA International Symposium on
Field-programmable Gate Arrays (FPGA), pages 229–236, February 2009.
→ pages 5, 40

[31] Y. Qi, J. Fong, W. Jiang, B. Xu, J. Li, and V. Prasanna. Multi-Dimensional
Packet classification on FPGA: 100 Gbps and Beyond. In International
Conference on Field-Programmable Technology (FPT), pages 241–248,
December 2010. → pages

[32] R. Wei, Y. Xu, and H. Chao. Block Permutations in Boolean Space to
Minimize TCAM for Packet Classification. In IEEE Conference on

174

Computer Communications (INFOCOM), pages 2561–2565, March 2012.
→ pages 5

[33] U. Dhawan and A. DeHon. Area-Efficient Near-Associative Memories on
FPGAs. In ACM/SIGDA International Symposium on Field-programmable
Gate Arrays (FPGA), pages 191–200, February 2013. → pages 5, 40

[34] H. Wong, V. Betz, and J. Rose. Comparing FPGA vs. Custom CMOS and
the Impact on Processor Microarchitecture. In ACM/SIGDA International
Symposium on Field-programmable Gate Arrays (FPGA), pages 5–14,
February 2011. → pages 5

[35] H. Wong, V. Betz, and J. Rose. Quantifying the Gap Between FPGA and
Custom CMOS to Aid Microarchitectural Design. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 22(10):2067–2080, October
2014. → pages 5

[36] H. Wong, V. Betz, and J. Rose. Efficient Methods for Out-of-Order
Load/Store Execution For High-Performance Soft Processors. In
International Conference on Field-Programmable Technology (FPT), pages
442–445, December 2013. → pages 5

[37] Pedro Alcocer and Colin Phillips. Using Relational Syntactic Constraints in
Content-Addressable Memory Architectures for Sentence Parsing. Special
Issue of Topics in Cognitive Science on Computational Psycholinguistics,
April 2012. → pages 5

[38] K. Suman N. Manonmani and C.Udhayakumar. Dynamic Based
Reconfigurable Content Addressable Memory for Fast String Matching.
International Journal of Engineering Science and Innovative Technology
(IJESIT), 3(1):429–435, January 2014. → pages

[39] G. Nilsen. A Variable Word-Width Content Addressable Memory (CAM)
for Fast String Matching. Master’s thesis, Dept. of Informatics, University
of Oslo, Oslo, Norway, May 2013. → pages 5

[40] R.-Y. Yang and C.-Y. Lee. High-Throughput Data Compressor Designs
Using Content Addressable Memory. In IEEE International Symposium on
Circuits and Systems (ISCAS), pages 147–150 vol.4, May 1994. → pages 5

175

[41] J. V. Oldfield, R. D. Williams, N. E. Wiseman, and M. R. Brule.
Content-Addressable Memories for Quadtree-Based Images. In
Eurographics Conference on Advances in Computer Graphics Hardware
(EGGH), pages 67–84, September 1988. → pages 5

[42] Y. C. Shin, R. Sridhar, V. Demjanenko, P. W. Palumbo, and S. N. Srihari. A
Special-Purpose Content Addressable Memory Chip for Real-Time Image
Processing. IEEE Journal of Solid-State Circuits (JSSC), 27(5):737–744,
May 1992. → pages 5

[43] D. Agrawal and A. E. Abbadi. Hardware Acceleration for Database
Systems Using Content Addressable Memories. In International Workshop
on Data Management on New Hardware (DaMoN), June 2005. → pages 5

[44] A. Goel and P. Gupta. Small Subset Queries and Bloom Filters Using
Ternary Associative Memories, with Applications. In ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, pages 143–154, June 2010. → pages 5

[45] S. A. Guccione and E. Keller. Gene Matching Using JBits. In International
Conference on Field-Programmable Logic and Applications (FPL), pages
1168–1171, September 2002. → pages 5

[46] R. V. Satya, A. Mukherjee, and U. Ranga. A Pattern Matching Algorithm
for Codon Optimization and CpG Motif-Engineering in DNA Expression
Vectors. In IEEE Computer Society Conference on Bioinformatics (CSB),
pages 294–305, August 2003. → pages 5

[47] S. Ahmad and R. Mahapatra. TCAM Enabled On-chip Logic Minimization.
In Design Automation Conference (DAC), pages 678–683, June 2005. →
pages 5

[48] Y. Tatsumi and H. J. Mattausch. Fast Quadratic Increase of
Multiport-Storage-Cell Area with Port Number. Electronics Letters, 35(25):
2185–2187, December 1999. → pages 7

[49] K. Pagiamtzis and A. Sheikholeslami. Content-Addressable Memory
(CAM) Circuits and Architectures: a Tutorial and Survey. IEEE Journal of
Solid-State Circuits (JSSC), 41(3):712–727, March 2006. → pages 8, 29

176

[50] J. P. Wade and C. G. Sodini. A Ternary Content Addressable Search Engine.
IEEE Journal of Solid-State Circuits (JSSC), 24(4):1003–1013, August
1989. → pages

[51] A. J. McAuley and C. J. Cotton. A Reconfigurable Content Addressable
Memory. In IEEE Custom Integrated Circuits Conference (CICC), pages
24.1/1–24.1/4, May 1990. → pages

[52] K. J. Schultz and P. G. Gulak. Fully Parallel Integrated CAM/RAM Using
Preclassification to Enable Large Capacities. IEEE Journal of Solid-State
Circuits (JSSC), 31(5):689–699, May 1996. → pages

[53] K. J. Schultz and P. G. Gulak. Fully-Parallel Multi-Megabit Integrated
CAM/RAM Design. In IEEE International Workshop on Memory
Technology, Design and Testing (MTDT), pages 46–51, August 1994. →
pages 8, 29

[54] Altera Corp. APEX 20K Programmable Logic Device Family Data Sheet.
San Jose, CA, USA, March 2004. Version 5.1. → pages 8, 29, 41

[55] Altera Corp. Stratix V Device Handbook. San Jose, CA, USA, May 2013.
→ pages 9, 14, 15, 30, 32, 38, 58, 115, 126, 140, 156, 188

[56] J. Choi, K. Nam, A. Canis, J. Anderson, S. Brown, and T. Czajkowski.
Impact of Cache Architecture and Interface on Performance and Area of
FPGA-Based Processor/Parallel-Accelerator Systems. In IEEE
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 17–24, April 2012. → pages 11, 25, 83, 96, 115,
117, 118, 121, 122, 169

[57] Altera Corp. Quartus II Handbook. San Jose, CA, USA, November 2013.
Version 13.1. → pages 14, 126, 147

[58] A. M. S. Abdelhadi. GitHub Repository, 2014. URL
https://github.com/AmeerAbdelhadi. Accessed September 2016. → pages
14

[59] G. A. Malazgirt, H. E. Yantir, A. Yurdakul, and S. Niar. Application
Specific Multi-Port Memory Customization in FPGAs. In International
Conference on Field-Programmable Logic and Applications (FPL), pages
1–4, September 2014. → pages 19

177

https://github.com/AmeerAbdelhadi

[60] H. E. Yantir and A. Yurdakul. An Efficient Heterogeneous Register File
Implementation for FPGAs. In International Parallel and Distributed
Processing Symposium Workshops and PhD Forum (IPDPSW), pages
293–298, May 2014. → pages

[61] H. E. Yantir. A Systematic Approach for Register File Design in FPGAs.
Master’s thesis, Dept. of Computer Engineering, Boğaziçi University,
Istanbul, Turkey, January 2014. → pages

[62] H. E. Yantir, S. Bayar, and A. Yurdakul. Efficient Implementations of
Multi-pumped Multi-port Register Files in FPGAs. In Euromicro
Conference on Digital System Design (DSD), pages 185–192, September
2013. → pages 19

[63] A. Muddebihal. Area Efficient Multi-Ported Memories with Write Conflict
Resolution. Master’s thesis, Dept. of Electrical Engineering and Computing
Systems, University of Cincinnati, Cincinnati, OH, April 2014. → pages 19

[64] B. A. Chappell, T. I. Chappell, M. K. Ebcioglu, and S. E. Schuster. Virtual
Multi-Port RAM Employing Multiple Accesses During Single Machine
Cycle, July 1996. US Patent 5,542,067. → pages 19

[65] H. Yokota. Multiport Memory System, May 1990. US Patent 4,930,066. →
pages 19

[66] G. S. Ditlow, R. K. Montoye, S. N. Storino, S. M. Dance, S. Ehrenreich,
B. M. Fleischer, et al. A 4R2W Register File for a 2.3GHz Wire-Speed
POWERTM Processor with Double-Pumped Write Operation. In IEEE
International Solid-State Circuits Conference (ISSCC), pages 256–258,
February 2011. → pages 19, 21

[67] R. E. Kessler. The Alpha 21264 Microprocessor. IEEE Micro, 19(2):24–36,
March 1999. → pages 21

[68] K. R. Townsend, O. G. Attia, P. H. Jones, and J. Zambreno. A Scalable
Unsegmented Multiport Memory for FPGA-Based Systems. International
Journal of Reconfigurable Computing, December 2015. → pages 22

[69] H. J. Mattausch. Hierarchical N-Port Memory Architecture Based on 1-Port
Memory Cells. In European Solid-State Circuits Conference (ESSCIRC),
pages 348–351, September 1997. → pages

178

[70] W. Ji, F. Shi, B. Qiao, and H. Song. Multi-Port Memory Design
Methodology Based on Block Read and Write. In IEEE International
Conference on Control and Automation (ICCA), pages 256–259, May 2007.
→ pages

[71] W. Zuo, Q. Zuo, and J. Li. An Intelligent Multi-Port Memory. In
International Symposium on Intelligent Information Technology Application
Workshops (IITAW), pages 251–254, December 2008. → pages 22

[72] D. Alpert and D. Avnon. Architecture of the Pentium Microprocessor.
IEEE Micro, 13(3):11–21, May 1993. → pages 22

[73] C.E. LaForest, Z. Li, T. O’Rourke, M.G. Liu, and J.G. Steffan. Composing
Multi-Ported Memories on FPGAs. ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 7(3):16:1–16:23, September 2014. →
pages 23, 25, 26, 169

[74] V. R. K. Naresh, D. J. Palframan, and M. H. Lipasti. CRAM: Coded
Registers for Amplified Multiporting. In IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 196–205, December
2011. → pages 27

[75] K. Locke. Parameterizable Content-Addressable Memory, 2011.
Application Note XAPP1151. → pages 34, 36, 41

[76] J.-L. Brelet. Using Block RAM for High Performance Read/Write CAMs,
2000. Application Note XAPP204. → pages 41

[77] J.-L. Brelet and L. Gopalakrishnan. Using Virtex-II Block RAM for High
Performance Read/Write CAMs, 2002. Application Note XAPP260. →
pages

[78] J. L. Brelet. Methods for Implementing CAM Functions Using Dual-Port
RAM, March 2002. US Patent 6,353,332. → pages 34, 36, 41

[79] Altera Corp. Implementing High-Speed Search Applications with Altera
CAM, July 2001. Application Note 119, Version 2.1. → pages 34, 36

[80] C. A. Zerbini and J. M. Finochietto. Performance Evaluation of Packet
Classification on FPGA-Based TCAM Emulation Architectures. In IEEE
Global Communications Conference (GLOBECOM), pages 2766–2771,
December 2012. → pages 34

179

[81] W. Jiang. Scalable Ternary Content Addressable Memory Implementation
Using FPGAs. In ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS), pages 71–82, October 2013. →
pages 35

[82] Z. Ullah, K. Ilgon, and S. Baeg. Hybrid Partitioned SRAM-Based Ternary
Content Addressable Memory. IEEE Transactions on Circuits and Systems
I: Regular Papers, 59(12):2969–2979, December 2012. → pages 35

[83] Z. Ullah, M. K. Jaiswal, Y. C. Chan, and R. C. C. Cheung. FPGA
Implementation of SRAM-Based Ternary Content Addressable Memory. In
International Parallel and Distributed Processing Symposium Workshops
and PhD Forum (IPDPSW), pages 383–389, May 2012. → pages

[84] Z. Ullah, M. K. Jaiswal, and Cheung R. C. C. Design Space Explorations of
Hybrid-Partitioned TCAM (HP-TCAM). In International Conference on
Field-Programmable Logic and Applications (FPL), pages 1–4, September
2013. → pages

[85] Z. Ullah, M. K. Jaiswal, and R. C. C. Cheung. Z-TCAM: An SRAM-Based
Architecture for TCAM. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 23(2):402–406, February 2015. → pages 35

[86] S. Guccione, D. Levi, and D. Downs. A Reconfigurable Content
Addressable Memory. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 882–889, May 2000. → pages 38

[87] S. A. Guccione, D. Levi, and D. J. Downs. Content-Addressable Memory
Implemented Using Programmable Logic, February 2002. US Patent
6,351,143. → pages

[88] J. Ditmar, K. Torkelsson, and A. Jantsch. A Dynamically Reconfigurable
FPGA-Based Content Addressable Memory for Internet Protocol
Characterization. In International Conference on Field-Programmable
Logic and Applications (FPL), pages 19–28, August 2000. → pages

[89] Z. Baruch and C. Savin. Reconfigurable Content-Addressable Memory. In
IEEE International Conference on Intelligent Engineering Systems (INES),
pages 459–463, September 2004. → pages

180

[90] P. B. James-Roxby and D. J. Downs. An Efficient Content-Addressable
Memory Implementation Using Dynamic Routing. In IEEE International
Symposium on Field-Programmable Custom Computing Machines (FCCM),
pages 81–90, March 2001. → pages

[91] A. Jamadarakhani and S. K. Ranchi. Implementation and Design of High
Speed FPGA-Based Content Addressable Memory. International Journal
for Scientific Research and Development (IJSRD), 1(9):1835–1842,
December 2013. → pages

[92] Q. Ibrahim. Design and Implementation of High Speed Network Devices
Using SRL16 Reconfigurable Content Addressable Memory (RCAM).
International Arab Journal of e-Technology (IAJeT), 2(2):72–81, June 2011.
→ pages 38

[93] S. Guccione, D. Levi, and P. Sundararajan. JBits: Java Based Interface for
Reconfigurable Computing. In International Conference on Military and
Aerospace Applications of Programmable Devices and Technologies
(MAPLD), September 1999. → pages 38

[94] H. Qin, T. Sasao, and J. T. Butler. Reconfigurable Computing: Architectures
and Applications, chapter Implementation of LPM Address Generators on
FPGAs, pages 170–181. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006. ISBN 978-3-540-36863-2. → pages 39

[95] H. Qin, T. Sasao, and J. T. Butler. On the Design of LPM Address
Generators Using Multiple LUT Cascades on FPGAs. International
Journal of Electronics, 94(5):451–467, May 2007. → pages

[96] T. Sasao and J. T. Butler. Implementation of Multiple-Valued CAM
Functions by LUT Cascades. In IEEE International Symposium on
Multiple-Valued Logic (ISMVL), pages 11–11, May 2006. → pages

[97] H. Nakahara, T. Sasao, and M. Matsuura. A CAM Emulator Using
Look-Up Table Cascades. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 1–8, March 2007. → pages 39

[98] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, Cambridge, MA, 3rd edition, 2009. ISBN
978-0-262-03384-8. → pages 40

181

[99] A. Broder and M. Mitzenmacher. Network Applications of Bloom Filters:
A Survey. Internet Mathematics, 1(4):485–509, 2003. → pages 40

[100] Y. Qiao, T. Li, and S. Chen. Fast Bloom Filters and Their Generalization.
IEEE Transactions on Parallel and Distributed Systems (TPDS), 25(1):
93–103, January 2014. → pages 40

[101] J.-L. Brelet. An Overview of Multiple CAM Designs in Virtex Family
Devices, 1999. Application Note XAPP201. → pages 41

[102] J.-L. Brelet and B. New. Designing Flexible, Fast CAMs With Virtex
Family FPGAs, 1999. Application Note XAPP203. → pages 41

[103] Lattice Semiconductor Corp. Content Addressable Memory (CAM)
Applications for ispXPLD Devices, 2002. Application Note AN8071. →
pages 41

[104] Actel Corp. Content-Addressable Memory (CAM) in Actel Devices, 2002.
Application Note AC194. → pages 41

[105] A. M. S. Abdelhadi and G. G. F. Lemieux. Multi-Ported RAM Verilog
Source Code, 2015. URL
https://github.com/AmeerAbdelhadi/Multiported-RAM. Accessed September
2016. → pages 44, 68, 76

[106] A. M. S. Abdelhadi and G. G. F. Lemieux. Switched Multi-Ported RAM
Verilog Source Code, 2015. URL
https://github.com/AmeerAbdelhadi/Switched-Multiported-RAM. Accessed
September 2016. → pages 82, 123

[107] A. M. S. Abdelhadi and G. G. F. Lemieux. Multi-Ported Memory Compiler
Verilog Source Code, 2016. URL
https://github.com/AmeerAbdelhadi/Multiported-RAM-Compiler. Accessed
September 2016. → pages 97, 114, 123

[108] R. M. Karp. Complexity of Computer Computations, chapter Reducibility
among Combinatorial Problems, pages 85–103. Springer US, Boston, MA,
1972. ISBN 978-1-468-42001-2. → pages 104

[109] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language
for Mathematical Programming. Scientific Press series. Duxbury Press,

182

https://github.com/AmeerAbdelhadi/Multiported-RAM
https://github.com/AmeerAbdelhadi/Switched-Multiported-RAM
https://github.com/AmeerAbdelhadi/Multiported-RAM-Compiler

Pacific Grove, CA, 2nd edition, 2003. ISBN 978-0-534-38809-6. → pages
114

[110] GLPK (GNU Linear Programming Kit, 2012. URL
https://www.gnu.org/software/glpk/. Accessed September 2016. → pages
114

[111] S. J. E. Wilton, C. W. Jones, and J. Lamoureux. An Embedded Flexible
Content-Addressable Memory Core for Inclusion in a Field-Programmable
Gate Array. In IEEE International Symposium on Circuits and Systems
(ISCAS), pages II–885–8 Vol.2, May 2004. → pages 125, 146

[112] C. W. Jones and S. J. E. Wilton. Content-Addressable Memory with
Cascaded Match, Read and Write Logic in a Programmable Logic Device,
September 2003. US Patent 6,622,204. → pages

[113] G. R. Schlacter. Emulation of Content-Addressable Memories, June 2004.
US Patent 6,754,766. → pages 125, 146

[114] A. M. S. Abdelhadi and G. G. F. Lemieux. 2D Binary Content-Addressable
Memory (BCAM) Verilog Source Code, 2015. URL https://github.com/
AmeerAbdelhadi/2D-Binary-Content-Addressable-Memory-BCAM.
Accessed September 2016. → pages 126, 139, 144

[115] A. M. S. Abdelhadi and G. G. F. Lemieux. Indirectly Indexed 2D Binary
Content-Addressable Memory (BCAM) Verilog Source Code, 2016. URL
https://github.com/AmeerAbdelhadi/
Indirectly-Indexed-2D-Binary-Content-Addressable-Memory-BCAM.
Accessed September 2016. → pages 147, 161, 164

[116] A. Brant, A. Abdelhadi, A. Severance, and G. G. F. Lemieux. Pipeline
Frequency Boosting: Hiding Dual-Ported Block RAM Latency Using
Intentional Clock Skew. In International Conference on
Field-Programmable Technology (FPT), pages 235–238, December 2012.
→ pages 169

183

https://www.gnu.org/software/glpk/
https://github.com/AmeerAbdelhadi/2D-Binary-Content-Addressable-Memory-BCAM
https://github.com/AmeerAbdelhadi/2D-Binary-Content-Addressable-Memory-BCAM
https://github.com/AmeerAbdelhadi/Indirectly-Indexed-2D-Binary-Content-Addressable-Memory-BCAM
https://github.com/AmeerAbdelhadi/Indirectly-Indexed-2D-Binary-Content-Addressable-Memory-BCAM

Appendix A

Brute-Force Transposed

Indicators (BF-TI) BCAM Writing

Mechanism

Writing to the Brute-Force Transposed Indicators (BF-TI) structure requires setting

the new indicator and clearing the old indicator. As shown in Figure 2.11, a

RefRAM is used in parallel to the Transposed Indicators RAM (TIRAM) in order

to track the BCAM content and provide for a given address what pattern is already

stored and should be removed. This is useful for the BCAM writing operation

where the old indicator should be cleared; RefRAM will provide the old pattern in

the current written address. BCAM writing will consume two cycles as follows.

1. Set cycle:

184

1.1. Set (write ’1’) a new pattern indicator to TIRAM

1.2. Read old data (pattern) from RefRAM

2. Clear cycle:

2.1. Clear (write ’0’) the old indicator form the TIRAM (location is already

provided by step 1.2)

2.2. Write new data (pattern) to RefRAM

Writing to the TIRAM structure requires writing to a single bit in the TIRAM

to set or clear a pattern indicator. As described in Figure A.1 (top), this can be

achieved by employing the BRAM mixed-width capability in simple dual-ported

mode supported by most FPGA vendors. The writing port width is set to a single

bit, while the reading port is set to the maximum available width. The byte-enable

functionality can also be utilized to write part of the data line as described in

Figure A.1 (middle); however, usually byte-enables do not control fine-grained

parts of the data, which make it impractical for TIRAM implementation. Both

mixed-width and byte-enable methods can be combined as shown in Figure A.1

(bottom).

185

⌈log2(RD·DW)⌉

⌈log2CD⌉=⌈log2DW⌉

PW=⌊log2RD⌋
CD=DW

Match

PW=⌊log2RD⌋
MPatt

RD·RW Lines X 1 Bit RD Lines X RW Bits

Din

Addr

Dout

Addr
Dual-port

 RAM

Write/Erase

WPatt
(base)

WAddr
(offset)

Write
 Port

Read
 Port

PW=⌊log2RD⌋

⌈log2CD⌉=⌈log2DW⌉ CD=DW

CD=DW

Bin 2
1-hot CD=DW

Match

PW=⌊log2RD⌋
MPatt

Write/Erase

WPatt

WAddr
RD Lines X RW Bits

Din

Addr

ByteEnb
(one-hot)

Write
 Port

Read
 Port

Dout

AddrDual-port
 RAM

⌈log2(RD·PW/b)⌉
PW=⌊log2RD⌋

WPatt

WAddr

(base)

(offset)

⌈log2CD⌉=⌈log2DW⌉

b

b
Write/Erase

Bin 2
1-hot

CD=DW

Match

PW=⌊log2RD⌋
MPatt

log2b

Addr

Din

ByteEnb

RD·DW/b
Lines

X b Bits

RD
Lines

X DW Bits

Dual-port
 RAM(one-hot)

Dout

Addr

Write
 Port

Read
 Port

Figure A.1: Transposed Indicators RAM (TIRAM) implementation using (top) Mixed-width BRAM (middle)
Byte-enable (bottom) Combined methods.

186

Appendix B

Wide Priority Encoders in FPGAs

The proposed 2D-HS-BCAM technique successfully reduces the width of the

CD wide priority-encoder used by the brute-force approach and splits it into two

narrower priority-encoders. However, priority-encoder delay still affects overall

performance. Hence, a fast priority-encoder design is essential.

Our proposed BCAM architecture consists of a
⌈

CD
SW

⌉
wide priority-encoder

and another SW width priority-encoder. For deep BCAMs, the priority-encoder

delay considerably affects the overall performance; hence, a fast priority-encoder

design is essential.

A priority-encoder, also called Leading Zero Detector (LZD) or Leading Zero

Counter (LZC), receives an n-bit input vector and detects the index of the first

binary ‘1’ in the input vector. A valid signal indicates if any binary ‘1’ was detected

in the input vector, hence the index is valid.

As depicted in Figure B.1, the suggested priority-encoder is recursively con-

187

n
⌈l
og

2n
⌉

in

vld idx

PEn
PEk

n
n/kn/kn/kn/k

⌈lo
g 2
(n
/k
)⌉

⌈log2k⌉
⌈log2(n/k)⌉

⌈log2n⌉

vld idx

in

#k-1
PEn/ k

#2
PEn/ k

#1
PEn/ k

#0
PEn/ k

k-1 2 1 0

Figure B.1: Priority-encoder (left) symbol (right) recursive definition.

structed. The input vector is split into k equal fragments with n
k bits. A priority

encoder PE n
k

with a narrower width of n
k is applied for each fragment. The valid

bit of each of the k PE n
k
’s goes to a k bit PEk to detect the first valid fragment. The

location of this fragment is the higher part of the overall index, and steers the exact

location within the fragment itself to produce the lower part of the overall index.

The depth of the proposed structure is
⌈
logk n

⌉
, while the hardware area com-

plexity is O(n). If Altera’s Stratix V [55] or equivalent device is used, k = 4 is

recommended to achieve higher performance and area compression, since the mux

can be implemented using 6-LUT, hence an entire ALM.

188

Appendix C

Verilog IPs User Guide

This appendix is a user guide for the Switched Multi-ported RAM (SMPRAM)

module Verilog package provided with this dissertation. The SMPRAM module is

compatible with Verilog-2001. The provided Verilog is generic, however, it has

been tested using Altera’s ModelSim (version 10.0d) only. The SMPRAM module,

including interface signals and configuration parameters is described in Figure C.1.

Table C.1 lists all interface ports while Table C.2 lists all configuration parameters

for the SMPRAM module. The code in Listing 1 describes an SMPRAM module

instantiation. Furthermore, to instantiate the SMPRAM module, all *.v & *.vh files

in this package should present in your work directory. The following command-line

clones the package from a GitHub repository.

git clone https://github.com/AmeerAbdelhadi/Switched-Multiported-RAM.git

189

(nWPF+nWPS)
·DATW

WData RData

WAddr RAddr

WEnb

(nRPF+nRPS)
·DATW

(nWPF+nWPS)
·log2MEMD

(nRPF+nRPS)
·log2MEMD

clk rst RdWr

SMPRAM

MEMD: Memory depth
DATW: Data width
nRPF: # Read ports / fixed
nWPF: # Write ports / fixed
nRPS: # Read ports / switched
nWPS: # Write ports / switched
ARCH: Architecture type
BYPS: Bypass mode
FILE: Initialization mif file

 nWPF+nWPS
Configuration Parameters

W
r
i
t
e

P
o
r
t
s

R
e
a
d

P
o
r
t
s

Figure C.1: Switched Multi-ported RAM (SMPRAM) module block.

190

Table C.1: List of SMPRAM module interface ports

Port I/O width Description

clk Input 1 Global clock.

rst Input 1 Global synchronous reset.

rdWr Input 1 If high, enables switched read ports and disables
switched write ports; vice versa otherwise.

WEnb Input nWPF+nWPS Write enable for nWPF (LSB) fixed write ports and
nWPS switched write ports.

WAddr Input (nWPF+nWPS) · log2(MEMD) Write addresses: packed from nWPF (LSB) fixed
write ports and nWPS switched write ports;
log2(MEMD) bits each.

WData Input (nWPF+nWPS) ·DATW Write data: packed from nWPF (LSB) fixed write
ports and nWPS switched write ports; DATW bits
each.

RAddr Input (nRPF +nRPS) · log2(MEMD) Read addresses: packed from nRPF (LSB)
fixed read ports and nRPS switched read ports;
log2(MEMD) bits each.

RData Output (nRPF +nRPS) ·DATW Read data: packed from nRPF (LSB) fixed read
ports and nRPS switched read ports; DATW bits
each.

191

Table C.2: List of SMPRAM module parameters

Parameter Type Default value Value range Description

MEMD Integer N/A Power of 2 Memory depth.

DATW Integer N/A 1≤ DATW Data width.

nRPF Integer N/A 1≤ nRPF Number of fixed read ports.

nWPF Integer N/A 0≤ nWPF Number of fixed write ports.

nRPS Integer 0 0≤ nRPS≤ nRPF Number of switched read ports.

nWPS Integer 0 0≤ nWPS
1≤ nWPS+nWPF

Number of switched write ports.

ARCH String ”AUTO” ”AUTO”,
”REG”,
”XOR”,
”LVTREG”,
”LVTBIN”, or
”LVTTHR”

Multi-port RAM architecture: use ”AUTO”
to choose automatically, ”REG” for register-
based RAM, ”XOR” for XOR-based,
”LVTREG” for register-based LVT, ”LVTBIN”
for binary-coded I-LVT-based, or ”LVTTHR”
for thermometer-coded I-LVT-based.

BYPS String ”RAW” ”NON”,
”WAW”,
”RAW”, or
”RDW”

Bypassing type: use ”NON” to prevent ad-
ditional bypassing circuit, ”WAW” to allow
Write-After-Write, ”RAW” to read new data
when Read-After-Write, or ”RDW” to read
new data when Read-During-Write.

FILE String Not initialized ”mif” file name /
without extension

Initialization file in ”mif” format, optional.

192

Listing C.1: Switched Multi-ported RAM (SMPRAM) module instantiation

/ / i n s t a n t i a t e a mu l t i po r ted−RAM

smpram #(

.MEMD (MEMD) , / / i n t e g e r : memory depth

.DATW (DATW) , / / i n t e g e r : data width

. nRPF (nRPF) , / / i n t e g e r : # f i x e d read por ts

.nWPF (nWPF) , / / i n t e g e r : # f i x e d w r i t e po r t s

.nRPS (nRPS) , / / i n t e g e r : # switched read por ts

.nWPS (nWPS) , / / i n t e g e r : # switched w r i t e po r t s

.ARCH (ARCH) , / / s t r i n g : mu l t i−po r t RAM a r c h i t e c t u r e

.BYPS (BYPS) , / / s t r i n g : bypass mode

. FILE (” ”) / / s t r i n g : I n i t i a l i z a t i o n f i l e , o p t i o n a l

) smpram inst (

. c l k (c l k) , / / g l oba l c lock

. r s t (r s t) , / / g l oba l rese t

. rdWr (rdWr) , / / enables read or w r i t e switched por ts

.WEnb (WEnb) , / / w r i t e enables [(nWPF+nWPS)−1:0]

. WAddr (WAddr) , / / w r i t e addresses [(nWPF+nWPS)∗ log2 (MEMD)−1:0]

. WData (WData) , / / w r i t e data [(nWPF+nWPS)∗DATW −1:0]

. RAddr (RAddr) , / / read addresses [(nRPF+nRPS)∗ log2 (MEMD)−1:0]

. RData (RData) / / read data [(nRPF+nRPS)∗DATW −1:0]

) ;

193

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Abbreviations
	List of Notations
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Motivation
	1.1.1 Multi-Ported Random Access Memories (MPRAMs)
	1.1.2 Content-Addressable Memories (CAMs)

	1.2 Thesis Statement and Research Goals
	1.3 Research Problem: On the feasibility of Parallel memory structures in FPGAs
	1.3.1 Multi-Ported Random Access Memories (MPRAMs)
	1.3.2 Content-Addressable Memories (CAMs)

	1.4 Research Contributions
	1.4.1 Invalidation-Based Live-Value Table (I-LVT)
	1.4.2 Switched Ports
	1.4.3 2-Dimensional Hierarchical Search BCAM (2D-HS-BCAM)
	1.4.4 Indirectly Indexed Hierarchical Search BCAM (II-HS-BCAM)

	1.5 Research Methodology and Evaluation Metrics
	1.5.1 Verilog Description
	1.5.2 Simulation and Synthesis
	1.5.3 Results Collection
	1.5.4 BRAM Packing Approximation

	1.6 Dissertation Organization

	2 Background and Related Work
	2.1 RAM Multi-Porting Techniques in Embedded Systems
	2.1.1 Register-based RAM
	2.1.2 RAM Multi-Pumping
	2.1.3 Multi-Read RAM: Bank Replication
	2.1.4 Multi-Write RAM: Emulation via Multi-banking

	2.2 Multi-ported SRAM-based Memories: Prior Work
	2.2.1 LVT-Based Multi-ported RAM
	2.2.2 Multi-Ported Random Access Memories with True Dual-Ports
	2.2.3 XOR-Based Multi-Ported RAM

	2.3 FPGA-Based Binary Content-Addressable Memories (BCAMs)
	2.3.1 Register-Based BCAMs
	2.3.2 Brute-Force Approach via TIRAM
	2.3.3 BCAM Pattern Width Cascading and Scaling
	2.3.4 Reconfiguration Memory Based Content-Addressable Memories (RCAMs)
	2.3.5 Algorithmic Heuristics
	2.3.6 Vendor Support for BCAMs

	3 Multi-Ported Random Access Memories via Invalidation-Based Live-Value Table (I-LVT)
	3.1 Introduction
	3.2 Invalidation Table
	3.2.1 Bank ID Embedding: Binary-Coded Bank IDs and Selectors
	3.2.2 Mutually-Exclusive Conditions: Thermometer-Coded Bank IDs with One-hot-Coded Selectors
	3.2.3 Data Dependencies and Bypassing
	3.2.4 Initializing Multi-Ported RAM Content
	3.2.5 Comparison and Discussion
	3.2.5.1 SRAM Usage based on RAM Architecture
	3.2.5.2 Register Usage based on RAM Architecture

	3.3 Experimental Results
	3.4 Conclusions

	4 Multi-Ported Random Access Memories with Switched Ports
	4.1 RAM Port Classification
	4.2 Multi-Ported Memories with Single Switched-Port
	4.2.1 Single Switched-Port Support
	4.2.1.1 Data Dependencies and Bypassing
	4.2.1.2 SRAM Usage based on Port Functionality

	4.2.2 Experimental Results

	4.3 Multi-Switched-Ports
	4.3.1 Multi-Ported RAM with Multiple Switched Ports
	4.3.1.1 Motivation and Key Idea
	4.3.1.2 Port Assignment and Problem Definition
	4.3.1.3 Modeling Data Banks with Data Flow Graph (DFG)
	4.3.1.4 Multi-Switched-Ports DFG Optimization
	4.3.1.5 Solving the Cover Problem
	4.3.1.6 Data Dependencies and Bypassing

	4.3.2 Experimental Results
	4.3.2.1 Experimental Framework
	4.3.2.2 Methodology
	4.3.2.3 Test Cases
	4.3.2.4 Results

	4.4 Conclusions

	5 2-Dimensional Hierarchical Search BCAMs (2D-HS-BCAMs)
	5.1 Introduction
	5.2 The 2-Dimensional Hierarchical Search BCAM (2D-HS-BCAM) Approach
	5.3 BCAM Bypassing
	5.4 Comparison and Discussion
	5.5 Experimental Results
	5.6 Conclusions

	6 Indirectly Indexed Hierarchical Search BCAMs (II-HS-BCAMs)
	6.1 Introduction
	6.2 Motivation and Key Idea
	6.3 Design and Functionality
	6.4 Feasibility on Altera's Stratix Devices
	6.5 Comparison and Discussion
	6.6 Experimental Results
	6.7 Conclusions

	7 Conclusions
	7.1 Dissertation Summary
	7.2 Future Directions
	7.2.1 Invalidation-Table Multi-Ported Memories
	7.2.2 BRAM-Based Content-Addressable Memories
	7.2.3 Parallel Reconfigurable Computing with Customizable Concurrent Memories

	Bibliography
	A Brute-Force Transposed Indicators (BF-TI) BCAM Writing Mechanism
	B Wide Priority Encoders in FPGAs
	C Verilog IPs User Guide

