
Efficient Interconnection Network Components

for

Programmable Logic Devices

by

Guy Gerard Frederick Lemieux

A thesis submitted in conformity with the requirements
for the Degree of Doctor of Philosophy

Edward S. Rogers Senior Graduate Department of Electrical and Computer Engineering
University of Toronto

c� Copyright 2003 by Guy Gerard Frederick Lemieux

Efficient Interconnection Network Components
for Programmable Logic Devices

Doctor of Philosophy 2003

Guy Gerard Frederick Lemieux

Edward S. Rogers Senior Graduate Department
of Electrical and Computer Engineering

University of Toronto

Abstract
The complexity of digital logic systems has increased steadily and rapidly for the last

several decades due to a steady trend in technology scaling. As current manufacturing

technology reaches the deep-submicron level, an increasing amount of low-level design

effort is required to create a working design. This further increases the cost and complexity

of these designs.

One way to separate digital systems design from the problems of deep sub-micron

design is to use programmable logic device (PLD) technology. This provides a clean in-

terface, allowing systems designers to stop at the RTL level while physical design issues

are solved by the PLD designers. Although this is a very convenient abstraction, it suf-

fers from significant inefficiencies in area and delay that make the approach unsuitable for

many large systems.

This dissertation improves the area efficiency of PLDs by analysing the design of their

largest components, the switch blocks and sparse crossbars found in the interconnection

network. The approach taken is to modify their topological organisation, so that the routing

network can be more highly utilised, as well as their circuit implementations, so they can be

made smaller. Through transistor-level design, the delay of these circuit implementations

is also reduced, particularly delay under fanout.

The improvements made to these network components can be applied to a variety of

high-level PLD interconnect styles. In this dissertation, they are shown to improve area

and delay in a mesh-style PLD architecture.

iii

iv

Acknowledgments

I would like to thank my supervisor, Dr. David Lewis, for his support, encouragement, and

wisdom. He reminded me many times to look at things in different ways; hopefully, this

has permanently rubbed off on me! His dedication to my research was also remarkable.

Thank you.

The long arduous tasks embodied by this dissertation were mitigated in many ways by

the support of family and friends. Many thanks are due to many people – there are far too

many to list here, but you know who you are! Thank you for the many distractions, lively

discussions, and encouragement throughout.

I would also like thank some friends in particular for their technical assistance and

feedback on my work: Elias Ahmed, Su Jin Chun, Marcus van Ierssel, Paul Kundarewich,

Kostas Pagiamtzis, Ajay Roopchansingh, and Andy Ye.

This dissertation is dedicated to the loving memory of my father and grandfather. They

struggled hard to give me this opportunity. Thank you.

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 7
1.3 Summary . 9
1.4 Outline . 9

2 Background 11
2.1 PLD Routing Architectures . 11

2.1.1 Complete Networks . 12
2.1.2 Row Networks . 13
2.1.3 Hierarchical Networks . 14
2.1.4 Mesh Networks . 14
2.1.5 Selected Commercial PLDs . 15

2.2 Mesh Architecture Studies . 18
2.2.1 Mesh Model . 18
2.2.2 CLB Architecture Studies . 20
2.2.3 Routing Architecture Studies . 21

2.3 Switch Blocks . 21
2.3.1 Switch Block Flexibility . 22
2.3.2 Xilinx or disjoint Switch Block 22
2.3.3 universal Switch Block . 23
2.3.4 generic universal and hyperuniversal Switch Blocks 24
2.3.5 Wilton and Imran Switch Blocks 24
2.3.6 Switch Matrix . 26
2.3.7 Other Switch Blocks . 27

2.4 Crossbars and Connection Blocks . 29
2.4.1 Full Crossbars . 30
2.4.2 Minimal Full-Capacity Crossbars 31
2.4.3 Sparse and Guaranteed-Capacity Crossbars 33

2.5 Multi-Stage Networks . 36
2.5.1 Network Types . 37
2.5.2 No. 5 Crossbar . 38
2.5.3 Clos Network . 39
2.5.4 Beneš Network . 39
2.5.5 Rearrangeable Networks with Fanout 41

vii

2.5.6 Connecting Multiple PLDs: Partial Crossbar Structures 42
2.5.7 Other Network Structures . 44
2.5.8 Summary . 45

3 Models, Methodology and CAD Tools 47
3.1 PLD Models . 47

3.1.1 Architecture Model . 47
3.1.2 Area Model . 53
3.1.3 Delay Model Calculations . 56
3.1.4 Delay Model Parameters . 56

3.2 Experimentation and CAD Flow . 58
3.2.1 Overall Flow . 58
3.2.2 Routing Step . 59
3.2.3 Determination of Router Effort 61

3.3 VPR Extensions (VPRx) . 63
3.3.1 Routing Graph and Netlist Changes for Sparse Clusters 63
3.3.2 Architecture Model Change . 64
3.3.3 Area Model Changes . 64
3.3.4 Delay Model Improvements . 65
3.3.5 Runtime Improvements . 66
3.3.6 Experimental Noise Reduction 67
3.3.7 Correctness Changes . 68

4 Sparse Crossbars 69
4.1 Introduction . 69

4.1.1 Graph Representation . 71
4.2 Evaluating Routability . 72
4.3 Routable Switch Patterns . 74

4.3.1 Hall’s Theorem . 75
4.3.2 Application of Hall’s Theorem 75
4.3.3 Hamming Distance and Coding Theory 76
4.3.4 Expander Graphs . 78

4.4 Switch Placement Algorithm . 78
4.4.1 Initial Switch Pattern Generation 79
4.4.2 Switch Placement Optimiser . 81
4.4.3 Cost Function Pitfalls . 82
4.4.4 Generating Swap Candidates . 85
4.4.5 Limitations of the Algorithm . 85

4.5 Results . 87
4.5.1 Adding Extra Switches . 87
4.5.2 Adding Extra Output Wires . 89
4.5.3 Adding Both Switches and Wires 91
4.5.4 Summary . 92

4.6 Design Examples . 94
4.6.1 Design Example: Altera FLEX8000 PLD 96

viii

4.6.2 Design Example: HP Teramac Plasma PLD 100
4.6.3 Design Example: Altera MAX7256 CPLD 104
4.6.4 Design Example: Varying the Sparse Crossbar Aspect Ratio . . . 106

4.7 Conclusions . 108
4.8 Future Work . 109

5 Sparse Clusters 111
5.1 Introduction . 111
5.2 Methodology . 113

5.2.1 Routing Experiments . 113
5.2.2 Conservative Delay Results . 114

5.3 Architecture Parameters . 114
5.3.1 Routing Architecture . 115
5.3.2 Cluster Architecture . 116
5.3.3 Sparse Cluster Switch Patterns 118

5.4 Results . 118
5.4.1 Key to Curve Labels . 119
5.4.2 Routing Architecture Selection 119
5.4.3 Partitioning of Cluster Inputs . 123
5.4.4 Sparse Cluster Area Results . 124
5.4.5 Sparse Cluster Delay Results . 127
5.4.6 Sparse Cluster Area�Delay Product 128
5.4.7 Routing Runtime with Sparse Clusters 129

5.5 Comparison to Previous Work . 131
5.6 Conclusions . 132
5.7 Future Work . 133

6 Routing Switch Circuit Design 135
6.1 Introduction . 135

6.1.1 Transistor-Level Switch Design 136
6.1.2 Mixing Buffers and Pass Transistors 137
6.1.3 Related Work . 138

6.2 Methodology . 138
6.2.1 Circuit Simulation . 139
6.2.2 Routing Experiments . 139
6.2.3 Baseline Routing Architecture 140

6.3 Detailed Circuit Design . 140
6.3.1 A Case for Mixing Buffers and Pass Transistors 140
6.3.2 Leakage Current Problem and Solution 141
6.3.3 Transistor-Level Buffer Design 146
6.3.4 Best Switch Sizes . 152
6.3.5 Verifying Assumptions . 153

6.4 Three New Switch Types . 161
6.4.1 Fanin-Based Switches . 161
6.4.2 Output Pin Merging . 165

ix

6.4.3 Experimental Results . 166
6.5 Buffer/Pass Architectures . 169

6.5.1 Alternating Buffer/Pass Schemes 171
6.5.2 Other Possible Buffer/Pass Schemes 173
6.5.3 Buffer/Pass Schemes Considered 173
6.5.4 Experimental Results . 174

6.6 Conclusions . 178
6.7 Future Work . 180

7 Switch Block Design Framework 181
7.1 Introduction . 181
7.2 Design Framework . 183

7.2.1 Switch Block Model . 183
7.2.2 Permutation Mapping Functions 185
7.2.3 Additional Assumptions . 187
7.2.4 Commutative Switch Blocks . 188

7.3 Framework Applications . 189
7.3.1 Application: shifty and universal-L Switch Block Designs 190
7.3.2 Application: Diverse Switch Block Designs 192

7.4 Results . 196
7.4.1 Switch Block Design Results . 197
7.4.2 Diversity Results . 198
7.4.3 Routing Results . 198
7.4.4 Analysis . 200

7.5 Conclusions . 202
7.6 Future Work . 203

8 Conclusions 205

A Switch Blocks with Reduced Flexibility 209
A.1 Introduction . 209
A.2 Biased Fs � 2 Style . 210
A.3 Asymmetric Fs � 2 Style . 211
A.4 Results . 212
A.5 Summary . 215

B Diverse Switch Block Design Instances 223

Bibliography 225

x

List of Figures

1.1 Range of area requirements for different circuits. 6

2.1 Common PLD routing network types. 12
2.2 A hierarchical PLD routing network. 15
2.3 A mesh-style PLD routing network. 19
2.4 A clustered logic block (CLB). 20
2.5 A basic logic element (BLE). 20
2.6 Disjoint, universal and Wilton switch block styles. 23
2.7 Examples of switch matrices a) by Zhu, b) by Chang, and c) the QUSM by

Wu. 27
2.8 A 6�4 full crossbar. 29
2.9 Examples of 6�4 minimal full-capacity crossbars. 30
2.10 Oruç-Huang guaranteed-capacity sparse crossbar construction. 35
2.11 Azegami guaranteed-capacity sparse crossbar construction. 36
2.12 No. 5 crossbar switching network. 38
2.13 Clos network. 39
2.14 Beneš network for 16 inputs and 16 outputs. 40
2.15 Recursive construction of a Beneš network from a Clos network. 40
2.16 Non-blocking Richards-Hwang network with full broadcast ability. 41
2.17 Partial crossbar network derived by folding a Clos network. 43

3.1 PLD architecture model. 48
3.2 A clustered logic block (CLB). 49
3.3 A basic logic element (BLE). 49
3.4 Layout tile of a clustered logic block (CLB) and interconnect. 49
3.5 Layout design rules for a minimum-size transistor used in the area model. 54
3.6 Experimental process used to evaluate PLD architectures. 59
3.7 Runtime and variation in critical path delay. 62
3.8 Runtime and number of router iterations. 62
3.9 Early detection of unroutable architectures. 67

4.1 A 6�4 minimal crossbar and its graph representation. 71
4.2 Routability of different switch patterns in a 80�12 sparse crossbar. . . . 73
4.3 Flow network used to test the routability of a 6�4 minimal crossbar. . . . 74
4.4 Overview of switch placement algorithm. 79
4.5 Algorithm to generate uniform fanin/fanout constraints. 79

xi

4.6 Random initial switch placement algorithm. 80
4.7 Initial switch placement algorithm using a maximum network flow algorithm. 81
4.8 Iterative optimisation of switch placement. 83
4.9 Cost computation. 83
4.10 Routability of 9�6 sparse crossbars with different Hamming distance pro-

files. 84
4.11 Find eligible switch moves. 86
4.12 Example of a bad move (left) and a good move (right). 86
4.13 The effect of adding extra switches on routability of a 168�24 crossbar. 90
4.14 Efficiency of switches in a 168�24 crossbar. 90
4.15 Routability of 24 signals in a 168�24 crossbar as output wires are added. 90
4.16 Routability of a 168�24 crossbar after adding output wires and switches. 93
4.17 Routability of 24 signals with a fixed number of total switches. 93
4.18 Routability of 24 signals while varying total switch count. 93
4.19 Interconnect model of the Altera FLEX8000 architecture. 96
4.20 Routability improvements made to the FLEX8000 architecture. 98
4.21 Sizes of highly routable Altera FLEX8000 organisations. 98
4.22 Interconnect model of the HP Plasma architecture. 100
4.23 Routability improvements made to the HP Plasma architecture. 102
4.24 Sizes of highly routable HP Plasma organisations. 102
4.25 Interconnect model of the Altera MAX7256 architecture. 104
4.26 Sizes of highly routable Altera MAX7256 organisations. 105
4.27 Effect of varying the cluster size N on interconnect size. 107
4.28 Effect of varying the number of top-level inputs on interconnect size. . . . 107

5.1 Details of the cluster tile architecture. 115
5.2 Fc impact on channel width. 121
5.3 Fc impact on area for cluster sizes of N � 2 and 9. 121
5.4 Best Fc for minimum area with I � �7�N�1��2� cluster inputs. 122
5.5 Spare inputs reduce channel width in fully populated clusters. 125
5.6 PLD area of fully and sparsely populated clusters. 126
5.7 Delay depends on LUT size (left), but not on switch density (right). . . . 128
5.8 Area�delay for fully-populated (left) and best-area sparse (right) clusters. . 129

6.1 End-to-end connection delay using different switch types. 142
6.2 Level-restoring circuit to reduce leakage current. 142
6.3 The level-restoring pulldown problem. 144
6.4 Multistage buffer with (optional) tristate output. 147
6.5 HSPICE circuit of a length-4 wire segment and all drivers. 148
6.6 Adjusting the sense and drive stages of a size 6 switch. 151
6.7 Adjusting the sense and drive stages of a size 16 switch. 151
6.8 Delay per wire for various switch sizes. 154
6.9 Area-delay per wire for various switch sizes. 154
6.10 Effect of tile length on performance of a buffer-wire connection. 158
6.11 Best switch sizes as a function of tile length (replot of Figure 6.10 data). . 158

xii

6.12 Increases from using a fixed switch size in a buffer-wire connection. . . . 158
6.13 Effect of tile length on performance of a buffer-wire-pass-wire connection. 159
6.14 Best switch sizes as a function of tile length (replot of Figure 6.13 data). . 159
6.15 Increases using a fixed switch size in a buffer-wire-pass-wire connection. 159
6.16 Impact of slow input slew rate on delay, size 16 switch. 160
6.17 Two previous fanout-based switch types. 162
6.18 Three new fanin-based switch types. 162
6.19 Delay per wire under fanout, normalized to bufns, size 6 switches. 164
6.20 Key difference between two alternating schemes. 170
6.21 Tile and switch details of alternating schemes with length 1 wires. 170
6.22 Extra track twisting is necessary to form longer wires (length 2 shown). . 170
6.23 Switch block to evenly cycle through a sequence of switches. 172
6.24 Switch block examples cycling among 2 or 3 switch types. 172
6.25 Test circuit and routing solution obtained using buf switches. 177

7.1 Disjoint, universal and Wilton switch block styles. 183
7.2 Switch block models containing subblocks. 185
7.3 Four switch blocks (above) and a portion of the switching fabric created by

one track group (below). 186
7.4 Mapping functions for endpoint and midpoint subblock turns. 187
7.5 Turn order is not important in commutative switch blocks. 189
7.6 Checkering two switch blocks can increase diversity with single length wires.191
7.7 Checkering with different wire lengths. 191
7.8 The six different two-turn path types. 194
7.9 An 8�8 grid or supertile used for enumerating all two-turn paths. 195
7.10 Regular and checkered layout of a W � 5 diverse-clique switch block. . . 197
7.11 Diversity of various commutative switch blocks. 198
7.12 Minimum channel width results using the new switch blocks. 199
7.13 Area results using the new switch blocks. 199
7.14 Delay results using the new switch blocks. 200

A.1 Biased and asymmetric versions of different switch blocks. 210
A.2 Asymmetric Fs � 2 algorithm. 212

xiii

xiv

List of Tables

1.1 Area profile of a mesh-based PLD. 3

2.1 CLB configuration and number of tracks in some recent Xilinx PLDs. . . 17

3.1 Architectural parameters. 48
3.2 Layout design rules for a minimum-size transistor area model. 54
3.3 Amount of routing effort used for all experiments. 63

4.1 Highly routable sparse crossbars designed for the Altera FLEX8000 PLD. 99
4.2 Highly routable sparse crossbars designed for the HP Plasma PLD. 103
4.3 Highly routable sparse crossbars designed for the Altera MAX7256 CPLD. 105

5.1 Breakdown of cluster tile area. Routing and total area are arithmetic averages.112
5.2 Routing switch sizes (� minimum size) used for different cluster organi-

sations. 116
5.3 Switch density parameters. 117
5.4 PLD area savings obtained by depopulating switches inside the cluster. . . 126
5.5 Breakdown of cluster tile area. The routing area is an arithmetic average. . 127
5.6 Average runtime and number of routing iterations for the low-stress route. 131

6.1 Transistor area required to connect four wire endpoints. 163
6.2 Delay increases due to the improved modelling of buffer fanout within VPRx.168
6.3 Transistor area, delay, and area�delay results using different buffer types. . 168
6.4 Area, delay, and area�delay results using different switch schemes. 175
6.5 Delay of a long connection across a PLD with 24�24 tiles. 176
6.6 Best buffer/pass schemes compared to the baseline. 178

7.1 Mapping functions for some switch block styles. 187
7.2 Switch block mappings used for white (f) and black (g) squares. 192

A.1 Performance of Fs � 1 switch blocks. 213
A.2 Performance of Fs � 2 switch blocks for k � 4, normalised to Fs � 3. . . . 217
A.3 Performance of Fs � 2 switch blocks for k � 5, normalised to Fs � 3. . . . 218
A.4 Performance of Fs � 2 switch blocks for k � 6, normalised to Fs � 3. . . . 219
A.5 Performance of Fs � 2 switch blocks for k � 4. 220
A.6 Performance of Fs � 2 switch blocks for k � 5. 221
A.7 Performance of Fs � 2 switch blocks for k � 6. 222

xv

B.1 Diverse switch block solution sets. 224
B.2 Diverse-clique switch block solution sets. 224

xvi

List of Symbols

B switch or buffer size, B �Wn�WminT of the last stage

c capacity of a crossbar (number of guaranteed-routable inputs)

BLE basic logic element, containing a k-input LUT and bypassable flip-flop

CLB clustered logic block

C block connection block, connects CLB pins to the routing channels

S block switch block, connects horizontal and vertical routing channels

Fc fraction of switching points connected to (clustered) logic block inputs

Fcin fraction of switching points connected to LUT/BLE inputs from cluster inputs

Fc f b fraction of switching points connected to LUT/BLE inputs from cluster feed-
back

Fcout fraction of switching points connected to LUT/BLE outputs

Fs switch block flexibility, the number of other wires connected at this switch block

FPGA field-programmable gate array, aka PLD

k number of inputs to a LUT

I number of inputs to a clustered logic block

Ispare number of spare inputs to a clustered logic block, used only for routing (not
packing)

Lwire logical wire length, measured by the number of logic blocks (CLB tiles) it spans

Lmin minimum transistor length (in µm)

Ln, Lp NMOS, PMOS transistor lengths (in µm)

Ltile physical length of a logic block tile, measured in µm

LUT lookup table, used to implement logic functions

xvii

M transistor width as a multiple of WminT

m number of crossbar outputs

N number of LUTs/BLEs in a clustered logic block

n number of crossbar inputs

PLD programmable logic device

p number of switches in an n�m crossbar

T unit of area occupied by one minimum-sized contactable transistor, including
spacing

W number of tracks per routing channel (channel width)

Wn, Wp NMOS, PMOS transistor widths (in µm)

Wmin minimum tracks required to route

WminT minimum contactable transistor width

Vt transistor threshold voltage

xviii

Chapter 1

Introduction

1.1 Motivation

The rapid advancement of semiconductor technology has required the concurrent advance-

ment of the digital system design process. Early integrated circuits such as the Intel 4004

processor were completely hand-designed, including the layout artwork. This was a rea-

sonable effort for a 2,300-transistor device built in 1971 with a 10µm technology pro-

cess [1]. In contrast, the latest Intel Itanium 2 processor, released in July 2002, contains

220 million transistors in a 0.18µm process [1]. Designing such a large device requires

hundreds of engineers who rely upon sophisticated CAD tools to manage the complexity.

For the last five to ten years, each new Intel processor has been the pinnacle of design,

setting the standard for other devices to follow. However, other new devices are reaching

a similar level complexity. For example, the ATI Technologies RADEON 9700 graphics

processor [2], also released in July 2002, is reported to contain 107 million transistors in a

0.15µm process [3]. There is no doubt that increasingly larger devices will continue to be

designed, so the demand for tools and design methodology advancement will continue.

Coupled with the increase in design complexity is a development cost trend that is

spiralling upwards. Future devices will contain more transistors with ever-smaller feature

sizes. Designers and CAD tools must not only cope with an increasing transistor count,

but also with an increasing number of second-order effects. Solving the problems of IR

supply-voltage drops, electromigration, signal noise and integrity, and increasing power

1

2 CHAPTER 1. INTRODUCTION

all translate into greater design effort and cost. For example, one way to reduce power

without sacrificing performance is to use transistors with lower threshold voltages on the

speed-critical portion only [4]. This demonstrates that not only are designs larger and more

complex, but they require more detailed design and analysis than ever before. The impact

on design team size, tool sophistication and development costs reflect this as well.

Design costs cannot continue to grow unabated without a shift in the design process

toward a simpler, more manageable methodology. Programmable logic device (PLD) tech-

nology is one solution for reducing design costs. When using PLDs, design can stop at the

RTL netlist level because many of the difficult, low-level physical design issues have al-

ready been addressed during the physical design of the PLD itself. This saves considerable

effort in physical design and verification, not to mention a reduction in tool cost. For exam-

ple, Nvidia Corporation spent $160 million for CAD tools and $40 million on emulation

systems to design the GeForce 4 graphics processor, a custom chip with 63 million tran-

sistors [5]. In addition to reducing these types of costs, the PLD abstraction also improves

time-to-market, a critical factor for establishing market acceptance and profitability.

Despite their design cost advantage, PLDs impose large area overheads when they are

compared with custom silicon alternatives. To illustrate the magnitude of this problem, the

area profile for a PLD architecture studied in this dissertation is given in Table 1.1.1 The

top row shows the portion of area used for logic functions, while the remaining rows show

the portion of area used for various routing functions. From this table, it can be seen that

only 8–16% of the area is used to directly implement logic. This inefficiency makes PLDs

very unattractive in per-unit cost. PLDs also suffer from large delay and power overheads.

The inability to meet timing requirements, power budgets, or logic capacity constraints

make it technically infeasible to use PLDs in the most demanding applications.

1To compute the results in Table 1.1, twenty different benchmark circuits are placed and routed using the

smallest PLD possible (with 20% additional routing tracks). The architecture is a mesh-based PLD using a

cluster with six 4-input LUTs. Half of the routing tracks are unbuffered and the other half are buffered only

at alternate switching points. This architecture contains very few buffers, yet routing area still dominates.

The average area is determined by a geometric average across the benchmark circuits; the range is similarly

determined by the minimum or maximum portion across the different circuits. The area data are compiled

using the tools and methodology described later in Chapter 3.

1.1. MOTIVATION 3

Proportion of Area

Resource Details Range Average

Logic flip-flops, lookup tables, lookup table input buffers 8–16% 12%

lookup table output buffers and switches 8–10% 9%

lookup table input multiplexers 18–36% 27%

Routing cluster input multiplexers 11–13% 12%

cluster input buffers (track buffers) 7–11% 9%

routing switches 23–39% 31%

total routing 84–92% 88%

Table 1.1: Area profile of a mesh-based PLD.

There is a considerable demand for PLDs which use less area and have lower delay.

One general method used to make PLDs more efficient is to search for improvements to

the numerous algorithmic steps which map a logic circuit into a PLD. Improvements to the

logic synthesis step, for example, can reduce the amount and depth of logic needed. Also,

improvements to the partitioning, placement, and clustering steps can reduce the amount

of interconnect needed and reduce delay by encouraging the use of shorter or more local

connections. Similarly, improvements to the routing step can better map critical delay paths

to faster connections. Defining a PLD architecture is the challenge of fixing the logic and

routing resources so that these algorithms produce the most efficient results possible. Since

both the algorithm and architecture can be simultaneously defined, there is a significant

amount of interaction which can influence the final result. The scope of this design problem

has motivated a considerable amount of research to improve the efficiency of PLDs.

The primary goal of this research is to improve the area efficiency of PLDs by exam-

ining the building blocks used in the routing network. The approach taken is to examine

the largest portions of the routing network and make micro-architectural or circuit-level

optimisations which can reduce area or delay while remaining independent of the CAD

algorithms being used and the higher-level architectural organisation.

Two building blocks commonly used in PLD architectures are switch blocks and sparse

4 CHAPTER 1. INTRODUCTION

crossbars. These blocks also form the largest parts of the PLD. From Table 1.1 it can be

seen that the largest component is the routing switches (31%) which make up the switch

blocks. The next two largest routing components are the lookup table input multiplexers

(27%) and cluster input multiplexers (12%), both of which can be implemented as crossbars

or sparse crossbars. These three components are the focus of this work.

The design of switch blocks and sparse crossbars is important to the creation of area-

efficient interconnect for PLDs. Chapters 4 through 7 explore ways to make these com-

ponents use less area. In particular, Chapter 4 examines the topological organisation of a

sparse crossbar to make it as routable as possible. Chapter 5 uses these sparse crossbars

within a cluster of lookup tables to reduce the lookup table input multiplexer area in half.

Chapter 6 suggests two circuit-level optimisations to reduce switch area: a) by using a

new switch design which is smaller than those used previously and has lower delay un-

der fanout, and b) by selectively replacing some buffers with pass transistors, which are

smaller, so that delay is not increased. To further reduce switch area, Chapter 7 explores

new topological organisations of switch blocks.

It should be noted that the topological changes considered in Chapters 4 and 7 do not

directly reduce area themselves. Instead, the improvements to topology lead to a network

which can reach higher levels of utilisation by the CAD algorithms, hence require fewer

routing tracks. This, in turn, reduces the routing area needed.

A secondary goal of this dissertation is to develop techniques for designing PLD routing

networks of arbitrary size. Since each circuit presents a unique set of requirements to a

PLD, it can be advantageous to develop a different routing network for each one. For

example, some circuits may have many high-fanout signals which benefit from long wires

with buffers, while other circuits may be dominated by very regular connections to close

neighbours which benefit from short wires with pass transistors.

One way to characterise interconnect demand is with Rent’s rule [6], an empirical ob-

servation which predicts that the amount of wiring needed as a circuit increases in size is

related to P � k �BR. In this formula, P is the number of wiring pins, k is a constant, B is

the number of blocks, and R is a parameter known as the Rent exponent. The value of R

is known to vary depending on the interconnect demand of the circuit, but it is typically in

1.1. MOTIVATION 5

the range of 0.5 to 0.75 [7]. A PLD routing network that is designed to suit most circuits

must grow at a rate close to R � 0�75, yet this is considerably overdesigned for the circuits

which only require R � 0�5. This suggests there is a need to customise the routing network

for different classes of circuits.

The idea of customisation has been considered before, but recently the focus has shifted

towards the routing architecture. For example, early work by Betz and Rose introduced the

notion of creating a “family” of different architectures, with each member designed to

better suit a different type of circuit [8]. Betz and Rose demonstrate the usefulness of

the approach by using members with different logic blocks. In comparison, more recent

work [9, 10] focuses on customising the routing network for a few pre-specified circuits

rather than a general class of circuits.

PLD vendors currently produce PLDs with varying amounts of logic, I/O pins, and

different speed grades, yet they do not offer PLDs with different amounts of interconnect

at a fixed logic capacity. This is surprising since the interconnect consumes nearly 90% of

the chip area! Some reasons for not offering a variety of interconnect sizes are inventory

control, the impact of marketing and sales of seemingly inferior or unroutable devices, and

the large amount of engineering effort that is required to develop a single device. This last

reason can be partially addressed by further automating the PLD interconnect design stage

with some of the techniques developed in this dissertation.

Another strong motivation for designing PLD networks of arbitrary size is provided

by the trend of implementing system-on-a-chip (SoC) and platform-based designs. These

designs would benefit from embedding programmable logic cores on-chip by combining

multiple implementations (i.e., different feature sets) into one piece of silicon. A number

of embedded PLD core products are being developed by companies such as Actel [11],

eASIC [12], Leopard Logic [13] and a Xilinx/IBM partnership [14].

There are numerous other reasons to prefer using a embedded PLD core over regular

custom logic in SoC or platform applications. First, the use of embedded PLD cores retains

all of the traditional benefits of PLDs, such as making changes to the circuit late in the

manufacturing cycle to correct design errors or to comply with emerging standards. It also

raises the new possibility of mapping around or tolerating some types of manufacturing

6 CHAPTER 1. INTRODUCTION

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

200 400 600 800 1000 1200 1400 1600
20

30

40

50

60

70

80

A
re

a
pe

r
Lo

ok
up

 T
ab

le
(n

um
be

r
of

 m
in

. s
iz

ed
 tr

an
si

st
or

 a
re

as
)

A
pp

ro
xi

m
at

e
C

ha
nn

el
 W

id
th

(n
um

be
r

of
 r

ou
tin

g
tr

ac
ks

)

Number of 4-input Lookup Tables

apex4

ex5p

misex3
alu4

s298

tseng
diffeq

apex2

seq

dsip

spla

bigkey

frisc

des

ex1010

pdc

elliptic

s38417

s38584.1

clma

Figure 1.1: Range of area requirements for different circuits.

defects. Lastly, it increases the number of markets for the device, since it can be more easily

adapted to work in different customer environments or to include entirely new features.

One way to improve the efficiency of embedded PLD cores is to customise the core for

the types of circuits it will be implementing. To see this, Figure 1.1 plots the area per logic

cell required by each of the twenty different benchmark circuits used in this dissertation.

The left y-axis gives the area per logic cell2 for each circuit. This is plotted against the

number of logic cells or lookup tables of the circuit on the x-axis. The right y-axis shows

an approximation to the channel width for each circuit (the approximation error is less than

3 tracks). For these small circuits, the routing demands are not strongly correlated to the

circuit size. If an embedded PLD core is only required to implement circuits similar to

dsip or bigkey, for example, very little routing is required and considerable area can

be saved. Another interpretation of the results in this figure is that a well-designed PLD of

fixed logic capacity may contain twice as many transistors and four times as many routing

tracks than what is required by a circuit. This further supports the notion that PLDs should

be offered with a variety of wiring resources.

Currently, the design of a custom PLD core requires the specialized tools and the ex-

pertise of a PLD architect. This makes it impractical to apply this methodology for each

embedded application. However, a future goal in extending this dissertation is to encapsu-

late this knowledge into a set of tools that can be used by an embedded system engineer to

2Area per logic cell includes a 4-input lookup table, a register, and all associated routing switches.

1.2. CONTRIBUTIONS 7

design a fully custom PLD core. For example, the work in Chapter 4 describes a general

method for designing routable sparse crossbars of any size with any number of switches.

This represents a significant advancement since all prior work places some restriction on

the number of inputs, outputs, or switches. Although a significant amount of future work

is required to construct a complete PLD design tool, the results of this dissertation can be

used as a starting point.

1.2 Contributions

The contributions made in this dissertation are summarised in the following paragraphs.

Chapter 4 presents a new way of statistically measuring the routability of a sparse cross-

bar. The routability measurement is based on standard Monte Carlo and network

flow techniques, but the application is novel.3

This chapter establishes that Hall’s theorem [16], a well-known result found in set

and graph theory, provides the insight needed to understand the relationship between

the routability of a sparse crossbar and the precise pattern of switches used. It sug-

gests that a good sparse crossbar design algorithm needs to connect every subset of

inputs to as many outputs as possible. Expander graphs have this property (their

expansion property), but there are few known construction techniques [17, 18]. In

addition, these constructions are impractical because they are too restrictive in the

number of inputs, outputs, or switches.

This chapter also presents a greedy heuristic technique for designing sparse crossbar

switch placements to maximise routability. The heuristic is the first known general

method for generating sparse crossbar switch placements with good routability for

an arbitrary number of inputs, outputs, and switches.

The analysis of a few of sparse crossbar design examples leads to the observation that

it is better to intentionally under-utilise the output capacity. Having additional out-

puts seems wasteful, but the design examples show that this technique saves 10–40%

3A similar technique has been used in other work to design switch blocks [15], but not sparse crossbars.

8 CHAPTER 1. INTRODUCTION

of the switches (or transistors) while keeping the routability level constant (for ex-

ample, 95% or better).

Chapter 5 shows that a 10–18% area savings can be realised in PLDs by using a sparse

crossbar inside logic clusters (rather than a full crossbar). The use of actual routing

experiments demonstrates the viability of the approach.

The experiments also show that area savings increases with lookup table size, causing

6-input lookup table architectures to use less area than ones with the traditional 4-

input lookup table. Since 6-input lookup tables result in lower critical-path delay, a

significant 22% area�delay reduction is observed. This presents a compelling case

to re-examine the benefits of 6-input lookup tables using larger and more realistic

benchmark circuits, such as those used internally by PLD vendors.

Chapter 6 proposes new routing switch circuits that virtually eliminate delay increases

caused by fanout at the switch. These new switches are also slightly smaller in area.

They lead to an area reduction of 2% and a delay reduction of 7%.

This chapter shows that it is inappropriate to scale routing switch sizes larger as wire

load increases beyond a certain point. This counters a practice used by Betz et al

in [19], where switches are doubled in size whenever wire length doubles.

This chapter finds that the careful selection and substitution of some buffers with

pass transistors is a viable way to reduce area by 8–13% while keeping delay ap-

proximately constant. The buffer-substitution strategies employed permit a signal to

alternate between buffers and pass transistors. Although this improves the delay of

some long connections, it does not improve critical-path delay due to fanout effects.

Chapter 7 presents a new way to design switch blocks by maximising diversity, or the

number of paths that reach different routing tracks. This is the first switch block

design technique to directly consider the routing fabric in a global, not just local,

perspective at the initial interconnect design stages. The switch blocks produced are

demonstrated to have measurably superior diversity and achieve similar routability

to the best known switch blocks.

1.3. SUMMARY 9

1.3 Summary

The continuing trend of designing larger chips requires simpler design methodologies and

abstractions. PLD technology presents one simple methodology which allows designers to

stop at the RTL level, but it suffers from significant area and delay overheads. The largest

portion of area comes from the interconnect, consisting primarily of switch blocks and

sparse (or full) crossbars. This dissertation studies ways to efficiently design and imple-

ment these interconnect components. Most of this design process can be automated and

used in tools to generate custom PLDs for SoC or embedded applications. Automatically

designing custom PLDs is a promising new research area which may help us reach the

ultimate objective of providing a simple digital design methodology.

1.4 Outline

The remainder of this dissertation is organised as follows. Chapter 2 describes previous

work which has been done in the areas of PLD architecture and routing network design.

Chapter 3 explains the methodology, tools, and metrics used for many of the experiments.

Chapter 4 presents a technique for designing routable sparse crossbars with an arbitrary

number of inputs, outputs, and switches. Chapter 5 uses these sparse crossbars as a re-

placement for full crossbars to reduce area within clusters of lookup tables. Chapter 6

presents three new circuit designs which are based on fan-in rather than fan-out. It also

explores the idea of replacing buffered interconnect with a combination of buffers and pass

transistors to reduce both area and delay. Chapter 7 defines new types of switch blocks

which maximise diversity, defined as the number of different tracks that can be reached

near a destination. Chapter 8 provides a final summary and concludes the work. Rather

than listing them at the end, comments on the potential for future work have been embed-

ded at the end of each of the technical chapters, 4 through 7.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background

The investigation of efficient routing networks for programmable logic spreads across

many areas. This chapter surveys the most pertinent work related to PLD interconnect

design, with particular emphasis being placed on mesh networks. Then, work in the area

of switching networks for telephony and graph theory is presented to provide a comparative

context.

2.1 PLD Routing Architectures

The routing network is responsible for connecting the primary inputs, the logic cells, and

the primary outputs together. Historically, PLD routing architectures have been broadly

categorized into three types of networks: row, hierarchical, and array-based or mesh [20].

A mesh-based PLD which uses lookup tables to implement logic is often referred to as

an FPGA, but the more general term of PLD will be used throughout this dissertation to

emphasize that a variety of interconnect styles and logic elements can be used. Another

type, the complete network, is the basis for PALs, one of the simplest PLDs. These four

networks are illustrated in Figure 2.1 and are further described below.

Commentary

In the past, commercial PLDs have often been distinguished according to this taxonomy.

However, modern architectures contain many optimisations and do not strictly adhere to

11

12 CHAPTER 2. BACKGROUND

d) mesh networkc) hierarchical network

b) row-based network

feedthroughs

a) complete network

inputs outputs
logic cells

Figure 2.1: Common PLD routing network types.

the ideals of each definition. For example, the Altera FLEX6000 architecture contains

direct connections between the LABs, their lowest level of hierarchy [21, 22]. As well,

architecture details are sometimes obscured to protect intellectual property. For example,

the Actel ProASIC device is said to be “segmented hierarchical,” but the explanation of

what this means is not clear [23, 11].

2.1.1 Complete Networks

A complete network is formed when all of the primary inputs and logic cell outputs are

provided as inputs to all of the logic cells. This form is inefficient, since the network grows

quadratically as the number of logic cells increases. Hence, it is only practical for a small

number of logic cells.

These types of networks are commonly seen in PAL devices, where the programmable-

AND plane plays the dual role of forming the interconnections as well as the logic func-

tions.

2.1. PLD ROUTING ARCHITECTURES 13

2.1.2 Row Networks

Row-based networks are organised as horizontal rows of logic cells separated by routing

channels. Horizontal wires of various lengths are placed end-to-end in a track, with mul-

tiple tracks comprising a channel. Switches within a track may connect several wires so

they behave as one longer one. Additional switches connect track wires to either logic cell

inputs or outputs. Connections between wiring tracks of different rows are made by verti-

cal wires known as feedthroughs. Each feedthrough can be connected with any of the row

wires. Since feedthrough connections can always be made, the routing problem is reduced

to a one-dimensional channel routing problem [24, 25, 26].

This row-based organisation is very similar to the ASIC standard cell design methodol-

ogy. In this approach, logic cells or standard cells of similar height are placed end-to-end in

rows. The routing problem focuses on placing custom lengths of horizontal metal in tracks

between two rows to connect the input and output pins of the cells. Vertical connections

are made by adding custom feedthrough wires across as many rows as needed. Sometimes,

adjacent cells in a row must be spaced apart to accommodate the feedthroughs.

The Actel ACT 1, 2, and 3 series PLDs [27] are based on row networks. In these

architectures, the feedthroughs span the entire length of the device. The large number of

switches required by these architectures are made possible because the anti-fuse switch

used to program these devices is quite small.

There are numerous studies on the routing algorithms, the distribution of wire segment

lengths and connection structures necessary to make row-based PLDs efficient [25, 24, 28,

26, 29]. However, these networks are no longer used in modern, commercial PLDs. One

likely reason for their shrinking market share arises from the limitations of the anti-fuse

switch. It permits a device to be programmable only once, making it difficult to fully

verify a device before selling it to a customer. Also, anti-fuse switches are based on a

specially developed manufacturing process. This makes it more difficult for these devices

to track the economy of technology scaling trends as quickly as SRAM-based devices.

14 CHAPTER 2. BACKGROUND

2.1.3 Hierarchical Networks

A hierarchical network is formed by partitioning a group of logic cells into subgroups,

usually of equal size, and providing a set of wires to connect these subgroups. This is

applied recursively, once for each level in the hierarchy. Figure 2.2 shows a routing network

containing three levels of hierarchy. A distinguishing feature of a hierarchical network is

that two groups of wires at the same level in the hierarchy can only be connected together

through wires in higher levels. Hence, connections between two different groups at the

same level are forbidden, even if the two groups are in close physical proximity.

Hierarchical networks are commonly used in Complex PLDs, or CPLDs, by adding

one level of hierarchy to a collection of PALs. For example, CPLDs such as the Al-

tera MAX7000 [30], the Xilinx XC9500, XC7200, and XC7300 [31], the Lattice isp-

MACH1 [32] and ispLSI [33] families are all based on this two-level hierarchy concept.

Academic studies of hierarchical routing networks have also been done by Aggarwal and

Lewis [34, 35], Chan and Lewis [36], and Lai and Wang [37].

Altera uses hierarchy in many of their PLDs, including the FLEX, APEX, and ACEX

families [30]. These products are not strictly hierarchical, however, because wires at the

top-most level (the column wires) can connect to each other through wires one level be-

low (the row wires). As well, in some of the architectures such as the FLEX6000, direct

connections can be made at the lowest level between neighbouring groups [21, 22].

2.1.4 Mesh Networks

A mesh network is based on a two-dimensional array of logic cells with routing channels

located between the rows and columns. Typically, the wires in a channel are a mixture

of lengths, from short (the length of one or two logic cells), to medium (four to eight

logic cells), and long (half to full length of the die). A signal can be propagate along

multiple wires in any direction, horizontally or vertically, by using the switches at the

channel intersections. This organisation encourages connections between wires of adjacent

groups, a feature which clearly distinguishes it from a hierarchy.

1Lattice acquired the ispMACH products through the acquisition of Vantis, a former subsidiary of AMD.

2.1. PLD ROUTING ARCHITECTURES 15

level 1 wire
level 3 wire

logic block pin
level 2 wire

Figure 2.2: A hierarchical PLD routing network.

Mesh networks are commonly used in PLDs by Xilinx, including the XC4000, Spartan,

and Virtex families. As well, the Lattice ORCA PLDs2 and the latest Altera Stratix PLDs

are mesh-based.

2.1.5 Selected Commercial PLDs

To gain a better understanding of the current state-of-the art, this section provides a review

of the routing architecture used in the latest PLDs offered by the two largest PLD vendors,

Altera and Xilinx.

Xilinx Virtex

The latest family of PLDs available from Xilinx is the Virtex series. The logic block

architecture of the original Virtex, including the Virtex-E and Virtex-EM variations, is

based 4-input lookup tables (4-LUTs). Four 4-LUTs are arranged in a group, called a

clustered logic block (CLB) here. The largest device is constructed from an array of 104�
156 CLBs. Between each row (or column) of CLBs is a horizontal (or vertical) routing

channel. This architecture will be referred to as Virtex I. The more recent Virtex II and

Virtex II Pro architectures are constructed from CLBs containing eight 4-LUTs, in an array

2Lattice acquired the ORCA products from Agere Systems, formerly a part of Lucent Technologies.

16 CHAPTER 2. BACKGROUND

size up to 112�104 CLBs.

The Virtex I and Virtex II architectures are based on a similar interconnect fabric. Both

architectures contain a large switch matrix at every intersection of the horizontal and verti-

cal routing channels. This switch matrix is used to connect wires between the two channels

as well as connect the channels to the input and output pins of one adjacent CLB. Details

about the precise connections made in the switch matrix are not published, but it is possible

to examine them using Xilinx’s FPGA Editor tool.

The Virtex I routing channel contains wires that span one CLB (Lwire � 1), six

CLBs (Lwire � 6), and the entire device (Lwire � ∞). Four direct connections between

horizontally-adjacent CLBs are also available, but only on specific inputs. In contrast, the

Virtex II routing channel adds wires spanning two CLBs (Lwire � 2) as well as more longer

wires. The wires spanning one CLB are replaced with 16 direct connections between all

eight immediate neighbours. The number of wires of each length found in these Virtex

architectures is shown in Table 2.1. For comparison, this table also includes data for some

other Xilinx PLDs.

The two Virtex families also differ in the way wires are buffered at the routing switches.

In both families, the Lwire � 6 wires (and the Lwire � 2 wires in Virtex II) can only be

driven from the wire ends. A signal can be received as an input by CLBs at the end or at

the midpoint. Consequently, the wires in different tracks are staggered so they do not all

end (or begin) at the same routing channel. In Virtex I, one-third of the Lwire � 6 wires

are bidirectional, meaning they may be driven from either end. The remaining wires are

directional: one-third are driven from one end, and one-third are driven from the opposite

end. In Virtex II, all of the Lwire � 6 wires are directional. The directional or bi-directional

nature of the wiring is indicated with the ‘d’ and ‘b’ suffixes in Table 2.1. This directional

arrangement reduces the number of buffered switches, since half of all bidirectional buffers

are guaranteed to remain unused. This suggests that layout area is dominated by transistor

area and not wire density.

In both architectures, additional special-purpose routing resources are present for carry

chains, tri-state lines, and global high-fanout signals.

2.1. PLD ROUTING ARCHITECTURES 17

CLB Contents CLB I/O Pin CLB Array Number of Tracks of Length Lwire

Architecture 3-LUT 4-LUT Locations Size Direct 1 2 4 6 8 ∞

XC4000 1 2 distrib. 32�32 - 8 4 - - - 6

Spartan I 1 2 on four 28�28 - 8 4 - - - 6

XC4000X 1 2 sides 56�56 2 8 4 12 - - 6h+10v

XC4000XV 92�92 8

Virtex I 0 4 intersection 104�156 4h 24 - - 48d+24b - 12

Spartan II 0 4 of horiz. & 48�72 4h 24 - - 64d+32b - 12

Virtex II 0 8 vert. channels 112�104 16d - 40 - 120d - 24

Key: ‘b’ bidirectional, ‘d’ directional, ‘h’ horizontal, ‘v’ vertical.

Table 2.1: CLB configuration and number of tracks in some recent Xilinx PLDs.

Altera Stratix

The latest PLD architecture from Altera is known as Stratix [30, 38]. This architecture is

based on a CLB containing ten 4-LUTs connected in a mesh array up to 101�130 CLBs.

Each CLB, called a LAB by Altera, has input and output pins distributed on two side

columns and one (top) row; no pins are connected to the bottom channel. These LAB pins

connect to wires of length Lwire � 4 and Lwire � 8 in the rows and columns. The starting

points of these wires are staggered along a channel. The LAB input pins can also connect to

the output pins of adjacent LABs directly without going through the interconnect. To cover

longer distances, the interconnect can connect Lwire � 4 wires together or it can connect

Lwire � 8 wires together. As well, the Lwire � 4 wires can connect to long wires of length

Lwire � 16 vertically or Lwire � 24 horizontally. These long wires can also connect to each

other, allowing the quick transport of signals across long distances.

The Stratix publications [30, 38] do not describe details about the amount of wiring

or the precise connection patterns between the wires. However, it is clear from [38] that

Stratix employs a directional routing scheme where wires are driven by a buffer located

at only one end. This paper also suggests there are roughly 80 to 100 wiring tracks in a

Stratix routing channel, but no firm number is given. Without additional information, it is

difficult to compare the interconnect with that of the Xilinx PLDs.

18 CHAPTER 2. BACKGROUND

Summary and Comparison

The latest PLD devices from Xilinx and Altera both use a mesh-based interconnect con-

taining a variety of wire lengths. Both use clusters of 4-LUTs, with Stratix using ten to

Virtex II’s eight. Stratix uses lengths 4, 8, and 16 or 24 while Virtex II uses lengths 1, 2,

6, and ∞. Virtex I uses some unidirectional wires to reduce routing area. This is extended

to all tracks in Virtex II, and it is also employed in all Stratix wiring tracks. Connections

can always be formed between wires of similar length. Both architectures also permit

connections between wires of different lengths, but the precise connection patterns are not

published. The lack of detailed information about these connection patterns, including how

to design them, provides motivation for this dissertation.

2.2 Mesh Architecture Studies

There has been a significant amount of interest in PLD routing architectures and algo-

rithms, as demonstrated by the large number of papers on the topic. Mesh-based architec-

tures have emerged as the most popular in all modern, commercial PLDs. These are also

commonly known as island-style FPGAs. This section describes a number of academic

studies about the design of effective mesh-style PLDs.

The most recent comprehensive collection of mesh architecture studies is the text from

Betz, Rose and Marquardt [19]. Much of the information from this section can be found in

this text and as well as a number of other papers cited herein.

2.2.1 Mesh Model

A mesh-based PLD can be described in terms of the architectural model shown in Fig-

ure 2.3. In this model, logic is implemented in blocks called CLBs, or clustered logic

blocks. The CLB has inputs and outputs which must be connected by the routing network.

Between the rows and columns of an array of CLBs are the routing channels, containing

S blocks and C blocks. The C block connects the input and output pins of a CLB to the

routing channel, and the S block connects the wires of two intersecting (orthogonal) chan-

2.2. MESH ARCHITECTURE STUDIES 19

Clustered Logic Block

S

C CLB

C S

C CLB

C S

C CLB

C S

C

S

C CLB

C S

C CLB

C S

C CLB

C S

C

S

C CLB

C S

C

C S

C CLB

C S

C

S C S C S C S

3
2
1
0

0 1 2 3

0
1
2
3

0 1 2 3

a) S block detail b) C block detail

0 1 2 3

0 1 2 3

CLB CLB

Wire SegmentsI/O Block

CLB

Figure 2.3: A mesh-style PLD routing network.

nels. Figure 2.3a) numbers the wiring tracks of an S block and uses a dashed line to show a

possible connection between the ends of two wires. It is also possible to have longer wire

segments passing through the S block, but these are not shown in this figure. Figure 2.3b)

shows which of the numbered wiring tracks in the C block can be connected to a CLB input

or output pin by drawing an � at their intersection. For input pins, only one wiring track

can be selected as the source. For output pins, however, multiple tracks may be driven

simultaneously. These assumptions affect how the C block can be implemented and the

subsequent area cost.

The remaining sections below summarize important research results in the design of a

CLB, S block and C block for mesh-style PLD architectures.

20 CHAPTER 2. BACKGROUND

{I shared inputs

{

N outputs
(one per BLE)

BLE

BLE

{

SRAM
bits

0 01

1 10

0 10

1 10

0 11

1 11

N feedback connections

Figure 2.4: A clustered logic block (CLB).

SRAM bit

D Q output

1

k-input LUT

k inputs

1001

{
bypassable register

k2
SRAM bits

Figure 2.5: A basic logic element (BLE).

2.2.2 CLB Architecture Studies

The idea of clustering a group of N basic logic elements, or BLEs, into a CLB is explored

in [39]. The contents of such a CLB are shown in Figure 2.4. Each BLE contains a k-input

lookup table (a k-LUT) and bypassable register, as shown in Figure 2.5. Using a heuristic

algorithm to pack lookup tables into fixed-size clusters, this paper [39] determines that

clusters of N 4-input lookup tables use less area than an unclustered architecture. The

savings is accomplished by sharing I � 2N � 2 inputs among all BLEs in the CLB. After

accounting for the change in the number of routing tracks required, clusters of size N � 4

are shown to require 10% fewer transistors. Work by Ahmed [40, 41] determines that the

more general expression I � �k � �N�1��2� is suitable for a range of LUT sizes from k � 2

to 7 and cluster sizes from N � 1 to 10.

2.3. SWITCH BLOCKS 21

2.2.3 Routing Architecture Studies

Pioneering work by Rose and Brown [42] examined the number of connections needed

between wires in S blocks and C blocks. To minimise switch counts, they determined

that S blocks should contain 3 connections per wire and C blocks should have a switch at

70–90% of all possible switch locations. These details are summarized by the flexibility

parameters Fs � 3 and Fc � 0�7 to 0�9. For simplicity, Fc � 1�0 (a full crossbar) is often

assumed by later research.

Subsequent work by Brown, Lemieux, and Khellah [43] determined that nearly 50% of

the average net delay can be eliminated using long wire segments in the architecture.

In [44, 45], Betz determines that mesh PLDs should be square, that logic block pins

should be evenly distributed on all four sides (confirming the results of previous work [46]),

and that all routing channels should have the same number of wiring tracks.

Numerous routing experiments by Betz et al [47, 48] explored the best wire lengths and

transistor sizes for a mesh routing network. The findings can be summarized as follows:

wires which span 4 or 8 logic cells provide the lowest average critical-path delay and

area�delay product, about half of the routing tracks should use pass transistor switches (with

the remainder using buffered switches), buffers should use a drive stage which is 5 times

minimum size (width), and pass transistors should be 10 times minimum width. In this

work, Betz et al found that the most area-economical way to build a tri-state buffer for mesh

interconnect is based on one shared inverter chain plus one wide pass transistor for each

switched connection or tri-state output. That work also found that increasing the spacing

between the metal routing wires is more effective at reducing delay than widening them.

More recent work by Roopchansingh [49, 50] uses even shorter connections, specifically

between nearest-neighbour CLBs, to improve delay by roughly 7%.

2.3 Switch Blocks

Considerable interest has been shown in switch block (S block) design. Initial work has

examined the number of switches necessary to achieve good routability, while more recent

research has sought the best organisation, or topology, of those switches.

22 CHAPTER 2. BACKGROUND

2.3.1 Switch Block Flexibility

In [42], Rose and Brown define the flexibility of an S block, Fs, as the number of switches

connected to the end of a wire. An early PLD architecture, the Xilinx XC3000, uses an

Fs value ranging from 4 to 6, with Fs � 5�4 on average. In comparison, Rose and Brown

concluded that Fs � 3 is the lowest value that is still flexible enough to route a suite of

benchmark circuits. For a routing channel width of W tracks, this requires 6W switches.

In the same paper, the authors introduce the notion that the topology of an S block, or the

precise organisation of switches for a given value of Fs, is important — particularly when

there are few switches.

2.3.2 Xilinx or disjoint Switch Block

In the same year that [42] was published, Xilinx released a new architecture, the XC4000,

which contains an S block with Fs � 3. The design is based on a six-switch clique that

can connect four distinct wire segments, one from each side. The connection pattern can

be concisely described by numbering the wiring tracks on each side from 0 to W � 1 and

connecting wires with the same track number by a clique of 6 switches. This topology

is commonly known as the Xilinx switch block, but other names have been used in other

publications: disjoint [51], clique-based [52], completely disjoint [53], subset [19], and

planar [54]. Within this dissertation, the term disjoint shall be used to describe this organi-

sation. This term arises from the observation in [51] that the wiring tracks are independent

(disconnected) when all the switches in the switch block are closed.

Two examples of a disjoint switch block are shown on the left of Figure 2.6. In the top

left switch block, wires from W � 4 routing tracks are shown approaching from all four

sides and ending at the open dots. Switches between wires are shown as lines connecting

the open dots within the switch block. To illustrate the clique, the six switches connecting

track 0 are drawn with thicker lines. The bottom left switch block in the figure is also

disjoint but for W � 5. It is drawn in a way that better illustrates how the tracks are

disjoint and how VLSI layout might be based on the repetition of clique structures.

2.3. SWITCH BLOCKS 23

0

1

2

3

0 1 2 30 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

Wiltonuniversaldisjoint

0

1

2

3

4

0

1

2

3

4

0 1 2 3 4 0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

Figure 2.6: Disjoint, universal and Wilton switch block styles.

2.3.3 universal Switch Block

Another switch block, the universal switch block or USB, is introduced by Chang et al

in [52, 55]. Like the disjoint block, this topology also uses 6W switches. However, it is

called universal because the precise switch placements are locally optimal for two-terminal

nets: any set of two-terminal nets can be routed, provided the total number of nets on any

one side does not exceed W . This is referred to as a bandwidth or dimensional constraint.

The disjoint pattern is considered inferior because it cannot route all cases that satisfy the

bandwidth constraint. Experiments in [52, 55] demonstrate that the USB requires fewer

routing tracks to route different benchmark circuits.

Unfortunately, the universal switch block definition assumes a routing architecture

based on short routing wires which span only a single logic block. All modern PLDs

employ longer routing wires, and it is not immediately obvious how the universal switch

block design can be extended to include longer wires and remain universal. Chapter 7

considers one possible way of using long wire segments by using a universal switch block

only at the endpoints. This new design is called universal-L, but it is not universal.

Two examples of a universal switch block are shown in Figure 2.6. The switch pattern

24 CHAPTER 2. BACKGROUND

can be decomposed into two types of connections. The top example, drawn with W � 4,

highlights one connection type between a pair of tracks. The bottom example, drawn with

W � 5, shows that tracks are pairwise-disjoint, except for any odd leftover track which

must use a 6-switch clique. Again, the lower example shows a structure which may be

more conducive to VLSI layout.

Although the properties of the universal switch block sound promising, there are two

practical limitations. First, it is optimal for only two-terminal nets. Second, it assumes

that nets can be freely reordered on all four sides. The latter assumption shows how the

locally-optimal property may not be exploitable in a global interconnect fabric which can-

not guarantee any input ordering.

2.3.4 generic universal and hyperuniversal Switch Blocks

There are two interesting extensions to the universal switch block work. The first exten-

sion by Shyu et al, called a generic USB [56, 57] or GUSB, generalizes the block from

only four sides to N sides, N � 2. Work by Fan et al [58] revealed that the GUSB con-

struction in [57] is not universal for odd W , but a correction has been found [59]. The

correction uses
�N

2

� �W switches if W is even, or slightly more if W is odd. Physical de-

compositions of the GUSB into smaller connected components are also described in [59],

a feature which may aid VLSI layout. The second extension by Fan [60, 61, 62], called

a hyperuniversal switch block, creates switch blocks which are locally optimal for multi-

terminal nets. This hyperuniversal switch block removes the two-terminal net restriction

of the universal design and requires approximately 6�7W switches (with 4 sides).

2.3.5 Wilton and Imran Switch Blocks

Work by Wilton [63] found that the disjoint and universal switch blocks restrict a net to stay

within the same track or pair of tracks, respectively. These switch blocks did not perform

well in routing experiments with very sparsely connected memories because memory pins

often connected to only a few specific tracks. To alleviate this restriction, Wilton designed

a new switch block which changes the track assignment on connections that turn. Hence,

2.3. SWITCH BLOCKS 25

overall track changes can be accomplished by permuting the global route. This allows

greater flexibility in the initial track selection near the source. Routing experiments with

single-length wires found this Wilton switch block to require about 5% (14%) fewer tracks

than the disjoint (universal) switch block.3

Two examples of a Wilton switch block are shown in Figure 2.6. The top example

shows a W � 4 example with a few switches traced in bold. These bold switches show how

it is difficult to isolate a few tracks to create regular, decomposable structures. For odd W ,

such as that shown in the lower example, the results are similar. It is possible to reach any

track from any other track by cycling through switches in this block.

In [19], Betz et al shows how long wire segments can lead to lower efficiency in the

Wilton and universal switch blocks compared to a disjoint switch block. Although wire

ends always connect with Fs � 3 switches, each long wire passing straight through a

disjoint switch block connects to only one switch (i.e., Fs � 1). However, in one of the

other switch blocks, this same long wire may contain up to four distinct switches! The re-

sulting increase in transistor area per track outweighs the savings obtained through a track

count reduction.

This switch-per-track inefficiency of the Wilton switch block is addressed by Ma-

sud [64, 65]. The solution is simple: separate the tracks with wire endpoints from the

tracks which contain the interior region (or midpoints) of long wires. The endpoints are

connected with a Wilton switch block, and the wire midpoints are connected with a disjoint

switch block. When only buffered switches are used, this Imran switch block requires

less routing area than disjoint, universal, and Wilton switch blocks [65]. However, later

work [66] suggests that the disjoint switch block has lower area�delay product than the

Imran switch block when half of the tracks use pass transistors. This latter result is ques-

tionable because delay and area per track is sensitive to the precise way in which the two

switch types are mixed. The Imran switch block will form connections between pass tran-

sistor tracks and buffered tracks. Clearly, this will affect delay, but it also negatively affects

area because pass transistors are used in only one direction. In contrast, a disjoint switch

3Notice that Wilton found the universal switch blocks to be inferior to disjoint. This will be further

discussed below.

26 CHAPTER 2. BACKGROUND

block segregates the two switch types entirely to fully utilise each pass transistor in both

directions. Hence, the choice of switch block topology must be done carefully lest it have

a negative impact on the switch-per-track area efficiency and on the delay of connections.

The experiments run by Wilton suggest that the disjoint switch block requires fewer

routing tracks than the universal one. This is contrary to the claims of Chang et al

in [52, 55]. These results may differ because a number of experimental conditions are

different between these investigations, including the routing tool and benchmark circuits

used. However, the large difference and opposite conclusions are surprising.

New experiments are performed in Chapter 7 to compare these two switch block styles

in a new context: a modification of the universal switch block is made so it is more efficient

with longer wire segments. These new results suggest that the new universal switch block

uses fewer tracks than the disjoint switch block, contradicting Wilton’s results.

2.3.6 Switch Matrix

Another type of switch block is known as a switch matrix. A switch matrix is a special

subclass of switch blocks which restrict the allowable switch locations based on the switch

matrix model. An example of this model is shown in Figure 2.7a). It contains separating

switches (shown as hollow circles) to break a wiring track into segments and crossing

switches (shown as dark circles) to join orthogonal wires.

The switch matrix model is less flexible than the switch block model because a hori-

zontal wire on the left side, for example, can only connect with one track on the opposite

side or to those vertical wires to the left of its separating switch. However, it is an inter-

esting model to consider when area constraints require fewer than the 6W switches needed

by the universal switch block, for example. Using fewer switches within a more restricted

model means a switch matrix is incapable of satisfying the bandwidth constraints obtained

with universal switch blocks. As a result, switch matrix research has sought the best or-

ganisation to maximise the number of two-point connections that can be simultaneously

realised.

In [15], Zhu et al give a switch matrix construction technique which is suitable when

only a few switches are required. However, the switch locations computed are very irreg-

2.3. SWITCH BLOCKS 27

Figure 2.7: Examples of switch matrices a) by Zhu, b) by Chang, and c) the QUSM by Wu.

ular and there is no uniformity in the number of switches per wire. A better construction

technique is given by Chang et al [67]. This produces more routable switch matrices by

placing switches along various diagonals. As well, this distributes the number of switches

per wire more uniformly. Figure 2.7a) and b) exemplify the type of switch matrix con-

structed by these two approaches.

Efforts by Wu and Chang [68, 69, 70] have attempted to extend the switch matrix model

to be universal, i.e., to always satisfy the full bandwidth constraint for two-terminal nets.

With this extension, the switch matrix model is no longer a subclass of the more traditional

switch block model. The extension they propose is the structure shown in Figure 2.7c),

called a quasi-universal switch matrix or QUSM. The name is derived from the fact it is

not quite universal, except in the limit as W � ∞. In fact, within this model the QUSM

is shown to reach the highest possible bandwidth capacities with the fewest number of

switches. However, the QUSM is impractical because it contains up to four separating

switches per switch block and it requires a total of 14W�20 switches (for even W), roughly

twice as many as the hyperuniversal switch block.

2.3.7 Other Switch Blocks

Work by Wu et al [71, 72, 73, 74] considered the routing problem as divided into a global

routing phase, where nets are assigned to routing channels only, followed by a detailed

routing phase, where specific channel resources (wire segments and switches) are allocated

for each net. That work shows that the detailed routing problem for a mesh-based PLD with

disjoint switch blocks can be restated as a graph colouring problem. The global route for

28 CHAPTER 2. BACKGROUND

a netlist determines an underlying graph to be coloured, H. This led to the use of graph

colouring and clique detection algorithms to analyse detailed routing problems [53].

Although finding a minimal colouring of a general graph is NP-complete [75], efficient

algorithms may exist if some graph structure on H can be assured. With this in mind, Wu

et al suggest a new concept: a greedy routing architecture or GRA [74]. This is a radical

change to switch block topology which allows greedy routing algorithms to be used to

extend a partial routing solution into a full routing solution. The first GRA by Wu makes

switch blocks fully connected between all sides, except between the left and right sides

where switches are only placed straight across the block. This reduces the detailed routing

problem to a one-dimensional packing problem. Takashima et al [76] further reduces the

number of switches by using only one fully-connected side. The second GRA by Wu uses

only three sides of a switch block and 3W switches. This roughly transforms the routing

network into a hierarchical network with an H-tree structure. The H-tree guarantees that

only one global route exists for a placed netlist. More importantly, the underlying graph

structure leads to a linear-time detailed routing algorithm which uses no more than 3�2

more routing tracks than required by the global route. Despite having good bounds, the

rigid H-tree structure is impractical because all channels must have the same width, from

the lowest level to the highest level. Hence, increasing interconnect demand at the top

levels creates an excessive surplus of wires at the lowest level. The GRA concept is an

interesting theoretical structure but many practical issues must still be addressed.

Another switch block explored by Sun et al in [77, 78] uses a model similar to the

switch matrix model, except that a permanent wire cut is used instead of separating

switches. Unfortunately, the algorithm used to place crossing switches is not described;

it appears to be done randomly except for the constraint of keeping the number of switches

per wire constant. Routing experiments with a few small benchmark circuits indicate that

about half of the crossing locations must have switches to preserve routability. This is still

a very large number of switches which is impractical for large PLD architectures.

Hallschmid and Wilton [79] explores the design of switch blocks used in rectangular

mesh arrays. They found that more routing tracks are needed in the channels spanning the

longer dimension, resulting in non-square switch blocks. To improve area efficiency, many

2.4. CROSSBARS AND CONNECTION BLOCKS 29

n inputs

m
outputs

Figure 2.8: A 6�4 full crossbar.

of the switches in these non-square blocks can be removed, achieving a total area savings

of roughly 9%.

2.4 Crossbars and Connection Blocks

An n�m crossbar connects n different input wires to m output wires, generally with n�m.

An example of a few crossbars are shown in Figures 2.8 and 2.9. At the locations where

an input (vertical wire) crosses an output (horizontal wire), a programmable switch or

crosspoint may be present. These are indicated by small, open dots in the figure. The

capacity of a crossbar, c, is the largest number of signals which are always routable for

any assignment of signals to inputs. Clearly, 0� c � m. The term population refers to the

number of switches in the crossbar, p, such that 0 � p � n �m. This can also be expressed

as a density. The capacity c is determined by p as well as the precise location of switches

within the crossbar.

The number of switches connecting to an input (or output) wire is its fan-out (fan-in).

If all outputs have the same fan-in, they are said to be balanced. If the largest difference

in fan-in across the output wires is k, they are said to have nearly balanced fan-in within k.

The same terms also describe the fan-outs of the input wires.

The connection block, or C block, of a mesh style PLD can be implemented with a

crossbar switch. This block connects the routing channel to a group of logic block pins.

Since the channel width can be quite large, it is necessary to reduce area by using crossbars

with significantly fewer than the maximum n�m switches. However, reducing the number

of switches may have a negative impact on routability. For example, having fewer than

n�m switches creates an immediate restriction that some inputs cannot connect to some

30 CHAPTER 2. BACKGROUND

n inputs

m
outputs

monoscattered
(biscattered with k=1)

biscattered with k=2

banded

binomial

fat-and-slim partially banded

1 2 3 4 5 6 1 2 3 4 5 6

Figure 2.9: Examples of 6�4 minimal full-capacity crossbars.

outputs. If the order of the outputs is unimportant, the crossbar can tolerate the removal

of a significant fraction4 of the switches. This is often the case in PLD routing, where it

is usually more important to select a specific subset of the inputs than to rearrange their

order.5 Hence, it is important to determine the right number of switches as well as the best

location for them. It is also important to have a metric which measures the routability of

these crossbars.

Below, a summary is given of prior research concerning the construction of crossbars.

These studies are primarily concerned with the design of minimal and guaranteed-capacity

crossbars. However, one practical element that is missing from these publications is a

general method for constructing a sparse crossbar that contains very few switches and yet

is still very routable. This omission is addressed in Chapter 4.

2.4.1 Full Crossbars

In most literature, the sole term crossbar usually implies a fully-connected crossbar with a

total of p � n �m switches. In this dissertation, the terms full crossbar or fully-populated

4Depending upon the precise values of n and m, this could be 50% or more.
5PLDs often compensate for this eventually by using small lookup-tables, for example, which can freely

permute the order.

2.4. CROSSBARS AND CONNECTION BLOCKS 31

crossbar will be used for this case to distinguish it from other types of crossbars, such as

a minimal or sparse crossbars (defined below). An example of a full crossbar is shown in

Figure 2.8.

Full crossbars are very flexible because they can connect any wire on the input side to

connect to any wire on the output side, i.e., they select any of the inputs and can freely

reorder the outputs. Additionally, full crossbars can be used at full capacity: they can

connect as many signals as the number of outputs in the crossbar, so c � m.

2.4.2 Minimal Full-Capacity Crossbars

One alternative to using a full crossbar is a minimal full-capacity crossbar. For conve-

nience, these will be referred to as minimal crossbars. These well-known constructions

use fewer switches than a full crossbar, and consequently lose the ability to arbitrarily per-

mute their outputs. However, like a full crossbar, they can also route any c � m inputs to

m outputs. In a PLD, such a restriction on output permutations is often acceptable because

downstream resources do not usually assume any particular input order.

A minimal crossbar always contains

p � �n�m�1� �m

switches. Nakamura and Masson [80] proves that no switches can be removed from a

minimal crossbar without also removing the full-capacity property (hence, proving they

are minimal). Minimal crossbars do not save many switches when n 	 m, but the number

of switches is reduced from a quadratic expression to a roughly linear one when n
 m.

A few minimal crossbar constructions are shown in Figure 2.9. Note that none of

the crossbars in this figure are isomorphic with respect to a permutation of the inputs or

outputs. Except for the binomial and biscattered examples, this can easily be verified by

the unique switch counts per input or output. These other two examples are both balanced,

but they differ in another way: the biscattered one has two pairs of inputs which connect to

the same outputs, but each of the inputs in the binomial crossbar connects to unique subset

of outputs.

The simplest minimal topology, called a fat-and-slim crossbar [81], uses a full crossbar

32 CHAPTER 2. BACKGROUND

between the first n�m input wires and all m output wires. Each of the remaining m input

wires are connected to m different output wires using one switch each. This is drawn in the

figure as a diagonal line of switches. This topology results in balanced fan-in for the output

wires, but largely unbalanced fan-out for the inputs. Other simple topologies are known as

partially banded and banded crossbars [80, 81].

Some minimal crossbar topologies have balanced fan-in and nearly balanced fan-out.

Fujiyoshi et al [82, 83] define a class of minimal crossbars called monoscattered and a more

general class called biscattered. Both of these classes have balanced fan-in, but biscattered

ones can be designed to have balanced fan-out as well. To construct these crossbars, begin

with an empty grid of n vertical input wires and m horizontal output wires. Draw a single

diagonal line of m switches at the intersection points, beginning at the top-left corner of the

grid and placing one switch per input and one per output. The remaining switches, evenly

divided per output, are placed anywhere to the right of this diagonal line. This creates

a monoscattered crossbar. A biscattered crossbar begins with a similar diagonal, but its

origin is offset to the right, starting at input wire number k. The remaining switches are

evenly divided per output, with k� 1 switches placed to the left of the diagonal and the

remainder placed to the right. Hence, a monoscattered crossbar is actually biscattered with

k � 1. In [82, 83], a switch placement algorithm is given which balances the fan-out of

biscattered crossbars. It is worthwhile to note that the authors provide a counter-example

to demonstrate that not all minimal crossbars are biscattered.

Oruç and Huang [81] describes additional minimal crossbar topologies that have nearly

balanced fan-in (within 2) provided there are n � 2m inputs. Guo and Oruç [84] extends

this to an arbitrary number of inputs and outputs. More importantly, Guo and Oruç [84]

also suggests a switch-move transformation that modifies one crossbar instance, such as the

fat-and-slim topology, to create other minimal crossbar topologies. These transformations,

which will be described in the next section, preserve full capacity and the fan-in profile of

the outputs. Guo and Oruç [84] also proves that a series of these transformations can be

used to obtain topologies with nearly-balanced fan-outs (within 2).

2.4. CROSSBARS AND CONNECTION BLOCKS 33

2.4.3 Sparse and Guaranteed-Capacity Crossbars

A sparse crossbar refers to a crossbar which is sparsely populated, meaning it has few

switches. The demarcation point of when a crossbar becomes “sparse” is debatable: for

example, nearly square crossbars can be sparsely populated yet support full capacity. Al-

though arbitrary, this dissertation assumes that a crossbar is sparse if it contains

p � �n�m�1� �m

switches. Hence, no matter how well it is designed, a sparse crossbar cannot guarantee full

routing capacity.

If a sparse crossbar is operating at less than full capacity, it is natural to ask whether

the switches can be arranged so that a capacity of c can be guaranteed. Alternatively,

one can ask what is the fewest number of switches required to construct a crossbar with

capacity c. Previous work has addressed both of these questions. However, no previous

work has asked the following question: What is the best way to arrange a given number

of switches such that routability is maximised? Here, routability refers to the ability of

a sparse crossbar to route any arbitrarily-chosen subset of its inputs to the outputs. This

raises another interesting question: How can routability be measured? While Chapter 4

explores a solution for these last two questions, the remainder of this section describes the

previous work which answers the first two.

In [85], Masson defines a binomial crossbar with parameter v. Such a crossbar contains

n � v switches, n �
�m

v

�
inputs, m outputs, and has guaranteed capacity c � v� 2. Every

input of a binomial crossbar contains exactly v switches arranged such that every input

connects to a unique subset of the outputs.6 The binomial crossbar shown in Figure 2.9

is an example of a minimal full-capacity crossbar where v � 2. The binomial crossbar is

limited in practical use because it is a very specific construction which gives no freedom to

choose the number of inputs.

In [80], Nakamura and Masson explore a lower bound on the number of switches.

They prove that a sparse crossbar with capacity c must contain p � n � x switches, where x

6Notice the number of inputs is chosen so all possible subsets of outputs are covered by the inputs.

34 CHAPTER 2. BACKGROUND

satisfies the expression �c
x

�
�m

x

�n�c� x�� c2� c � 0�

It should be noted that x is not restricted to being an integer7 and that 0� x� c. As n�∞,

this bound asymptotically approaches p � n � c switches (for fixed m and c). This bound is

tight for c� 1, c� m, and binomial crossbars, but it is not necessarily tight in general. The

authors of [80] acknowledge two other limitations: a) except for the tight constructions

mentioned, creating a sparse crossbar of capacity c with n � x switches is an open problem

which may not be achievable, and b) they did not know of any systematic procedure for

discarding certain inputs of a binomial crossbar to create a sparse crossbar with increased

routing capacity.

For a given n, m, and c, the Nakamura-Masson lower bound is difficult to compute.

Instead, Oruç and Huang [86] provides another lower bound which is very easy to compute:

p�
�

m � �n� c�1�
�m� c�1�

�
�

Like the previous bound, this new bound is also tight when c� 1 or c�m. However, under

other conditions it is less tight.

Oruç and Huang [86] also suggests an explicit construction of a sparse crossbar with

guaranteed capacity c, provided that n�m � c � �m�c�. Figure 2.10 gives an example

and illustrates the general structure of this pattern. This crossbar is of limited practical use

because it is only applicable when the capacity is small (c��
m) and the crossbar is nearly

square (n� m� c). Notice also that this construction may leave some outputs without any

switches at all.

The Guo and Oruç transformation [84] mentioned in the previous subsection can also

be applied to sparse crossbars. The crux of this transformation relies upon finding two

inputs, Ii and I j, where the set of outputs connected to Ii, or O�Ii�, is a superset of O�I j�.

When this occurs, it is said that Ii covers I j and any number of switches can be moved

from Ii to I j provided this doesn’t change the total number of switches or O�Ii��O�I j�.

Guo and Oruç prove that this transformation creates a new switch pattern with at least the

same capacity as the original pattern. This is a powerful switch-movement transformation,

7The gamma function can be used, resulting in
�c

x

�
� Γ�c�1�

Γ�x�1��Γ�c�x�1� .

2.4. CROSSBARS AND CONNECTION BLOCKS 35

n inputs

m
outputs

n=12, m=10, c=3 general structure

c

c

c

c

n-c

m

m- m/c c

Figure 2.10: Oruç-Huang guaranteed-capacity sparse crossbar construction.

but its practical use depends upon finding Ii and I j. If switches are placed randomly, for

example, it is unlikely that many such pairs of inputs exists.

In [87], Azegami describes a sparse crossbar construction with guaranteed capacity c,

for any n and m, and two switch-movement transformations which preserve capacity. The

construction, shown in Figure 2.11, uses p � m��n�m�c � nc�m�c�1� switches. For

fixed m and c, the number of switches approaches n �c as n�∞. This is comparable to the

Nakamura-Masson lower bound. The two switch-movement transformations are a vertical

switch move followed by a horizontal switch move. The vertical transform preserves c

switches per input, but moves them from the dense �n�m�� c region on the right side

of Figure 2.11 to the �n�m��m region below it. This can nearly balance fan-in of the

outputs. The horizontal transform is a special case of the Guo and Oruç transformation [84]

because each input in the entire �n�m� region on the right now covers many of the inputs

in the m region on the left. Hence, there are many input pairs which support horizontal

switch moves from the �n�m� region to the m region. This can nearly balance fan-out of

the inputs. Azegami has given an important sparse crossbar construction with guaranteed

capacity and identified transformations that can nearly balance fan-in and fan-out.

The construction and transformation techniques discussed in this section provide ways

to guaranteed a specific routing capacity. In practice, however, it is usually sufficient to

provide a high probability that a routing solution exists; a few unroutable cases can be

avoided by making other choices elsewhere in the network. Surprisingly, there have been

no construction techniques published which attempt to maximize the probability of routing.

36 CHAPTER 2. BACKGROUND

n inputs

m
outputs

n=12, m=9, c=4 general structure

n-m

c

m

m

Figure 2.11: Azegami guaranteed-capacity sparse crossbar construction.

Chapter 4 addresses this by introducing a method to measure routability of sparse crossbars

and a method to construct sparse crossbars which are highly routable.

2.5 Multi-Stage Networks

PLD routing networks impose many connectivity requirements that seem to parallel those

previously encountered during the development of multistage networks for telephony and

computer communications networks. Considering the amount of research directed at these

networks, it is important to understand the impact they may have on PLD routing networks.

However, the unique requirements of PLDs make direct application of previous network

results difficult. This is because traditional multistage network research has focused on

the design of networks: a) which are perfectly non-blocking, hence guaranteeing the exis-

tence of a routing solution, and b) which have simple routing algorithms, often ones which

can form connections on-line in a continuously-updated fashion and/or with only local

decisions at each step. In contrast, complex routing algorithms are often used for PLDs,

and routing solutions are seldom guaranteed. As well, PLD interconnect resources are

statically allocated whereas many modern communications networks employ time-sharing

and queueing systems. The fan-out of connections also differs: in PLDs, a significant

proportion of nets are high fan-out, whereas conference calls and internet multicasts are

comparatively rare and have low fanout. Despite the vast differences, it is still insightful

for a PLD designer to understand multistage networks. The area provides fresh ideas and

gives rough bounds on the amount of switching resources needed.

2.5. MULTI-STAGE NETWORKS 37

This remainder of this section summarises important contributions in multistage net-

work literature which are likely of interest to PLD network designers. A survey paper by

Yavuz Oruç [88] contains a more comprehensive list of references.

2.5.1 Network Types

Networks can be broadly characterised as either blocking or non-blocking. A network

is said to be blocking if there is at least one set of connection requirements, of inputs to

outputs, which cannot be simultaneously satisfied. If there is a solution for every possible

set of connection requirements, it is non-blocking.

There are various degrees of non-blocking behaviour, described as rearrangeable, non-

blocking in the wide sense, and non-blocking in the strict sense. These differ in flexibility,

from the least flexible (rearrangeable) to the most flexible (strict sense non-blocking). A re-

arrangeable network has a non-blocking solution, but routing the connection requirements

in a serial fashion may require the rearrangement of previously made connections to realise

a solution. A non-blocking network in the wide sense can make all of the connection as-

signments serially by following a well-defined routing rule or rule set without rearranging

any previously made connections. The routing rules allow the network to avoid blocking

states, wherein a partial solution is incapable of being extended to add a new arbitrary con-

nection. A non-blocking network in the strict sense can always make all of the connection

assignments serially without following any routing rules. If a network is simply said to be

non-blocking, the strict sense is usually implied because there are no blocking states.

From the perspective of a PLD, a rearrangeable network might be desirable because

a routing solution exists for all possible netlists. However, this is not adequate for PLDs

in two different aspects. First, a rearrangeable network may contain more flexibility than

what is actually needed. Rearrangeable networks do not exploit locality to save area, a

characteristic which circuits are known to exhibit [6]. Second, there is no guarantee that a

rearrangeable network will achieve good delay performance.

Most multistage network research has focused on the creation of non-blocking net-

works. Despite the potential drawbacks of using these in PLDs, it is useful to know how

these networks are built. The following subsections describe a number of non-blocking

38 CHAPTER 2. BACKGROUND

inputs outputs

frame full crossbar

Figure 2.12: No. 5 crossbar switching network.

networks from the literature. It is interesting to note the importance of full crossbars and

how they are used in the recursive decomposition of network structures.

2.5.2 No. 5 Crossbar

In the 1950s and 1960s, the No. 5 crossbar system was commonly used for telephone

switching in urban areas. A typical size of this system would connect 1,000 inputs (or

customer lines) to 1,000 outputs (or trunk lines), but typical use would seldom involve all

1,000 lines simultaneously.

The organisation of the No. 5 crossbar system is shown in Figure 2.12. In the figure,

the boxes represent square full crossbars with a multitude of inputs (and outputs). Two

levels of crossbars are connected in a group known as a frame, and two levels of frames are

similarly connected. For a 1,000 line system, the repeating elements (shown with ellipses)

might appear in groups of 10, for a total of 40,000 switches or crosspoints in all of the

crossbars.

Despite its widespread use, the No. 5 crossbar is not very efficient. A 1,000 line

system can only realize a tiny fraction (� 10�64) of the 1000! permutations [89]. Hence,

it is a blocking network. In comparison, the Beneš network described later can realize all

permutations of 1,024 lines with only 32,768 switches.

2.5. MULTI-STAGE NETWORKS 39

nr inputs nr outputs

1

r m

1 1

r

n x m r x r m x n

n

n n

n

full crossbar

Figure 2.13: Clos network.

2.5.3 Clos Network

In 1953, Clos described a way of decomposing a full crossbar into three stages to use fewer

switches, creating what is now known as a Clos network [90]. Figure 2.13 illustrates this

approach for an N�N crossbar with N � n � r inputs and N � n � r outputs. Clos proved

that this network is strictly non-blocking if m � 2n� 1. For m � 2n� 1 and n � r �
�

N, the Clos network uses only 6N3�2� 3N switches compared to the N2 required by a

full crossbar. For example, an N � 1�000 Clos network uses 186,737 switches instead of

1,000,000. For n� m � 2n�1, the Clos network is no longer strictly non-blocking, but it

is still rearrangeable and it uses fewer switches [89]. In particular, the n � m case requires

3N3�2 switches. Clos noted that this decomposition can be applied recursively by replacing

each of the middle r� r crossbars with another 3-stage network. Increasing the number of

stages in this way reduces the N3�2 exponent and this decreases the overall switch count

(for sufficiently large N). This is the approach followed by Beneš in the next section.

2.5.4 Beneš Network

A network design by Beneš [91] is rearrangeable using 4N�log2 N � 2� switches. Fig-

ure 2.14 shows a Beneš network for N � 16 inputs. Such a network can be constructed

from a Clos network by using 2�2 crossbars on the first and third stages, then recursively

decomposing each of the inner two N�2�N�2 crossbars in the same way. This recursive

construction is illustrated in Figure 2.15. The depth of such a network is 2 log2 N�1 stages.

Over the years, a number of similar networks have been discovered and re-discovered

in the course of telephony and computer network research. The banyan, baseline, butterfly,

40 CHAPTER 2. BACKGROUND

Figure 2.14: Beneš network for 16 inputs and 16 outputs.

N inputs N outputs

1

N/2 2

1 1

N/2

2 x 2 N/2 x N/2 2 x 2

recursively
construct

Figure 2.15: Recursive construction of a Beneš network from a Clos network.

delta, and omega networks, for example, are variations of the first log2 N stages of the

Beneš network. Each of these are defined by their specific shuffle steps, or wiring patterns,

used after every stage. For example, the shuffle step of an omega network uses the same

pattern as the last shuffle step of the Beneš network in Figure 2.14. However, the omega

network uses this same shuffle step at every stage of the network. This makes it possible to

save hardware resources by time-sharing a single stage and re-circulating the outputs back

into the inputs.

2.5. MULTI-STAGE NETWORKS 41

N1 inputs N2 outputs

1

MN1/n1 N2/n2

1

n1 x (N2/n2) (MN1/n1) x n2

n1

n1 n2

n2

full crossbar
or recursive construction

Each input connects to
M crossbars (once each)

MN1

inlets

Figure 2.16: Non-blocking Richards-Hwang network with full broadcast ability.

2.5.5 Rearrangeable Networks with Fanout

Richards and Hwang [92] describe a novel two-stage network which is rearrangeable and

supports arbitrary broadcasting of the inputs. The network is based on removing the first

stage of a Clos network and fanning out M copies of each primary input to the inlets of M

different crossbars in the newly created first stage.

Figure 2.16 shows the overall structure of a Richards-Hwang network. The precise

fanout pattern is governed by an equation which selects a different group of inputs for each

crossbar. The number and size of the crossbars within the network are as follows. For

N1 total inputs and N2 total outputs, each first stage crossbar has n1 inputs (n1 is arbitrary,

but n1 �
�

N1 works well) and each second stage crossbar has n2 outputs.8 Given these

parameters, there are M �N1�n2 first stage crossbars and N2�n2 second stage crossbars.

These parameters are all shown in Figure 2.16.

A two-stage Richards-Hwang network contains O�N2 �N2�3
1 � switches. This can be

recursively applied once to create a three-stage switch with O�N2 �N1�2
1 � switches. After

further recursive applications, this asymptotically approaches O�N2 � log2 N1� for an arbi-

trarily large N1 with many stages.

8The value of n2 is also arbitrary, but an upper bound is determined by the fanout pattern used. The upper

bound for n2 is at least M�M�1��1.

42 CHAPTER 2. BACKGROUND

2.5.6 Connecting Multiple PLDs: Partial Crossbar Structures

A partial crossbar is a connection pattern proposed by Butts, Batcheller, and Vargese [93,

94] for use in large-scale logic emulation systems. Such a system is composed of a large

number of PLDs which are connected together to emulate a much larger circuit than can

be implemented in any single PLD. The partial crossbar network is, in fact, a one-sided

Clos network. This can be obtained from the original Clos network by folding the network

about the middle crossbar stages and merging the first and third stages so that a separate

input and output pin now becomes a single I/O pin. A PLD is connected to the first stage

of the partial crossbar. However, since PLDs are designed to freely permute their I/O pins,

the first crossbar is unnecessary and can be collapsed into the PLD itself. This process is

illustrated in Figure 2.17a) through e).

One problem with a Clos network is coping with rewiring as a small system is scaled up

in size. Butts et al solve this by using a hierarchy of partial crossbars. In this application,

some of the crossbar pins in Figure 2.17e) are not connected to the PLD. Instead, they are

reserved to connect to another level of hierarchy formed by another set of crossbars. In this

architecture, the number of pins reserved at each level can be calculated according to the

wiring locality predicted by Rent’s rule [6], for example.

Lewis et al [95, 96] makes two observations that reduce the wiring and delay of build-

ing these scalable, hierarchical folded-Clos systems. The first observation is that a partial

crossbar hierarchy can be flattened to a single physical level while retaining a logical hi-

erarchy. This improves delay significantly. The second observation reduces the wiring in

a scalable system by increasing the number of wires within local clusters of the logical

hierarchy. The increase in local wiring is shown in Figure 2.17f) with bold arrows. Since

there are a different number of wires going to each crossbar, this is called a non-uniform

partial crossbar architecture. This reduces the number of crossing wires if crossbar A and

PLD 1 are partitioned from the remaining system, for example.

Khalid and Rose have proposed a modification to a partial crossbar structure, called

a Hybrid Complete Graph Partial Crossbar (HCGP) [97, 98]. The HCGP organisation

starts with a hierarchical partial crossbar organisation, but some pins on each PLD are not

connected to the crossbars. Instead, they are used to make direct connections to other PLDs

2.5. MULTI-STAGE NETWORKS 43

f) non-uniform partial crossbar

A

r x r

4

1

D

C

B

c) folded Clos network
after I/O merging

r n

1

n x n r x r

n

nr n

1

n x n r x r

n

n
n

n
1

1

r
r

b) folded Clos network
before I/O merging

e) partial crossbar

n

1

r x r

n

nr

1

a) Clos network

1

r n

1 1

r

n x n r x r n x n

n

n n

n

full crossbar

d) folded Clos network
with PLDs

r n

1

n x n r x r

n

n

PLD

1

3

2

1

Figure 2.17: Partial crossbar network derived by folding a Clos network.

organised into cliques of four, for example. These direct connections are faster and reduce

cost by saving partial crossbar pins, particularly when used for nets without fanout.

Due to its roots in a Clos network, a single-level partial crossbar system is completely

routable when all nets contain only two terminals. For this case, Chan and Schlag [99] and

Mak and Wong [100, 101] have independently developed optimal O�n � logn� and O�n2�

routing algorithms, respectively. The multiterminal case can be routed by decomposing

nets into two-terminal nets [100, 101], but this heuristic procedure can lead to sub-optimal

solutions. Song et al route multiterminal nets directly by transforming this routing prob-

lem into an SAT problem [102]. Similarly, Ejnioui and Ranganathan [103] and Lin, Lin

and Hwang [104] transform the routing problem into an integer linear programming prob-

lem. Routing experiments with both heuristic and exhaustive solvers show exhaustive ap-

proaches to be practical for moderate size netlists in terms of runtime (taking only seconds

to minutes) and the ability to determine if a netlist is unroutable.

44 CHAPTER 2. BACKGROUND

2.5.7 Other Network Structures

The study of graphs and connection networks have also intersected to produce structures

known as concentrators, superconcentrators, generalizers, and non-blocking graphs. These

different network structures are defined by their varying ability to route disjoint paths of

connections. Of these, concentrators and non-blocking graphs are most closely related

to what is needed for PLD routing. Below, a brief description of these structures and

comments on their construction is given.

An �n�m� concentrator is a graph with n inputs and m outputs that can always route any

given subset of inputs of size k � m to the outputs with disjoint paths. The concentrator

is given the freedom to choose which output is reached by each input.9 An �n�m�c� con-

centrator is similar, but it only guarantees disjoint routes for input subsets of size k � c.

Concentrators perform the essential function of reducing a large number of candidates

down to a few. These structures can be useful to select inputs for a logic function, for

example. Sparse crossbars perform concentrator-like functions.

An n-nonblocking graph is a graph with n inputs and n outputs which can realize a

disjoint path between each (input,output) pair, where up to n such pairs may be specified.

In network nomenclature, it is a rearrangeably non-blocking network.

The best results in the literature for concentrators and non-blocking graphs use O�n�

and O�n � logn� switches, respectively. Effort to reduce these bounds has focused on re-

ducing the constant factor [105]. Generally, constructions of these networks are proven by

counting arguments and/or recursive decomposition into other network types (supercon-

centrators and others). This recursion usually stops at a family of sparse bipartite graphs

known as expanders, of which only a few constructions are known [17, 18]. Partial con-

structions of linear size concentrators are also known [106], but they rely on randomness

to complete the construction.

Bipartite expander graphs have the useful property that any subset of the vertices on one

side is connected with a greater number of neighbours. This property, known as expansion,

guarantees that Hall’s condition (defined later in Chapter 4) will always be satisfied. This

9A superconcentrator is similar to a concentrator except that an arbitrary subset of the outputs to be used

(but not the output order) can be specified.

2.5. MULTI-STAGE NETWORKS 45

can be used directly to produce an �n�m�c� concentrator for some k � c. However, the

expander graph constructions in [17, 18] suffer from two restrictions: the number of outputs

must be a perfect square, and the number of inputs must be a multiple of the number of

outputs. This makes these approaches impractical for general use in PLDs, where the

number of inputs and outputs must remain flexible during architecture exploration.

Very recent advances in the explicit construction of expanders have been made by Ca-

palbo et al [107]. The construction method works for any number of inputs or outputs and

a fixed number of connections. If the method proves to be practical, it will be extremely

useful for the creation of sparse crossbars given in Chapter 4.

2.5.8 Summary

Except for the design of concentrators and nonblocking graphs using expanders, all of the

network constructions shown in this section have been constructed from full crossbars.

The guaranteed full capacity and ability to fully permute the crossbar outputs are essential

for the design of these networks. In contrast, PLD routing networks can often tolerate

operating at reduced capacity or with relaxed signal order restrictions. One common trend

across the many network designs is that the number of switches can be reduced by using

more interconnect stages. In PLDs, this is undesirable because it increases delay. Another

trend among the structures is they tend to spread their connections across numerous other

sub-systems (crossbars). Although the No. 5 crossbar system also uses this approach, it

is not done in a sufficiently careful way to build a fully rearrangeable network. This is a

good example of why it is important to carefully design the precise connections to create a

highly routable network.

46 CHAPTER 2. BACKGROUND

Chapter 3

Models, Methodology and CAD Tools

This chapter describes the models, methodology and tools used in this dissertation to eval-

uate PLD routing networks. The PLD architectural model is described first, including a

detailed account of the area and delay models used as performance metrics. Next, the

general experimental methodology and CAD tool flow for evaluating PLD performance is

given. Last, a description is given of the modifications made to the CAD tool used in the

routing experiments.

3.1 PLD Models

This section describes a general model for the PLD architecture being studied as well as

the area and delay models used to compute performance metrics.

3.1.1 Architecture Model

A mesh-based network is the primary routing architecture studied in this dissertation. This

architecture can be represented by a model that organises the device into clustered logic

blocks (CLBs), switch blocks (S), connection blocks (C), and I/O blocks as shown in Fig-

ure 3.1. The major architectural parameters for PLDs created with this model are given in

Table 3.1. These parameters will be described below.

Each CLB, often called a cluster, contains N basic logic elements (BLEs) grouped

together. The contents of an N � 2 CLB are shown in Figure 3.2. Each BLE contains a

47

48 CHAPTER 3. MODELS, METHODOLOGY AND CAD TOOLS

Clustered Logic Block

S

C CLB

C S

C CLB

C S

C CLB

C S

C

S

C CLB

C S

C CLB

C S

C CLB

C S

C

S

C CLB

C S

C

C S

C CLB

C S

C

S C S C S C S

3
2
1
0

0 1 2 3

0
1
2
3

0 1 2 3

a) S block detail b) C block detail

0 1 2 3

0 1 2 3

CLB CLB

Wire SegmentsI/O Block

CLB

Figure 3.1: PLD architecture model.

Parameter Description Typical Values

k LUT size (number of inputs) 3 to 7 inputs

N cluster size (number of LUTs) 1 to 10 LUTs

I number of cluster inputs 4 to 40 inputs

W routing channel width 10 to 60 tracks

Lwire logical wire length 4 CLBs

Fc routing channel to cluster input switch density 0.1 to 1.0

Fcout cluster output to the routing channel switch density 0.1 to 1.0

Table 3.1: Architectural parameters.

3.1. PLD MODELS 49

{I shared inputs

{

N outputs
(one per BLE)

BLE

BLE

{

SRAM
bits

0 01

1 10

0 10

1 10

0 11

1 11

N feedback connections

Figure 3.2: A clustered logic block (CLB).

SRAM bit

D Q output

1

k-input LUT

k inputs

1001
{

bypassable register

k2
SRAM bits

Figure 3.3: A basic logic element (BLE).

Fc

Fcout

BLE

BLE

BLE

BLE

S Block

Fc

Figure 3.4: Layout tile of a clustered logic block (CLB) and interconnect.

50 CHAPTER 3. MODELS, METHODOLOGY AND CAD TOOLS

k-input lookup table (a k-LUT) followed by a bypassable flip-flop. For example, a BLE

with a 3-LUT is shown in Figure 3.3. The LUT inputs are chosen from among a set of I

shared cluster inputs. The value of I � �k � �N� 1��2� inputs per CLB is chosen for good

packing efficiency [40].

In addition to the I cluster inputs, each LUT may also choose from the N outputs of the

BLEs in this cluster. These are called feedback connections. The multiplexers that select

from these cluster inputs and feedback connections form the local or cluster-level intercon-

nect. In many cases, this interconnect is fully connected or fully populated, meaning each

LUT input can select from any of these sources.

The interconnect between clusters is formed by the C and S blocks, comprising the

horizontal and vertical routing channels between the CLBs. The C block is the region

where the CLB input and output pins connect to the routing channels. The S block is

where connections are made between the horizontal and vertical routing channels, allowing

nets to turn corners or extend farther along the channel. Each routing channel contains W

parallel tracks of wires, where W is called the channel width. The same width is used for

all channels, since this was found to produce the lowest-area interconnect [19, 79]. Each

track contains a series of wire segments placed end-to-end. The logical length of a wire

segment, Lwire, is equal to the number of CLBs it spans. The portion of a routing channel

that spans a single CLB is called a channel segment.

Although mesh-based PLD architectures are the primary target, many of the results are

not limited to only this style of interconnect. For example, the sparse crossbars designed

in Chapter 4 are very important components of hierarchical networks found in CPLDs and

some PLDs. Similarly, the circuit design work in Chapter 6 can be applied to other network

designs.

Cluster Layout Tile

The architectural model just described can represent a number of different implementa-

tions. One important implementation restriction is that the entire PLD array must be con-

structed by repeating a single cluster layout tile. Figure 3.4 shows the contents of such

a layout tile, including the CLB and the interconnect along the top and right edges. The

3.1. PLD MODELS 51

interconnect on the bottom and left edges is formed by top and right edges of adjacent

tiles, so the wiring within a tile must be planned so it will be properly aligned across tile

boundaries.

Since all real PLD layouts are created with this tiled concept, most of the architectures

evaluated in this dissertation use a single tile. The only exception is some work in Chap-

ter 7, which uses two different layout tiles arranged in a checkered fashion. These two tiles

differ only in their S block topology. Considerable effort has been undertaken to explore

only architectures that can be built using a tiled layout strategy.

Cluster Connectivity Details

In [19], Betz has shown that it is best to evenly distribute the input and output pins on the

four sides of the CLB. Sparse crossbars in the C blocks determine which pins connect to

which tracks of the routing channels. These matrices use switch densities of Fc and Fcout

for the cluster inputs and outputs, respectively. These switch density parameters are listed

along with the other architectural parameters in Table 3.1.

The cluster inputs are treated as logically equivalent and hence freely permutable. The

LUT inputs are also assumed to be freely permutable. In addition, the LUT inputs are

assumed to be fully connected to the cluster inputs and feedback connections in all chapters

except Chapter 5.

Each BLE output directly drives a cluster output and a local feedback connection. The

BLE outputs are assumed to be logically equivalent, allowing any function to be placed in

any of the BLEs of the cluster.

To improve routability, the routing tool takes advantage of the input and output equiv-

alences just described. It may also replicate logic onto multiple BLEs in the same cluster,

provided there are empty BLEs available.

Routing Architecture Details

The baseline routing architecture used throughout this dissertation is one developed by

Betz et al in [19]. This architecture assumes that global wires are used to route clock

and set/reset signals to the flip-flops. For other types of signals, the general interconnect

52 CHAPTER 3. MODELS, METHODOLOGY AND CAD TOOLS

contains wires of length Lwire � 4 CLBs. Half of the routing tracks use buffered routing

switches, and the remainder use only pass transistors.1

In the general interconnect, the starting points of these wires are staggered such that

one-quarter of the tracks start and end in each tile. However, staggering can create a layout

difficulty when the number of tracks with the same switch type is not a perfect multiple

of Lwire. In this case, some additional effort is required to lay out the remaining tracks.

Rather than sacrifice area resolution in the experimental results by keeping W a multiple of

Lwire, this work assumes that such a layout effort is feasible. A commercial implementation

might consider padding the channel with a few additional tracks instead.

Unless otherwise stated, the disjoint S block is used. This means that signals entering

the routing on track number i must remain on that track number until the destination is

reached. For C blocks, Fc � 0�5 is used when N � 6 and Fc � 0�366 is used when N � 10.

As well, Fcout � 1�N is used throughout. These switch density choices are made to be

consistent with previous work [19, 40]. However, as will be shown in Chapter 5, the

precise Fc selection is not too critical.

The baseline routing architecture just described has been shown to achieve good

area�delay performance in [19]. It has also been used in other studies [40, 108, 49].

I/O Block Details

The I/O block connects bond pads on the die periphery to the routing channel. Each pad

contains a distinct input pin and output pin which are both fully connected to the routing

channel. The pitch of the number of I/O pads per CLB tile is set to 5 for clusters with N � 6,

and to 7 for clusters with N � 10. These values are consistent with previous work [19, 40].

Usually, this permits the core area to dictate the PLD array size for each benchmark circuit.

However, there are some cases which are pad-limited, such as those involving the bigkey

and des circuits, where the I/O density dictates the array size.

The area results in Chapter 5 were generated earlier and include the area of the I/O

pin switches. However, Chapters 6 and 7 specifically exclude these switches from area

measurements to be more realistic and more conservative. The reasoning is that the small

1The sizes of these routing switches will be considered separately in the individual chapters.

3.1. PLD MODELS 53

benchmark circuits used here require relatively small PLD array sizes. In larger, modern

PLDs, the I/O pin switch area along the periphery is amortized among significantly more

CLBs. Hence, the small benchmarks over-emphasize the importance of switches in the

periphery. Excluding I/O pin switch area produces more conservative results in Chapter 6

because the proposed new switch designs save more area at I/O pin switches than in the

CLB core. Consequently, I/O pin switch area is omitted from these later chapters.

3.1.2 Area Model

As mentioned in the work by Betz et al [19], PLD vendors have admitted that transistor

area, and not wiring density, is the area-limiting factor. The use of directional wires in

Virtex I also suggests that routing area is transistor-dominant and must be reduced. This

has led to an area model which estimates the layout area as the sum of area required for

every transistor in a PLD. The goal of this model is not to compute the final layout area,

but to provide a reasonable way to rank the implementation costs of different architectures.

This model has been used in previous architecture research [19, 40].

Area Units

The area unit is based on the size of one minimum-size, contactable transistor, or one T .

Figure 3.5 and Table 3.2 indicates the appropriate layout design rules for measuring one T

in absolute physical units.2 By contactable, this means the transistor is sufficiently wide to

allow it to be contacted; this may be larger than the minimum diffusion width allowed by

the design rules.

This area of one T includes the diffusion area, W �L, plus the separating space to an

adjacent transistor, X , in both dimensions. Hence, the area of one T is:

T � �Wmin�X�� �Z�X��

This area unit represents the smallest possible transistor and neglects other types of over-

head such as gate contacts or n-well spacing. As will be discussed shortly, this overhead

2Due to confidentiality agreements with TSMC, specific values for these design rules cannot be listed

here.

54 CHAPTER 3. MODELS, METHODOLOGY AND CAD TOOLS

Z

A B C Y

n-well

B
C
X

minW

minL

Figure 3.5: Layout design rules for a minimum-size transistor used in the area model.

Parameter Description

A minimum poly gate to contact separation

B minimum contact size

C minimum diffusion extent past contact

Lmin minimum transistor gate length

Wmin minimum contactable transistor width

X minimum separation between similar transistor types

Y minimum separation between complementary transistor types

Z minimum overall transistor length

Table 3.2: Layout design rules for a minimum-size transistor area model.

will be treated separately when layout area is estimated.

Counting Transistor and Logic Area

By summing the area used by each transistor in all of the logic structures, the total transistor

area of the PLD can be estimated. This is the metric used to compare the area of different

PLD architectures.

The size of a single transistor, M, is defined to be its width relative to the width of one

T . For example, an NMOS device of width Wn would have size M �Wn�Wmin. The area

of this transistor is computed relative to one T as:

TransistorArea� M�2�0�5�

This calculation assumes that the width of the transistor, B� 2 �C, is nearly equal to the

separation distance between two transistors of similar type, X .

3.1. PLD MODELS 55

The area for a logic structure is computed by adding up the transistor area of every

transistor t in the logic:

LogicArea�logic� � ∑
t � logic

�Mt�2�0�5�

where Mt is the size of transistor t. These area metrics are process-independent because

the values of TransistorArea and LogicArea are constant as technology scales.

All of the logic structures in the PLD core are modeled, including the BLEs, the LUT

input multiplexers, and the cluster routing, but not the padframe containing the bond pads.

The area contribution of a pass transistor, for example, depends on the transistor width,

and a buffer chain depends on the number of inverter stages as well as the drive strength of

each stage. The area of an SRAM configuration bit is held fixed at 6 T .

Layout Area

In the timing model (discussed below), the absolute physical length of a wire must be esti-

mated to calculate its RC properties. This requires the physical size of one T in the target

semiconductor process, as well as an estimate of additional overhead, such as connections

between transistors or the separation distance between NMOS and PMOS devices, Y . The

amount of overhead can also vary depending upon the experience of the layout artist. To

account for these factors, overhead is encapsulated in the following parameter:

LayoutEfficiency � 60%�

This value, which is based upon the area estimates of actual PLDs, is also used in [19].

The unit transistor area and layout efficiency values are used to compute an estimate of

layout area as follows:

LayoutArea�logic� � LogicArea�logic�� T
LayoutEfficiency

�

As well, the length of a CLB layout tile is computed using the formula:

Ltile �
�

LayoutArea�CLB��

56 CHAPTER 3. MODELS, METHODOLOGY AND CAD TOOLS

3.1.3 Delay Model Calculations

The delay calculations used in the CAD flow involve two separate steps. First, the delay for

each net is computed using an Elmore delay model. Second, an analysis phase determines

the overall critical path by summing the net delays and tracing signal paths. The same

delay model calculations are used in [19]. These two steps are described in greater detail

below.

Interconnect delays for each net are computed using the Elmore delay method [109],

which works well for RC trees. In this computation, wires and unbuffered switches are

modeled as RC elements. In addition, the Elmore delay computation is augmented to

allow buffers inside the RC tree [110]. This involves replacing each buffer with a constant

delay element, a voltage source, an output resistance, and input and output capacitors.

At the inputs and outputs of a CLB, the Elmore delay computation ends and a constant

delay model is used instead. The delay of each component within the CLB is represented

by a constant value. For example, the delay from a cluster input to a LUT input, and the

delay through a LUT are set to different constant values. The delay of a path within a CLB

is computed by summing the individual component delays — this may include multiple

LUT delays and the setup time for a register, for example.

For the critical-path computation, the delay of all paths from all primary inputs or

register outputs to the primary outputs or register inputs is traced. During this forward-scan,

each path delay is determined by an accumulation of the interconnect and CLB delays. Of

these paths, the one with the longest delay is termed the critical path.

The next section describes the way in which the various delay model parameters are

computed.

3.1.4 Delay Model Parameters

The delay model requires resistance and capacitance values for the interconnect wires, as

well as constant delays for individual CLB components. The CLB delay values are taken

from the worst-case propagation delays simulated using HSPICE. The technology targeted

is a 0.18µm TSMC semiconductor process. Due to confidentiality agreements with TSMC,

3.1. PLD MODELS 57

precise timing or process characteristics cannot be disclosed.

The metal interconnect wires are assumed to be drawn in the metal 3 layer at minimum-

width and at twice the minimum spacing. Betz et al [19] has shown that these feature sizes

produce good delay and area�delay results in 0.35µm TSMC technology, so they are also

employed here.

The CLB timing and interconnect RC values used in Chapter 5 are the same as those

used by Ahmed [41], which is based on the same 0.18µm process technology used in this

dissertation. These results, generated using the procedure described in [19], also make the

following circuit implementation assumptions. First, the gate voltage of pass transistors

is boosted to 2.1V (from the regular 1.8V) to reduce static power. Second, interconnect

wire RC parameters are set to fixed values for a given k and N. These are calculated a

priori according to the average cluster tile length across the benchmark suite. Third, the

routing switch sizes are scaled linearly in size according to the average tile length. This

scaling technique, also employed by Marquardt et al in [111], increases the delay and area

of routing switches used in larger tiles. More information about switch scaling is given in

Chapter 5.

In Chapters 6 and 7, some of the circuit implementation assumptions just described are

abandoned and this changes the delay model parameters. The work in Chapter 6 redesigns

the interconnect switches with level-restoring instead of gate-boosting to improve long-

term semiconductor reliability. This lowers overall interconnect performance, partly due

to the level-restoring circuits and partly due an increase in pass transistor resistance. The

chapter also investigates the optimum switch size for different RC loads and shows that the

switch scaling proposed by Marquardt is unnecessary. Hence, these chapters use a fixed

switch size for all cluster sizes. Furthermore, better CAD tool integration of the area model

allows the interconnect RC parameters to be estimated for every generated architecture.

This means that changes to the architecture, such as channel width or switch density, may

result in a change to the resistance and capacitance of interconnect wires. The work in

Chapter 7 incorporates all of these changes.

58 CHAPTER 3. MODELS, METHODOLOGY AND CAD TOOLS

3.2 Experimentation and CAD Flow

The evaluation of different PLD architectures in Chapters 5, 6, and 7 is based on an ex-

perimental process of mapping benchmark circuits into the architecture. After a successful

mapping, the area and delay models are used to estimate area of the architecture and the

critical-path delay of the mapped benchmark circuit. Details of the flow, the routing step,

and a procedure used to determine the amount of routing effort are given below.

3.2.1 Overall Flow

The CAD flow for the experimental procedure is shown in Figure 3.6. The process begins

with a benchmark circuit and a logic synthesis step which optimises and transforms the

circuit into an appropriate netlist form. This netlist is then placed and routed in the target

architecture. More details about each of the steps are given below. In general, all steps are

performed with the goals of reducing both area and delay.

The benchmark circuits selected are the twenty largest circuits from the LGSynth93

benchmark suite available from the Collaborative Benchmarking Laboratory [112]. This

benchmark suite is commonly known as the MCNC suite.

The circuits are prepared for numerous routing experiments by performing the logic

synthesis and placement steps ahead of time. First, technology-independent optimization

using SIS [113] is done. Then, the technology mapping tools FlowMap and Flowpack [114]

convert the logic netlist into k-input lookup tables and registers. Next, the T-VPACK algo-

rithm [115] groups these LUTs and registers into CLBs containing N BLEs. The resulting

netlist of CLBs is placed using VPR version 4.30 [116, 19]. This version includes the latest

timing-driven enhancements from [117]. The placement step fixes a location for each CLB

in the smallest square PLD array size possible (as limited by the benchmark’s CLB or I/O

pin count).

The above netlist optimization and placement steps are done only once per circuit for

a given combination of k and N values. Experiments use several lookup table sizes, with

k varying from four to seven, but usually the cluster size is fixed at N � 6. Results by

Ahmed [40] show that this cluster size produces good area�delay results for all of these

3.2. EXPERIMENTATION AND CAD FLOW 59

Logic benchmark circuit

Logic synthesis
logic optimization (SIS),

technology mapping (FlowMap and Flowpack),
packing (TVPACK)

Placement (VPR 4.30)

Routing (Modified VPR) Adjust channel width W
(binary search)

PLD area, delay estimates

Success?
(min. W)

No

Yes

Low-stress routing (Modified VPR)

Figure 3.6: Experimental process used to evaluate PLD architectures.

lookup table sizes.

The last steps of the CAD flow involve routing the placed netlist so that area and delay

estimates can be computed. The routing step is discussed next.

3.2.2 Routing Step

Routing a netlist involves assigning a series of wires and switches to every net so that all of

the connection requirements are satisfied. The router software used is a extended version

60 CHAPTER 3. MODELS, METHODOLOGY AND CAD TOOLS

of the VPR 4.30 tool called VPRx. The modifications are described later in section 3.3.

The routing step is an iterative process. First, a netlist is routed in a PLD architecture

with a given channel width. If the channel width is too small, the router will fail to find

a solution. After each iteration, the channel width is adjusted in a binary search fashion

according to routing failure or success. Increasing the channel width makes the PLD larger

and easier to route. Eventually, this procedure determines the minimum number of tracks

required to route the benchmark circuit, Wmin.

To ensure this is a true minimum channel width, i.e., there is not simply an isolated

failure at Wmin� 1 tracks, channels with 2 and 3 fewer tracks than Wmin are also routed to

verify that they are unroutable. Should one of these be routable, Wmin is repeatedly adjusted

down by one until there are 3 failures in a row. In general, this procedure sometimes

lowers Wmin by two or three tracks in only a few routing cases (perhaps fewer than 5%).

However, the importance of this procedure is not to reduce Wmin for these uncommon

cases. Instead, it is designed to prevent anomalous cases where a very large channel width

is accepted as Wmin because the router or architecture encounter a pathologically bad case.

Such anomalies were encountered by experiments performed in Chapter 5.

Since a channel width of Wmin places the PLD architecture at the brink of being un-

routable, a low-stress route is performed with 20 or 30% additional tracks to produce the

area and delay results. This is akin to logic designers (and PLD architects) following

conservative design practices by making allowance for future design changes. From this

low-stress routing solution, area, delay, and area�delay metrics are computed.

Nearly all results are reported as geometric averages for the 20 benchmark circuits. The

specific area and delay numbers for each benchmark are computed as follows. The delay

of a benchmark circuit is computed according to the critical-path calculation presented

earlier. The area is computed as the LogicArea of a CLB tile (i.e., including the area of

the routing channels) times the number of CLBs required to implement the benchmark’s

logic. We call this the active area of the benchmark because it excludes CLBs in the array

that remain unused. Ahmed [40, 41] reports that this method improves area resolution and

better reflects changes to the packing algorithm.

3.2. EXPERIMENTATION AND CAD FLOW 61

3.2.3 Determination of Router Effort

In general, the packing, placement and routing tools are executed in timing-driven mode

using their default parameters. However, experience gained from early experiments sug-

gested that the default amount of routing effort is too low. This is usually observed as noise

in the results when an architectural parameter is varied.

Two key router parameters control the amount of effort: the maximum number of

router iterations, and the penalty cost applied when nets share wires. The maximum it-

eration count is directly controlled with the max router iterations parameter. The

penalty cost geometrically increases from iteration to iteration by a factor provided with

the pres fac mult parameter.

To determine appropriate values for these two parameters, a number of routes were

conducted with the maximum number of router iterations fixed at 300 as pres fac mult

was varied between 1.02 and 2.0 (the default value). All benchmarks were routed multiple

times as one architectural parameter was varied.3

The results from the low-stress routing with 30% more tracks than Wmin are shown in

Figure 3.7. This figure shows that average router runtime increases rapidly as the value

of pres fac mult (shown along the x-axis) is made smaller. The average critical path

delay across all benchmarks is also shown. Error bars indicate the minimum and maximum

values in the average delay4 as the architectural parameter is varied. This variation is

primarily noise: it is roughly 10% for large pres fac mult values, but it diminishes

significantly when the pres fac mult value drops below 1.4. A value of 1.3 generates

fairly consistent results without a large runtime increase.

Figure 3.8 plots the same average runtime data along with the number of router itera-

tions needed to find a solution. On average, the number of iterations increases from 23 to

160 in a manner that closely follows the increase in runtime. This suggests that the default

VPR value of 30 iterations is far too low. More importantly, the maximum number of itera-

tions does not go significantly above 100 except when pres fac mult is small. Hence,

3The architecture used here is a cluster of ten 7-input LUTs, with a 43% switch density in the local cluster

routing. The number of spare inputs is varied from 0 to 20.
4The average is taken across all circuits.

62 CHAPTER 3. MODELS, METHODOLOGY AND CAD TOOLS

100

200

300

400

500

600

700

800

900

1000

1100

1200

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
14

15

16

17

18

19

ru
nt

im
e

(s
)

de
la

y
(n

s)

router sharing penalty factor

average runtime
min/avg/max of (avg delay)

Figure 3.7: Runtime and variation in critical path delay.

100

200

300

400

500

600

700

800

900

1000

1100

1200

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

50

100

150

200

250

ru
nt

im
e(

s)

ite
ra

tio
ns

router sharing penalty factor

average runtime
min/average/max iterations

Figure 3.8: Runtime and number of router iterations.

a reasonable value for max router iterations is 100 iterations.

The amount of effort used for the routing experiments in this dissertation has been

selected from these graphs and is summarized in Table 3.3. Experiments in Chapter 5

use a large value of 250 for max router iterations during the binary search to

produce very high quality routing solutions. However, this makes the binary search run-

time too large, so a smaller value of 100 is used in Chapters 6 and 7. Hence, the router

computes slightly larger Wmin values in these later chapters. For all binary searches, a

pres fac mult value of 1.3 is used. For the low-stress routing, a pres fac mult

value of 1.05 is used in Chapter 5. This is increased to 1.1 for the later chapters to further

reduce runtime. It should be noted that the maximum iteration count used for low-stress

3.3. VPR EXTENSIONS (VPRX) 63

Chapter Routing Step Value of max router iterations Value of pres fac mult

5 binary search 250 1.3

5 final route 300 1.05

6 and 7 binary search 100 1.3

6 and 7 final route 300 1.1

Table 3.3: Amount of routing effort used for all experiments.

routing must be high enough that the routing doesn’t fail, so a value of 300 is used. Since a

solution must be found, this choice does not affect runtime. The final values chosen for use

in Chapters 6 and 7 are suitable default values for most future VPR and VPRx experiments.

3.3 VPR Extensions (VPRx)

This section describes a number of extensions that have been made to the VPR router to

create VPRx. The first section describes changes which are used throughout the entire

dissertation. The remaining sections describe changes that only apply to Chapters 6 and 7.

3.3.1 Routing Graph and Netlist Changes for Sparse Clusters

The routing graph used by VPR to represent the routing architecture has been extended so

that sparse crossbars can be used within the local cluster interconnect. The original graph

represented all of the interconnect wires and switches between CLBs, ending at the CLB

inputs and outputs. The VPRx graph includes all wires and switches up to the BLE inputs

and outputs. A similar change to the timing graph and netlist structure has also been made.

The netlist change is significant because sinks are now recorded for each BLE input pin

rather than for each cluster input pin.

Since routability inside a cluster is no longer guaranteed, additional netlist changes are

necessary for local feedback connections. The original VPR removes feedback connections

that remain within a cluster. Thus, when the net is entirely local to the cluster, the entire

net is removed. In contrast, VPRx must keep these connections in the netlist and explicitly

route them.

64 CHAPTER 3. MODELS, METHODOLOGY AND CAD TOOLS

To improve routability, the restriction that a net use only one cluster input pin has

been removed. This is sometimes necessary to avoid blockage when a net must connect

to multiple BLEs in the same cluster. Similarly, local feedback connections might become

blocked while routing, so they are allowed to leave the cluster and re-enter through a cluster

input pin. This increases the demand for cluster input pins.

The above modifications require significant changes to the VPR code base which are

necessary for Chapter 5. The experiments in Chapters 6 and 7 also use these code modifi-

cations, even though the cluster interconnect is kept fully populated there.

The effectiveness of the VPRx router has been validated against VPR 4.30. Both routers

obtained similar delays, channel widths and area results for fully populated clusters using

a variety of cluster and LUT sizes.

3.3.2 Architecture Model Change

The work in Chapter 6 introduces an architecture feature called output pin merging which

moves some output pin connections directly into S block switches.5 By connecting CLB

outputs directly to the S block switches (according to the C block connection pattern), a

small amount of area (about 1%) is saved.6 VPRx automatically calculates this savings

whenever it can be applied.

3.3.3 Area Model Changes

The area model calculations in VPRx have been upgraded to compute the area of logic

structures inside the cluster, including the LUTs, registers, and even sparse local cluster

interconnect. Previously, this computation was performed using a separate tool. The inte-

gration of these two tools allows VPRx to directly estimate the size of the cluster layout

tile and recalculate interconnect parasitics as the channel width changes.

Another change to the area model calculations involves the scaling of buffers inside the

CLB to match load conditions. Previously, fixed buffer sizes were used. Instead, the loads

5Output pin merging requires the use of fan-in based routing switches which are introduced in Chapter 6.
6This savings is obtained by replacing the wide transistor used on the output of a tristate driver with a

small transistor on the input multiplexer of a routing switch.

3.3. VPR EXTENSIONS (VPRX) 65

are estimated and buffers are scaled appropriately. The remainder of this section describes

these buffer scaling rules which have been developed from numerous HSPICE simulations

[Ahmed and Wilton, private communication].

Buffers that drive multiplexer select lines, such as the buffer driving a LUT input, are

sized according the total gate width they drive. A buffer of size B is used to drive a total

gate width of 8B. Since multiplexers are assumed to be constructed from a tree of pass

transistors, the select lines controlling the leafs of the tree are more heavily loaded and

require larger buffers. These buffers are now scaled appropriately.

Buffers that drive multiplexer data inputs, such as CLB input buffers, typically have

more than one multiplexer as a load. These buffers are sized according to the total diffu-

sion width they drive. This type of load is larger (per unit width) due to the depth of the

multiplexer tree. To simplify calculations, the actual depth of this tree is ignored. Instead,

a size B buffer is used when the first level fan-out of the buffer is loaded by a total diffusion

width of 2B. However, the buffer size is limited to be at least size B � 7 and at most size

B � 25.

The buffer sizing rules just described result in the following changes to CLB area com-

pared with previous work [19]. The new LUT area is slightly smaller because the previous

work uses the largest buffer size for all LUT inputs. Also, the new CLB input buffer area

is slightly larger because the previous work uses only fixed-size buffers of size B � 4.

Overall, the new calculations produce a slightly larger total CLB tile area than before.

3.3.4 Delay Model Improvements

Two important extensions have been included in VPRx to improve the accuracy and fidelity

of timing calculations. First, the area model is used to compute the cluster tile length and

scale interconnect wire RC values accordingly. Hence, architectures with wider channel

widths or more local cluster interconnect will encounter higher routing delays.

Second, the Elmore delay computation now accounts for fan-out delay at a buffered

routing switch. This was not done previously because each fan-out was assumed to have

its own private buffer. In this work, the switch fan-outs are assumed to share a buffer but

have independent pass transistors for tristate control. To compute the delay when multiple

66 CHAPTER 3. MODELS, METHODOLOGY AND CAD TOOLS

pass transistors are enabled, an RC node is added immediately between the buffer and the

pass transistors. Experiments show that this increases benchmark critical-path delay by 5%

on average or 16% in the worst case.

These changes to the Elmore delay computation are made in two places: during timing-

driven wavefront expansion and during post-routing static timing analysis. The change

during routing expansion involves two separate calculations: a) degrading the delay of

sinks that have already been routed and b) degrading the delay of the sink that is about

to be routed. The calculation in step a) is important because the routing of subsequent

sinks may join-in at any previously routed portion of the net. The calculation in step b) is

important to make correct routing trade-off decisions (in particular, fanout effects) while

routing the current sink.

3.3.5 Runtime Improvements

To improve the router runtime, a number of other changes have been made to the router

heuristics: the nets are routed in order of decreasing fan-out, sinks in the same cluster are

routed consecutively, and significantly fewer iterations are made when the circuit is very

difficult to route. Further details about these runtime improvements are as follows.

The netlist is now sorted so that high fan-out nets are routed first. Swartz [118, 119]

found this reduces runtime by 23% and delay by 11%. The fan-out runtime problem is

exacerbated in VPRx because there are more sinks per net.

To further improve runtime, sinks in the same cluster are now grouped and routed con-

secutively. After the first sink in a group is routed (the most critical), the heap responsible

for wavefront expansion is re-seeded with only three wires, namely those found while trac-

ing back from this sink to the source. Wavefront expansion then proceeds for the next sink.

This is repeated again for each remaining sink in the group. By seeding the heap with pre-

cisely three wires, expansion uses the cluster input pin and two (possibly perpendicular)

channel wires. Runtime is reduced in two ways: a) re-seeding the heap is faster (only three

wires are added instead of the entire route tree), and b) wavefront searches are limited to a

small, local region. This speeds the search for the remaining grouped sinks.

Another router change detects very hard to route cases and significantly improves bi-

3.3. VPR EXTENSIONS (VPRX) 67

isUnroutable(iteration i, num_shared_wires[1..i], max_iterations)
{

// trivial checks, ensures enough effort is expended
if(num_of_shared_wires[i] <= 50)

return false; // few shared wires, keep trying
if(i < 20)

return false; // too few iterations, keep trying

// estimate number of iterations required
// using averaged linear extrapolation from the last 20 iterations
// averages over 10 iterations reduces noise & hill-climbing effects
shared_wire_count_recent = average(num_shared_wires[i-9 to i]);
shared_wire_count_past = average(num_shared_wires[i-19 to i-10]);
shared_wire_decrease_rate = (shared_wire_count_past -

shared_wire_count_recent) / 10;

iterations_remaining = num_shared_wires / shared_wire_decrease_rate;
if(i + iterations_remaining <= max_iterations)

return false; // prediction that sharing will be resolved

// too many iterations required, declare unroutable
return true;

}

Figure 3.9: Early detection of unroutable architectures.

nary search runtime. When the channel width is far too small, the router wastes time by

executing the maximum number of iterations before declaring it unroutable. By track-

ing the number of shared routing wires (i.e., routing violations) after each iteration, these

unroutable cases can be detected earlier. To do this, the unroutable detection procedure

described in Figure 3.9 is executed after every iteration. If it returns true, the remaining

iterations are skipped so the binary search can try a wider channel width. The parameters

of this procedure have been chosen after plotting the number of shared wires per itera-

tion for numerous routing experiments. These specific values prune cases that are clearly

unroutable, but continue routing cases that are marginally routable.

3.3.6 Experimental Noise Reduction

The original VPR router exits as soon as a valid routing solution is found, but there is

sometimes a significant increase in delay in the last few iterations when the router is fo-

cused on eliminating congestion. This is a source of noise in the delay results. The noise

can be pronounced enough to obscure the effect of varying an architectural parameter.

To reduce delay noise, VPRx finds up to five valid routing solutions by making addi-

68 CHAPTER 3. MODELS, METHODOLOGY AND CAD TOOLS

tional iterations (up to the maximum allowed). The first routing solution which is within

5% of the average delay for all previous iterations is kept. Otherwise, the lowest delay of

the five solutions is used.

This noise-reduction technique is a simplification of the one employed by Roopchans-

ingh [49]. That work further reduced noise using two additional techniques: averag-

ing results from five different circuit placements, and restarting the router with a lower

router sharing penalty cost, pres fac mult. The experiments here use a very low

pres fac mult already, so lowering it further or using numerous placements would

increase runtime impractically. Likewise, using multiple placements would also increase

runtime impractically.

3.3.7 Correctness Changes

There are three minor changes made to the VPR 4.30 code to solve correctness problems.

First, when adding a new sink to the routing tree, VPR would sometimes add a new branch

that includes a node already found elsewhere in the tree. This creates a reconvergent path

in the routing solution. To avoid this problem, VPRx checks for these reconvergent nodes

and does not add the redundant portion to the tree.

Second, VPR does not generate a routing architecture which can be constructed with a

single layout tile when Fc � 1�0. The problem arises because a fixed sparse switch pattern

is used for each C block, but different S blocks are used to stagger the wire endpoints. This

is corrected in VPRx by adjusting the C block switch pattern according to wire endpoint

locations in the adjacent S block. Unfortunately, due to the complexity involved, this

change is presently hard-coded for length four wires only.

Third, VPR will abort with an error if too many iterations are executed and an overflow

occurs in the sharing penalty cost. In this case, VPR incorrectly declares a problem with the

routing architecture. To handle this more correctly and gracefully, the maximum number of

iterations is automatically lowered in VPRx. This way, the overflow is completely avoided.

Instead, the architecture is found to be unroutable and routing can continue with a wider

channel width.

Chapter 4

Sparse Crossbars

This chapter presents a method for evaluating and constructing sparse crossbars so they are

both area efficient and highly routable. The evaluation method uses a Monte Carlo tech-

nique to estimate the percentage of random test vectors that can be routed. The routability

of each test vector is determined perfectly using a network flow algorithm. The construc-

tion method attempts to maximise the spread of the switch locations, such that any given

subset of input wires can connect to as many output wires as possible.

The hardest test vectors to route are those which attempt to use all of the crossbar out-

puts. Results indicate that area-efficient sparse crossbars can be constructed by using more

outputs than required and a sufficient number of switches. Using a few specific case stud-

ies, it is shown that sparse crossbars with about 90% fewer switches than a full crossbar

can be constructed, and these crossbars are capable of routing over 95% of randomly cho-

sen test vectors. In one case, a new switch matrix which can replace the one in the Altera

FLEX8000 family is shown. This new switch matrix uses approximately 14% more tran-

sistors, yet can increase the routability of the most difficult test vectors from 1% to over

96%.

4.1 Introduction

Programmable logic devices commonly use full crossbars and sparse crossbars as building

blocks in routing networks. A full crossbar is often chosen when a highly-routable cross-

69

70 CHAPTER 4. SPARSE CROSSBARS

bar is desired, and a sparse crossbar is selected when area use is most important. Sparse

crossbars have significantly fewer crosspoints or switches than a full crossbar, but their

routability is not well understood. This naturally brings up the question, “Is it possible to

get the best of both worlds?” There are many instances where a highly routable crossbar

would be preferred, but the area cost of a full crossbar is prohibitive. This will be illustrated

with the following examples.

In large-scale logic emulation research systems like Teramac from Hewlett-Packard

Labs [120], or in commercial systems such as those by Quickturn [94], circuits are par-

titioned across a large number of PLDs. Each of the generated subcircuits must be suc-

cessfully placed-and-routed in the PLD, otherwise the entire circuit must be re-partitioned,

re-placed and re-routed. It is important that each of the PLDs in these large emulation

systems are highly routable to avoid this time-consuming iteration. For example, there are

1728 Plasma PLDs [121] used in Teramac. The design goal was to completely place and

route each PLD within 3 seconds. Plasma would have used full crossbars to guarantee this

routability, but to save area it was necessary to use only 1/4 of the switches. Results in this

chapter will show that sparse crossbars with a switch density of only 1/28 achieve better

routability than the switch pattern chosen for Teramac.

Using highly routable components in a single PLD may also lead to the benefits of

reduced compute time and memory use. The latest PLDs by Altera and Xilinx have a

large number of LUTs and wiring resources. However, to route these devices, CAD tools

usually build complex data structures to represent all of the wires and switches as well as

the nets that must be routed. This leads to considerable memory use. For example, Altera

recommends using 1GB of RAM to route designs for the APEX 20K1000E device [122].

It may be possible to make the CAD tools more efficient by following the Teramac and

logic emulation system model: partition a circuit into smaller subcircuits, then place and

route each piece independently. To do this effectively without rip-up and re-partitioning,

there must be confidence that each subcircuit is likely to route.

As another example, CPLDs are required to be highly routable because they are often

close to 100% utilised. However, full crossbars are not normally used in the global in-

terconnect of CPLDs due to the area overhead involved. Instead, an area-efficient sparse

4.1. INTRODUCTION 71

input set I

output set O

Figure 4.1: A 6�4 minimal crossbar and its graph representation.

pattern is required.

The above scenarios indicate that highly routable, sparsely populated crossbars would

be useful, yet there is little published work about how to build them. This chapter addresses

this issue by describing conditions necessary for routability (Hall’s Theorem), a method for

evaluating routability without resorting to place-and-route experiments, and a construction

algorithm that achieves good performance. Results for a few design cases will exemplify

the area requirements and routability obtainable from these sparse crossbars. In general,

however, the construction algorithm and evaluation method will work for any number of

inputs, outputs, or switches.

4.1.1 Graph Representation

Crossbars are easily modeled as a graph when wires are represented by nodes and switches

are represented by edges. A crossbar forms a bipartite graph G composed of two sets of

nodes, input wires I and output wires O, and a set of edges. There are no edges connecting

the nodes within each set, but an edge can exist between any node in set I and any node in

set O. An example of a 6�4 minimal crossbar and its graph is shown in Figure 4.1.

72 CHAPTER 4. SPARSE CROSSBARS

4.2 Evaluating Routability

The traditional approach to evaluate the routability of a PLD, and hence evaluate the sparse

crossbars contained therein, is to run place and route experiments with a suite of benchmark

circuits. This is an effective method to design a PLD and its CAD tools in concert, but it can

be a lengthy process. As well, the routing performance of the crossbars in the PLD relies

upon the effectiveness of the CAD tools and the benchmarks to exercise the architecture.

It is desirable to quickly test the routability of sparse crossbars independently of the

CAD tool or benchmark circuits used. As well, a test should provide a more sensitive,

yet still practical, measurement of routability than obtainable with traditional experiments.

This approach also helps avoid the problem of “training” a PLD architecture or CAD tool

to a particular benchmark suite.

One possible routability metric is the maximum guaranteed capacity of a crossbar, c.

With this metric, the largest value c is found such that any subset I �
 I of size �I�� � c is

guaranteed to be routable. The main problem with this metric is that it is very difficult to

compute: an exhaustive search will have exponential complexity because it must examine

all subsets of I with cardinality c or smaller. A branch-and-bound algorithm to search for

this value was implemented, but it is only practical for the smallest of crossbars. A greedy

heuristic search was also implemented to find a group of c� inputs which are unroutable,

hence proving that c � c�. However, the results of this greedy search are not consistent

enough to compare the quality of two different switch patterns.

Instead, the routability of a crossbar is measured using a Monte Carlo test. For this test,

a number of random test vectors are generated, each of which is routed on the crossbar

using a network flow algorithm. The routability of the crossbar is then computed as the

percentage of test vectors which can be successfully routed.

A test vector is a set of k inputs that must be routed to the crossbar outputs. More

specifically, it is a subset of the input wires, I � � I, where �I��� k. In terms of actual PLD

routing, a test vector resembles the case where logic signals have already been assigned to

specific wires due to previous routing restrictions.

Routability can be evaluated as a function of the test vector size, k, to distinguish

4.2. EVALUATING ROUTABILITY 73

 generated switch pattern
 manual switch pattern
 best random switch pattern
 random switch pattern
 partial crossbar switch pattern

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 k

 R
ou

ta
bi

lit
y

(%
)

Figure 4.2: Routability of different switch patterns in a 80�12 sparse crossbar.

the easily routed vectors, i.e., when k is small, from the difficult ones. For example, the

routability of various 80�12 sparse crossbars with 160 switches is shown in Figure 4.2. In

this graph, the x-axis is the test vector size, and the y-axis is the routability. Five curves are

drawn representing each of five different switch patterns. A description of these specific

patterns is given Section 4.4.

A highly-routable sparse crossbar is one which can route as many of these precon-

strained test vectors as possible. In this dissertation, the highly-routable point is arbitrarily

defined as being able to route at least 95% of the hardest test vectors, i.e., those containing

the maximum number of signals intended to be carried by the crossbar. The assumption

is that if a sparse crossbar can route nearly any configuration that it is given, then it will

perform nearly as well as a full crossbar when used in a PLD.

A network flow algorithm [123] is used to route the test vectors because it is guaranteed

to find a routing solution if one exists. The process for setting up the flow network and

solving it is as follows. Figure 4.3 gives an example of the flow network that must be

constructed around a 6�4 minimal crossbar to be tested. In addition to the crossbar nodes

and edges, a source S and a sink T are added. Edges are added connecting S to the inputs

I and the outputs O to T . Each edge is labelled with ‘1/0’ to denote it has unit capacity

and initially carries zero flow. For clarity, not all labels are shown in the figure. To solve

the flow network from S to T for maximum flow, integral amounts of flow are added to

74 CHAPTER 4. SPARSE CROSSBARS

I

O

TS

1/0

1/0
1
1
1

1/0

1

1
1

1

1

1/0

Figure 4.3: Flow network used to test the routability of a 6�4 minimal crossbar.

each edge in a systematic way such that each capacity is never violated. The final solution

includes a number of edges that carry unit flow — these are the switches that must be

turned on to form a routing solution.

Clearly, the maximum flow that can be achieved from S to T is restricted by the number

of inputs, outputs, and the arrangement of the edges in the sparse crossbar. To test the

routability of a given test vector, the input set I can be restricted to include only those

nodes specified in the test vector. This is done by assigning a zero capacity to those edges

leading from S to I that are not specified in the vector. Hence, a test vector of size k creates

a total of k unit-capacity edges leading from S to I. An overall flow of size k must be found

in this network to produce a solution containing k switches. If a lower flow value is found,

it indicates the largest number of inputs (and outputs) that are routable. This guarantee of

finding a solution makes it an ideal routing tool.

4.3 Routable Switch Patterns

This section examines the following basic problem: given p switches, how should they

be placed in a sparse crossbar to make it as routable as possible? The foundations for

the switch-placement algorithm presented in the next section are based on the following

theorem and observations.

4.3. ROUTABLE SWITCH PATTERNS 75

4.3.1 Hall’s Theorem

Hall’s Theorem [16] is a result that can be applied to bipartite graphs to determine whether

a matching that saturates the smaller partition can be found. A matching is a subset of

the edges in a graph such that no two edges share a node. Hence, every pair of edges

in a matching involve 4 distinct nodes. Let X be any subset of vertices in a graph G. A

matching saturates X if it contains an edge to every node of X . Hall’s Theorem gives the

precise conditions under which such a matching can exist.

Hall’s Theorem. If G is a bipartite graph with bipartition X and Y , �X � � �Y �, then G has a

matching of X into Y which saturates X if and only if

�S
 X � �S� � �N�S��

where �S� denotes the cardinality of subset S, and N�S� is the set of neighbours of S in Y .

4.3.2 Application of Hall’s Theorem

Hall’s theorem can be applied to sparse crossbars because a matching actually forms a

routing solution. The Y set represents the output wire set O, and X is a specific test vector

or subset of the input wires, X � I �
 I. A test vector is fully routable if and only if Hall’s

condition is satisfied and a saturating matching can be found. A saturating matching is

desired because every test vector node (input wire) must match a unique output. The edges

in the matching are the switches which must be turned on to form the connections.

To design a routable sparse crossbar, switches should be placed so that Hall’s condition

is satisfied for as many test vectors as possible. For test vectors of size k, it is a necessary

condition that at least k distinct output wires are reachable by switches.

The switch placement algorithm described in the next section assumes that the switches

connected to any specific subset of input wires should be spread out to connect with as

many output wires as possible. This is equivalent to making the neighbour set N�S� as

large as possible so that Hall’s condition is likely to be satisfied.

Switch placement is not trivial because the switch pattern chosen for each input wire

interacts with the other input wires. Given one subset of input wires, the objective is to

76 CHAPTER 4. SPARSE CROSSBARS

spread the switches to as many different outputs as possible. This may cause a different

subset of inputs (containing a few inputs from the original subset) to reach too few outputs.

The above example also suggests that each input wire, having equal likelihood of being

a part of any particular subset, should have an equal number of switches. This is supported

by further reasoning as follows. If one input has fewer switches, it would not be able to

“spread out” to as many different neighbours. As a result, subsets which included this

input may be less routable. To get around this, all inputs should have a similar number of

switches so the fan-outs of the input wires are roughly equal.

A similar argument implies that the fan-ins of the output wires should also be balanced.

For this reason, the switch matrices constructed in this paper all have balanced (or nearly-

balanced) fan-in and fan-out.

4.3.3 Hamming Distance and Coding Theory

The switch placement problem requires that subsets of the input wires span as many output

wires as possible. Doing this for every possible subset of input wires is a difficult task.

Instead, this can be simplified by spreading out the switches between every pair of input

wires. In this form, the switch placement problem is equivalent to a problem in the design

of communication codes. Hence, code-design techniques such as those from [124] can be

used to solve the switch placement problem.

The location where switches are placed on an input wire can be represented by a bit

vector of length m, where a 1 in the bit vector indicates that a switch is present. There are

n such bit vectors, one for each input, forming the codewords of a binary code.

The number of neighbours of an input wire subset is the number of ones in the bitwise-

OR of their bit vectors. Given two bit vectors, the increase in the number of neighbours

(output wires) reached by the combination of the two is related to the Hamming distance1

between them. Spreading out the switches between a pair of input wires i and j represented

by bit vectors bvi and bv j is the same as maximising HammingDistance�bvi�bv j�. Code

design techniques often attempt to maximise the minimum Hamming distance between all

of the codewords.

1The Hamming distance is the number of bit positions that differ between the two bit vectors.

4.3. ROUTABLE SWITCH PATTERNS 77

One interesting branch of coding theory which relates to sparse crossbar design is the

study of constant-weight codes. These are codes in which every codeword has the same

number of set bits, w. This is similar to a sparse crossbar with a constant fan-out of w

at every input. For a given codeword length m (number of outputs) and weight w, there

is a maximal number of codewords (number of inputs), defined as A�m�d�w�, which are

separated by some minimum Hamming distance d.2 There has been significant effort to

tighten the lower bound for A�m�d�w�, as described in a comprehensive paper by Brouwer

et al [125]. Some bounds are determined by mathematical counting arguments [126], while

others are tightened by explicitly constructing codes and counting the number of code-

words. For example, stochastic search heuristics have been successfully combined with

traditional constructive approaches [127].

The sparse crossbar construction algorithm may be used as a tool to help find new

lower bounds on A�m�d�w� as well. To see this, consider that the algorithm fixes n, m

and w and generates a code. Intuitively, the algorithm finds widely-spaced codewords and

places them closer together, using the resulting slack to increase the minimum d between

closely-spaced codewords. Hence, after code generation it produces a code with some large

minimum d. By increasing n as large as possible (until a further increase would reduce the

minimum d), a maximal-sized code is obtained. This value of n is from a real code, hence

it may represent a new lower bound for A�m�d�w�.

Some early efforts were made to use the algorithm in this context. The algorithm was

often able to approach or reach some previously published bounds, but it did not exceed any

of them. This was not vigourously pursued further because the switch placement algorithm

is not tuned for this type of application. Instead of packing codewords tightly together, the

algorithm is designed spread out a fixed number of codewords. It also places constraints

on fan-in profiles and it supports non-regular fan-in and fan-out profiles. As a result, the

algorithm given here may be more helpful where the bounds are not yet known (e.g., they

are not tabulated in [125]). A modification of the algorithm to pursue improved bounds in

coding theory, or vice versa, would be an interesting avenue of further research.

2The information theory literature refers to the maximal number of codewords as A�n�d�w�; the variable

m is used here instead to remain notationally consistent with the number of crossbar outputs.

78 CHAPTER 4. SPARSE CROSSBARS

4.3.4 Expander Graphs

Our interpretation of Hall’s theorem is that a routable sparse crossbar is formed if all sub-

sets of the inputs have large enough neighbourhoods. In expander graphs, a similar prop-

erty is found where the neighbourhood of any input subset is larger (by a constant amount,

the expansion factor) than the input subset itself if the input subset is sufficiently small

(i.e., it is no more than a fixed fraction of the input set). Explicit constructions of expander

graphs, such as those described by Margulis [17] and Gabber and Galil [18], cannot cope

with an arbitrary number of inputs or outputs.

Very recent advances in the explicit construction of expanders have been made by Ca-

palbo et al [107]. The construction method works for any number of inputs or outputs

and a fixed number of connections. If this new method proves to be practical, it will be

extremely useful and it may be used to replace the switch placement algorithm described

in this chapter.

Until a suitable comparison with this new approach is made, the following algorithm is

the only known general method that can generate routable sparse crossbars for an arbitrary

number of inputs, outputs, switches, as well as arbitrarily prespecified fan-in and fan-out

profiles.

4.4 Switch Placement Algorithm

Using insight gained in the previous section, a two-stage switch placement algorithm has

been developed. In the first stage, an initial switch pattern is chosen subject to given con-

straints. The second stage performs iterative optimisation without violating the constraints.

The inputs required for the algorithm are the matrix size, n�m, and the number of switches

p. Optionally, fan-in and/or fan-out profiles can be specified for the outputs or inputs. An

overview of the algorithm is given in Figure 4.4.

To motivate the switch placement, consider again the routability of the different patterns

in Figure 4.2. The pattern with the best routability is obtained with the switch pattern

generator described in this section. The second best routability is obtained with a pattern

that was hand-generated by a PLD designer prior to this work. The next two are random

4.4. SWITCH PLACEMENT ALGORITHM 79

MainSwitchPlacementAlgorithm()
{

input: n, m, p
// n = # of inputs, m = # of outputs, p = # of switches

optional input: fanin[m], fanout[n]
// fanin or fanout profiles

output: sw[n][m]
// switch placement (n x m adjacency matrix)

if no fanin/fanout constraints specified
generateFaninFanoutConstraints(n, m, p, fanin, fanout)

generateInitialSwitchPlacement(n, m, p, fanin, fanout)
optimisePlacement(n, m)
print final switch placement

}

Figure 4.4: Overview of switch placement algorithm.

generateFaninFanoutConstraints(n, m, p, fanin, fanout)
{

// create uniform fanout constraints for inputs
for i = 0 to n-1

fanout[i] = floor(p / n)
for i = 0 to (p%n) - 1

fanout[i]++

// create uniform fanin constraints for outputs
for j = 0 to m-1

fanin[j] = floor(p / m)
for j = 0 to (p%m) - 1

fanin[j]++
}

Figure 4.5: Algorithm to generate uniform fanin/fanout constraints.

patterns, one is completely random and the other is chosen as the best out of a large number

of random patterns. The last one is a partial crossbar pattern.

4.4.1 Initial Switch Pattern Generation

The goal of the initial switch pattern generator is to place switches according to given fan-

in and fan-out specifications. These specifications limit the number of switches that will

be placed on each wire. The user may provide any valid fan-in and/or fan-out distribu-

tion. If no specification is provided, one is created by the algorithm given in Figure 4.5.

This algorithm uniformly divides the number of switches, p, among all n inputs and all m

80 CHAPTER 4. SPARSE CROSSBARS

generateInitialSwitchPlacement(n, m, p, fanin, fanout)
{

const TRY_LIMIT = p * p
const PASS_LIMIT = 100

// try randomly, up to PASS_LIMIT times
do {

initialise sw[i][j] = 0 for all i,j
num_placed_switches = 0

do {
tries=0

while(1) {
randomly choose input i, output j
tries++
if(tries > TRY_LIMIT) break
if new switch at i,j obeys fanin/fanout constraints {

sw[i][j] = 1
num_placed_switches++
break

}
}

if(tries > TRY_LIMIT) break
} while(num_placed_switches < p)

passes++
} while passes < PASS_LIMIT and tries > TRY_LIMIT

if passes > PASS_LIMIT and tries > TRY_LIMIT {
// random failed, use network flow
initialNetworkFlowPlacement(n, m, p, fanin, fanout)

}

}

Figure 4.6: Random initial switch placement algorithm.

outputs.

A switch pattern which obeys the fan-in/out specifications is generated in one of two

ways: either randomly, or by a network flow computation. The random method given

in Figure 4.6 repeatedly places a switch at a random location in the crossbar provided it

doesn’t violate the fan-in/out specifications. If it cannot find a valid location for the next

switch after a certain number of tries, it erases all switches and starts over. Unless there

are a large number of switches to place, an initial pattern is usually found the first time. If

it still fails after restarting a few times, the network flow method is used instead.

The network flow method given in Figure 4.7 finds a precise solution to the fan-in/out

specifications. The procedure constructs a flow network very similar to that shown in

4.4. SWITCH PLACEMENT ALGORITHM 81

initialNetworkFlowPlacement(n, m, p, fanin, fanout)
{

add n input nodes to I
add m output nodes to O

add supersource node S
for i = 0 to n-1

add edge from S to input i with capacity fanout[i]

add supersink node T
for j = 0 to m-1

add edge from output j to T with capacity fanin[j]

for i = 0 to n-1
for j = 0 to m-1

add edge from input i to output j with capacity 1

solve maximum network flow from S to T
if maximum flow < p

exit "no switch placement satisfies fanin/fanout constraints"

// switch locations are copied from the maximum flow solution
for i = 0 to n-1

for j = 0 to m-1
if edge from input i to output j has flow==1

sw[i][j] = 1 // place a switch
else

sw[i][j] = 0 // do not place a switch

}

Figure 4.7: Initial switch placement algorithm using a maximum network flow algorithm.

Figure 4.3. First, start with a source S, a sink T , input nodes I, and output nodes O. Add

edges from S to I and O to T and assign flow capacities equal to the fanout and fanin

capacity specifications, respectively. Then, temporarily place a switch at every location in

the crossbar (fully connect from I to O) assign each a unit capacity. Find the maximum

flow from S to T . If a switch pattern can be generated to obey the given constraints, it will

be found as solution with a total flow of p. Keep all of the edges used by the flow solver

(carrying flow) as the locations for the initial switch pattern and discard the others which

carry no flow. This network flow method is used as a backup method because it is usually

slower than the random method.

4.4.2 Switch Placement Optimiser

The routability of an initial switch pattern is improved by the optimisation phase. A number

of switches can be moved into a more “spread out” pattern through a number of “switch

82 CHAPTER 4. SPARSE CROSSBARS

location swaps”. A swap involves moving two switches at the same time so the fan-in and

fan-out profiles remain unchanged. The optimising algorithm given in Figure 4.8 generates

random swap candidates and accepts the swap if the following cost function is reduced:

∑
�x�y�x��y

1
HammingDistance�bvx�bvy�2 �

This is the same cost function used by El Gamal et al [128] to design codes. It encourages

switches to spread because two inputs that reach nearly the same set of outputs will have a

higher cost due to their smaller Hamming distance.3

A more efficient O�n� version of this cost calculation is given in Figure 4.9. The ef-

ficiency arises because only the part of the cost which has changed, namely the distances

from the two changed inputs i1 and i2, needs to be calculated.

The optimisation algorithm works in a greedy fashion: it generates random swap candi-

dates, but it only accepts the swaps if the cost function improves. The algorithm stops after

the number of iterations specified by the user parameter MAX ITERATIONS. A simulated-

annealing approach was initially used but this did not result in better switch placements.

It was noticed that any hill-climbing moves which raised the cost function were nearly al-

ways found again and undone. Similar results were obtained by Leventis [129]. Instead,

the greedy algorithm lowers the cost function much more quickly. Another algorithm that

exhaustively tried all possible swap candidates ran considerably slower and also did not

improve results.

Further details about the cost function, generating swap candidates, and limitations of

this algorithm are discussed below.

4.4.3 Cost Function Pitfalls

This section describes a few of the alternative cost functions that were considered and

rejected for the optimisation algorithm. Each of these alternatives has a drawback which

should be considered if a new cost function is desired.

One alternative cost function maximises the minimum Hamming distance between all

inputs. As noted in [128], this is not very useful because not all switch swaps would lead

3In the event that the Hamming distance between two bit vectors is zero, an arbitrary cost of 100 is used.

4.4. SWITCH PLACEMENT ALGORITHM 83

optimisePlacement(n, m)
{

const MAX_ITERATIONS = 10000
while iteration < MAX_ITERATIONS {

// find random swap candidate pair
(i1, j1, i2, j2) = findRandomSwapCandidates()

originalCost = cost(i1, i2)

// perform switch swap
move switch from location i1,j1 to i1,j2
move switch from location i2,j2 to i2,j1

newCost = cost(i1, i2)

if newCost > originalCost
restore original pattern

iteration++
}

}

Figure 4.8: Iterative optimisation of switch placement.

cost(i1, i2)
{

// compute cost relative to inputs i1, i2
cost = 0.0

// NOTE: the function HammingDistance(x,y) below returns
// 0.1 rather than 0.0 when x and y are identical.

// compute cost relative to i1
for i = 0 to n-1

if(i != i1)
cost += 1.0 / HammingDistance(sw[i1][*], sw[i][*])ˆ2

// compute cost relative to i2
// don’t double-count the cost relative to i1
for i = 0 to n-1

if(i != i2 AND i != i1)
cost += 1.0 / HammingDistance(sw[i2][*], sw[i][*])ˆ2

return cost
}

Figure 4.9: Cost computation.

84 CHAPTER 4. SPARSE CROSSBARS

0

20

40

60

80

100

1 2 3 4 5 6

R
ou

ta
bi

lit
y

(%
)

Signals

Switch Pattern
Hamming distances 4,4,4
Hamming distances 2,4,6

Figure 4.10: Routability of 9�6 sparse crossbars with different Hamming distance profiles.

to an observable change in the cost function.

Another possible cost function is to maximise the total Hamming distance between all

pairs:

∑
�x�y�x ��y

HammingDistance�bvx�bvy��

Unfortunately, this does not sufficiently penalise close bit vectors. For example, consider

the 3 bit vectors 111000, 011100, 000111 with Hamming distances of 2, 4, and 6 and

the alternative switch topology 111000, 001110, 010011 with distances of 4, 4, and 4.

Two 9� 6 sparse crossbars can be created with these topologies by replicating each input

bit vector three times. Figure 4.10 shows that the routability of the latter topology (with

distances of 4, 4 and 4) is better than the former. However, no difference between these bit

vector sets is found if only the total Hamming distance is examined.

Another, more direct cost function is the routability estimate from the Monte Carlo

tests. This accomplishes the goal of improving routability. However, it also leads to two

problems. First, a Monte Carlo simulation is much slower to compute. Second, the results

of a single swap are not always readily discernible by the simulation.

In comparison to the above alternatives, the Hamming distance cost selected is rela-

tively quick to compute and it can distinguish many types of changes to the switch pattern.

4.4. SWITCH PLACEMENT ALGORITHM 85

4.4.4 Generating Swap Candidates

Swap candidates are determined by the random selection of two input wires. Using the

placement of switches on these two wires, two output wires are randomly selected to form a

swap candidate. An example of a swap candidate between inputs 1 and 4 and two outputs is

given on the left of Figure 4.12. To preserve the fan-in/out distribution profiles, there must

be only two switches between these four nodes. Exchanging the outputs reached by the

two inputs constitutes a swap. If no valid swap candidate can be found, a new pair of input

wires is chosen. The simplified version of the algorithm to find swap candidates is given in

Figure 4.11. A more complex version which detects cases when no swap candidates exist

is actually implemented.

Rather than swapping, it is also possible to move a single switch at a time. An example

of a single-switch move is given on the right of Figure 4.12. This can be done while

preserving the fan-in and fan-out distribution profiles if the following conditions are met.

For a given input wire, a switch can be moved from one output to another if the original

output’s fan-in is one greater than the new output’s fan-in before the move. After the move,

the outputs exchange their fan-in specifications. Similarly, a switch fixed to an output wire

can switch input wires provided the fan-outs of the old and new inputs differ by one.

During early experiments, single switch moves were done after all of the two-switch

swaps were completed. The generation of specific single moves was tried two ways: ran-

domly for speed, and exhaustively for thoroughness. Unfortunately, single switch moves

did not improve routability in these experiments. To speed the generation of results for this

chapter, single switch moves are not performed.

4.4.5 Limitations of the Algorithm

When p� 2n, the switch matrix is very sparse and suboptimal switch placements are some-

times generated. Under these conditions, small disconnected components may be present

in the bipartite graph, yet they are indistinguishable by the cost function.

For example, consider the leftmost matrix in Figure 4.12. The cost function is unable

to determine whether the swap shown is good, since it has the same cost before and after.

86 CHAPTER 4. SPARSE CROSSBARS

findRandomSwapCandidates()
{

const TRY_LIMIT = 1000

// find random swap candidate pair
loop

// randomly choose two inputs
randomly choose input i1
loop

randomly choose input i2
until i2 != i1
let o12 = outputs reached by i1 + i2

// randomly choose outputs reached by inputs
try = 0
loop

randomly choose output j1 from outputs o12
randomly choose output j2 from outputs o12
try++

until (sw[i1][j1] == 1 AND // exit when: switch at i1,j1 AND
sw[i2][j2] == 1 AND // switch at i2,j2 AND
sw[i1][j2] == 0 AND // no switch at i1,j2 AND
sw[i2][j1] == 0 AND // no switch at i2,j1 AND
j1 != j2 // reaches different outputs

OR try >= TRY_LIMIT) // OR exit if all tries are exhausted

until try < TRY_LIMIT

// return valid swap candidate
return i1, j1, i2, j2

}

Figure 4.11: Find eligible switch moves.

1 2 3 4 5 62 3 4 5 61

Figure 4.12: Example of a bad move (left) and a good move (right).

However, it is a bad move. The original matrix routes any test vector of size 3, but the new

matrix cannot route the input subset �1,5,6�.

Despite this limitation, the switch placement algorithm often makes intelligent deci-

sions. Consider the switch matrix on the right of Figure 4.12 which cannot route the subset

�1,2,3�. To lower the cost, the algorithm will find the single switch move indicated. The

new switch pattern can now route all groups of 3.

4.5. RESULTS 87

4.5 Results

The switch placement algorithm and evaluation method described above have been imple-

mented in a tool using C++ to construct and test sparse crossbars. In this section, a number

of experiments are run with a sparse crossbar containing 168 inputs and 24 outputs. This

size is chosen for two reasons: it is small enough to run experiments quickly, and it is

the same size as the C block used in Altera’s FLEX8000 family [130] to choose 24 CLB

input signals from the 168 row wires. To assist in comparisons, Altera has confirmed that

the FLEX8000 sparse crossbar contains two switches for every crossbar input, for total

of 336 switches [Heile, private communication]. However, the exact switch locations are

unknown.

In the following design examples, an assumption will be made that the Altera

FLEX8000 CLB is intended to be highly routable for 24 signals. However, the actual

design goal may have been for the average case or for the most common cases of perhaps

16 or 20 outputs, for example. In these cases, a similar methodology can be followed with

this new design objective, and similar results would be obtained.

It should also be noted that the following analysis is simplified by examining the

routability of an isolated sparse crossbar. That is, the results assume that there is no “up-

stream flexibility” available which could be used to rearrange the signals to different inputs,

hence making some of the random test vectors irrelevant. Accounting for this flexibility

makes the design problem very complex and would be a very interesting extension of this

work. However, before performing such an extension, it is first necessary to understand the

performance of a sparse crossbar in isolation as described below.

4.5.1 Adding Extra Switches

This first set of experiments investigates how sensitive the routability of a sparse crossbar

is to the addition of switches. For example, it is not clear how quickly routability increases

as the number of switches is increased. Does it increase at the same rate, or is there a region

where it increases more rapidly?

The leftmost graph in Figure 4.13 shows a routability curve for each fixed switch count.

88 CHAPTER 4. SPARSE CROSSBARS

The x-axis indicates the number of signals to be routed, i.e., the test vector size. At each

test vector size, 10,000 random vectors are generated and the percentage of vectors that

can be routed is given on the y-axis. Clearly, large test vectors are more difficult to route,

and sometimes the drop-off is very rapid. Each curve shows the routability obtained with a

fixed number of switches arranged in a fixed pattern. The number of switches ranges from

175 to 700, in steps of 25. Because the switch counts differ, a unique switch pattern is

created for each curve.

As switches are added in the left graph of Figure 4.13, the entire routability curve

shifts upward. When only a few switches are present, the amount of the shift can be quite

large. For example, going from 200 to 300 switches improves the routability of size 12

test vectors from 15% to 80%. As more switches are added, the amount of the increase

diminishes, implying less utility is gained from each additional switch. For example, the

improvement going from 600 to 700 switches is barely noticeable except for the largest

test vectors.

Using the same data, the rightmost graph in Figure 4.13 better illustrates this sensitivity

of routability on switch count. In this graph, the number of switches varies along the

x-axis. Each curve represents a fixed test vector size. A given test vector size of 20 signals,

for example, shows the greatest improvement in routability as the number of switches is

increased from 300 to 500. The largest test vector size (24 signals) shows the slowest

improvement rate. Consequently, a large number of switches are required for that vector

size to reach 95% routability.

There are two key observations to be made from Figure 4.13. First, there is a range

where routability is very sensitive to the number of switches. Outside of this range,

routability is either very poor or very good. When reducing the number of switches, design-

ers should stay outside of this highly sensitive region to ensure good routability. Second,

the routability of the largest test vectors is the least sensitive to the addition of switches. If

a designer is trying to make these large vectors highly routable, a large number of switches

are required. In contrast, significantly fewer switches are required if the number of signals

routed is less than the number outputs.

Another way to present the efficiency of the switch pattern is shown in Figure 4.14.

4.5. RESULTS 89

This graph replots the data from Figure 4.13 as follows. Each curve in the new graph

represents a fixed routability level, say 90%. As before, the x-axis is the number of signals

to be routed. However, the y-axis is the smallest number of switches per output signal

required to achieve the 90% routability level. The curves show that most, but not all, of

the crossbar outputs should be used to make efficient use of the switches. If nearly all of

the outputs are used, i.e., more than 20, significantly more switches per signal are needed

to reach high levels of routability. Hence, the value obtained by adding each additional

switch in this region is small; many switches are needed to make a significant contribution

to routability.

Two additional curves of interest are shown in Figure 4.14: the entropy curve and the

100% lower bound curve. The latter curve illustrates the minimum number of switches

needed to reach perfect routability. This is determined using the formula from [86]:

p � ��n� k�1�m��m� k�1��

where k is the number of signals on the x-axis. The lower bound demonstrates that a large

number of additional switches per signal is needed to go from 99.9% to 100% routability

for large test vector sizes. When the number of signals is small (� 16), the bound might also

suggest that the sparse crossbars are using too many switches to reach � 90% routability.

However, it is known that the lower bound is not tight [86].

The entropy curve shows the absolute minimum number of SRAM bits that would be

needed to program the switch matrix. As shown by DeHon [131], the number of bits

required is �log2

�n
k

��. This shows that significantly more switches are needed than what a

simple counting calculation would predict.

4.5.2 Adding Extra Output Wires

In the previous subsection, the switch matrix contains exactly 24 outputs and carries up to

24 signals. Here, the number of crossbar output wires is gradually increased from 24 to

48, but the crossbar routability is only tested with 24 signals. The results of widening the

output stage like this are shown in Figure 4.15 for a variety of switch counts. When the

number of switches is low, the routability increase due to the additional output wires is not

90 CHAPTER 4. SPARSE CROSSBARS

 700 switches
 600 switches
 500 switches
 400 switches
 300 switches
 200 switches
 175 switches

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|0

|20

|40

|60

|80

|100

 # Signals

 R
ou

ta
bi

lit
y

(%
)

 10 signals
 20 signals
 24 signals

|
0

|
250

|
500

|
750

|
1000

|0

|20

|40

|60

|80

|100

 # Switches

 R
ou

ta
bi

lit
y

(%
)

Figure 4.13: The effect of adding extra switches on routability of a 168�24 crossbar.

 100 % lower bound
 99.9 % routability
 99 % routability
 95 % routability
 90 % routability
 50 % routability
 10 % routability
 entropy bound

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|0

|10

|20
|30

|40

|50

|60

|70

|80

|90

|100

 # Signals

 #
 S

w
itc

he
s

pe
r

S
ig

na
l

Figure 4.14: Efficiency of switches in a 168�24 crossbar.

0

20

40

60

80

100

25 30 35 40 45

R
ou

ta
bi

lit
y

of
 2

4
S

ig
na

ls
 (

%
)

Number of Outputs

168 x 24 Crossbar

Number of
Switches
500
460
420
380
340
320
300
260
220

Figure 4.15: Routability of 24 signals in a 168�24 crossbar as output wires are added.

4.5. RESULTS 91

very significant. When 340 or more switches are used, however, improvements of up to

100% can be seen with just a few additional outputs.

From this data, it is evident that widening the output stage is an easy way to improve

the routability of a sparse crossbar. However, a certain minimum number of switches

must be present to take advantage of the extra output wires. Producing more outputs than

required can also place higher area demands on downstream routing resources. This will

be considered more fully in the next section.

4.5.3 Adding Both Switches and Wires

There is a cost associated with having more output wires. Namely, each additional output

must be considered as an additional input to the downstream interconnect it feeds. In the

Altera FLEX8000 architecture, for example, the sparse crossbar feeds the local intercon-

nect of the CLB, or clustered logic block. The CLB contains eight 4-LUTs sharing 24

inputs. Each LUT input is completely connected to all of these 24 inputs and to all of the

eight local LUT outputs.

Figure 4.16 shows the combined effect of adding switches and widening the output

stage of a sparse matrix design that can be used in the FLEX8000. In this graph, three key

curves are shown:

1. architecture A (baseline) with 336 switches and 24 output wires (dotted curve),

2. architecture B with 336 switches and 30 output wires (lower solid curve), and

3. architecture E with 510 switches and 30 output wires (upper solid curve).

The baseline architecture is similar to the FLEX8000. The addition of output wires (ar-

chitecture B) and then more switches (architecture E) dramatically improves routability to

nearly 100% for all test vector sizes.

It is interesting to compare the above results with the simple addition of more switches.

Architecture C also uses the same number of switches as E, but it is not as routable because

it has only 24 outputs. However, architecture E has an advantage: it contains more switches

inside the CLB (from the additional sparse crossbar outputs). To make a fair comparison

92 CHAPTER 4. SPARSE CROSSBARS

by keeping total switch count the same, the same number of additional switches should be

added to architecture C as well. This is shown as architecture D with 702 switches. Even

with the same number of switches, architecture E is still more routable.

A more complete picture of the trade-off between number of output wires and total

switch count is shown in Figure 4.17. Routability on the y-axis is plotted as a function

of the number of outputs on the x-axis. Each curve represents a fixed total number of

switches contained in two locations: in the sparse crossbar and in a fully populated Altera

FLEX8000-style cluster.4 As more output wires are added, routability of the sparse cross-

bar ultimately degrades because more of the switches must be located inside the cluster.

The data used to create Figure 4.17 indicates that the fewest switches to reach 99.95%

routability is 1470 switches along with 30 output wires. This total is divided as 510

switches in the sparse crossbar and 960 inside the CLB. In comparison, the FLEX8000

has a total of 1104 switches and reaches less than 20% routability. By using a few more

switches and output wires, a significant boost to routability can be obtained.

Each of the routability curves in Figure 4.17 peaks at a particular number of output

wires. This best number of output wires is the point which produces the highest routability

level for a fixed number of switches. Figure 4.18 plots this highest routability level (pro-

duced with the best number of outputs) against the number of switches. For comparison,

the routability level reached with only 24 outputs is also plotted. It is clear that the addi-

tional outputs raises the sensitivity of routability to the number of switches, and reaches

near-100% levels with significantly fewer switches.

4.5.4 Summary

The results from this section indicate that, to be area-efficient, a sparse crossbar should be

intentionally under-utilised. In particular, the number of outputs should be more than the

number of signals to be routed through it. The number of switches can be reduced, but care

must be taken not to make a crossbar very sparse and push it into a highly-sensitive region

of routability. As well, it is important to choose the number of switches and wires together

because a minimum number of switches are needed to benefit from the extra output wires.

4The 256 switches for local LUT feedback connections have been excluded from these totals.

4.5. RESULTS 93

 E: 30 outputs, 510 switches
 D: 24 outputs, 702 switches
 C: 24 outputs, 510 switches
 B: 30 outputs, 336 switches
 A: 24 outputs, 336 switches

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|
22

|
24

|0

|20

|40

|60

|80

|100

 # Signals

 R
ou

ta
bi

lit
y

(%
)

Figure 4.16: Routability of a 168�24 crossbar after adding output wires and switches.

0

20

40

60

80

100

24 26 28 30 32 34 36

R
ou

ta
bi

lit
y

of
 2

4
S

ig
na

ls
 (

%
)

Number of Outputs

168 x 24 Crossbar

Total
Switches
1600
1550
1500
1450
1400
1350
1300
1250
1200

Figure 4.17: Routability of 24 signals with a fixed number of total switches.

0

20

40

60

80

100

1000 1200 1400 1600 1800

R
ou

ta
bi

lit
y

of
 2

4
S

ig
na

ls
 (

%
)

Total Switches

168 x 24 Crossbar

best with extra outputs
24 outputs

Figure 4.18: Routability of 24 signals while varying total switch count.

94 CHAPTER 4. SPARSE CROSSBARS

4.6 Design Examples

The previous section investigated the design space around a sparse crossbar of a particular

size. In this section, a number of design examples are explored which would make good use

of a sparse crossbar. For each example, a search is done for sparse crossbar configurations

which have low transistor counts and which reach 95% or better routability at the largest

test vector size.

In general, most of these designs use a two-level interconnect formed by a top-level

sparse crossbar followed by a fully-connected lower level. In some cases, a mid-level

minimal crossbar is inserted to reduce the number of inputs seen at the lower level. The

search involves varying the number of sparse crossbar switches and outputs.

Area Model

The area model used here is simply the total transistor count used by the two or three

switching levels. The transistor count calculation assumes that each level’s output is im-

plemented with an n-input multiplexer of 2n� 2 transistors. Such a multiplexer would

be constructed from a tree of 2:1 multiplexers using pass-transistor logic. As well, each

multiplexer is controlled by �log2 n� SRAM bits containing 6 transistors each. To keep

things simple, this model ignores the buffering of signals or transistor sizing that would

accompany a real design.

Search Methodology

To find the lowest-area configuration, a thorough sweep across a number of switch counts

and output wires is done. Those designs which use the fewest transistors are tested to see if

they route at least 95% of the largest test vectors. Further details of this search methodology

will be described below.

During the search, the number of sparse crossbar outputs is increased one by one, begin-

ning with the minimum required and ending with approximately 50% more than required.

The number of switches is initially determined so each output connects with 1/2 of the

inputs. Suppose this requires an r-input multiplexer for each output. Afterward, the switch

4.6. DESIGN EXAMPLES 95

density is reduced by shrinking r by one until r � 2 is reached.

During the sweep, any designs with roughly 40% or more transistors than a standard

baseline architecture are immediately rejected. This prunes a large number of organisations

from routability testing. The standard baseline architecture, defined to have the minimum

number of outputs and two switches per input wire, is similar to the connectivity found in

the Altera FLEX8000 devices. The threshold of 40% additional transistors is arbitrary and

is sometimes adjusted depending on the number of design matches found.

For the remaining architectures, a routability test is done using 1000 test vectors. If

less than 95% routability is obtained, the remaining less-dense organisations are assumed

to have less routability and abandoned. At this point, the search resumes with one addi-

tional output at the 1/2 density level. Otherwise, if more than 95% routability is obtained,

the architecture is accepted as one area-efficient and highly routable design solution and

the search continues with a lower switch density. In early experiments, some of these ar-

chitectures were re-tested with more test vectors, but this did not usually change routability

by more than 1%.

The end result is the generation of a number of designs which have excellent routabil-

ity (95% or better) and require low area (roughly, no more than 40% above the spartan

baseline).

96 CHAPTER 4. SPARSE CROSSBARS

168
input
wires

eight 4-input LUTs

24 cluster wires
(24 signals)

sparse switch matrix

perfect

switch

matrices

LUT feedback
signals

Figure 4.19: Interconnect model of the Altera FLEX8000 architecture.

4.6.1 Design Example: Altera FLEX8000 PLD

The Altera FLEX8000 device uses a 168� 24 sparse crossbar to connect long row wires

into the CLB clusters. This sparse crossbar is 1/12 populated, i.e., each row wire has two

“opportunities” to connect into a cluster. This sparse crossbar organisation, which will be

referred to as the FLEX8000 baseline, uses a total of 336 switches. Within the cluster, the

inputs of eight 4-input LUTs are fully connected to the sparse crossbar outputs and local

LUT output signals using 1024 switches. When both levels are counted together, there are

1360 switches which require 4144 transistors.

The routability of the baseline organisation is shown in Figure 4.20. The sparse cross-

bar is highly routable when fewer than 10 signals are required. However, the routability of

15 or more signals is below 90%. At 24 signals, it is only 1%.

To increase routability of 24 signals beyond 95%, the number of switches must be

increased to more than 888 (1912 switches in total). This requires 5536 total transistors, or

34% more than the baseline. Further details about these two organisations are in the first

two of rows of Table 4.1. In this table, the ‘L1’ columns represent the sparse crossbar and

the ‘In Cluster’ columns represent the downstream portion, a fully-connected cluster. In

4.6. DESIGN EXAMPLES 97

the text below, a number of new organisations will be compared to this new highly-routable

version.

The second group of rows in Table 4.1 considers increasing the number of outputs. As

a consequence, this increases the number of cluster inputs and size of the internal cluster

interconnect. The table shows the impact on switch and transistor counts within the cluster,

as well as the totals. For example, there is a 168� 29 sparse crossbar with 464 switches

that uses a total of 5022 transistors. This saves 10% in transistors compared to the highly

routable version with only 24 outputs.

Rather than add more cluster inputs, the additional outputs can be reduced to precisely

24 outputs with a slight change to the architecture. This is done by inserting an ‘L2’

minimal crossbar between the sparse crossbar and the cluster inputs. The third group of

rows in Table 4.1 give the switch and transistor counts when using an ‘L2’ crossbar.

Figure 4.21 illustrates the total number of switches and transistors used in these differ-

ent organisations. The total includes the ‘L1’, ‘In Cluster’ and, where appropriate, the ‘L2’

portions. In these graphs, the number of sparse crossbar outputs is varied along the x-axis.

This produces a savings of roughly 10% switches and transistors at 26 to 29 outputs.

The curves labelled ‘2 levels’ in Figure 4.21 include the ‘L2’ minimal crossbar. Com-

pared to the ‘1 level’ curves, there is seldom any switch count reduction and most organi-

sations require more transistors. There would also be an increase in delay compared with

the ‘1 level’ architecture. Hence, no advantage is obtained by using two levels here; it is

better to have a few more outputs in the sparse crossbar instead.

The curves labelled ‘min. cluster’ in Figure 4.21 show that some additional savings can

be obtained if the clusters internally use minimal crossbars instead of full crossbars. When

used in combination with the additional outputs, there is an overall reduction of 15% in

transistors and 20% in switch count. (These results are not shown in Table 4.1.) Hence,

minimal crossbars in clusters save a significant amount of area here.

Compared to the original baseline, the best highly-routable organisations (excluding

the ‘min. cluster’ results) use approximately 20% more switches and 23% more transistors.

Figure 4.20 shows how this additional area makes a significant improvement to routability.

There is no advantage to using an additional ‘L2’ minimal crossbar.

98 CHAPTER 4. SPARSE CROSSBARS

 26 outputs, 546 switches
 24 outputs, 336 switches

|
8

|
12

|
16

|
20

|
24

|0

|20

|40

|60

|80

|100

 Altera FLEX8000 Crossbar, 168 inputs

 # Signals

 R
ou

ta
bi

lit
y

(%
)

Figure 4.20: Routability improvements made to the FLEX8000 architecture.

1500

1600

1700

1800

1900

2000

24 25 26 27 28 29 30

S
w

itc
he

s

Outputs

total, 1 level
total, 2 levels

min. cluster, 1 level
min. cluster, 2 levels

4500

4750

5000

5250

5500

5750

6000

24 25 26 27 28 29 30

T
ra

ns
is

to
rs

Outputs

total, 1 level
total, 2 levels

min. cluster, 1 level
min. cluster, 2 levels

Figure 4.21: Sizes of highly routable Altera FLEX8000 organisations.

4.6. DESIGN EXAMPLES 99

Sparse Number of Switches Number of Transistors

Crossbar Size L1 L2 In Cluster Total L1 L2 In Cluster Total Routability

Provide exactly 24 outputs from the sparse crossbar.

168�24 336 – 1024 1360 1200 – 2944 4144 1.0%

168�24 888 – 1024 1912 2592 – 2944 5536 95.8%

Provide more than 24 outputs, increase cluster interconnect (1 level).

168�25 650 – 1056 1756 2000 – 3200 5200 96.9%

168�26 546 – 1088 1634 1820 – 3264 5084 96.1%

168�27 513 – 1120 1633 1782 – 3328 5110 96.9%

168�28 476 – 1152 1628 1736 – 3392 5128 96.2%

168�29 464 – 1184 1648 1566 – 3456 5022 98.6%

168�30 450 – 1216 1666 1560 – 3520 5080 98.2%

Reduce to exactly 24 outputs using an additional minimal crossbar (2 levels).

168�25�24 650 48 1024 1722 2000 192 2944 5136 96.9%

168�26�24 546 72 1024 1642 1820 384 2944 5148 96.1%

168�27�24 513 96 1024 1633 1782 432 2944 5158 96.9%

168�28�24 476 120 1024 1620 1736 624 2944 5304 96.2%

168�29�24 464 144 1024 1632 1566 672 2944 5182 98.6%

168�30�24 450 168 1024 1642 1560 720 2944 5224 98.2%

Table 4.1: Highly routable sparse crossbars designed for the Altera FLEX8000 PLD.

100 CHAPTER 4. SPARSE CROSSBARS

400
top-level
wires

sixteen 6-input LUTs

partial crossbar

100 cluster wires

Figure 4.22: Interconnect model of the HP Plasma architecture.

4.6.2 Design Example: HP Teramac Plasma PLD

Teramac [120], from HP Labs, is a large reconfigurable system made up of custom-

designed Plasma PLDs [121]. A full Teramac system is designed to have the capacity of

about one million gates distributed over 1728 PLD chips. An important goal in the Plasma

design was to design a highly routable PLD: to limit compile times to about an hour, plac-

ing and routing each PLD must be done quickly (within 3 seconds). This approach meant

each PLD should be nearly 100% routable so that almost no time would be spent in rip-up

or repartitioning the mapped circuit.

Plasma is unique among PLDs in that it uses 6-input, 2-output LUTs. The Plasma 2-

level hierarchy comprises sixteen clusters, called hextants, of sixteen LUTs each. Each

hextant, shown in Figure 4.22 has 100 inputs from the 400 top-level signals. These inputs

are chosen using a 400� 100 partial crossbar which is 1/4 populated with 10�000 cross-

points. This is equivalent to four diagonally-placed 100� 25 full crossbars. Within each

hextant, the 100 local cluster wires are fully connected to all of the LUT inputs. As well,

each of the LUT outputs connect to half of these wires.

The Plasma chip is easy to route because the partial crossbars make it predictable: as

long as fewer than 25 signals enter each full crossbar, it can be routed. The router only

needs to consider which crossbar it routes to, and not the precise detailed route. Despite

4.6. DESIGN EXAMPLES 101

this advantage, there are few routable signal assignments when the partial crossbar contains

more than 75 input signals. This is shown in the routability curve of Figure 4.23.

By replacing the partial crossbar with a sparse crossbar, a large number of switches can

be saved and routability can be improved. The sparse crossbar search found a 400� 104

sparse crossbar with 1�456 switching points, for a switch density of roughly 1/28. Even

though this sparse crossbar contains about 1/7 the number of switches in Plasma, it can

route over 95% of test vectors containing 100 input signals. In comparison, the partial

crossbar pattern used in Plasma can route less than 1% of the hardest vectors. Given this

new switch pattern, a router would have even higher assurances it can successfully route

each Plasma chip.

There are a number of other design solutions as well. A sparse crossbar of size 400�
105 with 1�680 switches routes over 99.9% of the largest test vectors. Alternatively, with

only 1�365 switches this same size crossbar routes over 95.1% of the test vectors.

Additional sparse crossbars solutions are listed in Table 4.2. The total number of

switches and transistors of these organisations, and a few others, are plotted in Figure 4.24.

The curves labelled as ‘2 levels’ in Figure 4.24 add an ‘L2’ crossbar in the same way

that 3-level organisations are considered in Section 4.6.1. These architectures use an ad-

ditional minimal crossbar to reduce the number of sparse crossbar outputs to exactly 100.

Like the FLEX8000 results, these results indicate that the ‘L2’ minimal crossbar increases

both switch and transistor counts. Rather than using an ‘L2’ crossbar, it is better to increase

the size of the cluster interconnect by a small amount.

From measurements taken of the Plasma die photograph in [121], the partial crossbar

appears to consume 32% of the core area (excluding the I/O padframe). The Plasma im-

plementation uses one pass transistor and one SRAM bit for every switch, so switch count

accurately reflects area. Since a 104-output sparse crossbar eliminates 85% of the switches,

total core area would be reduced by as much as 27%.

102 CHAPTER 4. SPARSE CROSSBARS

 105 outputs, 1680 switches
 104 outputs, 1456 switches
 100 outputs, 10000 switches

|
70

|
75

|
80

|
85

|
90

|
95

|
100

|0

|20

|40

|60

|80

|100

 HP Plasma Crossbar, 400 inputs

 # Signals

 R
ou

ta
bi

lit
y

(%
)

 (partial crossbar pattern)

Figure 4.23: Routability improvements made to the HP Plasma architecture.

11000

11500

12000

12500

13000

100 105 110 115 120 125
28000

29000

30000

31000

32000

33000

S
w

itc
he

s

T
ra

ns
is

to
rs

Outputs

switches
switches, 2 levels

transistors
transistors, 2 levels

Figure 4.24: Sizes of highly routable HP Plasma organisations.

4.6. DESIGN EXAMPLES 103

Number of Switches Number of Transistors

Crossbar Size L1 In Cluster Total L1 In Cluster Total Routability

Partial crossbar switch pattern used by HP.

400�100 10000 9600 19600 24000 23040 47040 0.4%

Sparse crossbar switch patterns.

400�100 2600 9600 12200 8000 23040 31040 96.3%

400�101 2020 9696 11716 6868 23232 30100 96.6%

400�102 1734 9792 11526 6324 23424 29748 96.6%

400�103 1648 9888 11536 5562 23616 29178 98.8%

400�104 1456 9984 11440 5200 23808 29008 95.9%

400�105 1365 10080 11445 5040 24000 29040 95.1%

400�106 1378 10272 11650 5088 24192 29280 98.6%

400�107 1284 10368 11652 4922 24394 29316 96.9%

400�108 1296 10464 11760 4968 24576 29544 99.3%

400�109 1199 10560 11759 4796 24768 29564 97.1%

400�110 1210 10656 11866 4840 24960 29800 98.8%

Table 4.2: Highly routable sparse crossbars designed for the HP Plasma PLD.

104 CHAPTER 4. SPARSE CROSSBARS

410
input
wires

sparse switch matrix

PLA
Cluster

16 outputs

36
 in

pu
ts

minimal
switch matrix

Figure 4.25: Interconnect model of the Altera MAX7256 architecture.

4.6.3 Design Example: Altera MAX7256 CPLD

The Altera MAX7256 CPLD family has two levels of hierarchy, where the top level con-

tains multiple sparse n�36 crossbars. The lower level consists of a 36-input product term

array. The number of top-level wires, n, is not known, but it is probably not more than

410 in the largest device, the MAX7256.5 Hence, n � 410 is assumed for this design.

A model for this architecture is shown in Figure 4.25. Since the number of inputs to the

product term array should not be increased, this architecture always uses an additional ‘L2’

minimal crossbar.

The same SRAM-based model used throughout this chapter is used to count transistors

here, except that the product term array is excluded. Since the MAX7256 implementa-

tions use one EEPROM cell and one gate per switch [30], the switch count metric is more

representative of area than transistor count.

The highly-routable designs found during the search are shown in Figure 4.26 and

Table 4.3. A sparse crossbar implementation with exactly 36 outputs needs 2412 switches

to reach 95% routability. Without compromising routability, a 40% savings in total switch

count can be obtained by widening the output stage to 40 or more and using the ‘L2’

crossbar. Clearly, under-utilising the outputs of the sparse crossbar is very important for

area economy.

5This assumes one wire for each macrocell output and each I/O pin. A macrocell is a logic cell containing

five product terms.

4.6. DESIGN EXAMPLES 105

1000

1500

2000

2500

36 37 38 39 40 41 42 43 44 45
4000

5000

6000

7000

S
w

itc
he

s

T
ra

ns
is

to
rs

Outputs

switches
transistors

Figure 4.26: Sizes of highly routable Altera MAX7256 organisations.

Number of Switches Number of Transistors

Crossbar Size L1 L2 Total L1 L2 Total Routability

Provide exactly 36 outputs from the sparse crossbar.

410�36 2412 – 2412 6264 – 6264 95.70%

Reduce to exactly 36 outputs using a minimal crossbar.

410�37�36 1887 72 1959 5032 288 5320 96.9%

410�38�36 1520 108 1628 4332 576 4908 95.1%

410�39�36 1365 144 1509 4056 648 4704 95.6%

410�40�36 1280 180 1460 3680 936 4616 95.3%

410�41�36 1230 216 1446 3608 1008 4616 96.5%

410�42�36 1176 252 1428 3528 1080 4608 95.2%

410�43�36 1161 288 1449 3526 1152 4678 97.2%

410�44�36 1144 324 1468 3520 1440 4960 97.5%

410�45�36 1080 360 1440 3420 1512 4932 96.2%

Table 4.3: Highly routable sparse crossbars designed for the Altera MAX7256 CPLD.

106 CHAPTER 4. SPARSE CROSSBARS

4.6.4 Design Example: Varying the Sparse Crossbar Aspect Ratio

The previous sections have found efficient sparse cluster designs by reducing the number

of switches and adding more outputs. However, basic size of the sparse crossbar was held

fixed: the number of inputs and the required number of outputs did not change. In this

section, the impact of varying these two parameters within the FLEX8000 architectural

model from Section 4.6.1 is investigated. This is done by increasing the number of row

wires (representing the crossbar inputs) and the cluster size (representing the number of

required outputs).

Details of the experiment are as follows. The number of inputs is varied from 168

to 995. The number of required outputs is varied by adjusting the number of LUTs in a

cluster, N, from 2 to 12. For each cluster size, two different methods are used to determine

the number of required output signals (i.e., cluster inputs): 3N and 2N�2. The former is an

assumption used to mimic FLEX8000 case of N � 8 which requires 24 outputs, while the

latter is based upon input-sharing results from Betz [19]. For each sparse crossbar size, the

search used in Section 4.6 is repeated here to find the lowest transistor-count configuration

which has over 95% routability. The transistor count presented is the total of the sparse

crossbar and local interconnect.6 To fairly compare the efficiency of different cluster sizes,

the transistor count is divided by the total number of LUT inputs in the cluster.

The results of this experiment are shown in Figures 4.27 and 4.28. The graphs on the

left require 3N outputs, while those on the right require 2N � 2 outputs. In some cases,

the search prunes away all designs that would meet the 95% routability target because they

contain more transistors than the baseline architecture + 40%. Rather than increase the

40% threshold, no datapoint is plotted at that particular input and cluster size.

The impact of cluster size on interconnect area can be seen in Figure 4.27. For a sparse

crossbar with only 168 inputs, interconnect area varies by roughly 25%. A cluster size

from 3 to 8 gives the best efficiency for 3N outputs, and from 4 to 9 for 2N � 2 outputs.

In both cases, a minimum is reached at N � 6. It is interesting to note that the FLEX8000

architecture, with N � 8, is among these efficient sparse crossbar sizes. As the number of

inputs is increased, the best cluster size also increases. However, for small cluster sizes

6Note that an ‘L2’ minimal crossbar is not being used here.

4.6. DESIGN EXAMPLES 107

 995 Crossbar Inputs
 637 Crossbar Inputs
 408 Crossbar Inputs
 262 Crossbar Inputs
 168 Crossbar Inputs

|
2

|
4

|
6

|
8

|
10

|
12

|100

|200

|300

|400

|500

3N Inputs per Cluster

 Cluster Size N

 T
ra

ns
is

to
rs

 p
er

 L
U

T
 In

pu
t

�

�

�

�

�

�

� � � �

�

�

� � � �
��

�

� � � �
� �

� �

�

�
� � � �

� �
�

�

 995 Crossbar Inputs
 637 Crossbar Inputs
 408 Crossbar Inputs
 262 Crossbar Inputs
 168 Crossbar Inputs

|
2

|
4

|
6

|
8

|
10

|
12

|100

|200

|300

|400

|500

2N+2 Inputs per Cluster

 Cluster Size N

 T
ra

ns
is

to
rs

 p
er

 L
U

T
 In

pu
t

�

�

�

�
�

�

�

�

�

�
�

� � � �

�

�

�
�

� � � � �
� �

�

�

� �
� � � � �

� ��

�
� � � � � � �

� �

Figure 4.27: Effect of varying the cluster size N on interconnect size.

 N = 2
 N = 3
 N = 5
 N = 12

|
150

|
300

|
450

|
600

|
750

|
900

|100

|150

|200

|250

|300

 3N Inputs per Cluster

 Crossbar Inputs

 T
ra

ns
is

to
rs

 p
er

 L
U

T
 In

pu
t

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

 N = 2
 N = 3
 N = 5
 N = 7
 N = 12

|
150

|
300

|
450

|
600

|
750

|
900

|100

|150

|200

|250

|300

 2N+2 Inputs per Cluster

 Crossbar Inputs

 T
ra

ns
is

to
rs

 p
er

 L
U

T
 In

pu
t

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

Figure 4.28: Effect of varying the number of top-level inputs on interconnect size.

N � 6, the area required to support a large number of inputs is much larger than for large

cluster sizes. Letting the input:output aspect ratio of the sparse crossbar get too large

hinders the efficiency.

To better illustrate the effect of the number of sparse crossbar inputs, Figure 4.28 plots

the same data for a few select cluster sizes. This figure shows a roughly linear relationship

between transistor count and input count, suggesting that the best switch density is constant

for a given cluster size. The curves for large cluster sizes have a lower slope, an indication

that they have a lower switch density. This explains why the most efficient cluster size

increases as the number of inputs is increased.

108 CHAPTER 4. SPARSE CROSSBARS

4.7 Conclusions

This chapter has developed a method for evaluating and constructing sparse crossbars.

The evaluation method consists of a Monte Carlo test of routing numerous random test

vectors using a network flow algorithm. The construction technique, which is based upon

observations from Hall’s Theorem, uses a greedy iterative algorithm to spread apart the

switch locations.

The routability of sparse crossbars can be improved by adding more switches and by

widening the output stage of the crossbar. The latter method is the most effective once there

are enough switches to be used. In the case of a 168�24 crossbar, two switches per input

are required so that widening the output stage can reach a highly routable state. Careful

evaluation using both methods is necessary to obtain optimum routability at minimum area.

A number of design examples further demonstrate that it is beneficial to underutilise

the output stage of a sparse crossbar and use the correct number of switches. In the HP

Plasma example, the use of 4 additional output wires and a switch density of 1/28 reaches

a highly routable state. This organisation uses 85% fewer switches than the HP Plasma,

and obtains superior results. In the Altera FLEX8000 example, 5 additional output wires

and a slight increase in switch density (from 1/12 to about 1/10) improves routability from

1% to over 95%. In the Altera MAX7256 example, widening the output stage and using a

second level minimal crossbar reduces switch count by 40%. These specific examples all

demonstrate that high routability can be obtained with a reasonable amount of resources.

Exploration of different sparse crossbar sizes with the FLEX8000 model provides in-

teresting results. First, clusters roughly 4 to 8 LUTs requires the fewest interconnect tran-

sistors per LUT. Second, a larger number of crossbar inputs becomes more efficient with

more outputs, i.e., larger cluster sizes. Third, the best switch density depends on the num-

ber of outputs but not the number of inputs. Fourth, the best switch density decreases as

more outputs are needed.

4.8. FUTURE WORK 109

4.8 Future Work

A number of aspects of this work deserve further attention. The switch placement algo-

rithm has been developed to work on a single switching stage. The design of a two-stage

network is a difficult but important problem that needs to be addressed. This becomes

an even more difficult problem if a single stage is used to deliver signals to a number of

parallel-connected stages. Such a configuration would be found in PLD that is designed

using a hierarchy of clusters, i.e., clusters of clusters.

Additional work should be done to examine the impact of inputs and outputs on switch

density. For example, can a general equation be found to relate the number of inputs,

outputs and switch density to a desired level of routability?

Additional work should make a more through comparison of different switch placement

algorithms. Also, a more direct way of placing switches is desirable.

110 CHAPTER 4. SPARSE CROSSBARS

Chapter 5

Sparse Clusters

In PLDs, the connections from the CLB inputs and LUT outputs to the LUT inputs are

often formed with a full crossbar. Such a high degree of connectivity makes routing easier,

but it has significant area overhead. This chapter explores the use of sparse crossbars

as an alternative switch matrix inside the clusters. This organisation is called a sparse

cluster architecture. The experimental results show that switch densities can be reduced

by 50% or more to save 10–18% in area. This switch reduction does not degrade critical-

path delay, but some spare cluster inputs are required to compensate for the decrease in

routability. Although not explored in this dissertation, it may be possible to achieve further

improvements to area and delay by using CLBs with more LUTs and by calculating delay

more accurately.

5.1 Introduction

Modern PLD architectures are based on a clustered architecture, where a number of lookup

tables (LUTs) are grouped together to act as the configurable logic block. The motivation

for using clusters is manifold: to reduce area, to reduce critical-path delay, and to reduce

CAD tool runtime [41, 40, 115, 117]. This trend is followed by the most recent PLDs from

Xilinx (the Virtex-II and Spartan-II families) and Altera (the Stratix and Cyclone families).

All of these PLDs are based on clusters of 4-input lookup tables.

In a clustered architecture, the LUT inputs are chosen from two sources: either cluster

111

112 CHAPTER 5. SPARSE CLUSTERS

Architecture Fully Populated Cluster Tile Area

LUT Cluster (Number of Minimum-Width Transistor Areas)

size, k size, N LUT+FF Routing LUT Input Mux Total

4 6 990 (10.6%) 6050 (65.0%) 2267 (24.4%) 9307

5 6 1840 (16.4%) 6321 (56.2%) 3080 (27.4%) 11241

6 6 3496 (24.4%) 6713 (46.9%) 4109 (28.7%) 14318

7 6 6831 (34.8%) 7645 (39.0%) 5146 (26.2%) 19622

7 10 11358 (32.3%) 12022 (34.2%) 11765 (33.5%) 35145

Table 5.1: Breakdown of cluster tile area. Routing and total area are arithmetic averages.

inputs or feedback connections. The cluster inputs are connections from the external rout-

ing, carrying signals from other clusters into this one. The feedback connections are from

the outputs of LUTs in the local cluster. In some PLDs, such as Altera’s APEX family,

these internal cluster connections are fully populated or fully connected. This is equivalent

to employing a full crossbar: a crosspoint switch exists at the intersection point of every

LUT input and every cluster input or feedback connection.

The area required to implement this full crossbar is significant. A typical implemen-

tation uses a multiplexer to select each output. Each of these multiplexers, which form

the LUT inputs, select one of the crossbar inputs according to the state of a few SRAM

bits. As a result, each of the multiplexers typically contains a few tens of inputs. Since

there are a number of these multiplexers which must be driven, the crossbar inputs must

be buffered. These buffers, multiplexers, and SRAM bits contribute 24 to 33% of the total

area in a CLB. A breakdown of transistor area estimates for various LUT sizes and CLB

sizes is provided in Table 5.1.

The significant amount of area required by the LUT input multiplexers motivates the

idea of removing switching points from the full crossbar, or depopulating it, to result in a

sparse crossbar. Naturally, depopulating raises the following questions:

1. What amount of depopulation is reasonable?

2. Will depopulation create unroutable architectures?

3. Does depopulation save total area, or does an increase in routing area overwhelm it?

5.2. METHODOLOGY 113

4. Will depopulation reduce or increase routing delays?

5. How much area or delay reduction can be attained?

6. What is the impact on routing run-time?

This chapter addresses these questions using an experimental process of mapping bench-

mark circuits to clustered PLD architectures and measuring the resulting area and delay

characteristics.

5.2 Methodology

To answer the questions raised in the preceding section, the twenty largest MCNC bench-

mark circuits are mapped into a variety of clustered PLD architectures following the same

procedure described in Chapter 3. The effect of sparsely populating the internal logic clus-

ters is examined using the area and delay estimates computed by an extended version of

the VPR routing tool, called VPRx.

5.2.1 Routing Experiments

Routing experiments are used to determine the minimum channel width required to route a

benchmark circuit, Wmin. Afterward, a final low-stress routing is done with W � 1�3 �Wmin

tracks to compute area and delay information. Using more than the minimum number of

tracks mimics the way PLDs are actually used; designers are seldom comfortable working

on the edge of capacity or routability.

In some rare situations, the final low-stress routing fails even though the binary search

finds a solution with a smaller channel width. This occurs in less than 1% of the cir-

cuit/architecture combinations explored in this chapter. All of these failures appear in

routing architectures with very low routing flexibility.1 The routing failures might be

caused by slow convergence in a difficult-to-route architecture, or by an unroutable cir-

cuit/architecture combination. In the latter case, the automatically generated routing archi-

1Of the failed combinations, roughly half of them had I spare � 0 and the remainder had Fcint � 0�25.

114 CHAPTER 5. SPARSE CLUSTERS

tecture might contain flaws that would normally be avoided by a PLD architect through

extensive verification and hand-crafting of the routing network.

An ad hoc approach is taken to resolve these routing failures and mimic architecture

corrections made by an PLD architect. One, two, then three additional tracks are added to

the channel and routing is attempted again. This strategy is sufficient to route all but four

of the troublesome cases — the three underlying architectures for these cases are deemed

unroutable and abandoned.

Also, the architecture is deemed unroutable and abandoned if the binary search is un-

able to find a reasonable minimum channel width (Wmin � 240) for any of the circuits.

5.2.2 Conservative Delay Results

Delay results in this chapter ignore two possible sources of delay improvement. First, the

interconnect RC values are overestimated because they ignore the cluster tile size shrink as

clusters are made more sparse. Second, delay reduction inside the cluster is overlooked be-

cause the impact of smaller multiplexers, reduced loading and smaller cluster input buffers

is not considered. Consequently, the delay model produces pessimistic results for both in-

side the cluster and outside the cluster.2 According to Sheng [108], these represent roughly

1/3 and 2/3 of the average critical-path delay, respectively. More accurate modelling may

produce a savings in either component and lead to a noticeable delay reduction (perhaps as

large as 10%).

5.3 Architecture Parameters

The general PLD architecture considered is the mesh-based network model described in

Chapter 3. Each clustered logic block (CLB) and the surrounding interconnect forms a

layout tile similar to that shown in Figure 5.1. This tile includes the switch block, connec-

tion block, and local cluster routing. Further details are described below.

2These two conservative delay assumptions are imposed due to limitations of an early version of the

VPRx code. All subsequent chapters use the mature version of VPRx which removes this restriction.

5.3. ARCHITECTURE PARAMETERS 115

Fcint

Fcfb

partitioned

single

BLE

BLE

BLE

BLE

Disjoint
S Block

Figure 5.1: Details of the cluster tile architecture.

5.3.1 Routing Architecture

The switch block uses the disjoint switch pattern with length four wires. Half of the routing

tracks use buffered routing switches, and the remaining half use pass transistors.

Routing Switch Sizes

This section describes how the sizes of the routing switches used in this chapter have been

determined from the results of previous work. Betz et al [19] has shown that the best

area�delay product results are obtained with buffers and pass transistors sized at 5 and 10

times the minimum-width, respectively. This was computed for a cluster based on k � 4

and N � 4.

Previous work by Betz et al [19, 111] suggests that these switch sizes should be in-

creased linearly as the cluster tile length, hence the wiring load, increases. This linear fit

is forced through the origin so that switch sizes are doubled if the tile length doubles. For

cluster organisations with larger k and N, the tile size increase was calculated by Ahmed

in [40] to produce the switch sizes given in Table 5.2. These same switch sizes are used in

this chapter.

116 CHAPTER 5. SPARSE CLUSTERS

k N Buffer Size Pass Transistor Size

4 4 5.0 10.0

4 6 6.1 12.2

5 6 6.6 13.2

6 6 7.1 14.2

7 6 8.9 17.8

7 10 11.8 23.6

Table 5.2: Routing switch sizes (� minimum size) used for different cluster organisations.

5.3.2 Cluster Architecture

The cluster inputs, LUT inputs, and cluster outputs have a number of design parameters

and equivalence relationships that are important during routing. These are described below.

Spare Cluster Inputs

The clustered logic block has I primary inputs which are considered during packing. As

well, an additional Ispare spare cluster inputs are used during routing only. Hence, each

cluster has a total of I� Ispare inputs from the routing architecture.

Reserving these spare inputs for routing is useful in two ways. First, some sparse switch

patterns are unable to directly connect all possible local feedback netlists. This problem

can be solved by allowing these local feedback connections to leave the cluster and then re-

enter from the general routing. Since the primary inputs may already be 100% utilised by

the packing algorithm, this requires spare cluster inputs. Second, spare inputs can improve

routability by providing more alternatives. Routes blocked by sparse switch patterns or

a congested routing channel may be able to use a spare input instead. As observed in

Chapter 4, planning to under-utilise the cluster inputs also improves the routability of the C

block. Other publications [132, 133] have also indicated that a surplus of wiring resources

is useful to improve routability.

The number of spare inputs, Ispare, is varied as an architectural parameter and specified

prior to routing. For convenience in implementation, the packing tool adds these as part of

the netlist and the router automatically uses them. This arrangement allows the packer to

use the spare inputs in the future (but then they wouldn’t be spare!).

5.3. ARCHITECTURE PARAMETERS 117

Parameter Description

Fcint cluster input to LUT input density

Fcf b LUT feedback to LUT input density

Fc routing channel to cluster input density

Fcout cluster output to routing channel density

Table 5.3: Switch density parameters.

LUT Inputs, Cluster Inputs and Outputs

The LUT inputs can select signals from two independent sources: either cluster inputs or

feedback connections. The density of switches for these two regions are independently

controlled by the parameters Fcint and Fc f b , respectively. These parameters determine the

sparseness of switches inside the cluster.

The cluster inputs and outputs use sparse switch matrices to connect to the general

routing (in the C block). These matrices use switch densities of Fc and Fcout for the cluster

inputs and outputs, respectively.

The parameters controlling switch densities inside and outside of the cluster are sum-

marized in Table 5.3. As described later in Section 5.4.3, the cluster input region is parti-

tioned into four groups based on which side the input is placed. This also influences the

design of the switch pattern used within the cluster.

Pin Equivalences

Within a BLE, the LUT inputs are assumed to be logically equivalent and hence freely per-

mutable. Additionally, BLE outputs within a cluster are assumed to be logically equivalent.

This allows any function to be placed in any of the BLEs of the cluster.

Each BLE output directly drives a cluster output and a local feedback connection.

Hence, to achieve the output equivalence, every BLE is given the exact same input switch

pattern. While there may be a small routability disadvantage to having the same switch

pattern on every BLE, an advantage is gained by making every BLE output equivalent. It

would be interesting to make a more thorough evaluation of this tradeoff.

Architectures with different input switch patterns for each LUT can also be built. This

118 CHAPTER 5. SPARSE CLUSTERS

would require a full permutation stage to reorder the BLE outputs as they connect to the

cluster outputs and feedback connections. This can be done by fixing Fc f b � Fcout � 1�0,

for example, or by using N additional N-input multiplexers. Due to the additional area

involved, these alternatives are not considered here.

The cluster inputs are also treated as logically equivalent, but due to reduced connec-

tivity they may connect to only some of the LUT inputs. This may cause difficulty during

routing, but it is relieved somewhat by having spare cluster inputs to choose from.

To improve routability, the routing tool takes advantage of the input and output equiv-

alences just described. It may also replicate logic onto multiple BLEs within the same

cluster, provided there are empty BLEs available.

5.3.3 Sparse Cluster Switch Patterns

The switch pattern generator from Chapter 4 has been integrated into VPRx to create the

switch patterns for the LUT input multiplexers. This generator first distributes switches

to balance the fan-in and fan-out of each wire, usually in a random pattern. A greedy

improvement strategy is then followed which tries to maximise the number of distinct

output wires (LUT inputs) reached by every pair of input wires (cluster inputs). Using this

technique, the switch patterns within a cluster are individually well-designed.

Other switch patterns in the routing fabric, namely the cluster C block patterns, use

the original VPR switch placement generators. Additionally, no attempt has been made to

optimise the cascading of the the cluster input multiplexers and LUT input multiplexers,

except as noted below in Section 5.4.3.

5.4 Results

This section presents the area and delay results of routing the benchmark circuits. In all

cases, the results are presented as the geometric average of the benchmark set. Initial exper-

iments determine good values for the routing architecture parameters, then the performance

of sparse cluster architectures is investigated.

5.4. RESULTS 119

5.4.1 Key to Curve Labels

In the following graphs, each curve represents a family of architectures parameterised along

the x-axis. Each curve label describes the specific architecture parameters in the following

order:

k N Ispare Fcint Fc f b

Where the value of a parameter is given as ‘X’, that simply means the parameter is being

varied along the x-axis. For convenience, this key is repeated in the top-right corner of each

set of graphs.

5.4.2 Routing Architecture Selection

To explore the sparse population of switches inside the cluster, it is first necessary to es-

tablish a good routing architecture outside of the cluster. Hence, the best values for Fc and

Fcout are selected below to find switch density values that will result in using near-minimum

area. To expediently generate the following results, the number of router iterations is lim-

ited to 75. All other parameters remain at their default values.

Selecting Fc for Minimum Area

The density of switches connecting channel wires to cluster inputs in the C blocks is rep-

resented by Fc. The choice of Fc depends on the effectiveness of the CAD tools as well as

the size of the C block. The C block inputs are formed by the channel wires (W inputs),

and outputs are the cluster inputs (I� Ispare outputs). Results in Section 4.6.4 indicate that

the number of outputs (I� Ispare) is the most important factor influencing the choice of Fc.

Routing experiments are done with a k � 7 LUT size, varying N from 2 to 9. This large

LUT size is unlikely to be chosen for a commercial PLD, but using it makes it easier to

explore a wide range in I without changing LUT sizes in the middle. Both full (100%)

and sparse (50%) population levels inside the cluster are tested. The 50% density is used

because this is almost always routable without adding spare inputs, hence Ispare � 0 here.

The average low-stress channel width required to route the benchmark circuits, W �

1�3 �Wmin, is presented in Figure 5.2 for a variety of Fc values. Only three cluster sizes are

120 CHAPTER 5. SPARSE CLUSTERS

illustrated, but the other results are similar. From these results, it can be seen that choosing

Fc � 0�4 has little impact on channel width. This is particularly true for larger values of N.

Comparing the sparse and fully-populated cluster results, it is interesting note the chan-

nel width requirements are very similar. Sparse clusters typically require only 2 to 4 more

tracks than the corresponding fully populated ones. Hence, the sparse architecture is still

quite routable at the 50% population level.

Although channel width is not hindered by a large value of Fc, having more switches

than necessary contributes to an area increase. To show this, Figure 5.3 plots PLD area

versus Fc for cluster sizes 2 and 9.3 Similar results are obtained using cluster sizes 3

through 8.

One unexpected result shown in this data is that it is better to sparsely populate the

inside cluster than outside in the routing channel. This can be seen in Figure 5.3 where

point B is lower than A, and D is lower than C. This trend holds for the other cluster sizes

as well. Hence, for these benchmarks, it is better to use a 50% switch density inside cluster

than any switch density in general routing. It is not clear if this observation will continue

to hold with larger benchmark circuits that require wider routing channels.

One explanation of why sparse clusters are better is that the LUT input multiplexers

outnumber the cluster input multiplexers. Using the equation I � �k�N � 1��2� to deter-

mine the number of cluster inputs results in twice as many LUT input multiplexers. Even

though the cluster input multiplexers may have twice as many inputs (or more, depending

on the channel width), the number of multiplexers is more significant. Reducing the width

of the LUT input multiplexers saves more area due to the number of SRAM bits saved than

reducing the width of the cluster input multiplexers.

Figure 5.3 also suggests that sparse clusters can shift the optimum design point toward

larger clusters containing more LUTs. This is shown by a significantly larger area reduction

for N � 9 than N � 2. The reduction is large enough that the N � 9 architecture goes from

using more area (curve C) than the corresponding N � 2 architecture (curve A) to using less

area (curves D and B). Although the results are not shown here, this k � 7 architecture is

3Notice that the sparse Fc � 1�0 result is missing for N � 9 in Figures 5.2 and 5.3. This is because slow

convergence did not allow VPRx to route the clma circuit under low-stress conditions.

5.4. RESULTS 121

30

35

40

45

50

55

60

65

70

75

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
w

-s
tr

es
s

ch
an

ne
l w

id
th

Fc

key: k N I F F spare c cint fb

7 2 0 0.5 0.5
7 2 0 1.0 1.0
7 5 0 0.5 0.5
7 5 0 1.0 1.0
7 9 0 0.5 0.5
7 9 0 1.0 1.0

Figure 5.2: Fc impact on channel width.

4.4e+06

4.6e+06

4.8e+06

5e+06

5.2e+06

5.4e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ac
tiv

e
ar

ea
 (

T
)

Fc , N=2 Cluster Size

A
B

sparse 7 2 0 0.5 0.5
full 7 2 0 1.0 1.0

4.4e+06

4.6e+06

4.8e+06

5e+06

5.2e+06

5.4e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ac
tiv

e
ar

ea
 (

T
)

Fc , N=9 Cluster Size

C

D

key: k N I F F spare c cint fb

sparse 7 9 0 0.5 0.5
full 7 9 0 1.0 1.0

Figure 5.3: Fc impact on area for cluster sizes of N � 2 and 9.

most efficient with clusters containing N � 4 to 6 LUTs if the cluster interconnect is fully-

populated, or 4 to 9 LUTs if only 50% populated. Most of the work in this dissertation

assumes N � 6. This particular size is good across a wide range of LUT sizes and cluster

interconnect population levels.

There is significant motivation for using larger clusters because it helps reduce place-

ment runtime [19]. Since previous work has always assumed a fully-populated cluster in-

terconnect, further investigation of the optimum number of LUTs per cluster is warranted.

The value of Fc that produces the lowest area for each value of N is shown in Figure 5.4.

The x-axis in this graph is labelled with the number of cluster inputs, I, that corresponds to

122 CHAPTER 5. SPARSE CLUSTERS

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 15 20 25 30 35

m
in

im
um

 a
re

a
F

c

I cluster inputs

key: k N I F F spare c cint fb

sparse 7 X 0 0.5 0.5
full 7 X 0 1.0 1.0

Figure 5.4: Best Fc for minimum area with I � �7�N�1��2� cluster inputs.

each cluster size. It is worth noting that the best Fc results with sparse and fully populated

clusters are very similar. This can be partly attributed to the relative flatness near the

minimum area. For N � 2, both area curves are nearly flat for Fc � 0.4 to 0.8. For N � 9,

varying Fc from 0.1 to 0.5 causes less than 5% change in area.

The flatness just described implies that precise Fc selection is not critical. This is true

as long as Fc is large enough to be routable, yet not wastefully large. It also suggests that

a fixed value of Fc will not hinder area results, and that choosing a slightly larger Fc than

suggested by Figure 5.4 will not cause a significant area penalty. Instead, a larger Fc may

help routability as clusters are made sparse. This assistance is important to mitigate effects

such as interference patterns which may arise from cascading the C block and internal

switch patterns.

The selection of Fc for all experiments in this dissertation is based on the information

just presented and historical values used in previous literature. The value of Fc � 0�5 is used

for all of the N � 6 architectures, and Fc � 0�366 is used for the k � 7�N � 10 architecture.

By selecting these values to be the same as those used in previous work [40], direct area

comparisons can be made.

5.4. RESULTS 123

Selecting Fcout

Previous work has shown that Fcout � 1�N is adequate for routing in fully populated archi-

tectures [19]. This gives a clustered logic block access to every wire in the routing chan-

nel. Considering the similarity of the Fc area results between sparse and fully populated

architectures, it is unlikely that modifying this relationship for Fcout would have significant

impact in a sparsely connected architecture. Hence, Fcout � 1�N is used for all experiments.

5.4.3 Partitioning of Cluster Inputs

Additional net delay may occur in sparsely populated clusters because some LUT inputs

are not reachable from some sides of the cluster. For example, consider the case where

some LUT input connections have already been formed and the last remaining input signal

is being made. A lack of switches inside the cluster may cause that net to enter the cluster

from a more distant side, resulting in greater delay.

To investigate this problem, two different switch matrix designs were evaluated within

the cluster: one is a single switch matrix for all cluster inputs, while another is partitioned

into four smaller switch matrices (one for the inputs from each side). Both of these matrices

are illustrated in Figure 5.1. The partitioned matrix addresses the above problem by ensur-

ing that all of the cluster inputs from any particular side can reach all of the LUT inputs. It

also has a weakness though: these smaller switch matrices are not carefully co-designed to

couple together.

The procedure for producing the partitioned switch matrix is as follows. Each individ-

ual submatrix uses the same base switch pattern, but each has its own permutation of the

rows (or outputs) to balance the fan-in of the LUT inputs. The base switch pattern is gen-

erated in the same way that a single switch matrix would be generated using the techniques

from Chapter 4.

To compare the two switch designs, the benchmark circuits are routed in the k � 7,

N � 10, Fcint � Fc f b � 0�43 � 3�7 architecture. Both designs require identical transistor

area (channel width), but the partitioned matrix is about 1% faster on average. Although

this is not significantly faster, the partitioned matrix is used for all subsequent experiments

124 CHAPTER 5. SPARSE CLUSTERS

because it may help with some pathological cases.

5.4.4 Sparse Cluster Area Results

The primary motivation for depopulating clusters is to reduce the area of a PLD. Sec-

tion 5.4.2 has shown that simply depopulating the cluster to 50% is more effective at re-

ducing area than choosing the best value of Fc. In this section, depopulation of the cluster

below the 50% level is explored.

To reduce the number of routing experiments, the cluster size is fixed at N � 6 and

the LUT size is varied from 4 through 7. The larger LUT sizes are especially interesting

because their switch matrices have more outputs, hence they offer more potential for de-

population. One additional architecture with k � 7�N � 10 is used to study a situation with

an even larger number of cluster inputs.

To evaluate sparse clusters, a number of preliminary routing experiments were run with

a wide range of values for Fcint and Fc f b . From these results, which are not shown here, it

was confirmed that Fc f b has less influence on area. However, as Fc f b was reduced below

50%, it was observed that a number of circuits could no longer be routed. It was determined

that Fc f b � 50% (or� 43% for k� 7) is as low a value that can be tolerated. Similarly, these

preliminary sweeps indicated that Fcint � 0�5 is nearly always routable, so experiments did

not need to consider higher switch densities.

The area results from routing the four LUT sizes are shown in Figure 5.6. In these

graphs, each curve represents the geometric average of PLD area for a fixed value of Fcint .

The number of spare inputs is varied along the x-axis. The sparse cluster results should be

compared against the bold curve representing the fully-populated cluster area.

The most apparent trend in these curves is a gentle dip, then a general upward climb in

area as Ispare is increased. The upward trend is an expected result, since each spare input

requires an additional cluster input multiplexer. The dip is caused by a rapid initial decline

in average channel width. The channel width then gradually reaches a 5% to 20% reduction

(10% is typical). To illustrate this, the average low-stress channel width for all 20 circuits

is shown as a function of Ispare in Figure 5.5. These results are given for a fully-populated

cluster, but sparse cluster results are similar. Spare inputs are an effective way to reduce

5.4. RESULTS 125

40

42

44

46

48

50

0 2 4 6 8 10 12 14

av
er

ag
e

lo
w

-s
tr

es
s

ch
an

ne
l w

id
th

Ispare

k=4, N=6
k=5, N=6
k=6, N=6
k=7, N=6

Figure 5.5: Spare inputs reduce channel width in fully populated clusters.

channel width demands.

A number of data points are missing in Figure 5.6, specifically for small Ispare values.

This is because one or more benchmark circuits could not be routed on the architecture.

Hence, although they contribute to area reduction in a few cases, it is more important

to have these spare inputs to make sparse clusters routable. Typically between two and

five spare inputs are required to make the architecture routable and attain the lowest area.

Hence, providing one spare input per side is a reasonable guideline for PLD architects.

The lowest-area architectures from Figure 5.6 are summarized in Table 5.4. As well,

the large N � 10 cluster architecture is included. This table compares the baseline case, a

fully-populated architecture (with no spare inputs), to the lowest-area sparsely populated

architecture (with spare inputs). The table also illustrates the channel width savings that

can be achieved if the Ispare spare inputs from the sparse architecture are given to the fully

populated architecture (note, however, that this is not the lowest channel width that can

be achieved). With these architectures, a 10 to 18% area savings is achieved using sparse

clusters and spare inputs.

When moving from a fully populated cluster to a sparsely populated one, the best-area

architecture shifts from a k � 4 input LUT to a k � 6 one. This produces a 13% area

savings. As will be shown below, a k � 6 architecture also results in faster circuits —

this win-win combination gives compelling evidence to reconsider k � 6 input LUTs in

126 CHAPTER 5. SPARSE CLUSTERS

3.2e+06

3.4e+06

3.6e+06

3.8e+06

4e+06

4.2e+06

4.4e+06

4.6e+06

4.8e+06

0 2 4 6 8 10 12 14

ac
tiv

e
ar

ea
 (

T
)

Ispare

4 6 X 0.25 0.5
4 6 X 0.33 0.5
4 6 X 0.4 0.5
4 6 X 0.5 0.5
4 6 X 1.0 1.0

3.2e+06

3.4e+06

3.6e+06

3.8e+06

4e+06

4.2e+06

4.4e+06

4.6e+06

4.8e+06

0 2 4 6 8 10 12 14

ac
tiv

e
ar

ea
 (

T
)

Ispare

key: k N I F F spare c cint fb

5 6 X 0.2 0.5
5 6 X 0.3 0.5
5 6 X 0.4 0.5
5 6 X 0.5 0.5
5 6 X 1.0 1.0

3.2e+06

3.4e+06

3.6e+06

3.8e+06

4e+06

4.2e+06

4.4e+06

4.6e+06

4.8e+06

0 2 4 6 8 10 12 14

ac
tiv

e
ar

ea
 (

T
)

Ispare

6 6 X 0.17 0.5
6 6 X 0.25 0.5
6 6 X 0.33 0.5
6 6 X 0.41 0.5
6 6 X 0.5 0.5
6 6 X 1.0 1.0

3.2e+06

3.4e+06

3.6e+06

3.8e+06

4e+06

4.2e+06

4.4e+06

4.6e+06

4.8e+06

0 2 4 6 8 10 12 14

ac
tiv

e
ar

ea
 (

T
)

Ispare

7 6 X 0.14 1.0
7 6 X 0.22 0.43
7 6 X 0.29 0.43
7 6 X 0.43 0.43
7 6 X 1.0 1.0

Figure 5.6: PLD area of fully and sparsely populated clusters.

Architecture Best Sparse Parameters Channel Width (arith. avg.) PLD Area (�106 T)

k N I Fc Ispare Fcint Fc f b Fully Populated Best Sparse Fully Populated Best Sparse Savings

no spares spares spares no spares spares

4 6 14 0.5 2 0.5 0.5 47.9 45.2 45.9 3.71 3.33 10.1%

5 6 17 0.5 2 0.4 0.5 46.4 44.4 45.6 3.79 3.35 11.5%

6 6 21 0.5 2 0.33 0.5 44.3 42.7 43.5 3.76 3.23 14.0%

7 6 24 0.5 5 0.143 0.43 43.8 42.3 44.6 4.62 3.95 14.3%

7 10 38 0.366 10 0.143 0.43 53.7 n/a 55.1 4.96 4.03 18.8%

Table 5.4: PLD area savings obtained by depopulating switches inside the cluster.

commercial PLDs.

A breakdown of the cluster tile area is given in Table 5.5. These results show that

fully populated LUT input multiplexers consume 24–33% of the total tile area. After the

cluster interconnect is made sparse, these consume only 12–18% of the tile area. For 4-

5.4. RESULTS 127

Tile Area (Number of Minimum-Width Transistor Areas)

Architecture Fully Populated Cluster Best-Area Sparse Cluster

k N Total LUT+FF Routing LUT Input Mux Total LUT+FF Routing LUT Input Mux

4 6 9307 990 6050 2267 (24.4%) 8380 990 5960 1430 (17.1%)

5 6 11241 1840 6321 3080 (27.4%) 9964 1840 6371 1753 (17.6%)

6 6 14318 3496 6713 4109 (28.7%) 12343 3496 6732 2115 (17.1%)

7 6 19622 6831 7645 5146 (26.2%) 16879 6831 8120 1928 (11.4%)

7 10 35145 11358 12022 11765 (33.5%) 28646 11358 12990 4298 (15.0%)

Table 5.5: Breakdown of cluster tile area. The routing area is an arithmetic average.

input LUTs, there is also a slight decrease in routing area because the spare inputs helped

reduce average channel width. The 5- and 6-input LUTs cases do not reduce routing area

because the spare inputs contribute more to area than the amount saved from channel width

reduction. The two 7-LUT architectures also have an increase in routing area, but this is

due to having both spare inputs and a channel width increase. The net effect, however, is

that the sparse clusters produce a net area savings of 14% and 18%, with the larger LUT

and cluster sizes benefitting more.

One very interesting result with sparse clusters is that the 6-input LUT architecture

is 3% more area-efficient than the 4-input LUT architecture. This is a departure from

previous work which has consistently shown that 4-LUTs achieve lower area with fully

populated clusters. The reason for this difference is simple: larger LUTs provide more

opportunity for depopulation. Despite the small area advantage shown here, 6-input LUTs

are not used in any current commercial PLD.4 This is possibly because PLD vendors have

a larger benchmark set containing larger circuits, and because they have additional features

such as carry chains which can be exploited. However, these results motivate more effort

to be placed in researching architectures and CAD tools for 6-input LUTs.

5.4.5 Sparse Cluster Delay Results

As mentioned earlier, reduced switch densities may cause an increase in delay due to an

increase in bends or wire use to achieve routability. Although delay may decrease for other

reasons such as reduced loading, the experimental conditions here are conservative and

4A 6-input, 2-output LUT is used in HP Teramac [120], but it is not commercially available.

128 CHAPTER 5. SPARSE CLUSTERS

1.2e-08

1.25e-08

1.3e-08

1.35e-08

1.4e-08

1.45e-08

4 5 6 7

de
la

y
(s

)

k

1.2e-08

1.25e-08

1.3e-08

1.35e-08

1.4e-08

1.45e-08

0.1 0.2 0.3 0.4 0.5 0.6

de
la

y
(s

)

Fcint

k=4

k=5

k=6
k=7

Figure 5.7: Delay depends on LUT size (left), but not on switch density (right).

ignore these possible benefits.

The curves in Figure 5.7a) show the impact that varying the LUT size has on delay for

a variety of the N � 6 architectures with different switch densities and spare inputs. The

curve labels identifying the architectures have been omitted for clarity, since only trends

need to be observed. The important thing to notice is that, for all architectures, delay goes

down as k increases.

Similarly, Figure 5.7b) shows the change in delay as the switch density Fcint is varied.

It is apparent in the graph that curves for the same LUT size are all grouped together. In

particular, the 4- and 5-LUT data is easily distinguished from the 6- and 7-LUT data. The

flatness of all of these curves illustrates how little impact Fcint has on delay.

Analysis of delay while varying Ispare or Fc f b shows the same result: delay is inde-

pendent of these parameters. Even though sparse clusters remove many choices, and even

though some local feedback connections must use the general-purpose routing, the router

can still assign the fastest paths to the critical sinks.

5.4.6 Sparse Cluster Area�Delay Product

The previous two sections presented results indicating the 6-LUT has the lowest area and

the 7-LUT has the lowest delay. When the area�delay product is formed, the 6-LUT

emerges as the superior choice. This metric is important because it indicates when the

5.4. RESULTS 129

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0 5 10 15 20

ar
ea

 ⋅
de

la
y

(T
⋅n

s)

Ispare

Fully Populated Cluster

4 6 X 1.0 1.0
5 6 X 1.0 1.0
6 6 X 1.0 1.0
7 6 X 1.0 1.0

7 10 X 1.0 1.0
0.035

0.04

0.045

0.05

0.055

0.06

0.065

0 5 10 15 20

ar
ea

 ⋅
de

la
y

(T
⋅n

s)

Ispare

Best-Area Sparse Cluster

key: k N I F F spare c cint fb

4 6 X 0.50 0.50
5 6 X 0.40 0.50
6 6 X 0.33 0.50
7 6 X 0.14 0.43

7 10 X 0.14 0.43

Figure 5.8: Area�delay for fully-populated (left) and best-area sparse (right) clusters.

best tradeoff is being made between using an additional amount of area for a similar rela-

tive gain in clock rate (or vice versa).

The best organisations for area�delay product are compared in Figure 5.8. Sparse clus-

ters improve the area�delay product at every LUT size due to the area savings. The overall

best sparse architecture containing 6-LUTs is about 14% more efficient than best sparse

one containing 4-LUTs, and about 22% more efficient than the traditional fully-populated

4-LUT cluster.

5.4.7 Routing Runtime with Sparse Clusters

The removal of switches inside the cluster also removes the guarantee of routability within

the cluster. Consequently, the router must pay attention to all of the wires and switches

within the cluster. This should result in an increase in the routing runtime.

The average runtime and average number of iterations required to route the different

architectures are shown in Table 5.6. These data are obtained using an 866 MHz Intel

Pentium III computer with 512MB of SDRAM, and represent the arithmetic averages of

routing the 20 benchmark circuits. Results are presented for fully populated clusters to

compare the original VPR 4.30 to the modified one, VPRx. As well, VPRx is compared

against itself to study the additional impact of routing the best-area sparse clusters.

Generally, VPRx currently runs about three to four times slower than the original ver-

130 CHAPTER 5. SPARSE CLUSTERS

sion when fully populated clusters are used. Even though runtime has increased, the num-

ber of router iterations used is practically unchanged. More work is done each iteration

because there are more wires and switches to be considered in a sparse cluster architec-

ture. Also, nets are allowed to enter a cluster more than once, so more routing paths are

evaluated before making a decision.

Despite the increased number of options, the main reason for the slowdown comes

from the increase in the number of sinks that must be routed. This can be explained and

runtime can be reduced as follows. Routing with sparse clusters requires each LUT input,

rather than each cluster input, to be regarded as a sink. This is particularly expensive for

high-fanout nets, since timing-driven routing rebuilds the search heap for each sink.

However, sinks within the same cluster can be grouped and routed successively. When

doing this, the search heap only needs to be re-seeded with a few nodes (this work uses

3) while backtracing from the previously routed sink to the source. This modification

produces similar quality results, yet cuts runtime almost in half. The routing data (and

runtimes) presented in this chapter use the slower algorithm, but the other chapters use the

faster algorithm.

It is worthwhile to note that having larger LUT sizes and cluster sizes reduces the

amount of work that VPR 4.30 must do, so runtime decreases. This benefit is not realised

with VPRx because the amount of wiring inside the cluster also increases, keeping runtime

relatively flat.

The additional runtime needed to route the best-area sparse architectures is also shown

in Table 5.6. For k � 4�5�6 the runtime and the number of iterations is similar. However,

the k � 7 runtime nearly doubles and the number of iterations increases by 25–30%.5 This

increase in the average is caused by a large increase for four of the normally difficult-to-

route circuits. The need for more router iterations suggests these architectures are barely

routable, probably because Fcint is so low.

5The search space usually increases with each iteration, so the runtime of each iteration tends to increase

as well.

5.5. COMPARISON TO PREVIOUS WORK 131

Average Runtime (seconds) Average # Routing Iterations

VPR 4.30 VPRx VPR 4.30 VPRx

k N Fully Populated Best Sparse Fully Populated Best Sparse

4 6 70 153 150 84 86 86

5 6 72 183 205 93 91 93

6 6 57 177 178 84 86 88

7 6 53 188 350 88 83 109

7 10 43 177 275 96 94 116

Table 5.6: Average runtime and number of routing iterations for the low-stress route.

5.5 Comparison to Previous Work

The use of fully-connected clusters likely stems from previous work by Rose and

Brown [42] which suggested that inputs of a 4-LUT be fully connected to the routing

channel. They indicated that this is required to obtain minimum channel widths, the area

metric in use at that time. Since then, clustered architectures have become prevalent, CAD

tools have improved, and area metrics have become more detailed.

Reducing the amount of connectivity within the cluster was more recently explored

using a simple striped switch layout [64]. Rather than modify the router, the T-VPACK

packing algorithm was altered in such a way that routability of the cluster was still guar-

anteed. Unfortunately, the area improvement obtained using this technique was limited to

5% and delays increased up to 30%.

In this work, the packing algorithm is left unchanged. Instead, improved switch pat-

terns are used, spare cluster inputs are added to the cluster, and modifications to the router

are made to support these architectural changes. Although these spare inputs contribute

to additional area, they also improve routability and reduce channel width requirements.

Overall, a net area reduction of up to 18% is obtained with no degradation to critical-path

delay.

Comparisons with existing commercial PLDs can be made as follows. Altera’s products

have traditionally used a fully connected local cluster interconnect [30]. However, the

Altera Stratix [38] architecture, which was designed in parallel with or after this work, uses

local cluster interconnect populated at 50% to save 7% in area. This is less than the 10%

132 CHAPTER 5. SPARSE CLUSTERS

savings estimated in this chapter, probably because the Stratix devices have wider routing

channels. The Xilinx Virtex architectures [31] use a modified switch block that flattens the

traditional switch block, connection block, and internal cluster connection structures. This

effectively creates sparse connections within the cluster but it also adds connectivity to the

traditional switch block role.

5.6 Conclusions

This chapter has studied the area and delay impact of sparsely populating the internal con-

nections of a clustered architecture. At the expense of three to four times the compute

time, an area savings of 10 to over 14% is realised by sparsely populating the cluster inter-

nals of 4-, 5-, 6-, and 7-input LUT architectures containing 6 LUTs per cluster. A larger

cluster size of ten 7-LUTs obtained an 18% area savings. The additional router effort and

reduced routing flexibility does not come at the expense of critical-path delay. It remains

unchanged.

The increase in routability and the decreases in channel width and area indicate that

it is best to force the packing algorithm to leave a few spare inputs (two or three) for the

router. By adding up to 15 spare inputs, the channel width decreases by about 10% in most

architectures, whether full or sparsely populated. These inputs are used only by routing,

and are not used or required for packing. Although sparse clusters require a small increase

in channel width, the spare inputs have the opposite effect. The net effect is a small savings

in channel width.

There are two other noteworthy observations made in this chapter which run contrary

to popular belief. First, it may be more area-efficient to depopulate only the LUT input

multiplexers than the cluster input multiplexers. Of course, depopulating both regions

provides even more savings. Second, 6-input LUTs may be more area efficient than 4-

input LUTs when sparse clusters are employed. However, these observations may change

if better benchmark circuits and more realistic CAD tools (with carry chains) are available.

The area and delay results in this chapter use conservative estimates and ignore sec-

ondary effects which may improve results further. In particular, the tile size reduction from

5.7. FUTURE WORK 133

employing sparse clusters should improve delay by a small amount. Delay improvement

may also come from reduced loading inside the cluster and by generally employing larger

cluster sizes, which are more area-efficient when using sparse clusters.

5.7 Future Work

Future work in this area will include effort to jointly design the LUT input switch matrices

with the cluster input multiplexers to avoid switch pattern interference. Additional con-

straints such as carry chains or other local routing may impact sparse cluster design and

should be considered. A wider variety of cluster sizes, particularly the effectiveness of

large clusters, should also be explored. The area savings from sparsely populated clusters

will reduce tile size, but the subsequent area and delay reduction from using smaller routing

switches should also be quantified. The delay improvements arising from reduced loading

and larger cluster sizes should be investigated. Also, efforts should be made to improve the

runtime of the router while still retaining the area savings.

An interesting extension of this work is to involve tighter coupling between sparse clus-

ters and the packing tool. For example, under special circumstances, it may be reasonable

to have the packing tool use the spare inputs reserved for routing. Before doing this, it

could first do a routability test to verify whether the potential cluster of logic blocks is

routable. Since this shouldn’t be a common situation, it can be done with reasonable CPU

effort. This may increase the usefulness of the PLD architecture for subcircuits which have

wide fan-in (or poor input sharing), such as finite state machines.

134 CHAPTER 5. SPARSE CLUSTERS

Chapter 6

Routing Switch Circuit Design

In commercial PLDs, buffers have recently replaced pass transistors as the preferred type

of routing switch. This chapter investigates interconnect which mixes these two switch

types together. The goals of this study are twofold: to reduce area by replacing a num-

ber of buffered switches with pass transistors and to reduce delay by allowing a signal to

alternate between a buffer and a pass transistor switch. This is accomplished with three

evolutionary steps. The first step is detailed transistor-level design of routing switches in

0.18µm technology. The second step is the evaluation of three new switch types which

combine the advantages of two previously-used switch designs: they are nearly as fast

under fanout as the fastest design, and they use less area than the smallest design. The

third step is the evaluation of PLD architectures which mix buffers and pass transistors by

replacing existing buffers with pass transistors.

6.1 Introduction

It is well known among VLSI designers that the propagation delay through one pass tran-

sistor is less than the corresponding delay through one buffer. However, it is also known

that placing many pass transistors in series is much slower than a similar chain of buffers

because delay grows quadratically with the former, but linearly with the latter. The rule

of thumb for the equivalent delay point is usually three or four series connections. This

section motivates the detailed, transistor-level design of buffered switches and the need for

135

136 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

mixing both buffered and pass transistor switches to reduce area and delay.

6.1.1 Transistor-Level Switch Design

Before architectures which contain both pass transistors and buffers can be explored, ex-

tensive transistor-level design work must be done to ensure the switches considered are as

small and fast as possible. To do this, a modern 0.18µm technology is used. Full HSPICE-

level design is necessary to ensure that practical considerations are not overlooked when

doing architectural work. For example, at this 0.18µm technology node and beyond, new

solutions to the leakage current problem must be found. Level-restoring is pursued as a

solution here.

A number of other discoveries have been made from this detailed transistor-level design

work. The first discovery challenges a design practice used in previous work [19, 40, 111]

where routing switches are scaled in size linearly according to the logic block tile length

to achieve the best delay results. The linear fit employed in that work is forced through

the origin, so switch sizes are doubled if the tile length doubles. Although it is clear that

longer wire loads require stronger buffers, it is not clear whether this is an appropriate

scaling mechanism. This chapter shows that a fit through the origin is inappropriate for

optimal delay, and that a fixed switch size is sufficient to obtain within 5% of optimal delay

or area�delay for a wide range of tile lengths.

Second, this chapter also determines that the constant delay model used internally by

VPRx to model buffers is sufficiently accurate for routing. This is important because the

number of pass transistors on the signal path prior to a buffer may not be easy to determine

while a sink is being routed. Also, the routing of subsequent sinks for a net may further alter

the slew rate for previously-routed sinks. It is found that a total path delay increase of less

than 10% is caused by the poor slew rates obtained after a signal travels through eight wires

connected in series by pass transistor switches. Hence, the constant buffer delay model

used within VPRx is reasonably well-founded. However, detailed timing analysers which

are used after routing should probably account for input slew rate for accurate results.

A third outcome of the detailed transistor-level design work is the design of three new

routing switch circuits. Previous circuits from [19] either use a large amount of area (when

6.1. INTRODUCTION 137

switches don’t share buffers) or they suffer from large delay increases (up to 100%) when a

buffer must drive multiple fan-outs. This work proposes using fanin-based switches which

virtually eliminate large fanout delays. Although the new switches increase delay slightly

(by up to 20%) when there is no fanout, the presence of fanout is common enough to

achieve a net performance advantage. The Alexander architecture [134], a research project

from Xilinx, also uses fanin-based switches which can directly accept logic outputs. The

development of the Stratix architecture also advocates the use of fanin-based switches [38].

The new switches investigated here appear to be similar, but the area and delay advantages

are better quantified. The new switch types can improve delay by 7% and area�delay by

9%.

6.1.2 Mixing Buffers and Pass Transistors

PLD interconnect is often based on tristate routing switches where only one driver per wire

is programmed to be active. Older PLDs such as the Xilinx XC4000 use pass transistors

as unbuffered switches, but modern PLDs such as the Xilinx Virtex II and Altera Stratix

now use buffered switches. Buffers have become necessary to avoid the quadratic delay

growth associated with the long connections that must be formed as the number of CLBs

increases. However, the use of buffers significantly increases area, and they are slower for

short connections.

One commercial approach that combines buffers with pass transistors is the Xilinx

XC4000X architecture [135], where every group of six pass transistor switches also in-

cludes one buffer switch to break long RC chains. Academic studies have considered the

idea of mixing buffers and pass transistors in another way. Betz et al [19] creates two

separate types of routing tracks: one set of tracks use buffers while the other set uses pass

transistors. This way, short connections can use the pass transistor tracks while longer ones

can use the buffered tracks. The Xilinx Virtex architecture also follows this approach by

using pass transistor switches in tracks containing length-1 wires and buffers for longer

wires.

Later academic work by Sheng et al [108, 136] obtains better delay results by placing

additional routing switches between the buffered tracks and the unbuffered tracks. This

138 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

allows a signal to cross over from one track type to the other. However, it adds to area be-

cause the number of switches or transistors per track increases. Despite the area increase,

that work shows reductions of 10% to delay and 6% to area�delay. In comparison, the work

presented here does not add new switches, it merely replaces buffers found in the buffered

tracks with pass transistors. It is shown that alternating between buffers and pass transis-

tors can hypothetically improve connection delay by up to 25%. After routing benchmark

circuits with VPRx, real critical-path delay is reduced by 4–6% and area�delay is reduced

by 11–14%. Alternatively, area can be reduced up to 13% while increasing delay only 1%.

6.1.3 Related Work

There is little published work on the circuit design of PLD routing switches. Dobbe-

laere [137] proposes a novel, self-timed circuit that speeds signals using pass transistors,

but it has metastability implications. Circuit design issues for building the LEGO FPGA

are described in [138]. Work by Khellah [139] touches on pass transistor sizing. Betz [19]

has shown that buffers at 5 times minimum size and pass transistors at 10 times mini-

mum size make low area�delay interconnect in 0.35µm technology. Some of that work is

extended here in greater detail using 0.18µm technology.

Other circuit design work such as [140] has focused on the production of a PLD which

uses low energy, particularly in the interconnect. For this purpose, a low voltage swing

driver with level-restoring is used in [141]. Later work further reduces energy by using a

lower-voltage driver and a more complex receiver circuit [142]. However, the area required

by the receiver (about ten transistors each) may be too large for PLD use. A comparison of

various low-swing techniques suitable for PLD use can be found in [143].

6.2 Methodology

This section describes the methodology used for the circuit simulations in Section 6.3 and

details about the routing procedure used in the later sections.

6.2. METHODOLOGY 139

6.2.1 Circuit Simulation

All circuit design work is conducted with the HSPICE simulator using “typical” process

corner models of TSMC’s 0.18µm technology. Delay measurements are taken when the

signal passes through �Vdd �Vt��2 � 660mV at both ends. Only the worst-case of the

rising or falling delay times are used, and voltage swings are always begun at full rail

voltage. To account for slow input slew-rate effects, step inputs are conditioned by passing

the signal through two identical circuits. Delay measurements are taken from the second

of these circuits.

It is assumed that metal wires are implemented in metal-3 using minimum-width, at

twice the minimum spacing. Betz [19] found that this is the most effective way to reduce

wiring capacitance and improve delay.

Based on the logic and average routing area required by a cluster of four 4-input LUTs,

an estimate of 116µm is used as the CLB tile length for most HSPICE modelling. As

will be shown later, the precise tile length is not critical in determining the best buffer

construction.

6.2.2 Routing Experiments

First, the minimum channel width required to route each circuit, Wmin, is determined using

the baseline routing architecture presented below. Then, the performance of each specific

architecture is evaluated by rerouting each circuit with 1�2 �Wmin routing tracks. All area

and delay results are reported from the completion of this low-stress route. The rerouting

is necessary for two reasons. First, some architectures differ slightly in switch block topol-

ogy. Second, the timing-driven router should reroute to make appropriate delay-oriented

decisions when forming connections with the different switch types.

Due to extensive circuit design changes, such as removing gate boosting, VPRx-

computed delay times in this chapter are slower than the delays reported in Chapter 5

using the same technology. Adopting this new circuit design work into that chapter would

not change the fundamental conclusions therein because all of the results would be equally

affected.

140 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

6.2.3 Baseline Routing Architecture

The baseline routing architecture uses only length 4 wires, with half the tracks connected

by size 16 pass transistors, and half connected by size 6 buffered switches. This choice of

switch sizes will be explained later, in Section 6.3.4.

The routing architectures considered in this chapter will use three new types of buffered

switches and replace some of these buffers with size 6 pass transistors. It should be em-

phasized that these changes only affect the half of the tracks containing buffers; the other

half always use size 16 pass transistors.

6.3 Detailed Circuit Design

This section investigates circuit design issues relevant to routing switches. First, it presents

a case for mixing buffers and pass transistors. Then, it addresses leakage current, buffer

construction, and transistor sizing. Next, it determines optimal switch sizes for PLD inter-

connect. Lastly, it verifies two assumptions about PLD switches: whether it is important

to scale the switch sizes as the tile length (or wire length) grows, and whether a constant

delay timing model for buffers is sufficient.

6.3.1 A Case for Mixing Buffers and Pass Transistors

The linear delay growth of buffered routing switches makes them essential for use in large

PLDs where quadratic delays would be intolerable. Unfortunately, buffers are slower for

short connections and require approximately 2–4 times more area than pass transistors.

The advantages of both switch types can be gained by placing a buffer after every

N pass transistors, a concept called buffer/N-pass switching. Some routing architectures

which support buffer/pass switching will be examined in Section 6.5, but this section per-

forms the transistor-level circuit design of the buffers and pass transistors working alone

and also as buffer/N-pass switches working in tandem.

Typical performance results from using a few switch types and sizes are shown in Fig-

ure 6.1. The graph plots end-to-end connection delay through one to eight routing wires

6.3. DETAILED CIRCUIT DESIGN 141

connected in series. In the figure, the delay for one wire (at the far left) always includes

the delay of an initial buffer (of the same size as the other switches).

The results in Figure 6.1 show the quadratic delay growth of pass transistor switches

compared to the linear delay growth obtained with buffers. For size 6 switches, the two

switch types have similar delay after four routing wires are connected. The use of wider

pass transistors (size 16) greatly improves performance, making it equivalent in delay to

size 6 buffers at roughly seven interconnect wires. However, the use of a larger buffer

improves delay only slightly – the best performance is at size 9, but this is not shown in the

figure. Instead, an equivalent delay improvement of roughly 9% can be obtained after eight

routing wires by replacing every other size 6 buffer with a size 6 pass transistor. Hence, it is

possible to reduce delay and area. This delay improvement increases to 25% by increasing

the size of these buffer/1-pass switches to 16. Note, however, that these improvements

are for only one point-to-point connection. The amount of this improvement that can be

seen in actual netlists will depend upon a number of other factors, such as logic depth and

fanout.

From these results, it can be seen that the buffer/1-pass switches are able to capture

the best delay characteristics of both buffers and pass transistors. Due to rebuffering, the

delay growth after a number of buffer/1-pass switches is linear. However, the use of pass

transistors lowers the slope of this linear growth below that of using buffers only. This

presents a strong case to consider the effect of mixing buffers and pass transistors in this

chapter.

Throughout this chapter, circuit design decisions are made for buffers and pass transis-

tors to optimise the separate cases of when they are used alone and when they are combined

in buffer/1-pass switching. Later, routing experiments will be performed with new archi-

tecture topologies that implement buffer/N-pass switching as well as other ad hoc schemes.

6.3.2 Leakage Current Problem and Solution

With the extensive use of pass transistors as routing switches, the problem of excessive

leakage current arises. One solution to this problem is the use of level-restoring pullups

to restore logic high signals. The problem, the solution, and its side effects are described

142 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

0

5e-10

1e-09

1.5e-09

2e-09

2.5e-09

3e-09

3.5e-09

4e-09

1 2 3 4 5 6 7 8

D
el

ay
 (

s)

of Series-Connected Wires

 6x pass
16x pass
 6x buffer
 6x buffer/1-pass
16x buffer/1-pass

Figure 6.1: End-to-end connection delay using different switch types.

1.57V

Gate boosting

1nA
Leakage
Current

1.8V

2.1V

1.8V

1.8V

1.79V

8pA
Leakage
Current

W/L=
1/16

Level restoring

1.32V

Regular

370nA
Leakage
Current

1.8V

1.8V

Figure 6.2: Level-restoring circuit to reduce leakage current.

6.3. DETAILED CIRCUIT DESIGN 143

further below.

Leakage Current Problem

One drawback of using NMOS pass transistors is that they cause leakage current in down-

stream buffers when passing a logic-high voltage. The steady-state output voltage for such

devices is approximately Vg�Vt , where Vg is the gate voltage and Vt is the threshold volt-

age of the device. This produces a weak-1 instead of a strong-1, causing both NMOS and

PMOS transistors of downstream buffers to be partially on. The high source voltage mag-

nifies this problem, since the effective value of Vt increases due to the body effect. With

a very large number of downstream buffers, significant leakage current and static power

dissipation results.

An example of the output voltages and the resulting static power in 0.18µm is shown in

Figure 6.2. A pass transistor reduces a 1.8V input to 1.32V, resulting in 370nA of leakage

current in each downstream buffer it connects to. A typical routing wire will have many

(tens) of these downstream buffers. Even though most of these buffers will not be actively

used by the netlist, they will all consume static power due to leakage.

Gate Boosting Solution

One solution to the leakage problem employs a boosted gate voltage on the pass transistor.

A gate voltage of 2.1V reduces leakage to 1nA. Gate boosting has been used in previous

work [19, 144, 40], but device reliability problems with this technique arise in 0.18µm and

below due to thin gate oxides. These problems result in the physical deterioration of the

device, eventually rendering it inoperable.

Level-Restoring Solution

As an alternative to gate boosting, the level-restoring circuit [145, 146] shown in Figure 6.2

can be used to pull a weak-1 signal into a strong-1. This circuit involves positive feedback

of a sense inverter driving the gate of a weak PMOS pullup. When a weak-1 is present,

the sense inverter begins to turn on the pullup by driving a low signal on its gate. In

turn, this increases the voltage of the weak-1 until the pullup has restored the voltage to

144 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

16/1

1/1

2/1

16/1

16/1

1/16

A

1/16

16/1

1/16

16/1

routing wires

Figure 6.3: The level-restoring pulldown problem.

Vdd . One level-restoring circuit is needed on every wire that: a) is likely to be driven by

a pass transistor, and b) drives a significant amount of regular CMOS logic. All HSPICE

simulations in this chapter include one level-restoring circuit on every interconnect wire.

Level-restoring circuits have been used in at least one field-programmable device,

CHESS [147]. Designed by HP Labs for reconfigurable computing, it is implemented

in 0.35µm and uses only NMOS pass transistors in the interconnect.

Level-Restoring Circuit Size

Sizing the pullup used in level-restoring involves tradeoffs. A very weak pullup is desir-

able, but increasing the channel length consumes more area. On the other hand, a very

strong pullup is small and can quickly restore full voltage to the wire, but this creates new

problems. Since the pullup is always on while there is a high voltage on the wire, it hinders

the ability of another driver to pull the signal back to Vss. This increases the fall time of the

wire. PLD interconnect exacerbates this problem, and may lead to a stuck high state.

The stuck high state can be described as the level-restoring pulldown problem. This

problem is best illustrated through the example shown in Figure 6.3. In this example,

the distant node A is presently high and must be pulled low through a long chain of pass

transistors. Since the pass transistors and wires have significant resistance, a voltage divider

is formed at node A. If the voltage there cannot be pulled below the switching threshold of

the sense inverter, the wire will be stuck high.

The pulldown problem can be avoided by simply preventing connections that would

exhibit it. For example, a PLD router might prohibit the formation of very long connec-

tions or those with significant fanout. Alternatively, the PLD architecture might be de-

6.3. DETAILED CIRCUIT DESIGN 145

signed to make such connections impossible to form or easily detected (and avoided) by

the router. For example, carefully placing buffers after every eight pass transistors may

provide enough isolation that the worst-case can always be pulled down. For the bench-

mark circuits used here, the required PLD sizes are small enough that using weak pullups

appears to be sufficient. However, a more robust solution is required in the future.

A number of HSPICE simulations with long chains of N pass transistors and level-

restoring circuits helped to determine the best pullup channel length, L p. These simulations

use pass transistors of size Wn�WminT � 10 connecting N � 1 wires.1 Very long chains

(N � 32) cannot be pulled down when the pullup length is sized Lp � 10 � Lmin. Chains

with N � 16 have their fall times become critical when Lp � N �Lmin. This can be quite

severe, e.g., at N � 32 with Lp � 10 �Lmin, the fall time is 2.5 times the rise time. Pullups

with Lp � 16 �Lmin are a good compromise between area and pulldown complications and

this is used for all level-restoring circuits herein. At this length, it takes roughly 50ns to

fully restore the routing wire to Vdd, and more than 40 series-connected wires can be pulled

down. The area required by the pullup transistor is only about three times bigger than a

minimum-size transistor, and only one pullup is required per wire.

If no pullup is used, a modern-sized architecture would dissipate 1.85A of DC current

or 3.33W of static power.2

Alternative Leakage Solutions

There are alternative solutions to the leakage current problem which do not involve gate

boosting or level restoring. Some of these alternatives are:

1. using pass transistors with reduced voltage thresholds (e.g., native devices),

2. using PMOS devices with increased voltage thresholds on the inputs of downstream

buffers and logic gates, and/or

3. using full transmission gates rather than pass transistors.

1Throughout the circuit design sections, L p is the length of a PMOS device, Lmin � 0�18µm, Wn is the

width of an NMOS device, and WminT is the minimum contactable diffusion width.
2Calculation assumes an architecture with length 4 wires, an array of 100� 100 CLBs, and a channel

width of 100, 10 downstream buffers per wire, and 370nA per buffer.

146 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

These options are briefly described below.

In the first two alternatives, altering the threshold voltage is possible during device

manufacturing and may require additional processing steps. In the first case, lowering Vt

creates pass transistors that are difficult to turn off completely. To use these as routing

switches, they must adequately isolate different wires or electrical performance will suffer.

Although lower Vt devices are available from the TSMC 0.18µm process using so-called

native devices, the lack of isolation makes this solution unattractive.

In the second alternative, using pullup devices with an increased threshold voltage

makes it difficult to turn on the pullup device. This would slow the response time to a

falling input. There is also reduced gate over-drive, further increasing delay [4, 148]. Since

increased Vt devices are not available from TSMC, this option has not been explored.

The third alternative involves using a full transmission gate, but this adds to device area

and capacitance. A preliminary investigation was performed to compare the performance

of transmission gates to NMOS pass transistors. Transmission gates were found to increase

area�delay by 18–33%, depending on the switch size. Consequently, transmission gates are

not considered any further.

It is worthwhile to note that it is not uncommon for a foundry to specialize some manu-

facturing steps for PLDs. This can make other solutions to the leakage problem viable. For

example, the latest Altera PLD, implemented in a 0.13µm technology, reportedly uses a

combination of the normal thin gate oxide, a higher core Vdd for increased gate over-drive,

and increased Vt devices [149].

6.3.3 Transistor-Level Buffer Design

Large buffers are commonly formed by tapering, or connecting multiple inverter stages of

increasing size, as shown in Figure 6.4. The input drives the first inverter, or sense stage,

and the drive stage produces the final output. Intermediate stages, if any, scale up in size

by a fixed factor to reach the drive stage.

For the routing switches used in this dissertation, a tristate output is formed by adding

an NMOS pass transistor to the drive stage. Other tristate buffer designs with improved

drive ability, such as those in [19, 146], have not been considered because they require

6.3. DETAILED CIRCUIT DESIGN 147

sense
stage

drive
stage

intermediate
stage(s)

tristate
output

B/1
B/1

1/1

2/1 B/1

B/1
1.5
/1

B

Figure 6.4: Multistage buffer with (optional) tristate output.

more area.

For example, suppose a three-stage buffer of size B is constructed. The intermediate

stage is size
�

B and the drive stage and tristate output transistor are both of size B. A

size B stage uses an NMOS device of width Wn � B �WminT , and a PMOS device of width

Wp � B �WminT � �Wp�Wn�. The Wp�Wn ratio controls the relative size of the PMOS device

relative to its NMOS counterpart.

While simulating tapered buffer circuits, a ratio of Wp�Wn � 1�5 produced the lowest

delay through a loaded (fanout of 3) inverter chain. Hence, this Wp�Wn ratio is used in

the intermediate stages of all buffers. For the sense and drive stages, the Wp�Wn ratios are

carefully selected in tandem as part of the overall design approach to minimize delay. The

determination of these ratios is discussed later.

The remainder of this buffer design section is organised as follows. First, the circuit

model used to represent an interconnect wire is presented. This is followed by a general

description of a broad search which guided the buffer design away from local minima.

Last, the method used to determine buffer sense and drive stage ratios is presented.

Wire Model

The circuit shown in Figure 6.5 is used to model an interconnect wire. Its intrinsic resis-

tance and capacitance is divided up as shown into Lwire equal portions of physical length

Ltile each. Each portion contains two resistors and a lumped capacitance, the values of

which are determined from Ltile and the process characteristics. Also included in the cir-

cuit is an active driver and a number of inactive pass transistors, representing the loads

148 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

{

Rtile/2

Ctile

Rtile/2

1/16

1/1

2/1

1/1

2/1

1/1

2/1

1/1

2/1 1/1

1/1

disabled logic block
output drivers

disabled
switch block

drivers

sense/track
buffer

sense/track
buffer

sense/track
buffer

sense/track
buffer

level
restorer

B/1
B/1

1/1

2/1 B/1

B/1
1.5
/1

B

active driver

portion of wire
(one CLB/tile length)

B/1B/1B/1

B/1B/1

B/1

B/1

B/1

B/1

B/1B/1

B/1

{

{

Figure 6.5: HSPICE circuit of a length-4 wire segment and all drivers.

from unused drivers (both routing switches and CLB outputs). A number of sense/track

buffers are placed along the length of the wire as well. These are the first stage of the track

buffers (which drive the CLB inputs) and other buffered routing switches.

In Figure 6.5, the transistor labels indicate the W/L ratios. A transistor shown as B�1 is

B times the minimum contactable width and 1 times minimum length. Appropriate values

of B, the number of stages in the active driver, and the sizes of the sense/track buffers will

be varied during experimentation. The number of wires connected in series, using either

routing buffers or pass transistors, will also be varied.

General Search

The first step in buffer design involves examining the impact of a number of design param-

eters on delay:

� drive stage Wp�Wn between 1 and 2,

� size B from 2 to 64, and

� the number of stages from 2 to 4

6.3. DETAILED CIRCUIT DESIGN 149

� driving 1 to 16 series-connected pass transistors and wires.

The results of this search, which are not shown here, indicate that the best results for

total delay are obtained with buffers containing 3 inverter stages. The best delay-per-wire

results use switches of size 14–16 and use buffer/2-pass switching with Wp�Wn � 1�0. The

characteristics for the best area�delay per wire results are similar but with a smaller size

(7–9). These results are considered preliminary and guided the results of the subsequent

local optimisations. This initial result provides some assurance that the local optimisations

steer toward a global minimum rather than local minima.

Adjusting Buffer Sense and Drive Stages

Careful buffer design for minimum delay requires choosing the right number of buffer

stages as well sizing of the Wp�Wn ratios used in the sense and drive stages. These two

stages are coupled in that transitions from the drive stage must be sensed by the sense stage

of other downstream buffers. Between them, interconnect wires form the principle load.

The sizing of these ratios and choosing the number of buffer stages for minimum delay is

performed here using an iterative optimisation process.

The optimisation process begins by fixing the drive stage width ratio at Wp�Wn � 1�5

and varying the sense stage Wp�Wn from 0.1 to 2. When Wp�Wn � 1, the PMOS transistor

is fixed at minimum width and the NMOS transistor is widened. Delay-per-wire curves

similar to Figure 6.6a indicate that minimum delay is reached when Wp�Wn roughly equals

0.5, 0.3, and 0.7 for 2-, 3-, and 4-stage buffers, respectively. In all cases, a minimum

size PMOS transistor is used. This differs from typical CMOS guidelines which suggest

Wp�Wn � 2, but it reflects the need to sense a lower voltage swing caused by the pass

transistor Vt loss.

Repeating this process for buffer/1-pass switching gives the lower set of three delay-

per-wire curves in Figure 6.6a. The best Wp�Wn ratio here is similar to before for 3-stage

buffers, but larger ratios must be used for the 2- and 4-stage buffers.

Next, the sense buffer sizes are fixed at their best values and the drive stage Wp�Wn

is varied from 0.3 to 2. Results such as those in Figure 6.6b indicate that 2- and 4-stage

buffers require a stronger PMOS driver with Wp�Wn � 1�0, but Wp�Wn � 0�9 is sufficient

150 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

for 3-stage buffers. This is again repeated for buffer/1-pass switching, where the best ratios

lower to Wp�Wn � 0�7 to 0�8.

After determining the best drive stage transistor sizes, they are fixed to these values and

another pass is made to re-adjust the sense stage and then the drive stage. After repeating

this for a third iteration, the best ratios do not change significantly, so these values are

accepted as stable. The graphs in Figures 6.6 and 6.7 are the final results of this effort for

size 6 and size 16 switches, respectively.

For all switch configurations, it is evident from the figures that 3-stage buffers provide a

lower delay-per-wire. There are two explanations why the 3-stage buffer is faster. First, the

3-stage buffer has slightly lower intrinsic delay than the 2- or 4-stage versions. Inspection

of the intrinsic buffer delays (not shown) indicate that a 3-stage buffer is only 4% faster

than a 2-stage buffer.3 However, the overall delay improvement using 3 stages is nearly

10%. This suggests that the inverting property must also improve delay (particularly with

the size 6 switch).

Further examination with 2- and 4-stage buffers (of size 6) reveals that their low-to-

high transitions are usually slower. This is also observable in Figure 6.6b by the need for

a slightly larger PMOS drive transistor to minimize delay. In contrast, a 3-stage buffer (of

size 6) does not benefit from a strong pullup because it converts a slow-rising input into

a fast-falling output (or vice versa). A stronger pullup would impede the falling output

transition more than it aids a rising output transition.4 Figure 6.6b shows that a weaker

pullup with Wp�Wn � 0�9 is better at reducing delay for 3-stage buffers than the Wp�Wn �
1�0 for 2- and 4-stage buffers. Hence, the falling-output delay of these non-inverting buffers

becomes critical at a larger Wp�Wn than the inverting buffer.

The size 16 switch results in Figure 6.7 do not exhibit the same trends because rise and

fall times are more equal near Wp�Wn � 1�0 for the three stage sizes. This is understandable

because self-loading of the drive stage becomes more important as switch size increases.

In summary, adjusting the number of stages and the sense- and drive-stage transistor

widths is an important step to reduce interconnect delay. The best design choices for size

3This is simulated using buffers with unloaded outputs, size 6 switches, with driver W p�Wn � 1�0, and

properly conditioned inputs.
4The effectiveness of a larger PMOS device is reduced by the NMOS transistor used to tristate the output.

6.3. DETAILED CIRCUIT DESIGN 151

3e-10

3.5e-10

4e-10

4.5e-10

5e-10

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
el

ay
 p

er
 W

ire
 (

s)

a) Wp/Wn of Sense Stage

2 stage buffer
3 stage buffer
4 stage buffer
2 stage buffer/1-pass
3 stage buffer/1-pass
4 stage buffer/1-pass

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
3e-10

3.5e-10

4e-10

4.5e-10

5e-10

D
el

ay
 p

er
 W

ire
 (

s)

b) Wp/Wn of Drive Stage

Figure 6.6: Adjusting the sense and drive stages of a size 6 switch.

2.5e-10

3e-10

3.5e-10

4e-10

4.5e-10

5e-10

5.5e-10

6e-10

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

D
el

ay
 p

er
 W

ire
 (

s)

a) Wp/Wn of Sense Stage

2 stage buffer
3 stage buffer
4 stage buffer
2 stage buffer/1-pass
3 stage buffer/1-pass
4 stage buffer/1-pass

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.5e-10

3e-10

3.5e-10

4e-10

4.5e-10

5e-10

5.5e-10

6e-10

D
el

ay
 p

er
 W

ire
 (

s)

b) Wp/Wn of Drive Stage

Figure 6.7: Adjusting the sense and drive stages of a size 16 switch.

6 buffered switches are 3-stage buffers, a sense stage Wp�Wn � 0�3, and a drive stage

Wp�Wn � 1�0. The best design choices for size 16 buffered switches are 3-stage buffers, a

sense stage Wp�Wn � 0�2, and a drive stage Wp�Wn � 1�0. For buffer/1-pass switching, the

same sense stage ratio can be used with a drive stage Wp�Wn � 0�7 for both switch sizes.

These drive stage ratios are also effective for keeping area requirements low; traditional

transistor sizing would suggest the driver PMOS transistor to be twice as large.

To simplify the remaining design work across a number of switch sizes and different

buffer/N-pass switching combinations, only 3-stage buffers will be used. All sense stage

ratios will use Wp�Wn � 0�5. This compromise does not greatly impede performance, and

it keeps the area of the sense stage small. All drive stage ratios will use Wp�Wn � 1�0.

This final buffer design is shown earlier in Figure 6.4. This design will be used for all

subsequent results in this chapter.

152 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

6.3.4 Best Switch Sizes

Selecting the proper switch size is an important step in designing interconnect for low delay

and area. To investigate this, the end-to-end delay for various switch sizes is simulated

using a buffer driving one to eight wires connected in series by pass transistors. This

represents a wide range of conditions, from only-buffered wires to primarily pass-transistor

connected wires. The delay and area�delay results per wire are presented in Figures 6.8

and 6.9.

Best Delay Results

In terms of delay, superior results are obtained with buffer/N-pass switches. Using buffers

only, the best delays of approximately 360ps per wire are obtained with switch sizes of

8–10. For pass-transistor dominated interconnect, buffer/6-pass switches reach a similar

delay of 370ps per wire with size 16 switches. In contrast, the lowest delays are obtained

with buffer/1-pass and buffer/2-pass switches: 300ps and 290ps per wire with switch sizes

9–11 and sizes 12–16+, respectively. These are about 25% faster than buffer or pass-

transistor dominated interconnect.

Best Area�Delay Results

The best area�delay results are obtained again with buffer/N-pass switches. Using buffers

only, the best sizes are 5–7. The lowest buffer/1-pass switch designs use sizes 6–8. How-

ever, the best results are obtained with buffer/2-pass and buffer/3-pass switches of size 7–9.

Area�delay with these switches is 43% lower than with buffers alone, and 10% lower than

buffer/1-pass switches.

Switch Sizes Chosen

To get the best area�delay results possible, a PLD architect would likely select buffers of

size 6 and pass transistors of size 8 from Figure 6.9. This differs from previous work [19],

where the pass transistor is chosen to be twice the size of the buffer. One possible reason

for this difference is the shift from a 0.35µm process to a 0.18µm process. This illustrates

6.3. DETAILED CIRCUIT DESIGN 153

the need to re-check basic assumptions about the circuit design for each technology node

used.

Recall that the goal of this chapter is to assess the area and delay benefits of buffer/pass

switching. To do this conservatively, the switch sizes should be chosen which make it

as difficult as possible for buffer/pass switching to reduce area or delay. To create fast

pass transistor interconnect, Figure 6.8 suggests that size 16 switches are fastest when two

to seven pass transistors are used in series. To create the best area�delay buffered-only

interconnect, Figure 6.9 suggests using size 6 switches. The pass transistor portion of the

interconnect will remain fixed, so it will be difficult to improve the delay or area�delay of

the PLD by modifying only the buffered portion. Using only these two switch sizes also

greatly simplifies experimental conditions.

To see why these experimental conditions are very conservative, consider that half of

all interconnect tracks will be based on size 6 buffers. In the routing experiments, some

of these buffers will be replaced with size 6 pass transistors, hence forming buffer/pass

switches which are smaller than the ideal sizes. This choice will make it difficult to show

improvement with buffer/pass switches.

The remaining half of the interconnect tracks will be based on size 16 pass transistors

only. These will be driven from the CLBs using size 16 buffers. The choice of using size 16

pass transistors is probably larger than one would normally choose from Figure 6.9. How-

ever, this choice will result in a very fast and slightly larger interconnect. This also makes

area and delay improvements obtained by altering the buffered tracks more conservative.

To see this, consider that the fixed area from the pass-transistor portion will be larger than

required. Hence, any savings from reducing the area of the buffered portion will be under-

stated. Similarly, a fast pass transistor portion makes it difficult for buffer/pass connections

to be faster. This will reduce the need for the delay improvement from buffer/pass switches,

again understating any gains achieved.

6.3.5 Verifying Assumptions

The assumption that a fixed switch size can be used in the interconnect, regardless of the

wire loading conditions, greatly reduces the architectural search space. Furthermore, the

154 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

2.5e-10

3e-10

3.5e-10

4e-10

4.5e-10

5e-10

2 4 6 8 10 12 14 16

D
el

ay
 p

er
 W

ire
 (

s)

Switch Size (Wn/WminT)

buffered only
buffer/1-pass
buffer/2-pass
buffer/3-pass
buffer/4-pass
buffer/5-pass
buffer/6-pass
buffer/7-pass

Figure 6.8: Delay per wire for various switch sizes.

4e-09

5e-09

6e-09

7e-09

8e-09

9e-09

1e-08

2 4 6 8 10 12 14 16

A
re

a⋅
D

el
ay

 p
er

 W
ire

 (
T

⋅s
)

Switch Size (Wn/WminT)

buffered only
buffer/1-pass
buffer/2-pass
buffer/3-pass
buffer/4-pass
buffer/5-pass
buffer/6-pass
buffer/7-pass

Figure 6.9: Area-delay per wire for various switch sizes.

mixing of buffers and pass transistors creates an environment where the constant-delay

buffer timing model, which is based on fixed input slew rates, is not as accurate. VPRx

assumes that this constant-delay model is acceptable. This section verifies that these two

simplifying assumptions do hold true.

Assumption 1: Constant Switch Sizes With Varying Tile Length

An estimated tile length of Ltile � 116µm has been used for most of the HSPICE design

work. However, the actual tile size fluctuates as k, N, and the other architectural parameters

6.3. DETAILED CIRCUIT DESIGN 155

are varied. Hence, it is necessary to verify the sensitivity of the best switch size on Ltile.

This sensitivity is computed using HSPICE delay simulations of a buffered switch fol-

lowed by a wire for a variety of tile lengths and switch sizes. The delay and area�delay

product for each tile length is shown in Figure 6.10. In these graphs, the switch size B is

varied along the x-axis to generate one curve per Ltile. The lowest points for each curve

(each tile length) are connected together by the bold curve labelled best. Two additional

bold curves trace the smallest switch sizes that would result in being within 5% and within

10% of the best delay or area�delay.

In Figure 6.11, the same best and within 5% data from Figure 6.10 are replotted as a

function of tile length. Additional curves are shown which correspond to equations below.

These equations are determined by best-fit calculations to the experimental datapoints.

The best possible delays in Figures 6.10 and 6.11 are achieved by scaling the switch

size B with tile length. Previous work [40, 111] forced a linear fit of B through the origin

and a single datapoint (size 5 buffer at 116µm), resulting in the following equation:

Bbest buffered area�delay, linear � 0�0431 �Ltile (6.1)

where Ltile is given in µm.5 Although Equation 6.1 was fit to a best area�delay datapoint,

the scaling was done for purposes of improving delay. It is a very poor fit to the area�delay

experimental results determined here, which are roughly flat.

Better fits to the experimental results can be made. The following two equations corre-

spond to a linear fit and a sub-linear fit, respectively:

Bbest buffer/1-pass delay, linear � 0�0154 �Ltile�7�47 (6.2)

Bbest buffer/1-pass delay, sub-linear � 0�644 � �Ltile�
0�5�1�90 (6.3)

where Ltile is given in µm. In this fit, the exponent value of 0.5 was determined manually

and the other parameters were calculated by regression analysis. For both fits, the linear

regression correlation coefficients, R2, are slightly greater than 0.95. Hence, both equations

are good fits to the data.

Although scaling gives the best delay, it is apparent from the flatness of each delay

curve in Figure 6.10 that delay is RC limited beyond a certain tile length and thus insen-

5Note that all equations in this section assume that wires span 4 tiles.

156 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

sitive to the switch size chosen. This is also apparent from the sub-linear growth of the

within 5% and within 10% curves in Figure 6.11. These curves suggest that a switch size

of 15 and 12, respectively, is probably large enough for best delay with tile lengths beyond

1000µm.

A similar analysis of the area�delay curves shows that a fixed switch size of 5 or 6 is

effective for nearly all tile lengths.

To further illustrate the lack of sensitivity to tile size, the delay and area�delay of size 6

and 16 switches, respectively, is given in Figure 6.12. The vertical axis shows the increase

due to these fixed sizes relative to the minimum value obtained with the best switch size.

The increase in delay is less than 10% for tile lengths of 174µm or longer. To keep the

increase less than 10% with smaller tile lengths, smaller switch sizes should be used. Sim-

ilarly, the increase in area�delay is less than 8% throughout the range. Hence, it is effective

to use a fixed switch size with buffered interconnect when optimising for area�delay.

The results just presented were produced by a buffered switch driving a wire. The

same work was repeated for a buffer/1-pass connection, i.e., a buffered switch followed by

a wire, a pass transistor switch, and second wire. The results are shown in Figures 6.13

to 6.15.

The buffer size equations fit to give best delay for buffer/1-pass connections are:

Bbest buffered delay, linear � 0�0145 �Ltile�11�35 (6.4)

Bbest buffered delay, sub-linear � 6�74 � �Ltile�
0�23�7�81 (6.5)

where Ltile is given in µm. The exponent in Equation 6.5 and the data both clearly indicate

the best switch size for delay grows sub-linearly with tile length. The sub-linear equation

more closely fits the data than the linear equation, with correlation coefficients of R2 � 0�98

and R2 � 0�91, respectively. The within 5% and within 10% curves flatten even more

quickly than the buffered-wire results: the constant switch size of 14 and 11, respectively,

is sufficient for all tile lengths beyond 230µm. Although smaller tiles may benefit from a

small amount of switch scaling, it is unnecessary for larger tiles.

A similar analysis of the area�delay curves in Figure 6.14 shows that a fixed switch size

of 4 to 6 is effective for all tile lengths. However, in this case the best size actually drops for

6.3. DETAILED CIRCUIT DESIGN 157

the longest tile lengths. This is because the longer tile lengths near a switch size of 5 have

less delay sensitivity to switch size than the medium tile lengths. Hence, the area penalty

of the larger switch is greater than the delay improvement, making the smaller switch size

more attractive.

The sensitivity of delay and area�delay to a fixed switch size is shown in Figure 6.15.

These results show that the increase is less than 5% across the range of tile lengths. This

data very strongly supports the use of a fixed switch size for buffer/1-pass connections.

Data in previous work [47] also suggests that the best switch size is insensitive to

logical wire lengths. That data shows the best switch sizes are consistent for lengths of

4, 8 and 16 tiles. This can be explained as follows. Although a longer logical length

implies more switch loading, wire capacitance dominates. Hence, the effect of tile length

and logical length should be similar: they both impact physical wire length and increase its

RC.

The ability to use a single switch size for a wide range of logical wire and tile lengths

greatly simplifies PLD research. For example, one may construct practical area and delay

models based on layout experience of only a single size. It also suggests that previous

research which scales switches, such as [19, 40, 111], may have used overly large routing

switches. Scaling switches unfairly over-penalizes larger cluster sizes and leads to the

(possibly incorrect) conclusion that smaller cluster sizes are better.

With the understanding that a fixed switch size is sufficient for a broad range of archi-

tectures, all routing experiments here are based on the two switch sizes determined earlier:

size 6 (for buffered switches) and size 16 (for pass-transistor switches).

Assumption 2: Constant-delay Buffer Timing Model

In VPRx, delay through buffers is simplified to a constant value, the intrinsic buffer delay.

This is adequate in strictly-buffered interconnect because the input slew rate can be easily

determined in advance and included in this delay. However, the input slew rate is not

known in advance because it depends on the topology of the routed net and the number

of pass transistors used before rebuffering. Hence, an accurate timing-driven router must

determine the slew rate based on the current net topology prior to forming a connection to

158 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

2e-10

4e-10

6e-10

8e-10

1e-09

1.2e-09

1.4e-09

1.6e-09

1.8e-09

2e-09

5 10 15 20 25 30

D
el

ay
 (

s)

Switch Size (Wn/WminT)

Ltile=1160µm
1044µm
928µm
812µm
696µm
580µm
464µm
348µm
232µm
174µm
116µm
87µm
58µm

best
within 5%

within 10%

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

5e-08

1 2 3 4 5 6 7 8 9 10

A
re

a⋅
D

el
ay

 (
T

⋅s
)

Switch Size (Wn/WminT)

Figure 6.10: Effect of tile length on performance of a buffer-wire connection.

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200

B
es

t S
w

itc
h

S
iz

e
(W

n/
W

m
in

T
)

Tile Length (µm)

best delay
 equation 6.2
 equation 6.3
best area⋅delay
 equation 6.1

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200

B
es

t S
w

itc
h

S
iz

e
(W

n/
W

m
in

T
)

Tile Length (µm)

best delay
 within 5%
 within 10%
best area⋅delay
 within 5%
 within 10%

Figure 6.11: Best switch sizes as a function of tile length (replot of Figure 6.10 data).

1

1.02

1.04

1.06

1.08

1.1

0 200 400 600 800 1000 1200

In
cr

ea
se

 R
el

at
iv

e
to

 B
es

t S
w

itc
h

S
iz

e

Tile Length (µm)

delay, size 16
area⋅delay, size 6

Figure 6.12: Increases from using a fixed switch size in a buffer-wire connection.

6.3. DETAILED CIRCUIT DESIGN 159

1e-09

2e-09

3e-09

4e-09

5e-09

6e-09

5 10 15 20 25 30

D
el

ay
 (

s)

Switch Size (Wn/WminT)

Ltile=1160µm
1044µm
928µm
812µm
696µm
580µm
464µm
348µm
232µm
174µm
116µm
87µm
58µm

best
within 5%

within 10% 2e-08

4e-08

6e-08

8e-08

1e-07

1.2e-07

1.4e-07

1.6e-07

1.8e-07

2e-07

1 2 3 4 5 6 7 8 9 10

A
re

a⋅
D

el
ay

 (
T

⋅s
)

Switch Size (Wn/WminT)

Figure 6.13: Effect of tile length on performance of a buffer-wire-pass-wire connection.

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200

B
es

t S
w

itc
h

S
iz

e
(W

n/
W

m
in

T
)

Tile Length (µm)

best delay
 equation 6.4
 equation 6.5
best area⋅delay
 equation 6.1

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200

B
es

t S
w

itc
h

S
iz

e
(W

n/
W

m
in

T
)

Tile Length (µm)

best delay
 within 5%
 within 10%
best area⋅delay
 within 5%
 within 10%

Figure 6.14: Best switch sizes as a function of tile length (replot of Figure 6.13 data).

1

1.02

1.04

1.06

1.08

1.1

0 200 400 600 800 1000 1200

In
cr

ea
se

 R
el

at
iv

e
to

 B
es

t S
w

itc
h

S
iz

e

Tile Length (µm)

delay, size 16
area⋅delay, size 6

Figure 6.15: Increases using a fixed switch size in a buffer-wire-pass-wire connection.

160 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

0

5e-10

1e-09

1.5e-09

2e-09

2.5e-09

3e-09

3.5e-09

0 1 2 3 4 5 6 7 8

D
el

ay
 (

s)

of Series-Connected Wires

total delay
intrinsic buffer delay

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

P
or

tio
n

of
 T

ot
al

 D
el

ay

of Series-Connected Wires

intrinsic buffer delay portion
ideal input portion
slow input portion

Figure 6.16: Impact of slow input slew rate on delay, size 16 switch.

the next sink.

The goal in this section is to determine whether this slow input slew-rate effect is sig-

nificant enough to make buffer/pass switches too slow, and whether it is important enough

to modify PLD router software and timing analyzers to explicitly compute it rather than

assuming a typical or worst case.

To determine the impact of input slew rate on intrinsic buffer delays, delay of an un-

loaded buffer is measured with a conditioned input. The input is conditioned by a circuit

containing between zero and eight pass-transistor connected wires which are driven by a

similar buffer. For the situation with zero wires, an ideal input is formed by using two

minimum-size inverters to condition a step input. The results are presented in the two

graphs of Figure 6.16.

In the first graph, delay results are given for the total delay and the corresponding

intrinsic buffer delay. Although the total delay through the pass transistors is quadratic,

the intrinsic buffer delay increases linearly. For the size 16 buffers used in the figure, this

delay roughly doubles across the range of inputs. Although not shown, the delay of size 6

buffers triples across the same range.

In the second graph, the delays are replotted as a portion of the total delay. The in-

trinsic buffer delay portion curve shows the fraction of total delay that is represented by

the intrinsic buffer delay. When buffers are placed on every wire, this represents nearly

50% of the delay. As more pass transistors are used, this decreases to about 15% of the

6.4. THREE NEW SWITCH TYPES 161

total delay. The ideal input portion curve removes the slew-rate effect by plotting the

ideal input delay (the delay obtained at zero wires, a constant) as a portion of total delay.

The slow input portion curve shows the difference, i.e., the portion of total delay directly

caused by the slew-rate effect. Although it increases mildly as the input is degraded, it rep-

resents about 7% of the overall delay. For the similar results obtained with size 6 switches

(not shown), the slew-rate effect reaches a maximum of 8% at three wires, and decreases

to 6% at eight wires.

The observations here show that slow input slew rates can increase timing delays by

about 8%. Such an increase is small enough that first-generation routing tools can ignore it

and use worst-case delays instead. This is the approach taken in this work, where intrinsic

buffer delays are taken as the constant worst-case delay of a buffer/1-pass combination.

However, detailed timing analysis tools that strive for accurate delay estimates should take

slew rate into account.

6.4 Three New Switch Types

Historically, the area and delay results computed by VPR and reported in previous literature

have been based using two different switch types. Area reports are usually based on the

smaller, buffer-sharing switch, buf, which is shown in Figure 6.17a. In contrast, delay

reports are based on a larger switch with no buffer-sharing, bufns in Figure 6.17b because

its delay is unaffected by fanout. Rather than presenting two best-case numbers obtained

with two different circuit designs, what is needed is a single circuit design which combines

the area advantage of buf with the delay advantage of bufns. Three new circuit designs

which satisfy this criteria are described and evaluated below.

6.4.1 Fanin-Based Switches

The concept behind the new switch types is to pull a signal across the switch block rather

than to push it across, resulting in a switch which is based upon fanin rather than fanout.

Three new switch designs which illustrate this concept, bufm, bufp, and bufp2, are shown

in Figure 6.18. By changing to a pull, the buffers avoid fanout entirely and large pass

162 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

b) ‘bufns’ switch, no buffer-sharinga) ‘buf’ switch, buffer-sharing

SRAM bit
SRAM bit & large pass T

Figure 6.17: Two previous fanout-based switch types.

a) ‘bufm’ mux switch b) ‘bufp’ pass switch c) ‘bufp2’ pass switch

SRAM
SRAMSRAM bit & small pass T

SRAM bit

Figure 6.18: Three new fanin-based switch types.

transistors on the buffer outputs can be replaced with smaller ones on the buffer inputs.

Hence, fanin-based switches also offer potential area savings.

The differences between bufm and bufp are as follows. The bufm switch assumes a

mux-tree structure on the input side, requiring only a few SRAM bits under high fan-in

conditions. The bufp switch replaces the mux-tree with a flat layer of NMOS pass transis-

tors and one SRAM bit per input. The bufp2 switch is a novel, area-efficient variation of

bufp. In bufp2, the input pass transistors are used in a bidirectional fashion to significantly

reduce SRAM count and, consequently, area.

The implementations of bufm, bufp and bufp2 have some similarities. All of the

switches use similar driving structures, and they all use minimum-sized NMOS transis-

tors on the input side. HSPICE simulations have shown that wider transistors on the inputs

do not significantly improve delay. Also for performance reasons, level-restoring is not

done on the internal points of these switches. If level-restoring is used, wider input transis-

6.4. THREE NEW SWITCH TYPES 163

Area

Switch Type Profile size 6 (T) size 16 (T)

bufns 12S�12P�12B 276 480

buf 12S�12P�4B 168 276

pass 6S�6P 57 87

bufm 12S�4P�4B�16p 156 224

bufp 16S�4P�4B�12p 176 244

bufp2 10S�4P�4B�10p 138 206

Key: SRAM (S), buffer (B), large and small pass transistor (P, p).

S � 6T , p � 1T . Size 6: P � 3�5T , B � 13�5T . Size 16: P � 8�5T , B � 25�5T .

Table 6.1: Transistor area required to connect four wire endpoints.

tors are required to overpower the restoring pullup. However, the lack of level-restoring at

this point contributes only a small amount to static leakage current because the majority of

buffers are unused (i.e., they are inactive switches and can be forced to have a low input).

Of the remaining buffers which are actively used by the netlist, only about half of them

will leak — since the buffers are inverting, the remaining half will contain a logic low.

Switch Area

To better illustrate the area overhead of each switch type, an area profile is shown in Ta-

ble 6.1. The area of each switch type is divided into the number of SRAM bits, large

buffers, and large and small pass transistors that are required to connect four wires at a

switch block endpoint. This is converted into an area count for two switch sizes, B �6 and

16, using the transistor area model in Chapter 3. For B � 3, the bufm and bufp2 switches

are smaller than the previous buf switch. In comparison, the bufp switch becomes smaller

than buf only when B � 8. Being larger than buf at size 6 makes bufp unsuitable for later

routing experiments which attempt to reduce both area and delay.

Wire Delay Under Switch Fanout

For connections without fanout, the bufm and bufp2 switches are slightly slower than the

buf switch due to their input structures, but the bufp switch is slightly faster due to less load-

164 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

1

1.2

1.4

1.6

1.8

2

2.2

0 4 8 12 16 20 24 28 32

R
el

at
iv

e
D

el
ay

 (
bu

fn
s=

1.
0)

Logical Wire Length (Lwire, # of tiles)

buf, fanout of 3
bufp2, fanout of 3
bufp2, fanout of 1
bufns, fanout of 1

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

0 4 8 12 16 20 24 28 32

R
el

at
iv

e
D

el
ay

 (
bu

fn
s=

1.
0)

Logical Wire Length (Lwire, # of tiles)

bufp2, fanout of 1
bufm, fanout of 3
bufm, fanout of 1
bufns, fanout of 1

buf, fanout of 1
bufp, fanout of 3
bufp, fanout of 1

Figure 6.19: Delay per wire under fanout, normalized to bufns, size 6 switches.

ing. In the presence of fanout, however, the buf switch slows significantly while the others

do not. Hence, the frequency that fanout occurs in a routed netlist will significantly affect

the overall critical-path delay. Before assessing this impact, however, it is first prudent to

examine the impact of switch fanout on the delay of a single wire.

First, consider the worst-case delay of the bufns switch. Under fanout conditions, dif-

ferent buffers share the same source wire and drive separate load wires, so the delay is

independent of fanout. The bufm and bufp switches are also relatively unaffected by fanout

because the load increase (from the worst-case single fanout cases) is limited. In con-

trast, the bufp2 switch will be affected more by fanout because the entire fanout subtree is

connected through the narrow pass transistor that is in parallel with the buffer.

The delay increases caused by fanout with a switch size B � 6 are displayed in Fig-

ure 6.19. Each delay result shown is the combined switch and wire delay after driving a

fanout of one or three wire loads. These results have been normalized to the fanout-of-one

bufns switch delays, which is the timing result normally reported by VPR 4.30. Although

not shown, the fanout-of-three bufns switch delay is also 1.0. In the graph, the logical wire

length, Lwire, is varied along the x-axis to simulate different loading conditions.

With a fanout of three and a wire length of four tiles, the buf switch is 95% slower than

the bufns switch. This is a significant increase that is not calculated by VPR 4.30! Varying

the wire length has little impact on the magnitude of this increase, it is consistently around

100%. In comparison, the new bufm and bufp2 switches are only 7% and 10% slower,

6.4. THREE NEW SWITCH TYPES 165

respectively, under the same conditions. This amount decreases for longer wires, since

a fanout of three produces a very small load increase compared to the wire capacitance

itself. Interestingly, the performance of the bufp switch is slightly faster (2–3%) under

fanout than the bufns switch due to the smaller transistor loads. Unfortunately, it is also

5% larger than a bufns switch at size 6.

With a fanout of one, some of the results are quite different. Due to less loading, the buf

switch delay is much better than before, making it lower than the bufns switch by 2%. Of

the new switches, the bufm and bufp switch delays are only slightly faster than before (2–

3% for short wires). In contrast, the bufp2 delay improves significantly, becoming nearly

as fast (within 5%) as the bufm switch with low fanout.

From this data, it is clear that although it is among the fastest switches when there is

a fanout of one, the bufns switch is inferior under fanout. The bufp switch is the fastest

overall, under any fanout conditions, but the small delay improvement is offset by a larger

area increase. Although the bufm and bufp2 switches are always slower than bufns with a

fanout of one, they are both significantly faster with a fanout of three. As well, Table 6.1

shows that these two switches are 36–57% smaller!

The best switch design to improve delay is bufp. To improve both area and delay, it is

not immediately clear which is the overall best switch design. The ranking will strongly

depend upon how much fanout is present in a typical netlist. Hence, the routing experi-

ments performed at the end of this section will compare these different switches and assess

their ultimate performance impact.

It is worth noting that preliminary investigations with the bufm, bufp, and bufp2 circuits

included a minimum-sized inverter to drive their input selection structures. This addition

made the switches too slow to be useful.

6.4.2 Output Pin Merging

The input structure of the bufm and bufp switches is ideal to support a small increase to

fanin without a significant increase in area or delay. To take advantage of this efficiency,

logic block output pins are directly connected to fanin points of these routing switches.

This feature, called output pin merging, has also been used in the mux-based switches of

166 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

Alexander routing architecture [134], part of a larger research project from Xilinx.

Output pin merging saves area as follows. Normally, a CLB output uses a shared-buffer

switch, buf, where the connection to each track is made using an SRAM bit and a wide pass

transistor. However, this wide pass transistor is not required on tracks that contain a fanin-

based buffer switch.6 Instead, the fanin portion can be extended to accommodate one more

input. For example, a bufm switch requires two additional minimum-size pass transistors

to extend the input mux from 3 to 4 inputs. If the total number of inputs does not pass 2n,

this will also save one SRAM bit for every output connection that is merged. Alternatively,

a bufp switch requires one narrow pass transistor for each merged connection, although no

SRAM bits are saved. The possibility of saving SRAM bits makes bufm more area-efficient

than bufp.

The magnitude of the area savings produced by this technique is not very large; less

than 100T area per tile is saved (about 1%). This savings is small because the routing

architecture in this work contains as few buffers as possible. However, architectures that

use many buffers or have very high-fanout at output pins (e.g., at the I/O pads) will receive

greater benefit from this technique.

Output pin merging does not significantly impact delay because a large buffer is re-

quired in both cases. As well, the additional delay of the fanin input structure is similar

to the additional delay of a shared-buffer driving many unused output branches. In the

experiments below, the delay difference is accounted for in the routing tool, and the overall

impact on critical-path delay is included in the final results.

6.4.3 Experimental Results

The new bufm and bufp2 switches offer significant potential to reduce area and delay, par-

ticularly in circuits which have many high fanout nets on the critical path. The improve-

ment is reported here using the area and delay results calculated by VPRx. Although the

bufp switch should also reduce delay, it is larger in area than the other switches so it will

not be considered any further.

The area and intrinsic buffer delay of the new switch types depend upon the fanin

6It is still required on pass transistor switched tracks.

6.4. THREE NEW SWITCH TYPES 167

of each particular switch instance. For area, VPRx explicitly computes this fanin and

the resulting area. For delay, the RC details of the bufm and bufp2 input structures are

abstracted into a constant worst-case intrinsic buffer delay. This abstraction involves the

following two key simplifications.

� The intrinsic buffer delay used for the bufm switch has been selected to match the

HSPICE simulation results obtained with a fanout of three. For a multiplexer of n

inputs, this delay is represented by the equation T �n� � �C1 log2 n�2�C2, where C1

and C2 are curve fitting constants.

� The intrinsic buffer delay of the bufp2 switch is reduced to a constant delay equiv-

alent to the 4-input bufm delay. This nearly matches the bufp2 fanout of one delay,

representing its best possible performance.

Properly computing the bufp2 switch delay under fanout is unnecessary because the exper-

iments below will show that bufm performs better than this best-case bufp2.

To fairly estimate the influence of fanout on the delay of buf switches, the VPRx timing

model adds an RC node at the drive stage output (before the tristate stage). This change

sometimes results in delay increases of 200% or more to individual nets.7 Despite this

large delay increase to some individual nets, critical-path delay is not as strongly affected.

The geometric average critical-path delays of 20 MCNC circuits are presented in Ta-

ble 6.2. The ignoring fanout columns contain the delays reported by VPR 4.30 with the

original unmodified timing model. The including fanout columns give the new delay re-

sults produced with the new timing model in VPRx. These two different delay results are

computed from the same routing solution, which is generated by the router with the new

timing model. The change in delay performance, from the old timing model to the new

one, is reported as a percentage in the increase columns. These results show that fanout

at buf switches increases the average critical path by roughly 5% for all three LUT sizes.

For individual circuits, this increase is as high as 16%. In contrast, the bufm switch limits

7The largest increases are seen on output pin nets, where a single high-fanout shared-buffer switch con-

nects to many pass transistor tracks.

168 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

LUT buf Routing Switch bufp2 Routing Switch bufm Routing Switch

size, ignoring including ignoring including ignoring including

k fanout (ns) fanout (ns) increase fanout (ns) fanout (ns) increase fanout (ns) fanout (ns) increase

4 16.9 17.8 5.2% 17.3 17.4 0.8% 16.5 16.6 0.6%

5 16.2 17.1 5.3% 16.5 16.7 0.8% 15.8 16.0 0.8%

6 15.4 16.2 5.3% 15.3 15.4 0.6% 14.9 15.0 0.8%

Table 6.2: Delay increases due to the improved modelling of buffer fanout within VPRx.

Buffer Area (�106T) Delay (ns) Area�Delay (T�s)

Type k � 4 5 6 k � 4 5 6 k � 4 5 6

unnormalized 3.25 3.34 3.28 17.8 17.1 16.2 0.058 0.057 0.053

buf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

bufp2 0.97 0.98 0.98 0.98 0.97 0.95 0.95 0.95 0.94

bufm 0.97 0.98 0.98 0.93 0.93 0.93 0.91 0.91 0.91

Table 6.3: Transistor area, delay, and area�delay results using different buffer types.

this increase to 1% on average, or a maximum of 5% for the worst-case individual circuit.8

This increase would be zero, except that the CLB output pins still use the buf switch to

connect with pass transistor tracks.

There is some variation among the ignoring fanout columns for the three different

switch types. This variation comes from three sources. First, the switches have different

intrinsic delays, so bufm and bufp2 are expected to be slower. Second, the benchmark

circuits are rerouted for each switch type. This change to the routing solution may signifi-

cantly alter the delay result for each circuit; the necessity of rerouting is explained below.

Third, the delay of the bufm switches is scaled according to the number of inputs, but this

is not done for bufp2 switches.

The need to reroute the benchmark circuits for each different switch type is based on

a practical assumption. Since the router is timing-driven, it must use the delay parameters

which match the switch type so it can make proper delay-oriented tradeoffs while rout-

ing. The use of the same routing solution would create a case where some solutions are

generated with the wrong delay parameters. This is the same as inserting arbitrary ‘fudge

factors’ in the heuristics.

8Although a similar result is shown for bufp2, recall that fanout at the bufp2 switches is computed using

the idealized fanout-of-one case and is not as accurate.

6.5. BUFFER/PASS ARCHITECTURES 169

The normalized area and delay results in Table 6.3 show that the new switches save

2–3% in transistor area and up to 7% in delay. It is unexpected that both bufp2 and bufm

have similar transistor area costs because the area profile in Table 6.1 shows bufp2 to be

smaller. However, bufm saves more area from output pin merging, leading to similar area

results. In terms of delay, bufm saves 7% compared to only 2–5% with bufp2. The bufm

switch is better due to improved modelling: switches at wire midpoints are faster because

they have a reduced maximum fanin. In comparison, the bufp2 switch cannot improve as

much because it is given a fixed delay for all switches. The different treatment for these

switches is not entirely fair, but it is an approximation made to compensate for bufp2 being

slower under fanout. Overall, the bufp2 and bufm switches improve the area�delay product

by 5% and 9%, respectively.

Summary

The average delay increase caused by fanout is reduced from 5% with buf to 1% with bufm.

In the worst-case circuit, this delay increase is reduced from 16% to only 5%. Compared to

buf, the bufm switch improves both area and delay. On average, area is reduced by 2–3%,

delay is reduced by 7%, and area�delay is reduced by 9%. Although equivalent in area, the

bufm switch is superior to bufp2 in terms of delay. For this reason, bufm will be used in the

remainder of this chapter.

6.5 Buffer/Pass Architectures

In this section, numerous routing architectures that allow a signal to be switched by a

combination of buffers and pass transistors are presented and evaluated. First, two switch

schemes that strictly alternate between buffers and pass transistors are introduced. This

concept is generalized to cycle among a collection of G different switch types. Then, some

less-structured buffer/pass architectures are described. All architectures considered here

are derived from the baseline architecture given in Section 6.2.3. by replacing some of the

buffers with pass transistors, with the intention of reducing both area and delay.

170 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

a) alt1 scheme (better delay)

b) alt2 scheme (better area)

buffered
switch

unbuffered
switch

wire always
buffered

wire always
unbuffered

wire always
buffered

buffered
switch

unbuffered
switch

wire always
unbuffered

Figure 6.20: Key difference between two alternating schemes.

a) alt1 scheme b) alt2 scheme
(SRAM bits removed for clarity)

Figure 6.21: Tile and switch details of alternating schemes with length 1 wires.

a) alt1 scheme

track twisting in pairs for alternating buffers

wire midpoint
connections

track twisting in groups to form longer wire segments

b) alt2 scheme

Figure 6.22: Extra track twisting is necessary to form longer wires (length 2 shown).

6.5. BUFFER/PASS ARCHITECTURES 171

6.5.1 Alternating Buffer/Pass Schemes

Two ways of replacing buffers with pass transistors are shown in Figure 6.20. Both of

these schemes allow long connections to alternate between the two switch types. In the

first scheme, alt1, two buffers which are normally in parallel but drive opposite directions

will have one of the buffers replaced. In the second scheme, alt2, an entire group of buffers

is replaced at every other switch block location.

With a small modification to switch block topology, both of these schemes can be im-

plemented in a single layout tile. To produce alt2, start with two 4-wire cliques, such as

those shown in Figure 6.18, and twist the straight connections in track pairs, as shown in

Figure 6.21b.9 The alt1 scheme requires this track-pair twist plus a reorganisation of the

turning connections. A detailed example of this is shown in Figure 6.21a, but a generalisa-

tion will be presented in more detail later. A more abstract representation of the differences

between these two schemes is given in Figure 6.22. Notice that this figure shows how an

additional type of twisting is required with both schemes to create longer wire segments.

The alt1 scheme promises greater speed at the expense of slightly higher area. With this

arrangement, some wires are always driven by only buffers, while others are always driven

by only pass transistors. This way, a long connection will always strictly alternate between

being on a buffered wire and an unbuffered wire. It is potentially faster because loading

occurs close to the buffer source: i) all pass-transistor fanout occurs as a signal leaves

the buffered wire, and ii) all of the diffusion capacitance from unused buffer switches is

connected to the same buffered wire. Note that this scheme uses the pass transistor in only

one direction, that which is opposite to the buffer. This is enforced by the router software.

In comparison, the alt2 scheme uses less area because it takes advantage of both switch-

ing directions of a pass transistor. This reduces the number of pass transistors and SRAM

bits required. It does not have the full delay advantages of alt1 because of higher loads,

some of which are located farther from the buffer.

9Interestingly, this twisting creates a universal switch pattern for alt2.

172 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

f1 f2

f3f4

f6
f5

f1�g� = �g�1� mod G

f2�g� = �G�g�1� mod G

f3�g� = �g�1� mod G

f4�g� = �G�g�1� mod G

f5�g� = �g�1� mod G

f6�g� = �g�1� mod G

Figure 6.23: Switch block to evenly cycle through a sequence of switches.

0 1

0 1

0

1

0

1

0 1 2

0 1 2

0

1

2

0

1

2

Figure 6.24: Switch block examples cycling among 2 or 3 switch types.

Wire Midpoint Details

The modifications described above apply to wire endpoints only. The connections at wire

midpoints, such as those indicated in Figure 6.22, must be considered separately. For

the alt1 scheme, the switch type used at midpoint connections is easily determined by

examining whether the wire is considered to be buffered or unbuffered. Hence, alt1 strictly

alternates between the two switch types no matter where turns are made. For the alt2

scheme, such strict alternation is not possible. In this case, midpoint connections must

alternate between using buffers and pass transistors along the length of a wire. In our

implementation, the alternation is determined from the black and white checkered pattern

described in Chapter 7.

6.5. BUFFER/PASS ARCHITECTURES 173

Generalising: Any Switch Sequence

The switch block changes for alt1 can be generalised so that long connections will cycle

among any sequence of switches. For example, one possible sequence would be a buffer

followed by two pass transistors. This strict cycling continues in the presence of turns,

provided that the turns are made at wire endpoints only.10

To accomplish this cycling among a group of G switch types, the tracks in a channel are

divided into G groups. These groups are then interconnected as follows. Tracks in group g

are connected to tracks of group f �g� across the S block. The f �g�mapping functions differ

depending on the turn direction. These turn directions and the corresponding mapping

functions are shown in Figure 6.23. In this environment, switch type g is used for all

connections to group g. Two examples of this switch block, for connecting two or three

different switch types, are given in Figure 6.24. The specific assignment of which tracks

are connected on different sides does not matter, provided the tracks are each from the

proper group.

6.5.2 Other Possible Buffer/Pass Schemes

One alternative to the above two alternating schemes is to replace only midpoint connec-

tions with pass transistors. Even more area can be saved if only endpoint connections

are replaced with pass transistors instead. Other combinations like this are possible as

well, forming a list of numerous switching schemes that should all reduce area (by replac-

ing buffers with pass transistors) and may reduce delay (by combining buffered-only with

buffer/pass combinations).

6.5.3 Buffer/Pass Schemes Considered

The buffer/pass switching schemes evaluated in this chapter involve assigning all combi-

nations of the following switch types to endpoint and midpoint connections. The specific

combinations of schemes are:

� midpoints: buffered, pass, alt1, or alt2

10Strict cycling at wire midpoints with more than two switch types is an open problem.

174 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

� endpoints: buffered, pass, alt1, alt2, strbuf turnpass, or strpass turnbuf.

The last two schemes, strbuf turnpass and strpass turnbuf, keep buffers on only straight

or only turning connections, respectively, while the other connections are replaced with

pass transistors.

Many combinations of the above schemes do not strictly enforce buffer/pass alternation

for long, straight connections. However, delay can still be reduced because most of them

do create the opportunity for alternation as a connection executes turns.

6.5.4 Experimental Results

The results of routing experiments using the switch schemes listed in the previous section

are presented in Table 6.4. The entries in this table are normalized to the baseline routing

architecture using bufm switches at both midpoint and endpoint locations.

Comparing buf and bufm Switches

The first set of rows, numbered from 1 to 8, compare the performance of the buf and

bufm switches when only midpoint switches are replaced with pass transistors. As ex-

pected, more area is saved as more buffers are replaced, from alt1 to alt2 to pass. There

is greater savings with 4-input LUTs, since a greater proportion of its area is consumed by

the routing. Most of these buffer/pass schemes have higher delay: the buf switch increases

delay by 7–11%, while bufm increases it by only 0–3%. This consistent increase is unex-

pected because buffer/pass schemes should improve delay of long connections. In terms

of area�delay, the delay increase of the buf switch dominates, making it less efficient (� 1)

than the baseline. In contrast, the bufm switch is more efficient (� 1).

Delay of Remaining Buffer/Pass Schemes

The second set of rows, from 9 to 24, evaluate the remaining buffer/pass schemes. Due to

its superior delay performance, only bufm switch results are included in this portion of the

table. As well, endpoint switches using only pass transistors are excluded due to very poor

6.5. BUFFER/PASS ARCHITECTURES 175

Endpoint Midpoint Buffer Area (�106T) Delay (ns) Area�Delay (T�s)

Row Switches Switches Type k � 4 5 6 k � 4 5 6 k � 4 5 6

unnormalized 3.16 3.27 3.23 16.6 16.0 15.0 0.0523 0.0522 0.0485

normalized

1 buffered buffered bufm 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 buffered alt1 bufm 0.98 0.98 0.99 1.03 1.00 1.00 1.01 0.98 0.99

3 buffered alt2 bufm 0.97 0.97 0.98 1.02 1.03 1.00 0.99 1.00 0.98

4 buffered pass bufm 0.93 0.94 0.96 1.02 1.03 1.02 0.95 0.97 0.98

5 buffered buffered buf 1.03 1.02 1.02 1.08 1.07 1.08 1.10 1.10 1.10

6 buffered alt1 buf 0.99 0.99 1.00 1.08 1.10 1.10 1.07 1.09 1.10

7 buffered alt2 buf 0.98 0.99 0.99 1.09 1.10 1.10 1.07 1.09 1.09

8 buffered pass buf 0.94 0.95 0.96 1.09 1.10 1.11 1.02 1.04 1.07

9 alt1 buffered bufm 0.99 0.99 1.00 1.03 1.03 1.03 1.02 1.02 1.03

10 alt1 alt1 bufm 0.96 0.97 0.98 1.04 1.06 1.05 0.99 1.02 1.03

11 alt1 alt2 bufm 0.96 0.96 0.97 1.05 1.06 1.07 1.01 1.02 1.04

12 alt1 pass bufm 0.91 0.93 0.95 1.12 1.12 1.12 1.03 1.04 1.06

13 alt2 buffered bufm 0.98 0.98 0.99 1.03 1.02 1.02 1.01 1.00 1.00

14 alt2 alt1 bufm 0.95 0.96 0.97 1.06 1.07 1.07 1.00 1.02 1.03

15 alt2 alt2 bufm 0.94 0.95 0.96 1.05 1.06 1.06 0.99 1.01 1.02

16 alt2 pass bufm 0.90 0.92 0.94 1.09 1.09 1.11 0.97 1.00 1.04

17 strbuf turnpass buffered bufm 0.99 0.99 0.99 1.06 1.07 1.09 1.05 1.06 1.08

18 strbuf turnpass alt1 bufm 0.96 0.96 0.97 1.11 1.13 1.16 1.06 1.09 1.12

19 strbuf turnpass alt2 bufm 0.95 0.96 0.97 1.12 1.13 1.12 1.06 1.08 1.08

20 strbuf turnpass pass bufm 0.91 0.92 0.94 1.18 1.18 1.19 1.07 1.09 1.12

21 strpass turnbuf buffered bufm 1.00 1.00 1.00 1.05 1.05 1.05 1.04 1.05 1.04

22 strpass turnbuf alt1 bufm 0.97 0.98 0.98 1.10 1.10 1.12 1.07 1.08 1.10

23 strpass turnbuf alt2 bufm 0.96 0.97 0.98 1.09 1.10 1.09 1.05 1.07 1.07

24 strpass turnbuf pass bufm 0.92 0.94 0.95 1.14 1.13 1.16 1.06 1.06 1.11

Table 6.4: Area, delay, and area�delay results using different switch schemes.

delay results (20–70% increases). In the following discussion, the terminology alt1-pass

scheme refers to interconnect using alt1 endpoint switches and pass midpoint switches.

All of the remaining buffer/pass schemes are slower than the buffered-buffered

scheme. The alt1-buffered and alt2-buffered versions have the lowest delay increase

of 2–3%. As expected, the alt1-alt1 scheme is slightly faster (by 1%) than alt2-alt2. How-

ever, the alt1-pass scheme is up to 3% slower than alt2-pass. The strbuf turnpass and

strpass turnbuf schemes perform the worst (except for the excluded pass-other cases) at

about 5–19% slower.

176 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

Endpoint Midpoint Buffer

Switches Switches Type Delay (ns)

buffered buffered buf 8.4

buffered buffered bufm 8.6

alt1 alt1 bufm 7.8

Table 6.5: Delay of a long connection across a PLD with 24�24 tiles.

Understanding Delay Increases

A major motivation for considering buffer/pass switching is to reduce delay, yet none of

the schemes explored here are faster than the buffered-buffered interconnect. Routing the

benchmark circuits with significantly more tracks per channel (i.e., Wmin� 40%) does not

improve delay either. As an initial step to investigate this issue, the Elmore delay calcula-

tions in VPRx are first tested with a simple circuit to see whether any delay improvement

can be seen from a buffer/pass scheme.

The test circuit contains a single long connection between opposite corners of a PLD

with 24� 24 CLBs. A typical routing solution for this circuit is shown in Figure 6.25.

The pad-to-pad delays for this circuit are computed by VPRx and listed in Table 6.5. As

expected for a netlist with no fanout, bufm is 2% slower than buf. Also, the buffer/pass

switching version, alt1-alt1, is nearly 10% faster than the buffered-buffered version. This

shows that the delay model is capturing the expected timing differences.

Further investigation with some of the benchmark circuits shows that they often contain

a number of high-fanout nets on the critical path. Under fanout, buffer/pass connections

slow down and this can swamp any expected gain. Keeping some purely-buffered tracks

would be one way to route these high-fanout nets with lower delay. This option is not

explored here but is left to future investigation.

Area and Area�Delay of Remaining Buffer/Pass Schemes

Of the buffer/pass schemes shown in rows 1–4 and 9–24, those using pass require the least

area, followed by those using alt2, alt1, then buffered. Interconnect using alt2-alt2 is

6.5. BUFFER/PASS ARCHITECTURES 177

Routing succeeded with a channel width of 64.

Figure 6.25: Test circuit and routing solution obtained using buf switches.

2% smaller than using alt1-alt1. The strbuf turnpass and strbuf turnpass schemes are

unable to save more area than alt1-pass or alt2-pass, which use the least.

Only a few of the schemes in rows 9–24 are able to improve area�delay, and this occurs

only for 4-input LUTs. The best are alt2-pass, alt2-alt2 and alt1-alt1. In general, the

alt-alt schemes keep area�delay increases within 6%, but the strbuf and strpass schemes

increase it by up to 12%.

Summary

The best overall switching schemes are summarized in Table 6.6. Unlike the previous table,

these results are normalized to the buf switch results to illustrate the total savings realized.

The best delay scheme uses only buffered interconnect, but 7% is saved using the bufm

switch. The best area�delay scheme uses midpoint pass transistors, achieving an 11–14%

savings. The best area scheme saves 8–13% yet sacrifices only 1–2% in delay. The use of

buffer/pass interconnect does not improve delay, but this is likely due to high fanout nodes

that would be better mapped onto purely buffered tracks. This could be an avenue of future

work.

178 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

Endpoint Midpoint Buffer Area (�106T) Delay (ns) Area�Delay (T�s)

Criterion Switches Switches Type k � 4 5 6 k � 4 5 6 k � 4 5 6

unnormalized 3.25 3.34 3.28 17.8 17.1 16.2 0.058 0.057 0.053

normalized

baseline buffered buffered buf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

best delay buffered buffered bufm 0.97 0.98 0.98 0.93 0.93 0.93 0.91 0.91 0.91

best area�delay buffered pass bufm 0.91 0.93 0.94 0.95 0.96 0.94 0.86 0.89 0.89

best area alt2 pass bufm 0.87 0.90 0.92 1.01 1.02 1.02 0.88 0.91 0.95

Table 6.6: Best buffer/pass schemes compared to the baseline.

6.6 Conclusions

Using a level-restoring circuit instead of gate-boosting is an effective way to solve the

static power dissipation problem. When employing this circuit technique, signal falltime

can become dominant. As well, dangerous stuck-high states may be reached when buffers

cannot overpower a distant level-restoring circuit. This condition, described as the level-

restoring pulldown problem, must be solved in large PLDs by carefully designing the router

software and/or the architecture.

The fastest routing buffers use three buffer stages. This is more likely a result of the

inverting property of the buffer, rather than lower intrinsic delay. A larger NMOS transistor

on the sense stage helps speed signalling, since the full rail voltage of Vdd is not easily

reached through NMOS pass transistors. Also, equal-size NMOS and PMOS drive-stage

transistors are sufficient to reach low delay. Using a larger PMOS transistor, such as the

traditional choice of twice the NMOS transistor width, consumes more area but does not

effectively increase drive strength. The limiting factor during pullup is the NMOS pass

transistor used as the tristate control.

Buffer intrinsic delays are sensitive to input slew rates. The slew rate degrades as a

signal passes through more pass transistors (and wires). Consequently, the intrinsic delay

of size 6 buffers triples and the intrinsic delay of size 16 buffers doubles as slew rates

degrade by travelling through up to eight wires connected in series with pass transistors.

The calculated error for these cases is up to 8% of total net delay. This is small enough to be

ignored in the first-generation tools used here, but timing analyzers and second-generation

routing tools should probably account for this effect,

6.6. CONCLUSIONS 179

A search for the optimum switch size, in terms of area and area�delay, with a wide

range of tile lengths produces an unexpected result. It is found that a fixed buffer size

obtains within 5% of the best possible delay and area�delay for all of these tile lengths.

Even for small tile lengths of less than 150–200µm, the impact of using a fixed switch size

on delay or area�delay is less than 5%. In general, however, the best delay is reached by

scaling switches sub-linearly with tile size using an exponent of roughly 0.2.

Modelling buffer fanout in VPRx increases delay results by 5% on average, or 16%

in the worst case. Three new switches, bufm, bufp and bufp2, have been presented which

nearly eliminate this increase by avoiding fanout at the buffer source. The bufp switch is

the fastest switch, but it is typically larger than buf. The bufp2 is more a area-efficient

version, but it is slower. The bufm switch is faster than bufp2 and just as area-efficient, so

it is the preferred choice. All of the new switches are more area efficient than the previous

ones for large buffer sizes. The bufm switch is also more efficient when higher flexibility

(fanin) is required. This produces an area savings if the CLB output pins are connected

directly into the routing switches via output pin merging.

Replacing some buffers with pass transistors creates an interconnect capable of alter-

nating signals between buffers and pass transistors. In doing this, area savings is guaran-

teed. Even though alternating between these switches produces up to 25% faster delays in

HSPICE, no delay improvement is seen in the final routed circuits. Instead, a delay increase

of up to 5% is typical, but increases up to 70% are observed in some poor architectures.

Hence, proper buffer/pass design is essential to avoid these large increases. Although no

direct proof is given, the increase is presumably caused by fanout loading; the delay im-

provement is only expected for long, single-fanout nets. Further investigation is required

to realise delay improvement.

Overall, the architectures of choice are summarised in Table 6.6. To illustrate the to-

tal area and delay savings realised with the new switch designs, these results have been

normalised to the baseline architecture results. The best delay scheme uses only buffered

interconnect with the bufm switch and reduces delay 7%. The best area�delay scheme uses

midpoint pass transistors, achieving an 11–14% savings. The best area scheme saves 8–

13% yet sacrifices only 1–2% in delay. Due to the use of fast, wide pass transistors in the

180 CHAPTER 6. ROUTING SWITCH CIRCUIT DESIGN

unmodified portion of the interconnect, all of these results are deemed to be conservative

estimates.

6.7 Future Work

The improvement from replacing buffered interconnect with a mixture of buffers and pass

transistors is diluted due to fanout at the pass transistors. It would be interesting to observe

whether delay increases can be prevented by keeping some purely-buffered tracks. Alter-

natively, the router could be altered to encourage fanout at buffered switches instead where

it will have a minimum impact on delay. The present implementation hides this detail from

the router when it is expanding the wavefront. These techniques may produce an overall

delay savings up to 10% with the conservative architecture assumed here, or up to 25% if

a more aggressive design is used.

Tristate buffers considered in this chapter use a single NMOS pass transistor to reach

high impedance state. This reduces drive strength and increases delay. Other buffer designs

with improved drive strength could be investigated to reduce delay (possibly at the expense

of area). Unidirectional wires, such as those found in Virtex I, could also be examined.

The circuit design issues here do not consider dynamic power, yet power use is an ever-

increasing problem as devices get larger and larger. The interconnect contains significant

capacitance, so methods to reduce power should take this into consideration. For example,

low-swing circuits such as those presented in [142] could be used to cut energy use in half.

Also, a robust solution to the level-restoring pulldown problem is required in pass-

transistor dominated interconnect. One possible solution is simply creating buffered

boundaries at regular intervals to limit maximum fanout of nets routed with pass tran-

sistors.

Chapter 7

Switch Block Design Framework

Previous switch block design has focused on the analysis of individual switch blocks or

the use of ad hoc design with experimental evaluation. This chapter presents an analytical

framework which considers the design of a continuous fabric of switch blocks containing

any length of wire segments. The framework is used to design new switch blocks which

are experimentally shown to be as effective as the best ones known to date. With this

framework, we hope to inspire new ways of looking at switch block design.

7.1 Introduction

Over the past several years, a number of different switch block designs have been proposed

such as those shown in Figure 7.1. PLDs such as the Xilinx XC4000-series [31] use a

switch block style known as disjoint. Some alternatives to this style are commonly known

as universal [52] and Wilton [63]. These latter two topologies require fewer routing tracks

and use less transistor area than the disjoint pattern with interconnect containing single-

length wires. However, with longer wire segments they use more switches per track and

often require more transistor area overall [19]. The Imran block [64, 65] reduces this

area overhead by modifying the Wilton pattern to use the same number of switches as the

disjoint pattern.

One notable difference between these switch blocks is their design methodology.

The universal switch block is analytically designed to be fully routable, when consid-

181

182 CHAPTER 7. SWITCH BLOCK DESIGN FRAMEWORK

ered in isolation, for all two-point nets. For this reason, it is said to be locally opti-

mal. Fan et al [60, 62] extends this local optimality to include multipoint nets to create

a hyperuniversal switch block. Both of these blocks rely on reordering nets at every switch

block, so their local optimality does not extend to the entire routing fabric. In comparison,

the Wilton and Imran switch blocks are examples of ad hoc design with experimental val-

idation. The Wilton switch pattern changes the track number assigned to a net as it turns.

This way, two different global routes may reach two different routing tracks at the same

destination channel. This forms two disjoint paths, a feature called the diversity of a net-

work. The Wilton and Imran designs introduce the notion that a switch block must consider

its role as part of a larger switching fabric, including the effects of long wire segments.

The above two methods have produced switch blocks which perform well, but there is

no known formal method to design a switch block while considering the overall routing

fabric. In pursuit of this goal, this chapter introduces an analytical framework to design

switch blocks which considers both long wire segments and the interaction of many switch

blocks connected together. This framework includes a restricted switch block model which

allows one to analyse, measure and control the diversity of the network. This framework is

used to design an ad hoc switch block named shifty and two analytic ones named diverse

and diverse-clique. These new switch blocks are very diverse, and routing experiments

show they are as effective as the others.

The main purpose of the framework is to simplify the organisation of the interconnect

fabric. This leads to a better understanding of how long wire segments and different switch

locations affect the global fabric, a feature often overlooked in the design of other switch

blocks. This framework and the switch blocks designed with it are intentionally simple. By

building upon the simple foundations of the framework, it may be possible to design more

efficient and complex networks, such as those containing many different wire segment

lengths.

7.2. DESIGN FRAMEWORK 183

0

1

2

3

0 1 2 30 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

Wiltonuniversaldisjoint

0

1

2

3

4

0

1

2

3

4

0 1 2 3 4 0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

Figure 7.1: Disjoint, universal and Wilton switch block styles.

7.2 Design Framework

This section describes a new switch block framework, being composed of a new switch

block model, permutation mapping functions, and a few basic assumptions. As well, an

option to consider using only commutative permutation mapping functions is presented.

7.2.1 Switch Block Model

The traditional model of a switch block draws a large box around the intersection of a

horizontal and vertical routing channel. Within the box, switches connect a wire on one

side to any wires on the other three sides. Long wire segments pass straight across the

switch block, but some track shifting is necessary to implement fixed length wires with one

layout tile. Figure 7.2a) presents this model in a new way by partitioning the switch block

into three types of subblocks: endpoint (fe), midpoint (fm), and midpoint-endpoint (fme)

subblocks. The endpoint (midpoint) subblock is the region where the ends (midpoints) of

wire segments connect to the ends (midpoints) of other wire segments. The fme subblock

connects the middle regions of some wires to the ends of others. A switch placed between

wires on two sides automatically falls into one of these three types of subblocks.

184 CHAPTER 7. SWITCH BLOCK DESIGN FRAMEWORK

The traditional model in Figure 7.2a) is too general and makes diversity analysis quite

complex. This can be simplified by restricting switch locations to smaller regions than what

is allowed by the traditional model, producing the new models in Figure 7.2b) through d).

The crossing locations model of Figure 7.2b) allows some midpoint-to-endpoint connec-

tions, but only if the wires naturally cross. The midpoint/endpoint segregation model of

Figure 7.2c) removes the ability to connect midpoints to endpoints entirely. This model is

used implicitly by the Imran block [64, 65] to reduce the number of switches used by the

Wilton block with long wire segments. The last model, called the track group model, is the

one recommended for use within this framework.

The track group model partitions wires into track groups according to their wire length

and starting points. This can be seen by illustration at the top of Figure 7.3, where four

switch blocks are shown with length-four wires. In this figure, the path of a horizontal

wire is highlighted in green to show how it passes through a different subblock at every

switch block. Notice that the wires all starting at the same location as the green wire

connect in the same subblocks: this is the track group. Similarly, although only one switch

block is shown, the red wire passes through different subblocks in the vertical direction to

form vertical track groups. Due to the organisation of the switch locations, the different

track groups always remain disconnected from each other, establishing their independence.

Hence, it is sufficient to examine a single track group.

In Figure 7.3, the midpoint subblocks are labelled fm�i, where i is a position between 1

and L� 1 along the wires of length L � 4. Hence, switch locations are restricted to L� 1

midpoint subblocks and one endpoint subblock. The lower part of Figure 7.3 illustrates

a single track group, containing the red and green wires, in a fabric of 2� 4 logic blocks

(CLBs). The other three track groups (not shown) are staggered to use the remaining three

possible starting points. As mentioned earlier, there are no connections between the track

groups.

This model is somewhat restrictive, but it can still represent many switch blocks, e.g.,

Imran, and routing experiments (which will be fully described below) indicate it has good

performance. As well, early experiments that did not restrict switches to only the fm�i

subblocks did not produce better results. By disconnecting wires that have different starting

7.2. DESIGN FRAMEWORK 185

CLB

fmfme

fmefe

fm,3

fm,2

fe

CLB

fm,1

b) crossing locations model a) traditional model

c) midpoint/endpoint segregation model d) track group model

fm

fe

CLB

fm

fme

fmefe

CLB

Figure 7.2: Switch block models containing subblocks.

points and different lengths, this model explicitly forces track groups to be in separate

routing domains. This simplifies analysis and design because each track group can be

treated separately.

7.2.2 Permutation Mapping Functions

Previous work suggests only a small number of switches need to be placed within a switch

block. Pioneering work by Rose and Brown [42] defined switch block flexibility, or the

parameter Fs, as the number of other wires connecting to each wire in a block. That work

found that Fs � 3 is the lowest flexibility that remains routable with single-length wire

segments. Other work by Betz et al [19] and Masud [65] with longer wire segments uses

Fs � 3 at wire endpoints and Fs � 1 at wire midpoints. They also found that switch blocks

which use slightly more switches than this (i.e., Wilton and universal) result in higher

transistor area overall. As well, our experience with Fs � 3 (see Appendix A) at endpoints

186 CHAPTER 7. SWITCH BLOCK DESIGN FRAMEWORK

fm,3

fm,2

fe

fm,3

fm,2

fe

fm,1

fm,3

fm,2

fe

fm,1

fm,3

fm,2

fe

fm,1

fm,1 fm,2 fm,3

fm,1 fm,2 fm,3

fe

fe

fm,1

Figure 7.3: Four switch blocks (above) and a portion of the switching fabric created by one

track group (below).

is that a few more tracks but less transistor area is needed. This suggests 6W and W are

reasonable upper bounds for the number of switches in endpoint and midpoint subblocks,

respectively.

Given these upper bounds, switch locations can be represented by a permutation map-

ping function between each pair of sides. The different mapping functions and their implied

forward direction are shown in Figure 7.4. In this figure, fe�i�t�, or simply fe�i, represents

the mapping function for an endpoint turn of type i. A switch connects the wire originating

at track t on one side to track fe�i�t� on the destination side. Turns in the reverse direction

to those indicated are represented as f�1
e�i such that f�1� f �t�� � t.

Similarly, fm�i is a mapping function representing a midpoint turn at position i along

the length of a wire, with the most South/West point being the origin at position i � 0.

The right side of Figure 7.4 illustrates the different midpoint subblocks in a fabric of 2�4

CLBs with a single track group. The other three track groups would be similar, but they

are independent and have staggered starting locations relative to the track group shown in

the figure. Of course, there are no connections between the track groups.

7.2. DESIGN FRAMEWORK 187

fm,1 fm,2 fm,3 fe

fe
fm,1 fm,2 fm,3

fe,1 fe,2

fe,3fe,4

fe,6
fe,5

0 1 2 3

0 1 2 3

0

1

2

3

0

1

2

3

Figure 7.4: Mapping functions for endpoint and midpoint subblock turns.

Mapping universal

Function disjoint standard alternate 1 alternate 2 Wilton

fe�1�t� t W � t�1 t t W � t

fe�2�t� t t W � t�1 t t�1

fe�3�t� t W � t�1 t t W � t�2

fe�4�t� t t W � t�1 t t�1

fe�5�t� t t t W � t�1 t

fe�6�t� t t t W � t�1 t

Table 7.1: Mapping functions for some switch block styles.

Examples of mapping functions for various switch blocks are shown in Table 7.1. Each

of these functions are modulo W , where W is the track group width. Also, note that it is

common for connections straight across a switch block (E–W or N–S) to stay in the same

track, so it is usually assumed that fe�5 � fe�6 � t.

7.2.3 Additional Assumptions

In addition to the explicit assumptions stated above, there are a few implicit ones being

made as well. It is assumed that the subblocks (and the switch blocks) are square with

W tracks on each side. Although non-square blocks might be useful in some applications,

square blocks form a more area-efficient interconnect fabric [19, 79].

As well, it is assumed that the number of switches are uniformly distributed over each

wire and each subblock. This means there is a one-to-one correspondence between the

originating track and the destination track. Since f �1� f �t�� � t, it is also presumed that

188 CHAPTER 7. SWITCH BLOCK DESIGN FRAMEWORK

each switch is bidirectional.

Finally, each track group is assumed to be homogeneous, consisting of only one wire

length and one switch type. It is possible to relax these assumptions, but this option is not

explored here. For example, one wire length can be used for vertical wires and another can

be used for horizontal wires.

7.2.4 Commutative Switch Blocks

The mapping functions of the universal and Imran switch blocks involve twists where

the function is of the form f �t� � W � t � c mod W . Due to the twist, or �t portion,

these functions are not commutative. For example, consider the two mapping functions

fi�t� � 7� t and f j�t� � 4� t for a fixed W � 8. To see that the composition of these

functions is not commutative, observe that f i� f j�t�� �� f j� fi�t��:

fi� f j�t�� � 7� �4� t� � 3� t

f j� fi�t�� � 4� �7� t� ��3� t � 5� t�mod8��

Although some mapping functions may not be commutative, it is possible to select all

of the functions so they are commutative with composition, leading to the definition below.

Definition. A switch block is commutative if every pair of its mapping func-

tions is commutative with composition. Hence, it is required that f i� f j�t�� �

f j� fi�t�� for every pair of mapping functions, fi�t� and f j�t�, in the switch

block.

Commutative switch blocks are an optional part of the framework, but they will be used

throughout this chapter.

To help distinguish between commutative and non-commutative switch blocks, con-

sider the example shown in Figure 7.5. In this figure, two paths are compared in two dif-

ferent architectures: the left architecture uses commutative switch blocks, but the right one

does not. In both cases, the destination track of the upper path is fe�2� fe�4� fe�3� fe�1�t����,

while the lower path is fe�3� fe�1� fe�2� fe�4�t����. In a commutative architecture, both paths

7.3. FRAMEWORK APPLICATIONS 189

commutative

f1

f1

f3

f3

f4

f2

f4

f2

f1

f1

f3

f3

f4

f2

f4

f2

non-commutative

Figure 7.5: Turn order is not important in commutative switch blocks.

can be rewritten as fe�1� fe�2� fe�3� fe�4�t����. These necessarily reach the same track. How-

ever, in a non-commutative architecture, the operations cannot be reordered and the paths

may reach different tracks. This example suggests that commutative architectures are less

diverse. However, results presented later in Section 7.4 will demonstrate that commutative

switch blocks can be made quite diverse and are as routable as the non-commutative Imran

block.

The ability to commute the permutation mapping functions is useful because it sim-

plifies analysis of the network: the order in which turns are made is unimportant, so a

number of alternative paths become equivalent. In Section 7.3.2, this will significantly re-

duce the search space for designing diverse switch blocks. Another use for commutative

switch blocks is to reduce an arbitrary number or sequence of turns to a canonical form

where only the number of turns of each type is important. This may assist the genera-

tion of alternative paths to reach a desired destination track without performing complex

detailed routing. For example, this allows domain negotiation [54], a technique used to

accelerate net routing by checking for available tracks near the input pins, to be applied in

architectures with switch blocks other than disjoint.

7.3 Framework Applications

To illustrate the use of the framework just described, this section presents the design of

various switch blocks, first using an ad hoc method and then using an analytical method.

190 CHAPTER 7. SWITCH BLOCK DESIGN FRAMEWORK

Each design involves the selection of permutation mapping functions for a switch block.

For simplicity, all examples assume length four wires are used in the interconnect.

7.3.1 Application: shifty and universal-L Switch Block Designs

The first application of the new framework is the design of a commutative switch block

similar to Imran but without the non-commutative twists. The following mapping functions

describe the new switch block: fe�1�t�� t�1, fe�2�t�� t�3, fe�3�t� � t�2, fe�4�t�� t�4,

and fm�i � t �mod W �. This block is named shifty because each turn involves a shift from

one track number to another by a constant amount. The constant values are chosen to

be small because the arithmetic is always done modulo W . This avoids fe�1 from being

equivalent to fe�4, for example, except with certain small W values.

Other switch blocks can also be adopted within this framework. For example, the

disjoint and Imran switch blocks naturally conform to the track group model already. As

well, suppose the universal pattern is applied only at endpoint subblocks and the iden-

tity mapping fm�i � t is used at midpoint subblocks. With this new pattern, universal-L,

each subblock can connect any set of two-point nets that obey basic bandwidth constraints.

When long wire segments are used, the universal-L pattern requires less transistor area

than the universal pattern used within VPR. This savings is achieved in the same way that

Imran improves Wilton: the number of switches per track is reduced by enforcing Fs � 3

at endpoints and Fs � 1 at midpoints.

Checkered Layout for Increased Diversity

To create additional diversity, it is possible to use two different switch block designs (two

layout tiles) in a checkered layout pattern. If one switch block design is assigned to the

white square locations, a different one can be used at the black square locations. These

black square switch blocks will be characterised by their own mapping functions, g.

To see the impact on diversity, consider the routing example in Figure 7.6 with single-

length wire segments. Without checkering, the two paths shown always reach the same

track, f3� f1�t��. This is always true, regardless of which switch block is used. With the

checkering of two switch blocks, the two paths may reach two different tracks, g3� f1�t��

7.3. FRAMEWORK APPLICATIONS 191

g1

f1
f1

f3 f3

f1

f3
g3

g1

(same track) (different tracks)

Figure 7.6: Checkering two switch blocks can increase diversity with single length wires.

a) checkering for length 1 wires:
all wires end at both types

of switch blocks.

b) checkering for length 4 wires:
all wires end at both types

of switch blocks.

c) checkering for length 1 & 4 wires:
all length 4 and most length 1 wires
end at both types of switch blocks.

Figure 7.7: Checkering with different wire lengths.

and f3�g1�t��. With checkering, the f and g functions can be chosen to provide diversity,

even if no diversity exists with f alone (for example, the disjoint switch block).

The checkering pattern must be adjusted when it is used with longer wire segments.

Figures 7.7 a) through c) show three checker patterns that can be used with length 1, length

4, or a mixture of length 1 and 4 wires, respectively. Mixing two different wire lengths

requires the exclusive-or of the two constituent checker patterns. Lines drawn on top of

the checker pattern show how wires if different lengths have their endpoints located in

differently-coloured squares. The pattern shown in Figure 7.7c) is used in this dissertation,

although Figure 7.7b) could have been used as well.

To experiment with checkering, ad hoc selection of g mapping functions for various

switch blocks has been made. The g functions are designed to be slightly different from

their f counterparts. The final f and g mapping functions are shown in Table 7.2. To

preserve the layout sub-structures of the disjoint and universal-L blocks, the ge functions

are chosen so that only the horizontal tracks are re-ordered.

192 CHAPTER 7. SWITCH BLOCK DESIGN FRAMEWORK

Mapping Type of Switch Block

Function disjoint universal-L Imran shifty

fe�1�t� t W � t�1 W � t t�1

fe�2�t� t t t�1 t�3

fe�3�t� t W � t�1 W � t�2 t�2

fe�4�t� t t t�1 t�4

fm�i�t� t t t t

ge�1�t� t �1 W � t�2 W � t�3 t�8

ge�2�t� t �1 t�1 t�3 t�7

ge�3�t� t �1 W � t W � t�2 t�9

ge�4�t� t �1 t�1 t�1 t�6

gm�i�t� t �1 t�1 t�1 t�1

Table 7.2: Switch block mappings used for white (f) and black (g) squares.

7.3.2 Application: Diverse Switch Block Designs

This section will use the design framework to develop commutative switch blocks that

are maximally diverse for all possible two-turn paths. Two different switch blocks will

be designed, diverse and diverse-clique. The latter design is more restricted because its

endpoint subblock uses the 4-wire clique layout structure of the disjoint switch block. This

design is repeated for an architecture containing two layout tiles, f and g, arranged in a

checkered pattern.

Design Space

Let each switch block mapping function be represented by the equations f i�t� � t �

ai mod W or gi�t� � t � bi mod W , where i represents one of the endpoint or midpoint

turn types. Constraining f and g functions in this way explores only a portion the de-

sign space. However, it will be shown that this is sufficient to develop very diverse switch

blocks.

A specific switch block is constructed by selecting a set of values for ai and bi. These

will be chosen to give the switch block maximum diversity for all two-turn paths. Diversity

is measured by the number of pairs of paths that reach different destination tracks in the

7.3. FRAMEWORK APPLICATIONS 193

same channel region.

The set of values or solution set for a particular switch block design instance can be

expressed in vector form as:

xW �
�

ae�1 ae�2 ae�3 ae�4 am�1 am�2 am�3 be�1 be�2 be�3 be�4 bm�1 bm�2 bm�3

�T
�

Since the mapping functions are all modW , a solution set xW is only valid for a specific

value of W .

Enumerating the Path-Pairs

Before counting diversity, all possible paths containing two turns and all pairs of these

paths, or path-pairs, leading to the same channel region must be enumerated. The enumer-

ation of these path-pairs is described below.

There are two basic types of two-turn paths, an S-turn and a U-turn. Figure 7.8 shows

the four possible types of S-turns, and four types of U-turns. Two of the S-turns are com-

mutatively equivalent to the other two, so they can be ignored. This leaves six basic types

of two-turn paths: ENE, ESE, ENW, WNE, NES and SEN, where N, S, E, or W refer to

compass directions.

In Figure 7.8, the paths are shown in pairs separated by a single logic block. This

exemplifies a path-pair using a different global route to reach the same destination. Ad-

ditional path-pairs can be formed by changing the global route to increase the number of

logic blocks between them.

In general, all possible two-turn path-pairs of an infinite routing fabric can be enumer-

ated using the 8�8 grid or supertile in Figure 7.9. The size of this supertile arises from the

length-four wire and the checkering of two layout tiles; without checkering, a 4� 4 grid

is sufficient. Within the supertile, each square is labelled with the pertinent mapping func-

tions for one track group. Other track groups would have a similar, but shifted, labelling.

Paths which fall within the supertile have their mapping function indicated by the label on

that square. Paths which traverse longer horizontal or vertical distances can be ignored:

they will reach another supertile and turn at a switch block equivalent to one already in this

supertile.

194 CHAPTER 7. SWITCH BLOCK DESIGN FRAMEWORK

a) ENE S-turn

NEN S-turn
(equivalent
 to ENE)

c) ENW U-turn f) SEN U-turne) NES U-turnd) WNE U-turn

b) ESE S-turn

SES S-turn
(equivalent
 to ESE)

Figure 7.8: The six different two-turn path types.

To better understand the supertile and equivalent two-turn paths, consider the global

route for an ENE connection. An input is shown entering the bottom row of Figure 7.9

at the lower left edge. The connection travels horizontally, turns North in one of eight

columns A through H, travels vertically some distance, and then turns East into one seven

possible rows labelled out1 through out7. Hence, there are 8 different global routes or

paths (one for each column) to reach each of the seven output channels.

A number of other isomorphic paths can be eliminated using the supertile and commu-

tative property. For example, only a single input row (or column) needs to be considered

for the path origin. Other input rows (or columns) merely rotate the contents of the super-

tile vertically (or horizontally), shifting the starting point to another square. As mentioned

earlier, NEN and SES paths are commutatively equivalent to ENE and ESE paths, respec-

tively, so they can be ignored. Also, all paths in the reverse directions to those shown in

Figure 7.8 are commutatively equivalent (using the inverse mappings) and can be ignored.

For example, a WSW path is commutatively equivalent to an ENE one. Finally, it has been

assumed that connections straight across endpoint switch blocks stay on the same track,

i.e., f5�t� � f6�t� � t. If this is not true, then path-pairs which span more than one supertile

can still be considered equivalent if commutative switch blocks are used.

7.3. FRAMEWORK APPLICATIONS 195

fe fm,2

fefm,2

fe fm,2

fefm,2

fm,1 fm,3

fm,1 fm,3

fm,1fm,3

fm,1fm,3

fe fm,2

fefm,2

fe fm,2

fefm,2

fm,1 fm,3

fm,1 fm,3

fm,1fm,3

fm,1fm,3

in

out1

out2

out3

out4

out5

out6

out7

BA C D E F G H

fm,2gm,1

gm,1fe

out1

in
gm,1 gm,3

gm,3

gm,1gm,3

gm,1gm,3

ge gm,2

gegm,2

ge gm,2

gegm,2

gm,1 gm,3

gm,1 gm,3

gm,1gm,3

gm,1gm,3

ge gm,2

gegm,2

ge gm,2

gm,2

gm,1

ge

Figure 7.9: An 8�8 grid or supertile used for enumerating all two-turn paths.

For maximum diversity, each pair of paths that reach the same output row must reach

different tracks. With 8 possible routes (columns A–H), there are
�8

2

�
� 28 pairs of paths

to be compared. Hence, for all turn types and all output rows (or columns), there are

6�7�28 � 1176 path-pairs to be compared.

Counting Diversity

To detect diversity between a pair of paths, first compute the difference between the two

permutation mappings y � f pathA� fpathB. The path-pair is diverse if y is non-zero. Since

the expression for y is a simple linear combination of constant values from xW , the equa-

tions can be rewritten in matrix form,

y � A �xW mod W

where each row in A is predetermined based on the path-pair being considered. Each entry

in y represents the diversity test result of the corresponding path-pair.

The size of A, and subsequently the search space, has been considerably reduced by

the large number of equivalent paths eliminated due to the commutative property. Other

path types can be considered as well, not just two-turn paths. This requires additional rows

in A and y.

Diversity of a given switch block xW is measured by counting the number of non-zero

196 CHAPTER 7. SWITCH BLOCK DESIGN FRAMEWORK

solutions in y. For the architecture used here, the maximum diversity is 1176, the number

of path-pairs.

Searching Design Space

Rather than solve a large number of equations to maximise the number of non-zero entries

in y, the best result is taken from three types of random and brute-force searches of xW for

each W ranging from 2 to 18. The search techniques are described below.

The first search is an exhaustive search of xW . The second search assigns random values

to xW . The third search is a randomized iterative sequential search. This last search starts

with a random xW and varies one element at a time from 0 to W �1. Before proceeding to

the next element, the current one is fixed at the value that maximises diversity. Additional

passes are done until the solution cannot be improved. At this point, a new random starting

point is chosen.

To find switch blocks at a given W between the range from 2 to 18, each of these

searches is allowed to run for roughly one CPU day.1 The result with the greatest diversity

is kept. For W � 5, the exhaustive search runs to completion and finds a best solution;

all other solutions are the best-found upon termination of the time limit. For intermediate

values of W , the exhaustive search nearly always produces a better result, even though it

doesn’t run to completion. The iterative search is not any more effective than the random

guesses except that it is faster at quickly generating good results.

7.4 Results

This section begins by characterising the diverse and diverse-clique switch blocks created

using the design methodology from the previous section. These two new switch blocks,

plus the shifty switch block, are then evaluated in two ways. First, the diversity of the new

switch blocks is counted to show that the new designs are significantly more diverse than

the disjoint switch block. Second, routing experiments are performed using the switch

blocks and the area results and delay results are compared.

1Performed on a 1 GHz Intel Pentium III computer.

7.4. RESULTS 197

Checkered Layout

Regular Layout

fe gm,3fm,2gm,1

fegm,1 fm,2 gm,3

ge fm,3gm,2fm,1

gefm,1 gm,2 fm,3

fe fm,3fm,2fm,1

fefm,1 fm,2 fm,3

Figure 7.10: Regular and checkered layout of a W � 5 diverse-clique switch block.

7.4.1 Switch Block Design Results

Using the above procedure, switch blocks named diverse are designed for a variety of track

group widths, W � 18. For each W , a solution set xW is found. A similar procedure is

followed to design diverse-clique switch blocks, except they contain an added constraint to

preserve the 4-wire clique structures within the endpoint subblocks. A layout strategy for

these cliques is given in [150].

The searches produced a number of switch block designs with a similar amount of

diversity for each value of W . The precise solution sets used in this chapter and hard-coded

into the VPRx router, an extended version of VPR [116, 19], are given in Appendix B.

Although no clique constraints are placed during the design of the diverse switch

blocks, they are found in many of the solution sets. In particular, there are cliques in

fe for W � �2�3�4�5�7�9�10�11�12�16� and in ge for W � �3�4�6�7�8�10�11�12�13�14�.

This means that many diverse switch blocks can also be constructed using simple layout

structures.

The details of a W � 5 diverse-clique switch block are shown in Figure 7.10. This

figure illustrates the diversity obtained for a number of two-turn paths by colouring the

198 CHAPTER 7. SWITCH BLOCK DESIGN FRAMEWORK

0

200

400

600

800

1000

1200

2 4 6 8 10 12 14 16 18

D
iv

er
si

ty

Track Group Width

switch block
diverse checker
diverse-clique checker
shifty checker
shifty
disjoint checker
disjoint

Figure 7.11: Diversity of various commutative switch blocks.

different tracks reached.

7.4.2 Diversity Results

The diversity of the new switch blocks are compared with the disjoint switch block in Fig-

ure 7.11. In this graph, diversity is measured as described in Section 7.3.2; the maximum

diversity possible is 1176.

The disjoint switch block has no diversity but its checkered version has considerably

more. The shifty switch block and its checkered version provide even more diversity. How-

ever, the diverse and diverse-clique checkered switch blocks reach the highest levels of

diversity. For W � 10, these are within 99% of the maximum possible. Note, however,

that it is impossible to attain maximum diversity when W � 8 because some of the 8 global

routes (e.g., columns A through H) must necessarily map to the same track. Considering

this, the diverse and diverse-clique switch blocks perform very well at being diverse.

7.4.3 Routing Results

The new switch block designs are included in the VPRx router. The diverse and

diverse-clique switch block designs described in Tables B.1 and B.2 have been hard-coded

7.4. RESULTS 199

31.5

32

32.5

33

33.5

34

34.5

35

35.5

36

disjoint universal-L Imran shifty

W
m

in
 (

tr
ac

ks
)

Switch Block Style

k=4
k=5
k=6

31.5

32

32.5

33

33.5

34

34.5

35

35.5

36

disjoint diverse-clique diverse shifty

W
m

in
 (

tr
ac

ks
)

Switch Block Style

k=4
k=5
k=6

Figure 7.12: Minimum channel width results using the new switch blocks.

2.94

2.96

2.98

3

3.02

3.04

3.06

3.08

3.1

3.12

3.14

3.16

disjoint universal-L Imran shifty

A
re

a
(x

 1
06 T

)

Switch Block Style

k=4
k=5
k=6

2.94

2.96

2.98

3

3.02

3.04

3.06

3.08

3.1

3.12

3.14

3.16

disjoint diverse-clique diverse shifty

A
re

a
(x

 1
06 T

)

Switch Block Style

k=4
k=5
k=6

Figure 7.13: Area results using the new switch blocks.

for quick regeneration. In the situations where track groups have W � 18, the W � 18

switch block design is used instead.2

The experimental environment is similar to the one used throughout this dissertation.

Routing experiments are performed with three different LUT sizes of k � 4, 5, and 6.

The number of LUTs per cluster is fixed at N � 6, and only length four wires are used

in the interconnect. Half of all wiring tracks use pass transistor switches of size 16 times

minimum width, and the other half use buffers of size 6. Although not shown, similar

results are obtained if all of the wiring tracks use buffers. Experiments are conducted with

either one or two layout tiles.

The routability performance of the new switch blocks is presented in Figures 7.12

2This rarely occurs with the benchmarks used here.

200 CHAPTER 7. SWITCH BLOCK DESIGN FRAMEWORK

18

18.5

19

19.5

20

20.5

21

21.5

disjoint universal-L Imran shifty

D
el

ay
 (

ns
)

Switch Block Style

k=4
k=5
k=6

18

18.5

19

19.5

20

20.5

21

21.5

disjoint diverse-clique diverse shifty

D
el

ay
 (

ns
)

Switch Block Style

k=4
k=5
k=6

Figure 7.14: Delay results using the new switch blocks.

and 7.13. The former plots the minimum number of tracks required to route, Wmin, while

the latter plots the transistor area of the PLD architecture at the low-stress point of 1�2 �Wmin

tracks. The graphs on the left compare shifty to the older switch blocks, and the graphs on

the right compare disjoint to the newer switch blocks. A number of different curves are

drawn in the graphs, corresponding to different LUT sizes and whether a plain or check-

ered layout is used. The bold curves show the results with one layout tile, while the thin

curves show the results with two checkered layout tiles.

Critical-path delay results for circuits mapped into PLDs using the different switch

blocks are presented in Figure 7.14. Unlike the routability results, there does not appear to

be any strong connection between delay and switch block style.

7.4.4 Analysis

Overall, the results exhibit only small variations across the different designs, so conclu-

sions might be sensitive to noise and must be carefully drawn. Since each data point is

an arithmetic average across the twenty largest MCNC benchmark circuits, large varia-

tions should not be expected unless many circuits are affected. To mitigate the influence of

noise, it is important to identify trends present in all of the routing results, e.g., across the

different LUT sizes, before drawing any conclusions.

One clear trend in the routing results is that the plain disjoint switch block performs

worse than any perturbation of it (including its own checkered version). Beyond this, the

7.4. RESULTS 201

ranking of specific switch blocks is difficult. It appears that shifty is the best, followed

closely by universal-L and Imran, then disjoint. The diversity-optimized switch blocks

perform better than disjoint, but not as well as the shifty ad hoc design.

In addition to shifty, a variety of other ad hoc switch blocks (both commutative and non-

commutative) were explored. The shifty design gives better results, but the differences are

small. These experiments did not clearly suggest that one particular design is significantly

better. The effectiveness of shifty demonstrates that the twist or non-commutative features

of the universal-L and Imran blocks is not likely the key factor to their good performance.

However, it leaves the following questions open: Why is track shifting effective? Is it

because of increased diversity?

To investigate the latter question, the diversity-optimised switch blocks must be ex-

amined. While the diverse switch blocks do require fewer routing tracks than the disjoint

baseline, shifty always outperforms them. This lack of improvement does not come from

one or two circuits having significantly higher-than-average channel width requirements.

Rather, it is a general trend distributed among many of circuits. This suggests that it is not

only diversity that makes the shifty, Imran and Wilton switch blocks effective.

Another unexpected result arises when routing Fs � 2 variations of the diverse and

diverse-clique switch blocks. The results are not shown here, but are given in Ta-

bles A.5, A.6, and A.7 of Appendix A. The anomaly is that several of the low-stress

routings failed, making it impossible to compute geometric averages. (These are indicated

by a dash in the table.) No other Fs � 2 switch blocks failed to route their low-stress cases.

Why do the diversity-optimised switch blocks not perform as well as anticipated? One

conjecture is that negotiated-congestion type CAD tools, like the VPRx router, might have

difficulty with too much diversity. This seems plausible because a local re-routing near the

source of a net with a sharing violation would force downstream connections to use a new

track. In an architecture with less diversity, it may be easier to avoid creating new routing

conflicts by making it easier for the downstream portions of the net to resume using the

routing tracks from the previous pass. This difficulty might increase the number of router

iterations, but no such increase is seen in these experiments.

202 CHAPTER 7. SWITCH BLOCK DESIGN FRAMEWORK

7.5 Conclusions

An analytical framework for the design of switch blocks has been presented. It is the first

known framework which considers the switch block design problem as part of a larger

switching fabric. It also provides a simple way to design using long wire segments. The

framework provides an easy way to directly measure and control the amount of diversity

in the routing network.

The most fundamental component of this framework is the new switch block model,

called the track group model. By separating wiring tracks into independent groups, each

one can be considered separately. Using permutation mapping functions to model switch

block turns adds a mathematical representation to the framework. With commutative map-

ping functions and switch blocks, the order in which a net executes turns becomes unim-

portant and the network is easier to analyse. This framework can design diverse switch

blocks, but it is not clear the router is utilising this diversity.

Not all of the components of the framework need to be adopted. For example, the new

track group model can be used alone to design the shifty and universal-L switch blocks.

Both of these switch blocks perform slightly better than the basic disjoint block.

The entire framework can also be applied to switch block design. An example is given

to produce two switch blocks, diverse and diverse-clique, which maximise routing diver-

sity. These switch blocks require fewer routing tracks than the disjoint block, but more

tracks than shifty. This raises the interesting point that the diverse property may not be

significant for creating good routing networks, or it may be difficult to efficiently utilise

with existing CAD tools.

The switch block represents a very large proportion of the transistor area in mesh-

based PLDs, so it is certainly desirable to make this block as small as possible. The work

here has explored many options, but the small area reduction discovered does not provide

encouragement that large gains will be found easily. It is likely that a better understanding

of the problem and perhaps a more formal approach to switch block design are required to

make significant improvements. The work presented in this chapter is only a beginning of

this exploration, and some other avenues for future work are suggested in the next section.

7.6. FUTURE WORK 203

7.6 Future Work

The work in this chapter is a first attempt at designing interconnect while examining the

global impact of switch locations. A few questions have been raised while examining the

results, and these need to be addressed in future work.

There are a number of minor architecture adjustments that can be made to better under-

stand switch block performance. This chapter has only considered mapping functions of

the form fi�t�� t�ai, but more general permutation maps can be considered as well. Track

groups may be divided into smaller subgroup sizes, limiting diversity to stay within a few

tracks per subgroup. It would be interesting to try increasing the number of switches in the

midpoint subblocks. This would give a router a choice of which track assignment to choose

when changing directions. For example, one could try the superposition of a diverse pat-

tern and a disjoint pattern at the midpoint switch block. The area increase would be small,

particularly since Chapter 6 has proposed a new routing switch circuit that is more efficient

under higher fanin than previous designs.

The proposed track group model forces subsets of tracks to be disjoint. This step is

necessary to begin to understand the interaction of the switch placements in the global

fabric, but it may not be necessary in a real PLD routing architecture. This impact of the

track group model should be better assessed.

In addition to the architecture adjustments, the interaction between the routing algo-

rithm and diverse switch blocks should be examined. Presently, the routing algorithm is

oblivious to diversity and this may be degrading performance. Ways of tuning the routing

algorithm to better utilise diversity should be explored.

Other methods for designing switch blocks can be developed. This chapter highlights

some of the important issues for such a design methodology: that long wire segments are

important, that the global fabric must be considered, that the number of switches and their

placement must be carefully considered, and that the routing algorithm must be able to

efficiently utilise the network.

204 CHAPTER 7. SWITCH BLOCK DESIGN FRAMEWORK

Chapter 8

Conclusions

Programmable logic devices provide a simple abstraction that permits digital system design

to be completed at the RTL level. This abstraction conveniently hides from the designer

an increasing number of physical design problems which are addressed at the PLD design

stage instead. As a result, it is a promising way to cope with ever-increasing design costs.

The crux of successfully using the PLD abstraction for many future designs relies upon

three things. First, the PLD itself must be area efficient and provide overall cost advantages,

including design cost plus unit cost. Second, the PLD must meet the timing requirements

of the circuits. Third, the physical design of the PLD itself must be feasible. This disser-

tation has focused on the first of these problems, although it has touched upon some of the

preliminary physical design issues as well.

PLD interconnect is the largest contributor to area and unit cost of a PLD. By analysing

the design of low-level interconnect components, switch blocks and sparse crossbars, they

can be made more efficient. This efficiency is addressed in two ways in this dissertation: by

making their implementations smaller, and by improving their ability to create a network

which can reach higher levels of utilisation by CAD tools. These components have been

studied so that they can be applied in a wide assortment of high-level interconnect styles.

For example, although the mesh interconnect model is used in this dissertation, the sparse

crossbar design technique can be applied equally to hierarchical networks or to CPLD

design. A proper understanding of these low level components is necessary to explore

these higher level designs.

205

206 CHAPTER 8. CONCLUSIONS

The contributions made in this dissertation are summarised below.

First, sparse crossbars are presented as a highly routable alternative to full crossbars

which use a fraction of the area. A method for designing routable sparse crossbars is

given. This is the first known general method which generates a routable switch placement

with an arbitrary number of inputs, outputs, and switches. The routability of a switch

placement is measured statistically using a standard Monte Carlo technique and a network

flow algorithm. These tools demonstrate that routability is very sensitive to the number of

switches in the crossbar within a narrow region; having too few or too many switches is of

little use. This sensitivity can be increased and fewer switches are needed if the outputs are

intentionally under-utilised. A significant future contribution would involve characterising

sparse crossbars so that a general formula expresses the number of switches and spare

outputs needed to reach a certain level of routability.

Second, the use of sparse crossbars within clustered logic blocks is shown to be an

effective way to save 10–18% in area. To achieve this savings and restore routability loss, a

few additional spare cluster inputs are required. Since more area is saved in sparse clusters

containing larger lookup table sizes, experiments here show that an architecture with 6-

input lookup tables uses less area than one with traditional 4-input lookup tables. This

results in a significant 22% area�delay advantage overall. Further investigation with more

modern benchmarks and other cluster sizes is necessary to confirm that 6-input lookup

tables are indeed better. However, there is sufficient evidence to confirm that the use of

sparse crossbars within clusters offers an area advantage.

Third, new buffered routing switch circuits are shown to virtually eliminate delay

caused by fanout. This is done by replacing a fanout structure with a fanin structure. With

the previous switch design, fanout causes net delay to increase by 100% and critical-path

delay by 16%. With one of the new designs, net delay increases by only 9% and critical-

path delay increases by only 5%. In general, the new switch designs are also smaller than

previously used circuits, leading to a 2% area savings and 7% delay savings overall. Fu-

ture effort may consider other types of tristate circuits, using only directional buffers, and

low-energy issues. Since delay is dominated by the interconnect, this must be considered

in switch design as well.

207

Fourth, replacing some buffered routing switches with pass transistors is shown to re-

duce area requirements by 8–13% with a delay increase of only 1–2%. This is significant

because many modern PLDs now use purely buffered interconnect. The savings is achieved

by replacing buffered switches with pass transistors at every other wire endpoint and at ev-

ery switch along the wire midpoints. An 11–14% improvement to area�delay and a 5%

delay improvement is obtained by replacing only the buffered midpoint switches with pass

transistors. Future work may improve delay by retaining some fully buffered routing tracks

for critical high-fanout nets. As well, the routing tool can be modified to encourage fanout

to occur at buffered switches rather than at pass transistor switches.

Fifth, a new framework is given for designing switch blocks with long wire segments.

The framework focuses upon a track group model which separates the traditional switch

block into sub-blocks. These sub-blocks create the disjoint track groups which subse-

quently simplify the routing network analysis. Using the framework, it is possible to op-

timise diversity of the routing network. This is the first known framework which designs

switch blocks while simultaneously considering long wire segments and global network

interactions. In routing experiments, diversity-optimised switch blocks perform nearly as

well as the best-known switch blocks. They also offer a new type of flexibility, the ability

to reach different tracks by permuting the global route. Although it is not clear that exist-

ing CAD tools can fully utilise this new flexibility, this is an avenue for future exploration.

Future work can also explore other uses of a diverse network, such as providing additional

paths to avoid faulty wires or switches.

The continuing trend toward designing larger chips requires simpler design method-

ologies and abstractions. PLD technology presents one simple methodology which allows

designers to stop at the RTL level, but it suffers from significant area and delay overheads.

This work has studied ways to design and implement these interconnect components so

they are more efficient. Most of this design process can be automated and used in tools

which generate custom PLDs for future markets such as SoC and embedded applications.

Designing custom PLDs is a promising new area which requires significant new research

to reach the full potential of providing a simple design methodology.

208 CHAPTER 8. CONCLUSIONS

Appendix A

Switch Blocks with Reduced Flexibility

A.1 Introduction

All switch block styles explored in Chapter 7 have only considered a flexibility of Fs � 3

because early work by Rose and Brown [42] determined that Fs � 2 requires too many

additional wiring tracks and is sometimes unroutable. However, the routing tools used

in that study were limited by a separation of the global and detailed routing phases. In

contrast, modern routing tools such as VPR are more effective. Considering the large

amount of area contained within a switch block, it is important to consider whether switch

blocks with fewer switches are a practical way to reduce the overall area cost.

This appendix investigates two Fs � 2 styles, biased and asymmetric, which can be

combined with any of the Fs � 3 styles presented in this dissertation. Figure A.1 shows

several examples of these switch blocks. A style with Fs � 1 is also investigated. Since

turns at endpoints are not possible with Fs � 1, they must be made at midpoints instead.

It should be noted that when styles such as disjoint, universal, shifty, or diverse are used

with the Fs � 2 patterns described here, they lose their defining properties. For example,

the Fs � 2 universal switch block cannot meet all bandwidth constraints if there are only

two switches per wire. As a result, the various Fs � 2 patterns should be considered as

perturbations of Fs � 3 styles without any particular defining properties or performance

guarantees. It may be possible to develop some Fs � 2 styles which preserve defining

properties of the Fs � 3 switch blocks, but no particular effort was made to find them.

209

210 APPENDIX A. SWITCH BLOCKS WITH REDUCED FLEXIBILITY

asymmetricbiased

0 1 2 3

0

1

2

3

0

1

2

3

0 1 2 3

0 1 2 3

0

1

2

3

disjoint

universal

Wilton

A0 A1B0 B1 A2 B2

D2

A0

A1

D1

D0

A2

D0 D1 C0 C1D2 C2

C1

B1

B2

C2

C0

B0

C1

B1

B2

C2

C0

B0

C1

B1

B2

C2

C0

B0

D0 D1 C0 C1D2 C2

D0 D1 C0 C1D2 C2

A0 A1B0 B1 A2 B2

A0 A1B0 B1 A2 B2

D2

A0

A1

D1

D0

A2

D2

A0

A1

D1

D0

A2

Figure A.1: Biased and asymmetric versions of different switch blocks.

A.2 Biased Fs � 2 Style

There are many ways of removing switches from an Fs � 3 switch block to create one with

Fs � 2. One such method involves removal of the switches:

� between any track on top and an odd track on the left,

� between any track on top and an even track on the right,

� between any track on bottom and an even track on the left, and

� between any track on bottom and an odd track on the right.

This removal policy creates a biased Fs � 2 style. The bias is evident from the bold paths

in Figure A.1. When combined with styles other than disjoint, individual vertical tracks

A.3. ASYMMETRIC FS � 2 STYLE 211

may connect to one, two, or three wires, but the average flexibility is still two. A universal

biased Fs � 2 switch block exists with two switches on every track, but it is not produced

by this method.

The disjoint Fs � 2 biased topology contains a strong directional bias for each track.

For example, odd tracks will have a diagonal bias traveling down and to the right. Non-

disjoint Fs � 2 biased blocks do not have the same degree of bias because some vertical

tracks can turn in both directions, while others cannot turn at all. However, each particular

horizontal track is biased to turn only up (or only down).

A.3 Asymmetric Fs � 2 Style

A general method for generating an asymmetric Fs � 2 style is presented below. The

asymmetric style solves two problems with the biased style: it guarantees that Fs � 2 on

all tracks (on all sides), and it does not contain the directional bias.

Rather than starting with an Fs � 3 style and removing switches, a direct construction

procedure is followed. First divide the tracks into smaller groups, A through D, according

to steps 1 through 4 of the algorithm given in Figure A.2. In steps 6 through 8, connections

within partitions are formed to establish the permissible turns. These steps treat each of the

A through D groups individually and connect them according to the rules for some Fs � 3

style. Note that the cardinalities of each group are always even, with exactly half the tracks

on one side. Hence, a one-to-one mapping within each group is always possible. Lastly,

steps 9 and 10 form the straight connections. This asymmetric algorithm is a generalisation

of the asymmetric switch block given by Rose and Brown in [42]. Applying this algorithm

with a disjoint switch block produces the same topology used in [42].

The advantage of this asymmetric style is its balance. An even track going right may

prefer to turn up onto an even track, but it will be able to turn either left or right again

depending on whether it is in the lower or upper half of the channel. With the biased style,

it would only be able to turn right.

This general method of creating an asymmetric switch block works along with any

Fs � 3 style, but it destroys the structural properties of the Fs � 3 style. For example, it

212 APPENDIX A. SWITCH BLOCKS WITH REDUCED FLEXIBILITY

1. Place the even tracks on the left into A, and the odd tracks into D.

2. Place the even tracks on the top into A, and the odd tracks into B.

3. Place the right-side tracks into C if they are in track i � �W�2�, otherwise they are placed into B.

4. Place the bottom-side tracks into D if they are in track i � �W�2�, otherwise they are placed into C.

5. For each side, consecutively renumber the tracks in the same group starting at 0.

6. For group A, reset W to the number of tracks in group A on either side.

7. In group A, connect track t on the left to track f e�1�t� above using the new track numbers.

8. Repeat steps 6 and 7 for groups B, C, and D, using f e�2�t�, fe�3�t�, and fe�4�t�, respectively.

9. Connect track t on the left side to track t on the right side.

10. Connect track t on the top side to track t on the bottom side.

Figure A.2: Asymmetric Fs � 2 algorithm.

breaks apart the simple layout elements used in the Fs � 3 disjoint and universal topologies.

Hence, these asymmetric switch blocks do not have a simple layout structure. Since these

asymmetric switch blocks did not significantly reduce routing area or delay, it did not seem

worthwhile to search for other asymmetric styles that would preserve the regular layout

structure.

A.4 Results

The results of place and route experiments with Fs � 1 are presented in Table A.1. These

results are normalised to the baseline disjoint Fs � 3 architecture. Compared to the base-

line, the data shows that Fs � 1 reduces total area by 2–3%. This makes it better than

all of the other Fs � 3 switch block styles, which only save 1–2% in area. However, the

Fs � 1 switch block has larger increases to delay (3–9% versus �1 to 6% at Wmin� 10%)

and to minimum channel width (10–12% versus �1 to �4%) than the other Fs � 3 styles.

A.4. RESULTS 213

Type Fs Style Wmin (tracks) Area (�106 T) Delay (ns) at Wmin� Area�Delay (T�s) at Wmin�

Arith. Geom. Arith. Geom. 10% 20% 30% 10% 20% 30%

LUT size k � 4

unnormalized 35.7 3.01 20.43 0.0644

disjoint 3 plain 37.35 1.000 3.97 1.000 1.000 1.017 0.975 1.000 1.063 1.072

diverse 3 plain 36.60 0.979 3.93 0.989 1.001 0.976 0.975 0.992 1.010 1.059

diverse-clique 3 plain 36.85 0.987 3.95 0.993 1.057 0.994 0.987 1.048 1.032 1.075

imran 3 plain 36.40 0.977 3.92 0.987 1.033 1.031 0.979 1.019 1.063 1.061

shifty 3 plain 36.05 0.966 3.90 0.983 0.986 0.988 0.977 0.969 1.014 1.054

universal 3 plain 36.10 0.969 3.91 0.983 1.036 1.025 0.980 1.018 1.053 1.058

disjoint 1 plain 42.35 1.123 3.88 0.971 1.030 1.040 1.009 0.997 1.055 1.070

LUT size k � 5

unnormalized 35.4 3.14 19.62 0.0642

disjoint 3 plain 36.95 1.000 4.15 1.000 1.000 1.001 0.982 1.000 1.041 1.063

diverse 3 plain 35.95 0.971 4.11 0.988 1.008 1.021 0.971 0.995 1.045 1.036

diverse-clique 3 plain 36.05 0.976 4.10 0.987 1.019 1.016 0.998 1.006 1.043 1.067

imran 3 plain 35.40 0.955 4.08 0.981 1.013 0.998 0.989 0.992 1.016 1.046

shifty 3 plain 35.30 0.953 4.07 0.980 1.006 0.999 0.996 0.983 1.016 1.052

universal 3 plain 35.40 0.955 4.09 0.982 0.998 1.008 0.977 0.977 1.024 1.035

disjoint 1 plain 40.70 1.095 4.01 0.967 1.091 1.035 1.022 1.054 1.035 1.063

LUT size k � 6

unnormalized 32.8 3.12 18.40 0.0594

disjoint 3 plain 34.60 1.000 4.26 1.000 1.000 0.997 0.988 1.000 1.027 1.049

diverse 3 plain 33.80 0.975 4.22 0.993 1.016 0.986 0.990 1.007 1.007 1.043

diverse-clique 3 plain 33.85 0.974 4.23 0.992 1.008 1.003 0.991 1.000 1.025 1.043

imran 3 plain 33.65 0.974 4.21 0.992 1.005 0.988 0.987 0.996 1.008 1.039

shifty 3 plain 33.40 0.968 4.21 0.990 0.995 0.995 0.976 0.983 1.012 1.025

universal 3 plain 33.70 0.974 4.22 0.992 1.014 0.982 0.984 1.003 1.002 1.036

disjoint 1 plain 38.80 1.114 4.20 0.984 1.054 1.036 1.013 1.035 1.046 1.055

Table A.1: Performance of Fs � 1 switch blocks.

Although Fs � 1 is the most effective technique for reducing area, the large increase in

channel width may make it impractical.

The results of Fs � 2 experiments are presented in Tables A.2, A.3, and A.4. These

data are normalised to the same Fs � 3 baseline architecture. These same Fs � 2 results

are repeated in Tables A.5, A.6, and A.7 where they are normalised to the disjoint biased

Fs � 2 switch block. This latter set of tables show that the disjoint biased Fs � 2 switch

block has the highest Wmin and area of all Fs � 2 styles (with one exception, noted below).

Hence, it is useful as a high water mark in comparing with the Fs � 3 and Fs � 1 styles.

There is one anomaly in the Fs � 2 data. The asymmetric versions of the diverse and

214 APPENDIX A. SWITCH BLOCKS WITH REDUCED FLEXIBILITY

diverse-clique switch blocks often had difficulty completing the low-stress route for one

or more circuits. When this occurs, delay and area�delay averages cannot be computed.

These cases are shown with a long dash (‘—’) in the tables. These cases are also the only

Fs � 2 styles which have larger area numbers than the high water mark.

Nearly all of the architectures with Fs � 3 require up to 6% more routing tracks than

the Fs � 3 baseline. In comparison, all of the Fs � 3 variations require 1–5% fewer routing

tracks than the baseline. Hence, Fs � 3 is not an effective way to reduce track count.

Instead, it is always better to keep Fs � 3 and use a non-disjoint switch block such as

shifty.

Although more tracks were used, the reduced Fs architectures (except the anomaly

cases) always require less area than the best Fs � 3 result. In general, the Fs � 3 topologies

save 0.7–2.0% compared to the baseline, but the Fs � 2 topologies save 2.1–3.9% and

Fs � 1 saves 1.6–2.9%. Hence, Fs � 2 is the best way to save area.

The delay results are normalised against the Wmin � 10% low-stress channel width so

that the effect of increasing the channel width for each architecture can be examined as

well as the topological influences. At Wmin � 10%, nearly all topologies perform more

slowly than the baseline. The typical increase is in the 1–3% range. The largest increase is

11.5% in the k � 4, Imran, biased Fs � 2 architecture. This case seems to be an anomaly

because an increase of that magnitude is not present at k � 5 or k � 6. The cause may

be tool-related: three small circuits had large delay increases (up to 70%), but a simple

re-route with a more gradual sharing-penalty cost fully mitigates the problem for all three

cases. The delay increases at Fs � 1 are caused by similar problems, but re-routing is not

as effective — it is certainly a slower architecture.

When the channel width is increased to Wmin � 20% there is a small improvement to

delay for k � 5 and k � 6, but not for k � 4. At Wmin�30% all architectures tend to achieve

their lowest delays and, except for Fs � 1, are faster than the baseline.

There is one other interesting delay trend evident from the channel width sweep data.

The best low-stress delay requires more tracks with the 4-LUT (closer to Wmin�30%) than

the 5-LUT and 6-LUT architectures (closer to Wmin � 20%). Since different architectures

are usually evaluated at the same low-stress point (often Wmin�20%), the 4-LUT is placed

A.5. SUMMARY 215

at a slight disadvantage for delay. In contrast, delay in k� 5 and k� 6 architectures is lower

and less sensitive to excess channel capacity. Both of these are desirable characteristics.

Other than the anomaly found with the asymmetric diverse and diverse-clique area

results, a comparison between the biased and asymmetric styles does not clearly indicate

a superior style. This is unexpected because the biased style seems like it should have a

natural handicap.

In contrast, the Fs � 1 delay results do not improve much as the channel width is in-

creased. In fact, they always remain slower than the baseline while other topologies typi-

cally become faster than the baseline. The poor delay result is expected because turns can

only be made at midpoints. This shortens the effective wire length for all connections that

require a turn. Although Fs � 1 switch blocks require less area, there is a significant delay

penalty from removing all endpoint turns.

Comparing the area�delay product results, it can be seen that the high area penalty

but low delay improvement from increasing the channel width favours architecture design

with only Wmin � 10% routing tracks. As well, due to the small variations in area and

delay, the choice of the “best” area�delay architecture nearly always changes depending on

evaluation point (10%, 20%, or 30% more tracks). In general, however, Fs � 2 architectures

are favoured since the area savings is larger than the delay increase.

Overall, reduced Fs architectures are feasible alternatives to Fs � 3 architectures. This

is a new result, since earlier work had shown Fs � 3 to be completely impractical. Unfortu-

nately, these architectures do not result in significant area savings, and generally they tend

to cause an increase in delay. Unless the area of a routing switch rises dramatically in the

future, it is unlikely these architectures will be considered useful.

A.5 Summary

The work in Chapter 7 focuses on different Fs � 3 topologies to determine whether switch

placement is a more effective way to save area than removing switches.

The work here the first known re-examination of Fs � 3 styles using modern routing

tools. Unlike before, these new results show that Fs � 2 and even Fs � 1 topologies are

216 APPENDIX A. SWITCH BLOCKS WITH REDUCED FLEXIBILITY

routable. Furthermore, although they require a up to 4% more tracks, both Fs � 2 styles

tend to require 3% less transistor area and increase delay by less than 4% compared with

the Fs � 3 disjoint baseline architecture. Although the Fs � 1 architecture also reduces tran-

sistor area by 3%, it is inferior to Fs � 2 because it produces larger increases in minimum

channel width and delay.

A.5. SUMMARY 217

Type Fs Style Wmin (tracks) Area (�106 T) Delay (ns) at Wmin� Area�Delay (T�s) at Wmin�

Arith. Geom. Arith. Geom. 10% 20% 30% 10% 20% 30%

LUT size k � 4

unnormalized 35.7 3.01 20.43 0.0644

disjoint 3 plain 37.35 1.000 3.97 1.000 1.000 1.017 0.975 1.000 1.063 1.072

diverse 3 plain 36.60 0.979 3.93 0.989 1.001 0.976 0.975 0.992 1.010 1.059

diverse-clique 3 plain 36.85 0.987 3.95 0.993 1.057 0.994 0.987 1.048 1.032 1.075

imran 3 plain 36.40 0.977 3.92 0.987 1.033 1.031 0.979 1.019 1.063 1.061

shifty 3 plain 36.05 0.966 3.90 0.983 0.986 0.988 0.977 0.969 1.014 1.054

universal 3 plain 36.10 0.969 3.91 0.983 1.036 1.025 0.980 1.018 1.053 1.058

disjoint 2 biased 38.95 1.041 3.89 0.979 1.009 1.036 0.982 0.986 1.058 1.054

diverse 2 biased 37.55 1.005 3.81 0.962 1.025 1.004 0.977 0.983 1.007 1.025

diverse-clique 2 biased 37.85 1.014 3.84 0.966 1.044 1.007 0.976 1.008 1.014 1.029

imran 2 biased 37.80 1.011 3.84 0.964 1.115 1.044 0.975 1.072 1.050 1.028

shifty 2 biased 37.85 1.015 3.82 0.964 1.038 1.022 0.974 1.000 1.032 1.029

universal 2 biased 38.20 1.021 3.84 0.970 1.020 1.022 0.972 0.988 1.035 1.032

disjoint 2 biased, checker 38.00 1.016 3.83 0.967 1.012 1.008 0.967 0.977 1.017 1.022

diverse 2 biased, checker 37.80 1.010 3.83 0.964 1.015 0.999 0.977 0.975 1.004 1.029

diverse-clique 2 biased, checker 37.90 1.014 3.83 0.966 1.025 1.046 0.985 0.988 1.054 1.040

imran 2 biased, checker 38.00 1.016 3.85 0.967 1.035 1.018 0.989 0.999 1.027 1.044

shifty 2 biased, checker 37.85 1.013 3.83 0.965 1.056 1.005 0.971 1.015 1.012 1.025

universal 2 biased, checker 37.75 1.006 3.83 0.963 1.023 1.013 0.982 0.982 1.016 1.033

disjoint 2 asym. 37.90 1.012 3.85 0.966 1.018 1.033 0.972 0.982 1.040 1.028

diverse 2 asym. 38.25 1.038 4.00 1.013 — — — — — —

diverse-clique 2 asym. 38.25 1.038 4.00 1.013 — — — — — —

imran 2 asym. 37.90 1.013 3.83 0.967 1.026 1.036 0.986 0.989 1.045 1.042

shifty 2 asym. 38.00 1.016 3.84 0.967 1.042 1.046 0.975 1.004 1.054 1.029

universal 2 asym. 38.05 1.018 3.84 0.967 1.034 0.998 0.975 0.998 1.008 1.033

disjoint 2 asym., checker 38.25 1.021 3.86 0.970 1.021 1.012 0.980 0.988 1.023 1.039

diverse 2 asym., checker 38.10 1.033 4.00 1.014 — 1.004 — — 1.069 —

diverse-clique 2 asym., checker 38.10 1.034 3.99 1.009 — 0.994 — — 1.054 —

imran 2 asym., checker 38.10 1.017 3.84 0.967 1.005 1.027 0.982 0.971 1.036 1.039

shifty 2 asym., checker 37.55 1.005 3.81 0.961 1.024 1.008 0.975 0.982 1.012 1.023

universal 2 asym., checker 37.90 1.014 3.84 0.966 1.055 1.046 0.992 1.016 1.052 1.047

disjoint 1 plain 42.35 1.123 3.88 0.971 1.030 1.040 1.009 0.997 1.055 1.070

Table A.2: Performance of Fs � 2 switch blocks for k � 4, normalised to Fs � 3.

218 APPENDIX A. SWITCH BLOCKS WITH REDUCED FLEXIBILITY

Type Fs Style Wmin (tracks) Area (�106 T) Delay (ns) at Wmin� Area�Delay (T�s) at Wmin�

Arith. Geom. Arith. Geom. 10% 20% 30% 10% 20% 30%

LUT size k � 5

unnormalized 35.4 3.14 19.62 0.0642

disjoint 3 plain 36.95 1.000 4.15 1.000 1.000 1.001 0.982 1.000 1.041 1.063

diverse 3 plain 35.95 0.971 4.11 0.988 1.008 1.021 0.971 0.995 1.045 1.036

diverse-clique 3 plain 36.05 0.976 4.10 0.987 1.019 1.016 0.998 1.006 1.043 1.067

imran 3 plain 35.40 0.955 4.08 0.981 1.013 0.998 0.989 0.992 1.016 1.046

shifty 3 plain 35.30 0.953 4.07 0.980 1.006 0.999 0.996 0.983 1.016 1.052

universal 3 plain 35.40 0.955 4.09 0.982 0.998 1.008 0.977 0.977 1.024 1.035

disjoint 2 biased 37.65 1.013 4.05 0.972 1.004 1.010 0.967 0.974 1.018 1.015

diverse 2 biased 37.20 1.003 4.02 0.968 1.021 1.005 0.972 0.986 1.009 1.014

diverse-clique 2 biased 36.50 0.985 3.99 0.961 1.024 1.008 0.978 0.983 1.002 1.012

imran 2 biased 37.20 1.004 4.02 0.969 1.038 1.001 0.981 1.004 1.005 1.023

shifty 2 biased 37.15 1.002 4.02 0.967 1.011 1.009 0.987 0.976 1.013 1.029

universal 2 biased 37.45 1.010 4.04 0.970 1.006 1.016 0.982 0.974 1.023 1.027

disjoint 2 biased, checker 37.05 1.000 4.02 0.967 1.015 0.995 0.979 0.980 0.997 1.022

diverse 2 biased, checker 37.25 1.003 4.02 0.969 1.022 1.011 0.984 0.987 1.013 1.027

diverse-clique 2 biased, checker 36.95 0.996 4.01 0.964 0.998 0.998 0.975 0.962 0.997 1.015

imran 2 biased, checker 37.35 1.007 4.03 0.969 1.018 1.005 0.973 0.984 1.012 1.018

shifty 2 biased, checker 37.15 1.001 4.02 0.967 1.009 1.004 0.977 0.974 1.005 1.020

universal 2 biased, checker 37.15 1.004 4.01 0.969 1.007 1.008 0.980 0.975 1.010 1.025

disjoint 2 asym. 37.20 1.003 4.02 0.969 1.034 1.003 0.978 0.999 1.005 1.023

diverse 2 asym. 37.75 1.036 4.16 1.009 — 0.996 0.998 — 1.048 1.094

diverse-clique 2 asym. 37.75 1.036 4.16 1.009 — 0.996 0.998 — 1.048 1.094

imran 2 asym. 37.40 1.009 4.04 0.972 1.015 1.019 0.983 0.984 1.025 1.030

shifty 2 asym. 36.95 0.997 4.01 0.967 1.010 1.009 0.977 0.973 1.010 1.016

universal 2 asym. 37.20 1.002 4.04 0.969 1.028 1.002 0.975 0.994 1.005 1.018

disjoint 2 asym., checker 36.85 0.993 4.01 0.963 1.030 1.009 0.980 0.991 1.008 1.018

diverse 2 asym., checker 37.70 1.035 4.17 1.011 1.044 — 1.007 1.056 — 1.108

diverse-clique 2 asym., checker 37.60 1.028 4.16 1.005 1.024 — 0.984 1.032 — 1.073

imran 2 asym., checker 37.05 1.000 4.01 0.967 1.033 1.001 0.977 0.996 1.003 1.019

shifty 2 asym., checker 37.00 0.999 4.01 0.966 1.011 0.989 0.978 0.976 0.991 1.020

universal 2 asym., checker 37.10 1.001 4.02 0.968 1.037 1.021 0.980 1.000 1.023 1.024

disjoint 1 plain 40.70 1.095 4.01 0.967 1.091 1.035 1.022 1.054 1.035 1.063

Table A.3: Performance of Fs � 2 switch blocks for k � 5, normalised to Fs � 3.

A.5. SUMMARY 219

Type Fs Style Wmin (tracks) Area (�106 T) Delay (ns) at Wmin� Area�Delay (T�s) at Wmin�

Arith. Geom. Arith. Geom. 10% 20% 30% 10% 20% 30%

LUT size k � 6

unnormalized 32.8 3.12 18.40 0.0594

disjoint 3 plain 34.60 1.000 4.26 1.000 1.000 0.997 0.988 1.000 1.027 1.049

diverse 3 plain 33.80 0.975 4.22 0.993 1.016 0.986 0.990 1.007 1.007 1.043

diverse-clique 3 plain 33.85 0.974 4.23 0.992 1.008 1.003 0.991 1.000 1.025 1.043

imran 3 plain 33.65 0.974 4.21 0.992 1.005 0.988 0.987 0.996 1.008 1.039

shifty 3 plain 33.40 0.968 4.21 0.990 0.995 0.995 0.976 0.983 1.012 1.025

universal 3 plain 33.70 0.974 4.22 0.992 1.014 0.982 0.984 1.003 1.002 1.036

disjoint 2 biased 35.45 1.023 4.19 0.985 1.022 1.001 0.978 1.003 1.011 1.020

diverse 2 biased 35.00 1.011 4.16 0.980 1.024 1.006 0.969 1.001 1.012 1.006

diverse-clique 2 biased 34.95 1.009 4.17 0.980 1.047 1.014 0.981 1.022 1.019 1.017

imran 2 biased 35.15 1.013 4.17 0.982 1.029 1.017 0.976 1.007 1.024 1.014

shifty 2 biased 35.15 1.018 4.17 0.982 1.029 1.012 0.969 1.008 1.020 1.009

universal 2 biased 35.40 1.021 4.18 0.983 1.024 1.019 0.973 1.004 1.029 1.014

disjoint 2 biased, checker 35.10 1.013 4.17 0.982 1.047 1.003 0.976 1.025 1.009 1.015

diverse 2 biased, checker 35.25 1.017 4.17 0.983 0.999 0.998 0.973 0.979 1.006 1.012

diverse-clique 2 biased, checker 35.00 1.010 4.16 0.980 1.018 1.004 0.974 0.995 1.009 1.011

imran 2 biased, checker 35.15 1.012 4.17 0.981 0.992 1.018 0.979 0.971 1.024 1.017

shifty 2 biased, checker 35.15 1.015 4.16 0.982 1.003 1.005 0.970 0.982 1.013 1.008

universal 2 biased, checker 34.95 1.009 4.16 0.980 0.998 1.009 0.985 0.976 1.014 1.022

disjoint 2 asym. 35.30 1.016 4.19 0.982 1.018 1.000 0.979 0.998 1.008 1.019

diverse 2 asym. 35.95 1.055 4.29 1.013 1.020 0.999 0.995 1.035 1.044 1.075

diverse-clique 2 asym. 35.95 1.055 4.29 1.013 1.020 0.999 0.995 1.035 1.044 1.075

imran 2 asym. 35.25 1.014 4.18 0.982 1.009 1.002 0.971 0.988 1.010 1.009

shifty 2 asym. 34.95 1.010 4.17 0.981 1.051 1.017 0.983 1.028 1.023 1.018

universal 2 asym. 35.10 1.011 4.17 0.981 1.007 1.006 0.974 0.985 1.013 1.011

disjoint 2 asym., checker 35.10 1.011 4.18 0.981 1.002 1.003 0.977 0.981 1.009 1.015

diverse 2 asym., checker 36.00 1.057 4.29 1.016 1.014 0.997 — 1.031 1.044 —

diverse-clique 2 asym., checker 35.95 1.054 4.30 1.012 1.008 0.995 — 1.021 1.040 —

imran 2 asym., checker 35.15 1.016 4.17 0.982 1.014 1.010 0.979 0.994 1.019 1.017

shifty 2 asym., checker 35.30 1.020 4.18 0.983 1.020 1.008 0.977 1.000 1.016 1.018

universal 2 asym., checker 35.25 1.015 4.18 0.982 1.007 1.010 0.972 0.986 1.018 1.011

disjoint 1 plain 38.80 1.114 4.20 0.984 1.054 1.036 1.013 1.035 1.046 1.055

Table A.4: Performance of Fs � 2 switch blocks for k � 6, normalised to Fs � 3.

220 APPENDIX A. SWITCH BLOCKS WITH REDUCED FLEXIBILITY

Type Fs Style Wmin (tracks) Area (�106 T) Delay (ns) at Wmin� Area�Delay (T�s) at Wmin�

Arith. Geom. Arith. Geom. 10% 20% 30% 10% 20% 30%

LUT size k � 4

unnormalized 37.1 2.94 20.61 0.0635

disjoint 2 biased 38.95 1.000 3.89 1.000 1.000 1.026 0.973 1.000 1.073 1.069

diverse 2 biased 37.55 0.966 3.81 0.983 1.016 0.995 0.969 0.998 1.022 1.040

diverse-clique 2 biased 37.85 0.974 3.84 0.987 1.035 0.998 0.967 1.022 1.029 1.044

imran 2 biased 37.80 0.972 3.84 0.985 1.105 1.035 0.966 1.088 1.065 1.043

shifty 2 biased 37.85 0.976 3.82 0.985 1.029 1.013 0.965 1.014 1.047 1.044

universal 2 biased 38.20 0.982 3.84 0.991 1.011 1.012 0.963 1.002 1.050 1.047

disjoint 2 biased, checker 38.00 0.976 3.83 0.987 1.003 0.999 0.959 0.991 1.031 1.037

diverse 2 biased, checker 37.80 0.971 3.83 0.985 1.005 0.990 0.968 0.989 1.019 1.044

diverse-clique 2 biased, checker 37.90 0.975 3.83 0.987 1.016 1.036 0.976 1.002 1.069 1.055

imran 2 biased, checker 38.00 0.977 3.85 0.988 1.026 1.009 0.980 1.013 1.041 1.059

shifty 2 biased, checker 37.85 0.973 3.83 0.985 1.046 0.996 0.962 1.030 1.027 1.040

universal 2 biased, checker 37.75 0.967 3.83 0.984 1.013 1.004 0.974 0.996 1.031 1.048

disjoint 2 asym. 37.90 0.972 3.85 0.987 1.008 1.024 0.963 0.996 1.055 1.043

diverse 2 asym. 38.25 0.998 4.00 1.035 — — — — — —

diverse-clique 2 asym. 38.25 0.998 4.00 1.035 — — — — — —

imran 2 asym. 37.90 0.973 3.83 0.988 1.016 1.027 0.977 1.003 1.060 1.057

shifty 2 asym. 38.00 0.977 3.84 0.987 1.033 1.037 0.966 1.019 1.069 1.044

universal 2 asym. 38.05 0.979 3.84 0.988 1.025 0.989 0.966 1.013 1.023 1.048

disjoint 2 asym., checker 38.25 0.981 3.86 0.991 1.012 1.003 0.971 1.003 1.038 1.054

diverse 2 asym., checker 38.10 0.993 4.00 1.036 — 0.995 — — 1.084 —

diverse-clique 2 asym., checker 38.10 0.994 3.99 1.031 — 0.985 — — 1.070 —

imran 2 asym., checker 38.10 0.977 3.84 0.988 0.996 1.018 0.974 0.985 1.051 1.054

shifty 2 asym., checker 37.55 0.966 3.81 0.982 1.015 0.999 0.966 0.996 1.026 1.038

universal 2 asym., checker 37.90 0.975 3.84 0.987 1.045 1.036 0.983 1.031 1.068 1.062

Table A.5: Performance of Fs � 2 switch blocks for k � 4.

A.5. SUMMARY 221

Type Fs Style Wmin (tracks) Area (�106 T) Delay (ns) at Wmin� Area�Delay (T�s) at Wmin�

Arith. Geom. Arith. Geom. 10% 20% 30% 10% 20% 30%

LUT size k � 5

unnormalized 35.8 3.05 19.70 0.0625

disjoint 2 biased 37.65 1.000 4.05 1.000 1.000 1.006 0.963 1.000 1.045 1.043

diverse 2 biased 37.20 0.991 4.02 0.996 1.017 1.001 0.969 1.012 1.036 1.042

diverse-clique 2 biased 36.50 0.973 3.99 0.989 1.021 1.005 0.975 1.009 1.029 1.040

imran 2 biased 37.20 0.991 4.02 0.997 1.034 0.997 0.977 1.031 1.033 1.051

shifty 2 biased 37.15 0.989 4.02 0.995 1.007 1.005 0.983 1.003 1.040 1.057

universal 2 biased 37.45 0.997 4.04 0.998 1.002 1.012 0.978 1.001 1.051 1.055

disjoint 2 biased, checker 37.05 0.988 4.02 0.995 1.012 0.991 0.975 1.007 1.024 1.050

diverse 2 biased, checker 37.25 0.991 4.02 0.997 1.018 1.007 0.980 1.014 1.041 1.055

diverse-clique 2 biased, checker 36.95 0.984 4.01 0.992 0.994 0.994 0.971 0.989 1.024 1.042

imran 2 biased, checker 37.35 0.994 4.03 0.997 1.014 1.001 0.970 1.011 1.039 1.046

shifty 2 biased, checker 37.15 0.989 4.02 0.995 1.005 1.000 0.974 1.001 1.033 1.048

universal 2 biased, checker 37.15 0.991 4.01 0.996 1.003 1.004 0.977 1.001 1.037 1.053

disjoint 2 asym. 37.20 0.990 4.02 0.997 1.030 0.999 0.974 1.026 1.033 1.051

diverse 2 asym. 37.75 1.023 4.16 1.038 — 0.992 0.994 — 1.077 1.124

diverse-clique 2 asym. 37.75 1.023 4.16 1.038 — 0.992 0.994 — 1.077 1.124

imran 2 asym. 37.40 0.996 4.04 0.999 1.012 1.015 0.979 1.011 1.053 1.058

shifty 2 asym. 36.95 0.984 4.01 0.995 1.006 1.005 0.973 0.999 1.037 1.044

universal 2 asym. 37.20 0.989 4.04 0.997 1.024 0.999 0.971 1.021 1.032 1.045

disjoint 2 asym., checker 36.85 0.981 4.01 0.991 1.026 1.005 0.976 1.018 1.035 1.045

diverse 2 asym., checker 37.70 1.022 4.17 1.040 1.040 — 1.003 1.085 — 1.138

diverse-clique 2 asym., checker 37.60 1.016 4.16 1.034 1.020 — 0.980 1.060 — 1.102

imran 2 asym., checker 37.05 0.987 4.01 0.995 1.029 0.997 0.973 1.023 1.030 1.047

shifty 2 asym., checker 37.00 0.987 4.01 0.994 1.007 0.985 0.974 1.003 1.018 1.047

universal 2 asym., checker 37.10 0.989 4.02 0.996 1.033 1.017 0.977 1.028 1.051 1.052

Table A.6: Performance of Fs � 2 switch blocks for k � 5.

222 APPENDIX A. SWITCH BLOCKS WITH REDUCED FLEXIBILITY

Type Fs Style Wmin (tracks) Area (�106 T) Delay (ns) at Wmin� Area�Delay (T�s) at Wmin�

Arith. Geom. Arith. Geom. 10% 20% 30% 10% 20% 30%

LUT size k � 6

unnormalized 33.6 3.08 18.81 0.0595

disjoint 2 biased 35.45 1.000 4.19 1.000 1.000 0.980 0.957 1.000 1.008 1.017

diverse 2 biased 35.00 0.989 4.16 0.996 1.002 0.985 0.949 0.998 1.009 1.003

diverse-clique 2 biased 34.95 0.986 4.17 0.995 1.024 0.992 0.960 1.019 1.015 1.014

imran 2 biased 35.15 0.990 4.17 0.997 1.007 0.996 0.955 1.004 1.021 1.011

shifty 2 biased 35.15 0.995 4.17 0.997 1.007 0.991 0.949 1.005 1.017 1.005

universal 2 biased 35.40 0.998 4.18 0.998 1.002 0.997 0.952 1.001 1.026 1.011

disjoint 2 biased, checker 35.10 0.990 4.17 0.997 1.025 0.981 0.955 1.022 1.006 1.012

diverse 2 biased, checker 35.25 0.994 4.17 0.998 0.978 0.977 0.952 0.976 1.003 1.008

diverse-clique 2 biased, checker 35.00 0.988 4.16 0.995 0.996 0.983 0.954 0.992 1.006 1.008

imran 2 biased, checker 35.15 0.990 4.17 0.996 0.970 0.996 0.958 0.968 1.021 1.014

shifty 2 biased, checker 35.15 0.992 4.16 0.997 0.981 0.984 0.949 0.979 1.010 1.005

universal 2 biased, checker 34.95 0.987 4.16 0.995 0.977 0.987 0.964 0.973 1.011 1.019

disjoint 2 asym. 35.30 0.993 4.19 0.997 0.996 0.979 0.958 0.995 1.005 1.015

diverse 2 asym. 35.95 1.032 4.29 1.029 0.998 0.978 0.974 1.032 1.041 1.071

diverse-clique 2 asym. 35.95 1.032 4.29 1.029 0.998 0.978 0.974 1.032 1.041 1.071

imran 2 asym. 35.25 0.991 4.18 0.997 0.988 0.981 0.950 0.985 1.007 1.006

shifty 2 asym. 34.95 0.987 4.17 0.996 1.029 0.995 0.962 1.025 1.020 1.015

universal 2 asym. 35.10 0.989 4.17 0.996 0.986 0.984 0.953 0.982 1.010 1.008

disjoint 2 asym., checker 35.10 0.988 4.18 0.996 0.980 0.982 0.956 0.978 1.006 1.012

diverse 2 asym., checker 36.00 1.034 4.29 1.032 0.993 0.976 — 1.028 1.041 —

diverse-clique 2 asym., checker 35.95 1.030 4.30 1.028 0.986 0.974 — 1.018 1.037 —

imran 2 asym., checker 35.15 0.994 4.17 0.997 0.992 0.989 0.958 0.991 1.016 1.014

shifty 2 asym., checker 35.30 0.997 4.18 0.998 0.998 0.986 0.956 0.997 1.012 1.015

universal 2 asym., checker 35.25 0.992 4.18 0.997 0.986 0.989 0.951 0.983 1.015 1.008

Table A.7: Performance of Fs � 2 switch blocks for k � 6.

Appendix B

Diverse Switch Block Design Instances

This appendix lists the precise switch block designs computed for length-4 wires. Table B.1

and B.2 show the solutions for diverse and diverse-clique switch block styles, respectively.

The tables can be read as follows. The solution set xW found for a particular value of

W is given in each column. Each row represents one turn type. The constant given at a

particular row and column is used in that turn map for that value of W . For example, am�1

is the constant for a turn at the first midpoint block. At W � 14, the turn map is given by

fm�1�t� � t�am�1 � t�3�

A clique structure can be verified in the diverse-clique results by checking that ae�1 �

ae�4, ae�2 � ae�3, and ae�1 � ae�2 � W . Although no clique constraints are placed during

the design of the diverse switch blocks, they are found in many of the solution sets. In

particular, there are cliques in fe for W � �2�3�4�5�7�9�10�11�12�16� and in ge for W �

�3�4�6�7�8�10�11�12�13�14�. This means that many diverse switch blocks can also be

constructed using simple layout structures.

223

224 APPENDIX B. DIVERSE SWITCH BLOCK DESIGN INSTANCES

Solution Track Group Channel Width, W �

xW 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ae�1 1 0 2 0 0 0 7 0 0 0 0 12 6 9 5 10 13

ae�2 1 0 2 0 3 0 0 0 0 0 0 6 11 6 11 7 6

ae�3 1 0 2 0 3 0 0 0 0 0 0 1 8 6 11 0 5

ae�4 1 0 2 0 0 0 0 0 0 0 0 12 13 11 5 14 5

am�1 0 1 1 0 5 5 0 0 7 5 7 10 3 4 9 11 13

am�2 0 0 1 4 0 2 2 5 8 7 9 2 3 0 11 15 12

am�3 0 1 2 4 2 5 6 8 2 10 2 11 9 6 4 14 8

be�1 1 0 2 2 0 0 0 2 0 0 0 6 0 2 8 0 16

be�2 0 0 2 0 0 0 0 0 0 0 0 7 0 13 8 2 2

be�3 0 0 2 0 0 0 0 7 0 0 0 7 0 13 8 0 1

be�4 0 0 2 2 0 0 0 0 0 0 0 6 0 1 2 15 17

bm�1 1 0 0 3 3 1 3 4 6 8 4 0 13 0 15 15 11

bm�2 0 2 3 0 1 1 1 2 1 1 1 0 1 1 15 6 13

bm�3 0 2 1 3 1 0 0 1 0 0 0 2 4 8 13 8 1

Table B.1: Diverse switch block solution sets.

Solution Track Group Channel Width, W �

xW 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ae�1 1 0 2 0 3 0 0 0 5 0 0 0 0 0 8 0 17

ae�2 1 0 2 0 3 0 0 0 5 0 0 0 0 0 8 0 1

ae�3 1 0 2 0 3 0 0 0 5 0 0 0 0 0 8 0 1

ae�4 1 0 2 0 3 0 0 0 5 0 0 0 0 0 8 0 17

am�1 0 2 1 2 2 5 5 4 9 5 7 11 3 7 3 10 12

am�2 0 1 0 3 2 2 6 7 2 7 9 8 5 12 13 12 4

am�3 0 2 1 2 0 5 1 7 4 10 2 9 6 13 6 4 5

be�1 0 0 0 0 0 0 0 2 5 0 0 5 9 3 3 3 3

be�2 0 0 0 0 0 0 0 7 5 0 0 8 5 12 13 14 15

be�3 0 0 0 0 0 0 0 7 5 0 0 8 5 12 13 14 15

be�4 0 0 0 0 0 0 0 2 5 0 0 5 9 3 3 3 3

bm�1 1 1 2 1 4 1 2 6 2 8 4 1 1 1 1 1 1

bm�2 0 0 0 1 0 1 0 2 1 1 1 1 1 1 1 1 1

bm�3 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

Table B.2: Diverse-clique switch block solution sets.

Bibliography

[1] Intel Corporation, “Microprocessor quick reference guide,” October 30, 2002.
http://www.intel.com/pressroom/kits/quickreffam.htm.

[2] ATI Technologies Inc., “ATI launches RADEON 9700, establishing a new foun-
dation for the future of graphics,” ATI Technologies Press Release, July 18, 2002.
http://mirror.ati.com/companyinfo/press/2002/4512.html.

[3] F. Abazovic, “ATI Radeon 9700 spec revealed,” the inquirer, July 15, 2002.
http://www.theinquirer.net/?article=4431.

[4] S. Thompson, P. Packan, and M. Bohr, “MOS scaling: Transistor challenges for the
21st century,” Intel Technology Journal, pp. 1–19, 1996.

[5] S. Ohr and R. Wilson, “Trouble at 130-nm node causes finger pointing,” EE Times,
June 14, 2002.

[6] B. S. Landman and R. L. Russo, “On a pin versus block relationship for partitions
of logic graphs,” IEEE Transactions on Computers, vol. C-20, pp. 1469–1479, De-
cember 1971.

[7] J. Pistorius and M. Hutton, “Placement rent exponent calculation methods, temporal
behaviour, and fpga architecture evaluation,” in ACM/IEEE 5th International Work-
shop on System Level Interconnect Prediction, April 5–6 2003.

[8] V. Betz and J. Rose, “Using architectural families to increase FPGA speed and den-
sity,” in ACM/SIGDA Int. Symp. on FPGAs, (Monterey, CA), pp. 10–16, 1995.

[9] K. Compton and S. Hauck, “Totem: Custom reconfigurable array generation,” in
IEEE Symposium on FPGAs for Custom Computing Machines, 2001.

[10] K. Compton, A. Sharma, S. Phillips, and S. Hauck, “Flexible routing architecture
generation for domain-specific reconfigurable subsystems,” in International Confer-
ence on Field Programmable Logic and Applications, pp. 59–68, September 2002.

[11] Actel Corporation, Sunnyvale, CA, Online Databook, 2002.
http://www.actel.com/techdocs/ds/index.html.

[12] eASIC Corporation, San Jose, CA, Online Databook, 2002.
http://www.easic.com/products/index.html.

225

226 BIBLIOGRAPHY

[13] Leopard Logic Incorporated, Cupertino, CA, Online Databook, 2002.
http://www.leopardlogic.com/home.html.

[14] A. Cataldo, “Hybrid architecture embeds Xilinx FPGA core into IBM ASICs,” EE
Times, June 24, 2002.

[15] K. Zhu, D. F. Wong, and Y.-W. Chang, “Switch module design with application to
two-dimensional segmentation design,” in IEEE/ACM International Conference on
Computer-Aided Design, pp. 481–486, November 1993.

[16] P. Hall, “On representatives of subsets,” Journal of the London Mathematical Soci-
ety, vol. 10, pp. 26–30, 1935.

[17] G. A. Margulis, “Explicit construction of concentrators,” Problems of Information
Transmission, vol. 9, no. 4, pp. 325–332, 1973.

[18] O. Gabber and Z. Galil, “Explicit construction of linear sized superconcentrators,”
Journal of Computer and System Sciences, pp. 407–420, 1981.

[19] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron
FPGAs. Boston: Kluwer Academic Publishers, 1999.

[20] S. Brown, R. Francis, J. Rose, and Z. G. Vranesic, Field-Programmable Gate Ar-
rays. Kluwer Academic Publishers, May 1992.

[21] C. Sung, R. Cliff, J. Huang, B. Wang, K. Nguyen, X. Wang, K. Veenstra, B. Peder-
sen, and J. Turner, “A silicon efficient FLEX6000 programmable logic architecture,”
in IEEE Custom Integraged Circuits Conference, pp. 273–276, 1998.

[22] K. Veenstra, B. Pedersen, J. Schleicher, and C. Sung, “Optimizations for a highly
cost-efficient programmable logic architecture,” in ACM/SIGDA Int. Symp. on FP-
GAs, pp. 20–24, 1998.

[23] V. Aggarwal, “Actel’s ProASIC family: The non-volatile, reprogrammable gate ar-
ray,” in Actel-Synopsis fpgaforum Quarterly Application Notes, pp. 2–3, October
1999.

[24] A. El Gamal, J. Greene, and V. Roychowdhury, “Segmented channel routing is
nearly as efficient as channel routing (and just as hard),” in Advanced Research in
VLSI Conference, pp. 192–211, March 1991.

[25] J. Greene, V. Roychowdhury, S. Kaptanoglu, and A. El Gamal, “Segmented channel
routing,” in Design Automation Conference, pp. 567–572, 1990.

[26] J. W. Greene, V. P. Roychowdhury, and A. El Gamal, “Segmented channel routing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 12, pp. 79–95, January 1993.

[27] Actel, Sunnyvale, CA, FPGA Data Book and Design Guide, 1994.

BIBLIOGRAPHY 227

[28] K. Zhu and D. F. Wong, “On channel segmentation design for row-based FPGAs,” in
IEEE/ACM International Conference on Computer-Aided Design, pp. 26–29, 1992.

[29] M. Pedram, B. S. Nobandegani, and B. T. Preas, “Architecture and routability anal-
ysis for row-based FPGAs.,” in IEEE/ACM International Conference on Computer-
Aided Design, pp. 230–235, 1993.

[30] Altera Corporation, San Jose, CA, Online Databook, 2002.
http://www.altera.com/literature/lit-index.html.

[31] Xilinx, Inc., San Jose, CA, Online Databook, 2002.
http://www.xilinx.com/partinfo/databook.htm.

[32] Vantis (AMD) Corporation, On-line Mach Family Data Sheets, March 1997.
http://www.vantis.com/products/products.html.

[33] Lattice Semiconductor Corporation, On-line ispLSI/pLSI Data Sheets, March 1997.
http://www.latticesemi.com/cgi-bin/lattice_list_files.

[34] A. K. Aggarwal, “Routing algorithms and architectures for hierarchical field pro-
grammable gate arrays,” Master’s thesis, Department of Electrical and Computer
Engineering, University of Toronto, January 1994.

[35] A. K. Aggarwal and D. M. Lewis, “Routing architectures for hierarchical field pro-
grammable gate arrays,” in IEEE International Conference on Computer Design,
pp. 475–478, 1994.

[36] V. C. Chan and D. M. Lewis, “Area-speed tradeoffs for hierarchical field-
programmable gate arrays,” in ACM/SIGDA Int. Symp. on FPGAs, pp. 51–57, 1996.

[37] Y.-T. Lai and P.-T. Wang, “Hierarchical interconnection structures for field pro-
grammable gate arrays,” IEEE Transactions on VLSI Systems, vol. 5, pp. 186–196,
June 1997.

[38] D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S. Marquardt, C. Mc-
Clintock, B. Pedersen, G. Powell, S. Reddy, R. Cliff, and J. Rose, “The Stratix
routing and logic architecture,” in ACM/SIGDA Int. Symp. on FPGAs, (Monterey,
CA), pp. 12–20, February 2003.

[39] V. Betz and J. Rose, “Cluster-based logic blocks for FPGAs: Area-efficiency vs.
input sharing and size,” in IEEE Custom Integraged Circuits Conference, (Santa
Clara, CA), pp. 551–554, 1997.

[40] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-submicron
FPGA performance and density,” in ACM/SIGDA Int. Symp. on FPGAs, pp. 3–12,
2000.

[41] E. Ahmed, “The effect of logic block granularity on deep- submicron FPGA perfor-
mance and density,” Master’s thesis, Department of Electrical and Computer Engi-
neering, University of Toronto, 2001.

228 BIBLIOGRAPHY

[42] J. Rose and S. Brown, “Flexibility of interconnection structures in field-programma-
ble gate arrays,” IEEE Journal of Solid State Circuits, vol. 26, pp. 277–282, March
1991.

[43] S. D. Brown, G. G. Lemieux, and M. Khellah, “Segmented routing for speed-perfor-
mance and routability in field-programmable gate arrays,” Journal of VLSI Design,
vol. 4, no. 4, pp. 275–291, 1996.

[44] V. Betz and J. Rose, “Directional bias and non-uniformity in FPGA global routing
architectures,” in IEEE/ACM International Conference on Computer-Aided Design,
(San Jose, CA), pp. 652–659, 1996.

[45] V. Betz and J. Rose, “Effect of the prefabricated routing track distribution on FPGA
area-efficiency,” IEEE Transactions on VLSI Systems, pp. 445–456, September
1998.

[46] B. Tseng, J. Rose, and S. Brown, “Using architectural and CAD interactions to
improve FPGA routing architectures,” in First International ACM/SIGDA Workshop
on Field-Programmable Gate Arrays, pp. 3–8, February 1992.

[47] V. Betz and J. Rose, “Circuit design, transistor sizing, and wire layout of FPGA
interconnect,” in IEEE Custom Integraged Circuits Conference, pp. 171–174, May
1999.

[48] V. Betz and J. Rose, “FPGA routing architecture: Segmentation and buffering to
optimize speed and density,” in ACM/SIGDA Int. Symp. on FPGAs, pp. 59–68, 1999.

[49] A. Roopchansingh, “Nearest neighbour interconnect architecture in deep-submicron
FPGAs,” Master’s thesis, Department of Electrical and Computer Engineering, Uni-
versity of Toronto, 2002.

[50] A. Roopchansingh and J. Rose, “Nearest neighbour interconnect architecture in deep
submicron FPGAs,” in IEEE Custom Integraged Circuits Conference, 2002.

[51] Y.-L. Wu and M. Marek-Sadowska, “Orthogonal greedy coupling — a new opti-
mization approach to 2-D FPGA routing,” in ACM/IEEE Design Automation Con-
ference, June 1995.

[52] Y.-W. Chang, D. F. Wong, and C. K. Wong, “Universal switch-module design for
symmetric-array-based FPGAs,” ACM Transactions on Design Automation of Elec-
tronic Systems, vol. 1, pp. 80–101, January 1996.

[53] G. G. Lemieux, S. D. Brown, and D. Vranesic, “On two-step routing for FPGAs,”
in International Symposium on Physical Design, (Napa, CA), April 1997.

[54] R. G. Tessier, Fast Place and Route Approaches for FPGAs. PhD thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, 1999.

BIBLIOGRAPHY 229

[55] Y.-W. Chang, D. F. Wong, and C. K. Wong, “Universal switch-module design for
symmetric-array-based FPGAs,” in ACM/SIGDA Int. Symp. on FPGAs, pp. 80–86,
1996.

[56] M. Shyu, Y.-D. Chang, G.-M. Wu, and Y.-W. Chang, “Generic universal switch
blocks,” in IEEE International Conference on Computer Design, pp. 311–314, 1999.

[57] M. Shyu, Y.-D. Chang, G.-M. Wu, and Y.-W. Chang, “Generic universal switch
blocks,” IEEE Transactions on Computers, vol. 49, pp. 348–359, April 2000.

[58] H. Fan, Y.-L. Wu, and Y.-W. Chang, “Comment on “generic universal switch
blocks”,” IEEE Transactions on Computers, vol. 51, pp. 93–95, January 2002.

[59] H. Fan, J. Liu, Y.-L. Wu, and C.-C. Cheung, “On optimum designs of universal
switch blocks,” in International Conference on Field Programmable Logic and Ap-
plications, pp. 142–151, September 2002.

[60] H. Fan, J. Liu, and Y.-L. Wu, “General models for optimum arbitrary-dimension
FPGA switch box designs,” in IEEE/ACM International Conference on Computer-
Aided Design, pp. 93–98, November 2000.

[61] H. Fan, J. Liu, and Y.-L. Wu, “Combinatorial routing analysis and design of univer-
sal switch blocks,” in Asia South Pacific Design Automation Conference, pp. 641–
644, January 2001.

[62] H. Fan, J. Liu, Y.-L. Wu, and C.-C. Cheung, “On optimum switch box designs for
2-D FPGAs,” in ACM/IEEE Design Automation Conference, June 2001.

[63] S. J. Wilton, Architectures and Algorithms for Field-Programmable Gate Arrays
with Embedded Memories. PhD thesis, Department of Electrical and Computer
Engineering, University of Toronto, 1997.

[64] M. I. Masud, “FPGA routing structures: A novel switch block and depopulated in-
terconnect matrix architectures,” Master’s thesis, Department of Electrical and Com-
puter Engineering, University of British Columbia, December 1999.

[65] M. I. Masud and S. Wilton, “A new switch block for segmented FPGAs,” in Inter-
national Workshop on Field Programmable Logic and Applications, August 1999.

[66] A. Yan, R. Cheng, and S. Wilton, “On the sensitivity of FPGA architectural con-
clusions to experimental assumptions, tools, and techniques,” in ACM/SIGDA Int.
Symp. on FPGAs, pp. 147–156, February 2002.

[67] Y.-W. Chang, D. F. Wong, and C. K. Wong, “Design and analysis of FPGA/FPIC
switch modules,” in IEEE International Conference on Computer Design, pp. 394–
401, 1995.

[68] G.-M. Wu and Y.-W. Chang, “Switch-matrix architecture and routing for FPDs,” in
International Symposium on Physical Design, pp. 158–163, 1998.

230 BIBLIOGRAPHY

[69] G.-M. Wu and Y.-W. Chang, “Maximally routable switch matrices for FPD design,”
in IEEE International Symposium on Circuits and Systems, vol. 6, pp. 131–134,
1998.

[70] G.-M. Wu and Y.-W. Chang, “Quasi-universal switch matrices for FPD design,”
IEEE Transactions on Computers, vol. 48, pp. 1107–1122, October 1999.

[71] Y.-L. Wu, S. Tsukiyama, and M. Marek-Sadowska, “Computational complexity of
2-D FPGA routing for arbitrary switch box topologies,” in ACM International Work-
shop on Field-Programmable Gate Arrays, 1994.

[72] Y.-L. Wu and M. Marek-Sadowska, “An efficient router for 2-D field-programmable
gate arrays,” in European Design Automation Conference, pp. 412–416, 1994.

[73] Y.-L. Wu and D. Chang, “On the NP-completeness of regular 2-D FPGA rout-
ing architectures and a novel solution,” in IEEE/ACM International Conference on
Computer-Aided Design, pp. 362–366, 1994.

[74] Y.-L. Wu, S. Tsukiyama, and M. Marek-Sadowska, “Graph based analsysis of 2-D
FPGA routing,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 15, January 1996.

[75] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. New York: W. H. Freeman and Company, 1979.

[76] Y. Takashima, A. Takahashi, and Y. Kajitani, “Routability of fpgas with extremal
switch-block structures,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. E81-A, pp. 850–856, May 1998.

[77] Y. Sun, T.-C. Wang, C. K. Wong, and C. L. Liu, “Routing for symmetric FPGAs
and FPICs,” in IEEE/ACM International Conference on Computer-Aided Design,
pp. 486–490, 1993.

[78] Y. Sun, T.-C. Wang, C. K. Wong, and C. L. Liu, “Routing for symmetric FPGAs and
FPICs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 16, pp. 20–31, January 1997.

[79] P. Hallschmid and S. J. Wilton, “Detailed routing architectures for embedded pro-
grammable logic ip cores,” in ACM/SIGDA Int. Symp. on FPGAs, pp. 69–74, Febru-
ary 2001.

[80] S. Nakamura and G. M. Masson, “Lower bounds on crosspoints in concentrators,”
IEEE Transactions on Computers, vol. C-31, pp. 1173–1179, December 1982.

[81] A. Y. Oruç and H. M. Huang, “New results on sparse crossbar concentrators,” in Pro-
ceedings of Information Sciences and Systems Conference, (Princeton University),
1994.

BIBLIOGRAPHY 231

[82] K. Fujiyoshi, Y. Kajitani, and H. Niitsu, “Design of optimum totally-perfect
connection-blocks of FPGA,” in IEEE International Symposium on Circuits and
Systems, vol. 1, pp. 221–224, May 1994.

[83] K. Fujiyoshi, Y. Kajitani, and H. Niitsu, “Design of minimum and uniform bipartites
for optimum connection blocks of FPGA,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 16, pp. 1377–1383, November 1997.

[84] W. Guo and A. Y. Oruç, “Regular sparse crossbar concentrators,” IEEE Transactions
on Computers, vol. 47, pp. 363–368, March 1998.

[85] G. M. Masson, “Binomial switching networks for concentration and distribution,”
IEEE Transactions on Communications, vol. COM-25, pp. 873–883, September
1977.

[86] A. Y. Oruç and H. M. Huang, “Crosspoint complexity of sparse crossbar concentra-
tors,” IEEE Transactions on Information Theory, vol. 42, pp. 1466–1179, September
1996.

[87] K. Azegami, “Integrated circuit device with programmable junctions and method of
designing such integrated circuit device,” United States Patent Number 6,323,678,
November 2001.

[88] A. Y. Oruç, “Multiple tracks of research on interconnection networks,” Technical
Report INRL-95-04, Interconnection Network Research Laboratory, University of
Maryland, 1995.

[89] V. E. Beneš, Mathematical Theory of Connecting Networks and Telephone Traffic.
New York: Academic Press, 1965.

[90] C. Clos, “A study of non-blocking switching networks,” Bell System Technical Jour-
nal, vol. 32, pp. 406–424, March 1953.

[91] V. E. Beneš, “Optimal rearrangeable multistage connecting networks,” Bell System
Technical Journal, vol. 43, pp. 1641–1656, 1964.

[92] G. W. Richards and F. K. Hwang, “A two-stage rearrangeable broadcast switching
network,” IEEE Transactions on Communications, vol. COM-33, no. 10, pp. 1025–
1035, 1985.

[93] M. Butts, J. Batcheller, and J. Vargese, “An efficient logic emulation system,” in
Proceedings of IEEE International Conference on Computer Design, pp. 138–141,
1992.

[94] J. Vargese, M. Butts, and J. Batcheller, “An efficient logic emulation system,” IEEE
Transactions on VLSI Systems, vol. 1, pp. 171–174, June 1993.

[95] D. M. Lewis, D. R. Galloway, M. van Ierssel, J. Rose, and P. Chow, “The
transmogrifier-2: A 1 million gate rapid prototyping system,” in ACM/SIGDA Int.
Symp. on FPGAs, (Monterey, CA), pp. 53–61, February 1997.

232 BIBLIOGRAPHY

[96] D. M. Lewis, D. R. Galloway, M. van Ierssel, J. Rose, and P. Chow, “The
transmogrifier-2: A 1 million gate rapid prototyping system,” IEEE Transactions
on VLSI Systems, vol. 6, pp. 188–198, June 1998.

[97] M. A. Khalid and J. Rose, “A hybrid complete-graph partial-crossbar routing archi-
tecture for multi-FPGA systems,” in ACM/SIGDA Int. Symp. on FPGAs, pp. 45–54,
1998.

[98] M. A. Khalid and J. Rose, “A novel and efficient routing architecture for multi-
FPGA systems,” IEEE Transactions on VLSI Systems, vol. 8, pp. 30–39, February
2000.

[99] P. K. Chan and M. D. Schlag, “Architectural trade-offs in field-programmable device
based computing systems,” in IEEE Workshop on FPGA’s for Custom Computing
Machines, pp. 138–141, April 1993.

[100] W.-K. Mak and D. F. Wong, “On optimal board-level routing for FPGA-based logic
emulation,” in ACM/IEEE Design Automation Conference, pp. 552–556, 1995.

[101] W.-K. Mak and D. F. Wong, “On optimal board-level routing for FPGA-based logic
emulation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 16, pp. 282–289, March 1997.

[102] X. Song, W. N. Hung, A. Mishchenko, M. Chrzanowska-Jeske, A. Coppola, and
A. Kennings, “Board-level multiterminal net assignment,” in ACM 12th Great Lakes
Symposium on VLSI, April 2002.

[103] A. Ejnioui and N. Ranganathan, “Multi-terminal net routing for partial crossbar-
based multi-FPGA systems,” in ACM/SIGDA Int. Symp. on FPGAs, pp. 176–184,
February 1999.

[104] S.-S. Lin, Y.-J. Lin, and T. Hwang, “Net assignment for the FPGA-based logic
emulation system in the folded-Clos network structure,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 16, pp. 316–320,
March 1997.

[105] F. R. Chung, “On concentrators, superconcentrators, generalizers, and nonblocking
networks,” Bell System Technical Journal, vol. 58, pp. 1765–1777, October 1978.

[106] W. Guo and A. Y. Oruç, “Semi-explicit cosntruction of linear size concentrators
and superconcentrators,” Technical Report INRL-95-01, Interconnection Network
Research Laboratory, University of Maryland, 1995.

[107] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson, “Randomness conductors
and constant-degree lossless expanders,” in Proceedings of the 34th Annual ACM
Symposium on Theory of Computing, May 19–21 2002.

[108] M. Sheng and J. Rose, “Mixing buffers and pass transistors in FPGA routing archi-
tectures,” in ACM/SIGDA Int. Symp. on FPGAs, pp. 75–84, February 2001.

BIBLIOGRAPHY 233

[109] W. Elmore, “The transient response of damped linear networks with particular re-
gard to wideband amplifiers,” Journal of Applied Physics, pp. 55–63, January 1948.

[110] T. Okamoto and J. Cong, “Buffered steiner tree construction with wire sizing
for interconnect layout optimization,” in IEEE/ACM International Conference on
Computer-Aided Design, pp. 739–752, 1992.

[111] A. Marquardt, V. Betz, , and J. Rose, “Speed and area tradeoffs in cluster-based
FPGA architectures,” IEEE Transactions on VLSI Systems, pp. 84–93, February
2000.

[112] Collaborative Benchmarking Laboratory, LGSynth93 suite. North Carolina State
University. http://www.cbl.ncsu.edu/.

[113] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli, “SIS: A
system for sequential circuit analysis,” Technical Report UCB/ERL M92/41, Uni-
versity of California, Berkeley, May 1992.

[114] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping algorithm for
delay optimization in lookup-table based FPGA designs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 1–12, January 1994.

[115] A. Marquardt, V. Betz, and J. Rose, “Using cluster-based logic blocks and timing-
driven packing to improve FPGA speed and density,” in ACM/SIGDA Int. Symp. on
FPGAs, pp. 37–46, 1999.

[116] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool for FPGA
research,” in Seventh International Workshop on Field-Programmable Logic, (Lon-
don, UK), pp. 213–222, 1997.

[117] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for FPGAs,” in
ACM/SIGDA Int. Symp. on FPGAs, pp. 203–213, 2000.

[118] J. Swartz, “A high-speed timing-aware router for FPGAs,” Master’s thesis, Depart-
ment of Electrical and Computer Engineering, University of Toronto, 1998.

[119] J. Swartz, V. Betz, and J. Rose, “A fast routability-driven router for FPGAs,” in
ACM/SIGDA Int. Symp. on FPGAs, pp. 140–149, February 1998.

[120] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, and G. Snider, “Teramac – con-
figurable custom computing,” in IEEE Workshop on FPGA’s for Custom Computing
Machines, 1995.

[121] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, and G. Snider, “Plasma: An FPGA
for million gate systems,” in ACM/SIGDA Int. Symp. on FPGAs, pp. 10–16, 1996.

[122] Altera Corporation, San Jose, CA, News & Views Newsletter, August 1999.

234 BIBLIOGRAPHY

[123] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cam-
bridge, MA: MIT Press, 1993.

[124] I. S. Honkala and P. R. J. Östergård, “Applications in code design,” in Local Search
in Combinatorial Optimization (E. Aarts and J. Lenstra, eds.), ch. 12, Wiley, 1997.

[125] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, “A new table
of constant weight codes,” IEEE Transactions on Information Theory, vol. IT-36,
pp. 1334–1380, November 1990.

[126] R. L. Graham and N. J. A. Sloane, “Lower bounds for constant weight codes,” IEEE
Transactions on Information Theory, vol. IT-26, pp. 37–43, January 1980.

[127] K. J. Nurmela, M. K. Kaikkonen, and P. R. J. Östergård, “New constant weight
codes from linear permutation groups,” IEEE Transactions on Information Theory,
vol. IT-43, pp. 1623–11630, September 1997.

[128] A. El Gamal, L. A. Heinachandra, I. Shperling, and V. K. Wei, “Using simulated
annealing to design good codes,” IEEE Transactions on Information Theory, vol. 33,
pp. 116–123, January 1987.

[129] P. Leventis, “Placement algorithms and routing architecture for long-line based FP-
GAs,” Bachelor of Applied Science thesis, Division of Engineering Science, Faculty
of Applied Science and Engineering, University of Toronto, 1999.

[130] Altera, San Jose, CA, 1996 Data Book, 1996.

[131] A. DeHon, “Entropy, counting, and programmable interconnect,” in ACM/SIGDA
Int. Symp. on FPGAs, pp. 73–79, 1996.

[132] A. Takahara, T. Miyazaki, T. Murooka, M. Katayama, K. Hayashi, A. Tsutsui,
T. Ichimori, and K. nosuke Fukami, “More wires and fewer LUTs: a design method-
ology for FPGAs,” in ACM/SIGDA Int. Symp. on FPGAs, (Monterey, CA), pp. 12–
19, February 1998.

[133] A. DeHon, “Balancing interconnect and computation in a reconfigurable computing
array,” in ACM/SIGDA Int. Symp. on FPGAs, pp. 69–78, 1999.

[134] E. S. Ochotta, P. J. Crotty, C. R. Erickson, C.-T. Huang, R. Jayaraman, R. C. Li,
J. D. Linoff, L. Ngo, H. V. Nguyen, K. M. Pierce, D. P. Wieland, J. Zhuang, and S. S.
Nance, “A novel predictable segmented FPGA routing architecture,” in ACM/SIGDA
Int. Symp. on FPGAs, (Monterey, CA), pp. 3–11, February 1998.

[135] S. Trimberger, K. Duong, and B. Conn, “Architecture issues and solutions for a high-
capacity FPGA,” in ACM/SIGDA Int. Symp. on FPGAs, (Monterey, CA), pp. 3–9,
February 1997.

[136] M. Sheng, “Mixing buffers and pass transistors in FPGA routing architecture,”
Master’s thesis, Department of Electrical and Computer Engineering, University of
Toronto, 2001.

BIBLIOGRAPHY 235

[137] I. Dobbelaere, M. Horowitz, and A. El Gamal, “Regenerative feedback repeaters
for programmable interconnections,” IEEE Journal of Solid-State Circuits, vol. 30,
no. 11, 1995.

[138] P. Chow, S. Ong Seo, J. Rose, K. Chung, G. Paez-Monzon, and I. Rahardja, “The
design of an SRAM-based field-programmable gate array — part II: Circuit design
and layout,” IEEE Transactions on VLSI Systems, vol. 7, pp. 321–330, September
1999.

[139] M. Khellah, S. Brown, and Z. Vranesic, “Modelling routing delays in SRAM-based
FPGAs,” in Canadian Conference on VLSI, pp. 6B.13–18, November 1993.

[140] V. George and J. Rabaey, Low Energy FPGAs: Architecture and Design. Boston:
Kluwer Academic Publishers, 2001.

[141] E. Kusse and J. Rabaey, “Low-energy embedded FPGA structures,” in International
Symposium on Low Power Electronics and Design, pp. 155–160, 1998.

[142] V. George and J. Rabaey, “The design of a low energy FPGA,” in International
Symposium on Low Power Electronics and Design, pp. 188–193, 1999.

[143] H. Zhang, V. George, and J. Rabaey, “Low-swing on-chip signaling techniques:
effectiveness and robustness,” IEEE Transactions on VLSI Systems, vol. 8, pp. 264–
272, June 2000.

[144] G. Lemieux and D. Lewis, “Using sparse crossbars within LUT clusters,” in
ACM/SIGDA Int. Symp. on FPGAs, (Monterey, CA), pp. 59–68, February 2001.

[145] J. Rabaey, Digital Integrated Circuits: A Design Perspective. Upper Saddle River,
NJ: Prentice Hall, 1996.

[146] K. Martin, Digital Integrated Circuit Design. New York, NY: Oxford University
Press, 2000.

[147] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings, “A recon-
figurable arithmetic array for multimedia applications,” in ACM/SIGDA Int. Symp.
on FPGAs, pp. 135–143, 1999.

[148] K. Bernstein, M. Bhushan, and N. Rohrer, “On the selection of the optimal threshold
voltages for deep submicron CMOS technologies,” IBM MicroNews, vol. 7, no. 1,
pp. 29–31, 2001.

[149] A. Cataldo, “Altera samples 0.13-micron high-density PLD,” EE Times, January 7,
2002.

[150] H. Schmit and V. Chandra, “FPGA switch block layout and evaluation,” in
ACM/SIGDA Int. Symp. on FPGAs, (Monterey, CA), pp. 11–18, February 2002.

