
Modular Block-RAM-Based Longest-Prefix Match
Ternary Content-Addressable Memories

Ameer M.S. Abdelhadi
School of Engineering Science

Simon Fraser University
Burnaby, BC Canada, V5A 1S6

aabdelha@ensc.sfu.ca

Guy G.F. Lemieux
Dept. of Electrical & Computer Engineering

The University of British Columbia
Vancouver, BC Canada V6T 1Z4

lemieux@ece.ubc.ca

Lesley Shannon
School of Engineering Science

Simon Fraser University
Burnaby, BC Canada, V5A 1S6

lshannon@ensc.sfu.ca

Abstract—Ternary Content Addressable Memories (TCAMs)
are massively parallel search engines enabling the usage of “don’t
care” wildcards when searching for data. TCAMs are used in
a wide variety of applications, such as routing tables for IP
forwarding, which have been recently implemented using FPGAs.
However, traditional “brute force” CAM architectures that use
FPGA SRAM blocks (BRAMs) involve swapping address and
data lines and are very inefficient. In this paper, a novel, efficient
and modular technique for Longest-Prefix Match (LPM) TCAMs
using FPGA BRAMs is proposed. Hierarchical search is exploited
to achieve a linear storage growth and high storage efficiency.
Compared to other methods, our LPM-TCAM design accommo-
dates 5.5x more data for the same SRAM area without degrading
the performance. A fully parameterized Verilog implementation
is being released as an open source library.1 The library has been
extensively tested using Altera’s Quartus and ModelSim.

Index Terms—ternary content addressable memory, associative
memory, longest-prefix match, routing table, packet forwarding

I. INTRODUCTION

Content addressable memories (CAMs) are capable of
searching the entire memory space for a specific value within
a single clock cycle. As a hardware implementation of associa-
tive arrays, CAMs are massively parallel search engines. They
compare the searched “pattern” against all memory content
simultaneously as shown in Fig. 1. While a standard RAM
returns data located at a given memory address, a CAM returns
an address containing a specific given datum using a memory-
wide search for that value.

CAMs can be classified into two major classes: Bi-
nary CAMs (BCAMs) and Ternary CAMs (TCAMs). While
BCAMs hold binary values only, TCAMs can hold “don’t
care” wildcards (X’s). TCAMs can be categorized into two
subclasses. The general case is the Priority-Encoded TCAM
(PE-TCAM), where wildcards can be placed anywhere in
the written pattern. The Longest-Prefix Match TCAM (LPM-
TCAM), which is the focus of of this work, is a special case
of PE-TCAMs, where wildcards have to be placed as a single
contiguous prefix in the written pattern.

A CAM is a high-performance implementation of the widely
used associative array. Hence, it is used in almost every science

This research has been funded by the National Sciences and Engineering
Research Council of Canada (NSERC) Chair for Women in Science and
Engineering Grant (British Columbia and Yukon) PDF Funding. This research
has also been funded by the Computing Hardware for Emerging Intelligent
Sensory Applications (COHESA) project. COHESA is financed under the
NSERC Strategic Networks grant number NETGP485577-15.

1https://github.com/AmeerAbdelhadi/II-LPM-TCAM

“RAW”

“FSP”

“FPT”

0

1

2

4

0

1

2

4

Search for: “FPL”
(Match Pattern)

=?

=?

=?

=?

“ISDF”3
3

=?

Match Indicators
(Match Lines)

Found in: “2”
(Match Address)

“FPL” is Found!
(Match/Match)

C
A

M
 A

d
d

r
e

s
s

e
s

CAM Patterns

“FPL”

Fig. 1: CAM abstraction as a massively parallel search engine accessing all
memory content to compare with the searched pattern simultaneously.

field requiring high-speed processing of associative search.
Yet, FPGAs lack an area-efficient soft CAM implementation.
Current BCAM approaches in vendor IP libraries [1]–[3] use
a brute-force approach, where SRAM data lines are swapped
with address lines, to achieve a maximum of 64K entries in
a modern high-density FPGA device. FPGA-based TCAM
techniques are either brute-force SRAM-based or register-
based [4]–[6], both of which are inefficient.

The more complex LPM-TCAMs are the building blocks of
the Internet backbone Border Gateway Protocol (BGP) routers,
where they are used as routing tables for IP forwarding. As
of August 2014, BGP IPv4 routing tables have exceeded the
512K limit [7]. Clearly the brute-force approach cannot be
used to meet this demand.

Alternatively, algorithmic approaches can be used to build
a CAM. For example, they can be implemented as a linear
scan by traversing the memory space sequentially, incurring
a worst-case runtime of O(n). An implementation using hash
tables [8] distributes entries across the memory and reduces
the average runtime to O(1), but the worst case is still O(n).
Self-balancing or height-balanced Binary Search Trees (BST),
e.g., AVL trees and red-black trees [8], can also be used
to algorithmically construct associative arrays, with a worst-
case runtime of O(log(n)). Algorithmic heuristics to emulate
CAMs for specific applications are widely available, but often
require a non-deterministic number of cycles per lookup.

Traditionally, TCAMs are built into cell-based Application-
Specific Integrated Circuits (ASICs) as predesigned IP blocks.
Such IPs must be specialized to each application and must use
custom-designed memory cells at the transistor-level specific
to each foundry. Although TCAMs can be built as IP blocks
on FPGAs, it is not cost effective to build one that is flexible
enough to meet the varied demands of different applications.
An alternative to custom transistor-level TCAMs is needed for
both FPGAs and cell-based ASICs.

In this paper, a novel, efficient and modular technique
for constructing Longest-Prefix Match (LPM) TCAMs out of
standard SRAM blocks in FPGAs is proposed. To achieve high
storage efficiency, hierarchical search with data compression,
previously used only to implement BCAMs [9], [10], is
extended in this paper to implement LPM-TCAMs. It elim-
inates inefficiencies found in current SRAM-based TCAMs
and brings tangible performance gains and higher storage
efficiency. The same technique can also be used to design
TCAMs in cell-based ASICs out of dual-ported memories.

The proposed LPM-TCAM method is scalable and fast. To
build larger CAMS, the design can be cascaded in a way
that exhibits a linear storage growth. It also has high storage
efficiency; compared to other methods, the suggested LPM-
TCAM accommodates 5.5× more data for the same SRAM
area without degrading performance. For speed, one LPM
pattern search can be completed every clock cycle, while
pattern updates take multiple cycles. This is especially useful
for IP lookup/packet-forwarding engines where fast searches
are required, but slower writes are tolerated since BGP routing
tables have fewer than 10k updates/second [11].

The rest of this paper is organized as follows. Section II re-
views conventional block-RAM-based CAM techniques in FP-
GAs. Section III describes our indirectly-indexed LPM-TCAM
approach. Section IV provides a discussion and comparison.
Section V presents our experimental framework and results
and Section VI concludes the paper with future suggestions.

II. BLOCK-RAM-BASED CAMS FOR FPGAS

This section reviews current FPGA CAM architectures.
Existing CAM architectures in FPGAs can be classified into
three categories, based on the FPGA memory resources they
utilize. The first is register-based, where registers are used
to store patterns and concurrently compare all register values.
However, register resources are limited; a modern Intel’s high-
density Stratix V device [12] can only implement a 16K-entry
byte-wide TCAM. The second method is the Reconfiguration-
Memory-Based CAM (RCAM), where LUT configuration
memory is utilized. This method can implement a 128K-
entry single-byte CAM on the same Stratix V device. Finally,
SRAM blocks are utilized in a brute-force approach to store
locations for each pattern. The same Intel Stratix V device can
implement a 64K-entry single-byte CAM. Our work explores
using SRAM blocks with a more efficient hierarchical search.

Subsection A reviews previous work using reconfiguration
memory to create CAMs. Next, we summarize traditional
brute-force approach in Subsection B and FPGA vendor CAM
support in Subsection C. Finally, we explain hierarchical
search and indirectly-indexed CAMs in Subsection D.

A. Reconfiguration Memory Based CAMs (RCAMs)

FPGA configuration memory is an SRAM chain loaded
with the configuration bit-stream and is used to configure
the device. A modern FPGA device accommodates several
Mbits of configuration SRAM cells, for instance, Intel’s Stratix
V device contains 22Mbits for LUT configuration [12]. The

Indicators RAM
 (Transposed) PE

PW

MPatt MAddr

⌊log2CD⌋

Indicators RAM
 (Transposed)

MIndc

DW=CD

PE

Addr Data
PW ⌊log2CD⌋DW=CD

0

1

1 2 3 4 5 6 7

CAM Location (Data Bit Position)

M
at

ch
 P

at
te

rn

Fig. 2: (left) CAM as a Transposed-RAM. (right) Example of a pattern
indicator for pattern ‘10’ in address 4.

SRAM reconfiguration memory in FPGAs can be utilized as
a wide and shallow memory to generate RCAMs [13], [14].

RCAMs are impractical in many cases; they require
multiple-cycles to write the bit-stream and update their con-
tent, exhaust logic resources, and are not portable across
different devices. Alternatively, Intel’s Stratix devices provide
accessibility to LUT configuration memory as SRAM blocks
called MLABs [12]. MLABs can be used to create CAMs in a
similar method as the brute-force approach we describe next.

B. Brute-force CAMs via Transposed Indicators RAM

As depicted in Fig. 2, a BRAM is addressed by the match
pattern while each bit of the data indicates the existence of
the pattern. The data bit position corresponds to the BCAM
address location. Thus, the CAM depth, dc, must match the
RAM width, wr. Also, the pattern width of must match the
address width of the RAM, i.e., wp = dlog2 dre.

In this paper, we call this structure a Transposed Indicators
RAM (TIRAM) and describe it as a matrix of indicators

TIRAM =


I0,0 I0,1 · · · I0,dc−1

I1,0 I1,1 · · · I1,dc−1

...
...

. . .
...

I|P |−1,0 I|P |−1,1 · · · I|P |−1,dc−1


∀a ∈ A, p ∈ P : Ip,a = (RAM [a] EQ p) ,

(1)

where A is the address space set and P is the pattern set.
This BRAM-based brute-force approach is adopted by Xil-

inx [1], [2] and Intel [3] to create soft CAMs as described
in their application notes. Zerbini and Finochietto [4] apply
the cascaded brute-force approach to emulate TCAMs for
packet classification; however, updating the TCAM content is
not discussed. Jiang [5] also uses the brute-force approach
to emulate TCAMs. However, a pattern update requires a
sequential rewriting of all RAM addresses for each pattern.
Ullah et al [6] also use the brute-force approach, but their
TCAMs can be partitioned. This allows the search of specific
TCAM fragments, but the required storage is still similar to
the brute-force approach. Furthermore, rewriting the TCAM
requires a serial rewriting of all RAM locations.

The Cascaded Brute-Force Approach: SRAM cell usage
for the brute-force approach is exponential to pattern width
wp; making a wide pattern width is therefore infeasible. CAM
cascading relaxes SRAM growth from exponential to linear.
The CAM pattern and prefix are divided into smaller pattern
segments; each segment is associated with a separate CAM.
A pattern is located in the CAM if all its segments are found
in the same address of all segmented CAMs. CAM cascading
is used by Xilinx [1], [2] and Intel [3] to create soft scalable
CAMs described in their application notes.

C. Vendor Support of CAMs
FPGA support for CAMs has taken two approaches: direct

support in hard IP, implemented in some legacy FPGAs, and
as pure soft IP, the modern approach.

For hard IP approaches, Intel’s legacy FLEX, Mercury and
APEX [15] device families integrated intrinsic partial CAM
support into their memory blocks. This required additional
transistors in each memory cell which could be used to build
a small 32× 32 BCAM. These BCAM blocks can be used in
parallel to increase the address space, and can be cascaded as
described in the previous subsection to increase pattern width.
In addition, Lattice ispXPLD devices [16] have integrated
support for CAMs via their Multi-Function Blocks (MFBs)
which can be configured into 128×48 Ternary CAM block. All
of these FPGAs have been discontinued. No modern FPGAs
have any hard IP for CAM support.

Xilinx does not use hard IP, and instead relies upon soft
IP with the brute-force approach for creating CAMs [1], [2].
Alternatively, Microsemi recommends registers for a single-
cycle CAM, or a multi-cycle search of BRAMs in parallel [17].

D. Hierarchical Search BCAMs (HS-BCAMs)
Hierarchical search BCAMs [9] efficiently reduce search

space by dividing the CAM into equal-size pattern sets. HS-
BCAMs are composed of two RAM hierarchies; the first stores
hit/miss indicators for each set, whereas the second stores the
sets. A lookup operation consists of finding a set with a match
from the first RAM, then fetching the matching set from the
second RAM, then searching its entries in parallel for a match.
Thus, HS-BCAMs group addresses into sets and maintain one
pattern match indicator for each set.

HS-BCAMs are highly efficient with narrow patterns. How-
ever, the lack of pattern match indicator for each address
prevents cascading, causing exponential memory growth as
pattern width increases. This limitation is crucial as the vast
majority of applications require wide patterns.

HS-BCAMs cannot be cascaded. While cascadable CAMs
require indicators from every address at every stage, this
requirement can be alleviated if the CAM will not be cascaded.
Instead of storing match indicators for each address separately,
as in the brute-force approach, an indicator is generated for
a set of ws addresses, indicating whether the pattern exists at
any of these addresses in the set.

An address set is a set of successive ws addresses. A dc-
entry BCAM is divided into ddc/wse sets. A set indicator Ip,s
indicates if any of the addresses in set s, i.e., addresses ws · s
upto ws · (s+ 1)− 1, contains the pattern p, namely,

∀s ∈ S, p ∈ P : Ip,s =

a=ws·(s+1)−1∨
a=ws·s

(RAM [a] == p) . (2)

where S is the set of all address sets. Set indicators are stored
in a Set Transposed Indicators RAM (STIRAM) as follows:

STIRAM =


I0,0 I0,1 · · · I0,|S|−1

I1,0 I1,1 · · · I1,|S|−1

...
...

. . .
...

I|P |−1,0 I|P |−1,1 · · · I|P |−1,|S|−1

 . (3)

Indirectly Indexed Hierarchical Search (II-HS) BCAM:
Similar to HS-BCAMs, the II-HS-BCAM approach [10]

arranges memory addresses into sets. However, the lack of a
pattern match indicator for each address prevents HS-BCAM
cascading, causing exponential memory growth as pattern
width increases.

Instead, the II-HS CAM regenerates match indicators for
every single address by storing indirect indices for address
match indicators. Hence, II-HS-BCAMs can be cascaded and
the exponential RAM growth becomes linear as pattern width
increases. This method exploits the sparsity of the transposed
indicators RAM to store indices to subsets of the match
indicators. It relies upon specific properties of BCAMs that
allow a bounded compression of BCAMs match indicators.

III. THE PROPOSED INDIRECTLY-INDEXED
LONGEST-PREFIX MATCH TCAM (II-LPM-TCAM)

We now present the proposed II-LPM-TCAM. Subsection A
motivates and explains the key idea for this work. We describe
the design method in Subsection B. Subsection C discusses a
device-specific instance for Intel’s Stratix device family.

A. Motivation and Key Idea

In this paper, we prove that the same bounded compression
applied to HS-BCAMs also applies to LPM-TCAMs, enabling
a significant increase in storage efficiency compared to brute-
force methods. The following theorem is the basis of the
compression technique. This theorem employs properties of
pattern prefixes in LPM-TCAMs to show that TCAMs’ match
indicators can be compressed into a smaller subset of indica-
tors and thereby stored in smaller distributed memories.

Definition III.1 (Pattern sets). The set of all possible binary
patterns of length wp is denoted by Pwp , where the cardinality
of Pwp is |Pwp | = 2wp . For simplicity, we denote the set of
all possible patterns of a specific length merely as P . The
following defines two types of pattern subsets. One, P a is a
subset of P that includes all patterns in address a, thus

P a =
{
p̃ ∈ P

∣∣ Ip̃,a = 1
}
. (4)

Two, P p,l is a subset of P that includes all patterns matching
the leftmost l bits of pattern p (a prefix length of l), thus

P p,l =
{
p̃ ∈ P

∣∣ p̃〈wp−1 : wp−l〉 = p〈wp−1 : wp−l〉
}

(5)

where the angle brackets are used for bit selection. The
cardinality of P p,l is |P p,l| = 2wp−l since only l bits (the
prefix) are constant, whereas all the other wp− l bits are X’s.

Examples. P3 = {111, 110, 101, 100, 011, 010, 001, 000},
P 101,2 = {101, 100}, P 011,1 = {011, 010, 001, 000}.

Lemma III.1 (The relation between patterns in LPM-TCAM
addresses). The patterns included in two LPM-TCAM ad-
dresses are either a subset or a disjoint. Given two addresses
ai and aj , and their included pattern sets P ai and P aj ,
respectively, the relation between P ai and P aj is (i) P ai is a
subset of P aj , i.e., P ai⊆P aj , (ii) P aj is a subset of P ai , i.e.,
P aj⊆P ai , or (iii) P ai and P aj are disjoint, i.e., P ai∩P aj=∅.

0
0
1
1
0
0
0
0

1
1
1
1
1
1
1
1

1
1
1
1
0
0
0
0

0
0
0
0
0
0
0
1

a3 a2 a1 a0

000
001
010
011
100
101
110
111

addresses

p
a
tt

e
rn

s

{000,001}

{010,011}

{100,101,110}

{111}

{a2,a1}

{a3,a2,a1}

{a2}

{a2,a0}

ws=4, wp=3

S={a3,a2,a1,a0}

P=P3={111,110,…,000}

Pa₀=P111,3

Pa₁=P000,1

Pa₂=P000,0

Pa₃=P010,2

patterns addresses
subsets

Example parameters Transposed RAM Compressed representation

Fig. 3: A toy example demonstrating Theorem III.2. The compressed repre-
sentation requires only ws = 4 entries.

Proof. Let P pi,li = P ai , P pj ,lj = P aj , and without loss of
generality li > lj . If pi〈lj − 1 : 0〉 = pj〈lj − 1 : 0〉, P ai will
be a subset of P aj , namely, P ai ⊆ P aj , otherwise they will
be disjoint, namely P ai ∩ P aj = ∅ �

Theorem III.2 (A bound on the number of disjoint pattern
subsets, where each pattern subset is located in a different
address subset). Suppose S is a set of ws addresses. It is
possible to cluster all patterns located in S into at most
ws disjoint pattern subsets, whereas all patterns in the same
pattern subset are located in the same address subset of S.

Example. A toy example is provided in Fig. 3 where patterns
are clustered into ws = 4 disjoint subset such that each pattern
subset is located in the same address subset (Fig. 3 (right)).

Proof. We prove by weak induction on the number of ad-
dresses ws in a set of address S that at most ws disjoint sets
of patterns will be located in different address subsets of S.

Base case. This is the trivial case where ws = 1, S includes
a single address, say a. All patterns that are located in a form
a single set P a. Thus the base case holds for ws = 1.

Induction step. Suppose that this theorem holds for ws = k,
i.e., patterns can be clustered into at most ws = k disjoint sets,
whereas all patterns in the same pattern set are located in the
same address subset of S, and S is a set of ws = k addresses.
The same property should be proven for ws = k+1. In other
words, we should prove that the addition of an address to S,
say ak+1, with its corresponding pattern set P ak+1 , will add
at most a single disjoint pattern subset.

Lemma III.1 shows that the relation of P ak+1 and any other
address’s (say ai) pattern set P ai is one of three options as
follows. (i) P ak+1 is a subset of P ai , i.e., P ak+1 ⊆ P ai , (ii)
P ai is a subset of P ak+1 , i.e., P ai ⊆ P ak+1 , or (iii) P ak+1

and P ai are disjoint, i.e., P ak+1 ∩ P ai = ∅. (See Fig. 4.)
In case (i) and case (iii), a new address subset may be

generated to include ak+1. In case (ii), ak+1 will be added to
all address subsets where ai is included, hence no additional
address subset will be added. However, a new address subset
may be generated to include ak+1, where ai is not included.

To summarize, any of these three cases may introduce one
address subset at most, hence the addition of address ak+1

will add a single address subset at most. �

While each pattern can be located in a subset of S, Theorem
III.2 signifies that there are at most ws subsets of S, given that
S is a set of ws addresses. Thus, the key idea is to store these

1
1
1
1

0
0
1
1

… ai ... ak+1

00
01
10
11

addresses

p
a
tt

e
rn

s

Case (i):Pak ₊₁⊆Pai

0
0
0
1

0
0
1
1

… ai ... ak+1

00
01
10
11

addresses

p
a
tt

e
rn

s 1
0
0
0

0
0
1
1

… ai ... ak+1

00
01
10
11

addresses

p
a
tt

e
rn

s

Case (ii):Pai⊆Paₖ₊₁ Case (iii):Paₖ₊₁∩Pai=∅

Fig. 4: An example of a transposed RAM showing the three cases of pattern set
relationship. Subsets generated due to the addition of ak+1 are highlighted.

P
a
tt
er

n
s

A d d r e s s e s

BF

P
a
tt
er

n
s

S e t s

P
a
tt
er

n
s

S e t s

Indic ators

0
0

1
1

2
2
2

3

000
001
010
011
100

101
110

111

set

p
at

te
rn

s

Indices RAM (Transposed)

0
1
0
0

1
1
1
1

1
1
0
0

0
0
0
1

a3 a2 a1 a0

0
1
2
3

addresses

in
d

ic
es

{a2,a1}
{a3,a2,a1}
{a2}
{a2,a0}

{000,001}

{010,011}

{100,101,110}

{111}

In dicator s RAM

Fig. 5: (left) Indicators arrangement for three different approaches. (right) The
toy example from Fig. 3. arranged as Indirectly Indexed (II) tables.

ws subsets into smaller distributed memories, and only keep
indices to addresses in the distributed memories. We call this
concept “Indirectly-Indexed.”

The significance of Theorem III.2 lies in the measurement it
provides for the STIRAM matrix sparsity. Namely, it provides
an upper bound of the number of binary ‘1’ (matches) for a set
(a column in STIRAM). Instead of storing match indicators for
every address and pattern pair as in the brute-force approach
(Fig. 5 (upper left)), or set indicators as in the hierarchical
search approach (Fig. 5 (middle left)), we store all address
indicators only for sets with a match, as they are limited to
ws. To reduce memory consumption, address match indicators
are saved in another auxiliary structure, whereas the original
STIRAM will hold indices to the auxiliary structure (Fig. 5
(lower left)). This mechanism is demonstrated in Fig. 5 (right)
using the toy example from Fig. 3.

B. Design and Functionality of II-LPM-BCAM

As depicted in Fig. 6, a single stage of the proposed II-HS-
TCAM consists of four parts. First, the SetRAM, where the
patterns and their corresponding prefix length (as a mask) are
stored in sets of ws words. The same structure includes the
mask and compare logic, where all patterns in the current set
are masked and compared in parallel with an input pattern. The
main output of this structure is SetIndc, a vector containing a
match indicator for each pattern in the current set. The second
stage is the Indirectly-Indexed Transposed RAM (IITRAM),
where patterns are used as addresses for the IndcRAM. This
table is a Set-Transposed Indicators RAM, where sets of
addresses share indices to a smaller structure of distributed
memories (MLABs, or LUTRAMs), enabling the compression
mechanism. Its primary output are the match indicators for

 WPrefLn Register

B
CA

M

SetRAM

setIndc

wAddr_indx

1-
ho

t
D

ec
.

indxRAM
(STIRAM)

Indc
RAM

[log2(CD):log2(SW)]

SetRAM
mIndc

wIndx

[log2(SW)-1:0]
wAddr

wAddr

wPatt

cIdx

mPatt

mAddr

matchIdx
Cnt

cP
at

t

wMask
wPatt

mPatt

Patt
Cnt

Indc
RAM

Indc
RAM

Mask & Compare
Logic

Write
Control

wPrefLn

match

mAddr

mPrefLn

LPME

wAddr

wPrfLn

wIndc

IITRAM

wPatt

w
A

dd
r_

in
d

c
LPM

Thermometer
Decoder

b

rA
dd
r

w
A
dd
r

wData

rData

byteEn

wEn

w

d

d×(w×b) BCAM
“10”
“0*”
“01”

“1*”“10”
“01” “0*”

0 1
1 11 1
1 0

0
0
1
0

1
0
-
-

“1*”

3
2
1
0
Pattern

A
d

d
re

ss
e

s

se
t 0

se
t 1

1
0

Se
ts

Patterns

1
0

In
di

ce
s Match Indicators

3
2
1
0

P
a

tt
e

rn
s

I n d i c e s

In
d
xR
A
M

Fig. 6: (top) II-LPM-TCAM single-stage architecture. The match datapath is
highlighted. (bottom-left) Dual-port block-RAM connectivity used throughout
the paper. (bottom-right) Toy example of II-TCAM tables with dc = 4, wp =
2, ws = 2. Writing “1*” and matching “3” are highlighted.

each single address. This subsystem is the most memory-
consuming structure. The third stage is the Longest-Prefix
Match, where match indicators from the IITRAM are received.
Lengths of pattern prefixes are stored in one register. The
longest of these prefixes with a positive match indicator is
reported by the Longest-Prefix Match Encoder (LPME). The
fourth stage, the write control unit, generates control signals to
control the entire structure, feeds the IITRAM with indicators
and indices, and controls the writing sequence. The write
control unit has two counters to iterate over all patterns and
all indices. A small BCAM is used to control the compression
mechanism and search for Set Indicators (SetIndc) that have
already been stored in the distributed memories. The following
is a detailed description of each of these four stages.

(1) Indirectly-Indexed Transposed RAM (IITRAM) unit:
As described in the previous subsection, instead of storing set
match indicators in the STIRAM, we store only indirect in-
dices to an auxiliary distributed RAM, which holds the match
indictors for all the addresses in the set, called the Indicators
RAM (IndcRAM). Theorem III.2 shows that a maximum of
ws different patterns can match in a set; hence, the depth of
IndcRAM is set to ws. Each set has ws addresses, therefore
IndcRAM should have ws address indicators for each set and
its width is also ws. The address space consists of ddc/wse
sets; thus, ddc/wse IndcRAM ws × ws blocks are required.

The IndxRAM (based on STIRAM) holds indices for all
pattern and set pairs. To represent all patterns the required
depth is 2wp . For each of the ddc/wse sets, dlog2 wse bits are
required for each index, in addition to one valid bit. In total,
the IndxRAM width is ddc/wse · (dlog2 wse + 1) bits. The
IITRAM structure is described in detail in Fig. 7.

Pattern matching mechanism (TCAM search): The pat-
tern match operation activates the IITRAM and the LPME

indx1

Indx1

indx1

indx0

indx0

indx0

IndxRAM
mPatt

wAddr_indx

wIndc

wAddr_indc

1-
ho

t D
ec

.

IndcRAM

wIVld

wPatt

512 × (32×6)

V1

V1

V1

V0

V0

V0

32
×

32

511:

1:

0:

mIndc

wEnb_iitram

wIndx

IITRAM

32
×

32
32
×
32

Fig. 7: Indirectly-Indexed Transposed RAM (IITRAM) unit.

structures only. As depicted in Fig. 7, the matched pattern
mPatt is used to address IndxRAM, where a complete set
(line) of indices and their corresponding valid bits are read.
Each index from IndxRAM is used to address a separate
IndcRAM. The outputs of the IndcRAM blocks are then
masked with the corresponding valid bit to generate the final
match indicators (match lines) which feed the LPM stage.
The II-TCAM is capable of performing one match operation
every cycle. However, the total latency of the TCAM lookup
includes the latency of the pipelined LPME, one cycle to
access IndxRAM, and another cycle to access IndcRAM. Thus,
throughput = 1 and latency = 2 + latency(LPME). The
detailed match operation is described in Algorithm 1.

(2) Sets RAM (SetRAM) Unit: Similar to the hierarchical
search method, the SetRAM unit holds all patterns and their
corresponding masks, and a valid bit for each address. Pattern
masks are derived from the pattern’s prefix length using a
thermometer decoder. Patterns, masks and valid bits for each
set of ws addresses are packed into a single SetRAM line.
Thus, its size is ddc/wse × (ws(2wp + 1)).

Once a new pattern is written to SetRAM, we read the
complete set where the same pattern was written, and re-
evaluate the set indicators (SetIndc). SetIndc’s are re-evaluated
based on a counted pattern (cPatt) that iterated over all possible
patterns. If cPatt’s prefix and the pattern read from SetRAM
are equal and the data is valid, the corresponding bit of SetIndc

Algorithm 1: Matching mPatt in a single-stage II-TCAM
input : mPatt: a pattern to match
output: mIndc: match indicators (match lines)

1 {Vws−1, indxws−1, · · ·, V0, indx0}←IndxRAM [mPatt]
2 for i = 0 to ws − 1 do
3 if (Vi = ‘1’) then
4 mIndc〈ws(i+1)−1 : wsi〉 = IndcRAMi[indxi]
5 else
6 mIndc〈ws(i+ 1)− 1 : wsi〉 = 0

7 return mIndc

V31 Patt31 V1 Patt1 V0 Patt0

V31 Patt31 V1 Patt1 V0 Patt0

V31 Patt31 V1 Patt1 V0 Patt0

Mask31

Mask31

Mask31

Mask1

Mask1

Mask1

Mask1

Mask1

Mask1

setIndc

Set511:

Set1:

Set0:
[log2(CD):5]

setRAM

[4:0]
wMask 1

wAddr

wEnb_setram

512 × (32×19

cPatt

wPatt
Thermometer

DecoderwPrefLn

Fig. 8: Sets RAM (SetRAM) unit.

will be set. The SetRAM subsystem is depicted in Fig. 8.
(3) Control Unit: The write control unit is activated on a

write request, where it updates the entire data structure based
on the new write operation. Since a TCAM write operation
may place a pattern in all memory addresses (e.g., when the
prefix is 0), rewriting memory lines may be required. There-
fore, a write operation requires dr,min cycles at most, where
dr,min is the depth of the shallowest BRAM configuration.

The write control unit has two counters. (1) Patterns counter
(cPatt), used to iterate over all possible patterns, addresses
and updates the IndxRAM accordingly. (2) Indices counter
(cIndx) is used to assigned a different index for each different
indicators in the IndcRAM. Theorem III.2 assures that at most
ws indices will be used. cIndx is used in conjunction with a
BCAM to assure that indicators that have been stored will not
be associated with a new index.

The write control unit employs an FSM to control the whole
structure. The write control unit is depicted in Fig. 9. The write
control unit’s writing mechanism is described in detail below.

Pattern writing mechanism (TCAM update): The pattern
writing mechanism is described in Algorithm 2. The written
address is sliced into two portions. (1) The lower portion up
to log2 ws − 1 bits of the address is used as a byte-enable
for intra-set addressing. (2) The higher portion includes the
other bits and is used for set addressing. The prefix length is
converted into a thermometer mask to accelerate the parallel
comparison afterward.

The written pattern and mask are written into SetRAM,
then the entire updated set is read and compared with cPatt,

32
×3

2
BC

AM

se
tIn

dc

wAddr_indc

w
En

b
_i

it
ra

m

w
En

b_
se

tr
am

wEn

wAddr

wPatt

wEn_cIdx

cIdx
mPatt

mAddr

match

5-bits
++1rst

inc

rst
rst_cIdx

cPatt9-bits
++1rst

inc
wEn_cPatt

rst_cPatt

w
IV

ld

FSM

Write
Control

Fig. 9: Write controller, with pattern and index counters, FSM, and BCAM.

Algorithm 2: Writing a pattern wPatt with a prefix length
wPerfLn in address a of a single-stage of the II-TCAM
input : wPatt: a pattern to write

wPrefLn: The written prefix length
wAddr: a writing location of wPatt

1 wAddrlow ← wAddr 〈log2ws − 1 : 0〉
2 wAddrhight ← wAddr 〈log2dc : log2ws〉
3 wMask ← Thermometer(wPrefLn)
4 SetRAM [wAddr]← {V = ‘1’, wMask,WPatt}
5 for i = 0 to ws − 1 do
6 {Vi,maski, patti} ← SetRAM [wAddrhigh, i]

7 for cPatt = 0 to dr,min do
8 for i = 0 to ws − 1 do
9 SetIndc 〈i〉 ← Vi& ‖ (maski&(cPatt⊕ Patti))

10 wV ld← OR(SetIndc) (SetIndc is not all zeros)
11 cIndx← 0
12 for j = 0 to ws − 1 do
13 if (SetIndc in BCAM) then
14 wAddr indc← ‘SetIndc Location in BCAM’
15 else
16 wAddr indc← cIndx
17 if wV ld = ‘1’ then
18 cIndx++
19 BCAM[cIndx]← SetIndc

20 IndxRAM [cPatt, wAddrHigh]← wAddr indc
21 IndcRAMwAddrHigh

[wAddr indc]← SetIndc

a pattern counter that iterates over all patterns in range. If the
masked portion of cPatt and the SetRAM pattern are equal
and valid, the set indicator (SetIndc) for this specific set is
enabled. If the SetIndc is not found in the logic control BCAM,
it will be written there with a unique address cIndx. cIndx
will increase each time SetIndc is not found in the BCAM.
IndxRAM is a transposed memory, hence it will be addressed
with cPatt. A specific set is chosen from IndxRAM using the
higher portion of the address as a byte-enable. wAddr indc is
used to index IndcRAM, it is also written to the IndxRAM.
wAddr indc is read from the BCAM if the appropriate SetIndc
is found in the BCAM, otherwise the cIndx will be used.

(4) Longest-Prefix Match Encoders (LPME) Given a match
indicator and a prefix length for each location, an LPME finds
the location of the longest prefix match. An LPME receives n
match indicators (mIndci : 0 ≤ i < n), and n prefix length
words (PrefLni : 0 ≤ i < n). The LPME reports if there is
a match (match =‖ mIndc), the match location mAddr, and
the prefix of the match mPrefLn. The following formalizes
the encoding operation.

mAddr = i

∣∣∣∣∣∣
mIndci = 1, and

PrefLni > PrefLnj ∀
j 6= i |
matchj = 1

(6)

Fig. 10 illustrates a recursive implementation of an LPME.
While Priority Encoders (PEs) steer the index of the first
match, LPMEs steer the index of the first largest matching

n

n/k

m
at

ch

mIndcprefLn

n·w

 lo
g

2 (n
/k)

w= log2PW

(n/k)·w

w

k·w

 log2k
 log2(n/k)

 log2n

mAddr

k-1 2 1 0

mPrefLn

w

LPMEn / k LPMEn / k LPMEn / k LPMEn / k

LPMEn / k

m
a

tc
h

m
Pr

ef
Ln

w

m
A

d
d

r

LPMEn

p
re

fL
n

m
In

d
c

nn·w
 lo

g 2
n

Fig. 10: Recursive LPME: (left) Symbol, and (right) recursive definition

prefix. Compared to PEs, LPMEs have additional logic area
overhead due to comparators used to find longest prefixes.
Furthermore, pattern prefixes are stored in dlog2 wpe · dc
registers to be able to fetch them in parallel.

C. Implementation in Intel Stratix V Devices

An area-efficient implementation of the proposed II-TCAM
requires both large and small RAMs on the FPGA. Relatively
small RAMs will be used to construct IndcRAM and store
match indicators. A perfect candidate is the LUT configuration
RAM, known as LUTRAM, and is supported by both Intel and
Xilinx devices. In addition, the larger RAMs will be used to
construct other wide structures.

Intel’s Stratix V memory architecture provides a 640-
bit LUTRAM memory called MLAB (Memory Logic Array
Block) as well as 20Kb BRAMs called M20Ks.

Both MLABs and M20Ks are used in their shallow-
est/widest configuration modes. Hence, the MLABs are 32×
20, and the M20Ks are 512× 40. Since the depth of MLABs
is 32, and they are used to implement the IndcRAM, we set
ws = 32. With an index width of dlog2 wse = 5, a single
M20K line can store up to 8 indices. M20K’s mixed-width
port is used to write a single 5-bit index.

IV. COMPARISON AND DISCUSSION

The CAM storage efficiency µs is defined as the SRAM
cell utilization for a specific CAM implementation. In other
words, µs is the ratio of the total CAM bits realized to the
total SRAM cells used to implement the CAM. µs for the
brute-force TCAM is estimated as follows:

µ−1
s (BF) ≈

{
1 + 2wp

/
wp uncascaded

1 + dr,min

/
log2 (dr,min) cascaded.

(7)

Equation (7) shows that the storage efficiency of the un-
cascaded BF implementation is inversely proportional to the
exponent of wp and decays rapidly as wp increases. The
cascaded BF is not related to wp, hence the efficiency is not
affected when wp increases. However, the efficiency is affected
by dr,min, an intrinsic BRAM characteristic.

As shown in Fig. 11 (top), the efficiency is inversely
proportional to dr,min. Hence, shallow and wide BRAMs
exhibit higher storage efficiency. Using the area information

0

0.02

0.04

0.06

0.08

0.1

0.12

128 256 512 1024 2048 4096

II-HS(S =128)
II-HS(S =64)
II-HS(S =32)
II-HS(S =16)
II-HS(S =8)
BF-TI

BRAM Shallowest Depth (RD,min)

St
o

ra
ge

 E
ff

ic
ie

n
cy

 (
µ

s) W

W

W

W

W

A
lt

er
a'

s
M

2
0

K

0

0.02

0.04

0.06

0.08

0.1

0.12

8 16 32 64 128 256 512

II-HS(R =128)
II-HS(R =256)
II-HS(R =512)
II-HS(R =1024)
II-HS(R =2048)
II-HS(R =4096)

Set Width (SW)

St
o

ra
ge

 E
ff

ic
ie

n
cy

 (
µ

s) D,min

D,min

D,min

D,min

D,min

D,min

Fig. 11: Storage Efficiency µs as function of (top) BRAM shallowest depth
(dr,min), and (bottom) set width (ws) for HS-CAM and the cascaded BF.

from Section III-B, the storage efficiency µs of the proposed
II-TCAM can derived as follows:

µ−1
s (II) ≈ 1 +

1 + ws + log2 ws ·
(
1 +

dr,min

ws

)
log2 dr,min

. (8)

Equation (8) shows that the efficiency of our II-TCAM
approach is not related to the pattern width wp. Also, it can
be adjusted by tuning the set width ws. The set width ws

is restricted by internal RAM parameters, namely the depth
of the LUTRAM and the BRAM allowable write-port width
in mixed-width mode. As described in Section III-C, Intel’s
Stratix V MLAB minimal depth is 32, and log2 32 = 5 is
allowed as write data width for M20K mixed-width configu-
ration. Hence, ws=32 is the suitable set width. This restriction
is in agreement with Fig. 11 (bottom) where the storage
efficiency µs is given as function of the set width ws. Fig. 11
(bottom) shows that the storage efficiency decreases for narrow
sets since the STIRAM portion of the TCAM is not efficiently
compressed. Conversely, storage efficiency decreases for wide
sets due to the increase of the IndcRAM portion.

V. EXPERIMENTAL RESULTS

To verify and simulate our proposed TCAM and compare
it to earlier techniques, fully parameterized Verilog modules
have been developed for register-based, both cascaded and
uncascaded Brute Force Transposed Indicator (BF-TI), and
the proposed II-TCAM methods. A run-in-batch flow manager
was developed to simulate and synthesize these designs with
various parameters using Intel’s ModelSim and Quartus II. The
Verilog modules and the flow manager are available online.

To verify correctness, the proposed architecture is simu-
lated using Intel’s ModelSim. A large variety of different
TCAM architectures and parameters, e.g., TCAM depth and
pattern width, are swept and simulated in batch, each with
over a million random cycles. All different TCAM design
modules are synthesized using Quartus II targetting a Stratix V
5SGXMABN1F45C2. This ‘-2’ speed grade device has 360k
ALMs and 2,640 M20K BRAMs. Half of the ALMs can be
used as MLABs, where eache MLAB replaces 10 ALMs.

0
0.5

1
1.5

2
2.5

3

9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5 9 18 27 36 45 54 63 9 18 27 36 9

16K 32k 64k 128k

M
20

Ks
 (1

00
0'

s)

0
50

100
150
200
250
300
350

AL
M

s (
10

00
's)

0

100

200

300

400

500
Fm

ax
 (M

Hz
)

Reg-based LPM-TCAM
BF-TI LPM-TCAM
II-HS LPM-TCAM

PW

CD

Fig. 12: Results for several TCAM depth and pattern width sweeps (bottom)
M20K count (middle) ALMs count (top) Fmax at T=0◦C.

Fig. 12 plots feasible sweeps of TCAM depth and pat-
tern width. With 16K entries, the proposed II-TCAM can
implement a pattern width of 135b, while other BF-based
approaches cannot exceed 45b. The number of M20K BRAMs
is plotted in Fig. 12 (bottom). The BF-TI and II-TCAM
exhibit a linear growth of M20K consumption as pattern width
increases since both methods are cascaded. However, the II-
TCAM growth rate is lower since addresses are grouped as
sets. The inverse of the curve slope represents the storage
efficiency µs. A linear regression shows that µs(BF) = 1.4%,
whereas µs(II) = 7.7%. This is with agreement with (7) and
(8), and shows 5.5× improvement in storage efficiency. The
efficiency of the BF-CAM in Fig. 12 matches the reported
CAM instances by Xilinx [1] and Intel [3].

As shown in Fig. 12 (middle), the proposed II-TCAM
method and the BF-based methods also exhibit linear ALM
count growth as pattern width increases. The proposed II-
TCAM approach uses ALMs as MLABs, hence it has higher
ALM consumption. The register-based TCAM consumes the
most ALMs due to massive register usage.

Fig. 12 (top) plots the Fmax of all TCAM architectures. The
II-TCAM exhibits the highest Fmax for most configurations
compared to register-based and BF-based TCAMs. However,
Fmax drops dramatically as the CAM depth increases since the
LPME delay becomes dominant. As can be seen, Fmax de-
creases mildly as pattern width increases due to cascading.

Similar to BF-based approaches, the II-TCAM matches a
pattern every cycle and requires multiple cycles to write a pat-
tern. Pipelining is employed to increase Fmax and this adversely
increases latency. The longest combinational path goes through
the LPME, and is pipelined every stage. For the device-specific
LPME described in Section III-B, dlog4 ddc/wsee pipe stages
are required. On the other hand, sets are not used in BF-based
approaches, hence its match latency is dlog4 dce.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel modular LPM-TCAM architecture for
FPGAs is proposed. The approach employs hierarchical search
to reduce BRAM consumption. While hierarchical search
methods have been previously employed to BCAMs, we show
how to compress TCAM tables using hierarchical search and
provide a mathematical proof of correctness.

Our approach efficiently regenerates a match indicator for
every address by storing indirect indices to address indicators.
Hence, the proposed method can be cascaded, resulting in a
linear growth rate instead of exponential. Compared to other
methods, our LPM-TCAM is capable of storing 5.5x more data
for the same SRAM without degrading the performance. We
also perform a detailed comparison for different FPGA-based
LPM-TCAM architectures. A fully parametrized open source
Verilog implementation of the suggested methods is provided.

As future work, the implementation would benefit by ap-
plying power reduction techniques. Hierarchical search can
be power efficient since it performs the search in steps; the
implementation needs to selectively disable inactive memories
to realize a power savings.

REFERENCES

[1] K. Locke, “Parameterizable Content-Addressable Memory,” San Jose,
CA, USA, 2011, xilinx Inc. Application Note XAPP1151.

[2] J. Brelet, “Methods for implementing CAM functions using dual-port
RAM,” Mar. 5 2002, US Patent 6,353,332.

[3] Altera, “Implementing High-Speed Search Applications with Altera
CAM,” San Jose, CA, USA, July 2001, Applications Note 119, V2.1.

[4] C. A. Zerbini and J. M. Finochietto, “Performance evaluation of packet
classification on FPGA-based TCAM emulation architectures,” in IEEE
Global Communications Conf., Dec 2012, pp. 2766–2771.

[5] W. Jiang, “Scalable ternary content addressable memory implementation
using FPGAs,” in ACM/IEEE Symp. on Architectures for Networking and
Communications Systems, Oct 2013, pp. 71–82.

[6] Z. Ullah, M. K. Jaiswal, and R. C. C. Cheung, “Z-TCAM: An SRAM-
based Architecture for TCAM,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, no. 2, pp. 402–406, Feb 2015.

[7] (2014) CIDR Report. [Online]. Available: http://www.cidr-report.org
[8] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction

to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.
[9] A. Abdelhadi and G. Lemieux, “Deep and narrow binary content-

addressable memories using FPGA-based BRAMs,” in Int. Conf on
Field-Programmable Technology, Dec 2014, pp. 318–321.

[10] ——, “Modular SRAM-Based Binary Content-Addressable Memories,”
in IEEE Int. Symp. on Field-Programmable Custom Computing Ma-
chines (FCCM), May 2015, pp. 207–214.

[11] (2014) The BGP Instability Report. [Online]. Available:
http://bgpupdates.potaroo.net/instability/bgpupd.html

[12] Altera, Stratix V Device Handbook, San Jose, CA, USA, May 2013.
[13] S. Guccione, D. Levi, and D. Downs, “A Reconfigurable Content

Addressable Memory,” in Proceedings of the 15 IPDPS Workshops on
Parallel and Distributed Processing, London, UK, 2000, pp. 882–889.

[14] A. Jamadarakhani and S. K. Ranchi, “Implementation and Design of
High Speed FPGA-based Content Addressable Memory,” Int. J. for Sci.
Research and Development, vol. 1, no. 9, pp. 1835–1842, Dec 2013.

[15] Altera, APEX 20K Programmable Logic Device Family Data Sheet, San
Jose, CA, USA, March 2004, version 5.1.

[16] Lattice Semi, “Content Addressable Memory (CAM) Applications for
ispXPLD Devices,” Hillsboro, OR, 2002, application Note AN8071.

[17] Actel, “Content-Addressable Memory (CAM) in Actel Devices,” Moun-
tain View, CA, USA, 2002, application Note AC194.

