
NODAL: Structure and Reference for Web
Documents

Lee Iverson1

University of British Columbia
Dept. of ECE, 2356 Main Mall, Vancouver, BC Canada V6T 1Z4

leei@ece.ubc.ca,
http://www.ece.ubc.ca/~leei

Abstract. The Web has amply demonstrated the benefits of simple
publishing and reference but these benefits are largely limited to the
granularity of individual files. The potential for greater benefits that
may derive from sub-document reference is currently being explored,
but this exploration is limited by the fact that such references can only
be used with a small portion of the Web’s content (i.e. that encoded
in XML). We have developed a system, the Network-Oriented Docu-
ment Abstraction Language (NODAL), that is designed to provide such
a sub-document reference system for documents encoded in any format.
Moreover, the data model can be mapped over database schemas and
thus provide a common reference and access environment for structured,
semi-structured and unstructured data. Finally, we outline a number of
ways that this system can be extended to allow for composition, synchro-
nization and reuse of documents and databases in this form and can thus
form a hypertextual foundation for interactive application development
without inhibiting interoperability with existing systems.

1 Overview

The Web has created an unprecedented ability to publish and distribute docu-
ments and other data and to augment this content with hypertextual references.
However, the granularity of these references is, for the most part, limited to the
file level. The combination of a need to reuse and/or quote sources smaller than
a whole document (e.g. Nelson’s transclusion[1]) and the advent of new technolo-
gies built on hypertextual reference (e.g. RDF[2] and the Semantic Web[3]) has
stimulated a desire to provide a means of referencing only parts of a document. In
traditional HTML this was accomplished with named anchors, but was thus lim-
ited to only those points in a document anticipated by the author. XPointer[4],
XPath[5] and XLink[6] provide sub-document linking for XML documents but
as yet only a small fraction of the Web is available as XML.

Instead of restricting sub-document reference to markup languages, we have
designed NODAL, the Network-Oriented Document Abstraction Language, as
a simple middleware layer that provides a means of defining URI-referenceable
structure for all document repositories and other structured data sources. It



achieves this end by defining a simple data model and schema language that
can be used to define fragment references for any document type. A plugin ar-
chitecture is used to associate format encoder/decoder pairs with MIME types
that identify particular document formats. This system thus defines a common
language for referencing and accessing the structured contents of arbitrary doc-
ument formats at arbitrary granularity. Moreover, it can be used in conjunction
with other sub-document reference schemes without interference.

Finally, the system provides a base for future development and research to-
wards new software architectures and development paradigms that allow for a
much more seamless interconnection between data and documents across appli-
cations, formats, database structures and distribution protocols.

2 The Problem: Granular Reference, Content Reuse and
Annotation

Consider an engineering student working on a class project. The course has a
website that contains notes from classroom sessions as well as a set of links to on-
line resources to learn more about certain subjects. The student exchanges email
with other students about his project and asks questions on an online forum and
mailing list that help him successfully complete his project. At the end, he has
a design document, a project report and an artifact that is a combination of a
software system and some hardware described in a CAD model. Through this
entire project, he has used a few dozen sources of information (most online), at
least half a dozen different software systems, and between his project notes and
reports he has written a few thousand lines of text to describe and justify his
design. How then is this information structured to facilitate the work itself and
to communicate its products? If he was using broadly accepted practices then
his working environment consists of a project directory on his desktop system,
project and class folders in his email client, and a set of bookmarks for selected
information sources in his browser. But how are they connected? Where is the
justification for a particular design feature in the CAD model? Where is the
connection between his project document and the email conversation and forum
entries in which some critical issues were explained?

This kind of scenario is familiar to most hypertext researchers and some of
these issues are well described by Ted Nelson in a recent paper[1] summarizing
his goals and motivations of the past 40 years and a prescription for “Xanalogical
structure”. Unfortunately, like many hypertext systems of the past (e.g. Micro-
cosm[7] and Intermedia[8]), he suggests that the solution lies in an incompatible,
new system and data model that will only act as its own kind of information
silo. Instead we suggest that the only way that this can be made to work (and
have any possibility of wide uptake) is if we strive to develop a system that
interoperates seamlessly with existing environments and applications (e.g. as in
Chimera[9]).

In a separate paper[10], we have analyzed this general class of issues and
various kinds of ”information silos” (e.g. applications, data formats, operating



systems, database systems). We suggested that a change to the assumed appli-
cation architecture would allow for the deep linking, content reuse and general
annotation facilities necessary to build general personal (and group) information
management environments. This application architecture (the DKC Model) con-
tains a persistent storage layer at its base (the Data layer) that forms the basis
for sharing, linking, reuse and versioning of data and structure. A Knowledge
layer that can be used to imbue this data with semantic meaning, and then a
final, independent layer of Context that manages user interface, interaction and
modelling. By advocating the independence of view and storage (in the Con-
text and Data layers), we suggest that this model will not only allow personal
and group information management to finally begin to deal with cross-platform,
cross-application issues but that we will enable greater innovation and adapta-
tion in the user- and task-oriented spaces often considered by HCI and Hypertext
researchers.

3 A Solution: Document Data Modeling and Reference

The requirements elucidated for the Data layer in the DKC model include: a
structural data model, both database and filesystem (or document-based) views,
and a standard, granular, sub-document reference system. The NODAL system
defines a data model that is a superset of the relational model that can be applied
to modeling document formats in such a way as to provide a basis for a URI-
based fragment references for any kind of modeled document. Moreover, with
the architecture outlined below, we show how this can also be extended to a wide
variety of data access protocols, some database-like and some filesystem-like.

4 The NODAL Data Model

The challenges are to develop or adapt a data model that has clear application
to distributed storage systems, provides a framework for both absolute and rel-
ative URI-based reference, and maps naturally to document formats, database
schemata and application-level APIs. Moreover, for some of the more advanced
functionality we will discuss later, it is important to distinguish which units of
data will have metadata associated with them.

The fundamental design constraints we settled on are summarized as follows:

– Use a type system to model the structural and value constraints that char-
acterize the particular data encoded by a particular format. This means that
each data format or database schema should be expressable in the NODAL
data modelling language with a new schema or via reference to an existing
schema.

– Clearly separate data modeling from syntax. A common data model for
a variety of data formats requires this independence, although there are
certainly situations in which there must be a standard syntax for certain
uses of the model (e.g. in coding references as URIs).



– Don’t invent new data types or structures. Compatibility of this model with
existing programming languages and data storage models is a primary con-
cern. We are primarily interested in providing a minimally sufficient model
that can be adapted for a wide range of purposes.

– Encourage standardization and reuse of data schemas by designing a lan-
guage that encourages granular reuse and composition of schemas.

– Distinguish between immutable and mutable types. We need both, but im-
mutable objects are more distributable (reference equals copying). The only
objects that may need metadata such as change history and access control
are the mutable ones.

We believe that these constraints follow naturally from both programming lan-
guage and data modeling experience and from the overwhelming need for both
backward compatibility and extensibility. If we ignore these requirements, our
goal of providing a model that can be the basis for seamless information inte-
gration will fail.

4.1 Literal Data Types

The literal, immutable data types were chosen by combining the type systems
of XML Schema: Part 2[11], the SQL99 standard[12], and modern programming
languages. No significant explanation should be required to justify the set of
literal data types shown in Table 1. Where appropriate, a reference is provided
to a standard that describes the storage format and textual expression of each
type. The Name type is the only one of these that may need explanation. It is
an immutable sequence of characters with an optional namespace (specified by
a URI as in XML namespaces). This type is distinguished from the String type
(a Sequence of characters) that allows modification.

Table 1. Literal data types for NODAL data model

Type Name Description Standard

Boolean A true or false value
Character A single character ISO 10646
Octet An 8-bit unsigned integral value (0-255)
Short A 16-bit signed integral value
Integer A 32-bit signed integral value
Long A 64-bit signed integral value
Float A 32-bit floating point value IEEE 754[13]
Double A 64-bit floating point value IEEE 754[13]
Name An immutable character string
Timestamp A single moment in time ISO 8601[14]

One characteristic of these atomic types is that their identity is completely
described by their content. This combination of content-defined identity and



immutability is usually described as a ”value” type in computer language design.
Their advantages for distributed computing applications is well known: they are
inherently distributable, since all copies are identical.

4.2 Structured Data: Collections as Nodes

To support dynamic, structured data, we then add to these literals a system of
structured, modifiable types that we refer to as nodes. We define the node types
N such that for t ∈ N we have t = {(ai, vi)}, a finite set of attribute/value pairs
where ai ∈ A(N) and vi ∈ Vi(N). Thus, for any node type N , we have a domain
A(N) that constrains the attributes of t ∈ N and a domain Vi(N) that constrains
the values vi that may be associated with attribute ai ∈ A(N). By varying the
constraints on A(N) and Vi(N) we can define a variety of different classes of
node types, while still maintaining this common attribute/value model. Below,
we describe these constraints with set functions that compose new domains (node
types) using existing domains (types). See also the UML diagram in Fig. 1.

Fig. 1. NODAL Data Model. UML inheritance diagram of basic NODAL type system.

Map The simplest of these is the map M(A, V ) for two domains A ⊂ T and
V ⊂ T whose instances associate any attribute a ∈ A with a value v ∈ V .

Set In this formulation, a set St(A) is a kind of map for which A = V and for
which t ∈ St(A) → (∀(ai, vi) ∈ t : ai = vi). In other words, if we define a kind of
map for which the attributes and values are always identical, then we can use
this as a set.



Sequence A sequence Sq(V ) where the attributes A(Sq(V )) = [0, ..., n] form an
interval and all values are in the domain V ⊂ T .

Record A record R = R(A, {Vi}) is defined by a fixed set of names A(R) = {ai ∈
name} and the domains of the values associated with each name Vi(R) ⊂ T . We
refer to the names ai as fields of the record R and the domain Vi(R) is the field
type of field ai in R. We further define an inheritance relationship for record
types such that if a ∈ A(R′) → a ∈ A(R) and a ∈ A(R′) → V (R, a) ⊂ V (R′, a)
then we say that R is derived from R′. Clearly, these conditions ensure that
R ⊂ R′ even if R has extra fields a ∈ A(R) such that a 6∈ A(R′). Moreover, this
is clearly compatible with the existing relational model as outlined in [15].

For example, a Document record has a field mime-type for the MIME-type
of document that is a Name that matches a particular regular expression. The
record type for XMLDocument includes an override of the mime-type field to a
fixed value: “text/xml”. Note that this is a restricted but compatible specification
for the value of the field. Thus the Record types can be used to form an object
inheritance hierarchy where kind-of restrictions can be maintained. And example
of the declaration of Record types and field shadowing is shown in Fig. 2, an
excerpt from the standard NODAL data model for the basic NODAL types.

Structures In order to support a lightweight, compound literal type, we also
provide a means of defining record-like literals, which we call a structures:
Str(A, {Vi}). Interpreted exactly as a record type of the same form (with the
additional restriction that all of the Vi types must be literals), these are ex-
tremely useful for modelling data that have natural value semantics but are still
decomposable into meaningful components (e.g. RGB pixels in an image).

Node Identity and Metadata Since the node types are modifiable (and thus not
uniquely identified with their contents), we require some sort of external identity
to be able to maintain stable references to nodes. These node IDs can be anything
unique within an identifiable context (e.g. a database table, a file, a repository).
For example, in a native NODAL repository, it is likely that we will have simple
node IDs that are unique within the entire repository. In a traditional filesystem-
based repository it is more natural to have node IDs uniquely determined within
the context of the containing document or file. In a relational database mapping,
we can simply use the primary keys of each database table as the unique node
ID. The flexibility of this requirement should allow us to find such a system
of unique IDs for any of the different kinds of data sources we have proposed
supporting within this framework.

Given the recognition of this requirement, and the identification of these
nodes as the minimal units of modification, it is also natural to suggest that
these nodes be the minimal units for recording change history and access control.

Literal Structures Because of the need to have structured types without the
metadata and identity overhead of the Node types (e.g. an RGB pixel in an
image), we also allow for the definition of new structured literal types, using



...

<!--

The Document type, an encapsulation of a graph of Nodes

-->

<record name="Document">

<field name="mimeType" type="Name"/>

<field name="root" type="Node"/>

</record>

<!--

The Directory type, a Document that is simply a mapping of names to

Documents.

-->

<record name="Directory" extends="Document">

<field name="root">

<map keyType="Name" valueType="Document"/>

</field>

</record>

...

Fig. 2. An excerpt from the baseTypes.nls schema that defines the basic standard
data types in the system. An example of type restriction by record inheritance and field
shadowing is shown, with a Directory a kind of Document that contains a mapping
from Name to Document.

a mechanism very similar to the Record type. In these Struct types, a set of
field names are defined and associated with value types in exactly the same way
as with Record types, except that the objects created are immutable and have
identity associated with their contents. This is a very useful, lightweight tuple
type that has application in a variety of different contexts.

Schemas Given these building blocks, a schema, or set of types, can be considered
as a model of the constraints on a set of interconnected, structured values. One
way of tightening the constraints on a particular type or particular context is to
use a restriction language to limit the value space of a particular type. This is a
very powerful concept and is the foundation for the XML Schema type system[11]
and the ISO standard type system from which it is derived[16]. To this end, we
provide just such a type restriction facility for atomic types based on a set of
matching functions applied to a base type. Some of the restrictions available are:
regular expressions for Name and String types; inclusive and exclusive minima
and maxima for any ordered type; a namespace restriction for Name objects; and
an enumeration list for any atomic type (including the single-valued enumeration
or fixed value).



4.3 Documents and Node Graphs

Since this model is clearly a superset of the relational model, it can obviously
be used to describe structured data stored in a relational database. How then is
it also useful for modelling documents in a filesystem? Simply by associating a
particular document format with a root node type in some schema that models
the structure of the data contained within those documents. In the Web-based
NODAL system, this is done by associating a MIME type[17] that identifies the
format with a DocumentFormat class that defines the type of the root node and
encoder and decoder methods that translate between a bitstream and instances
of an associated schema (see Fig. 2). A file then corresponds to the graph of the
nodes reachable from the root node. In this way, we can integrate document and
database accesses with a common API and, given the reference architecture we
describe next, a common reference language.

The choice of the term Node for these collection objects should now be clear.
A document in this kind of model consists of set of Node objects with properties
that are either literal or references to other Node objects. These Node-Node
properties can be considered to be the labelled edges of a graph that we refer to
as the document graph. Unlike XML though, this graph is not restricted to being
a hierarchy. Parent-child relations are one-way, although a structural query can
be used to recover the many possible parents (and document containments) of
a particular Node.

5 The NODAL Path Language

In order to provide an external reference system for this data model, we adopt
the path language approach of XPath[5] and define URI references based on
a navigational path through a document graph. A path p ∈ P in NODAL is
a chain of path components p = [p1, ..., pn]. Using the concatenation operator
p = p′/pn = [p1, ..., pn−1]/pn, we can define the tail of a path p as the final
component p∗ = pn and the parent of a path p as the path p′ such that p =
p′/p∗. Note that neither of these exist if p is the empty path [], but that the
parent of a single-component path is the empty path.

To interpret paths, we need some way of interpreting the path components
individually and then in sequence. In this formulation, a path component has
two aspects, its path normalization function and its binding function. Each of
the components p ∈ P has a path normalization function Np : P → P that takes
a path and produces a normalized path p for which p = p∗ → Np(p′) = p.
Thus, any path component p that appears as the tail of a normalized path has
the property that Np(p) = p/p. Thus concatenation is the standard normalizing
function. An example of a component that does not always concatenate is the
parent operator .. that extracts the parent path. The normalizing function for
the parent component is

N..(p) =

{
[..] if p = ∅,
p′ otherwise.



So, the parent operator can only appear as the first component of a normalized
path.

But paths are defined to provide a means of accessing values within a node
graph, so we need a means to determine the target value of a path Vp. To
evaluate this target value, we consider another aspect of a a path component,
its binding function Vp : P → T , which returns the value that a path with p at
its tail refers to. We then define the target of a path with respect to its tail as:

Vp = Vp∗(p).

We distinguish two kinds of path components, the absolute components have
values that are independent of the containing path p, while the relative compo-
nents have dependent values. A relative path is then a path that contains only
relative path components, whereas an absolute path contains at least one abso-
lute component. To reduce path redundancy we require that the normalization
function of every absolute path component produce a single component path
containing itself:

if p is absolute then Np(p) = [p],

Thus an absolute path has exactly one absolute component at its head. Examples
of some of the available components are show in Table 2.

Table 2. Some of the basic path components as normalization and binding functions.
Note that in the evaluation of Vp functions we use the notation v.foo to specify the
value of property foo of the node v.

p description Np Vp Functional Form Shorthand

document doc p⇒ [doc] Vdoc doc URI
node id p⇒ [id] nodeid nid(id)
parent p⇒ p′ none parent() ..

fragment root [doc]/p⇒ [doc]/p Vdoc.root root() #/

property g p⇒ p/p Vp.g property(g) g
range of i to j p⇒ p/p Vp. range(i, j) range(i,j)

So far, these paths are independent of the data model outlined above. To
provide some grounding, it will be useful to consider paths within documents.
Remember that a document is modelled as the graph of nodes reachable from
a root node. (see Sec. 4.3). Thus, a reference to a document determines the
starting point for navigation within the node graph. An absolute path thus has
two parts, the document part and the fragment part. If the document part is
not empty, then the fragment part is evaluated relative to the specified docu-
ment’s root node. We can now appreciate one of the main advantages of the
unification of the node/collection data model in terms of attribute/value pairs:
a homogenization of the standard component for selecting a value in a collection,
namely property(g). From a single absolute root path, we can create paths to



all reachable nodes and values with only chains of these property components.
The property component is thus the fundamental building block of the relative
reference mechanisms in the NODAL path language.

Finally, each path component is expressible as a function or shorthand in
text, and a path URI is simply the concatenation of these component expres-
sions with an appropriate separator (in the fragment part of a path, the ‘/’
character is used as a separator). As with XPointer[4] fragment URIs, we use a
context frame #ndl(...) to enclose NODAL fragment expressions. Other frag-
ment expressions are passed to the plugin responsible for the MIME type of the
document addressed. Thus, HTML and XML documents can properly handle
#id fragment ids and even xpointer(...) expressions without interfering with
the NODAL references.

So, given the components described in Table 2 (a subset of the component
operators available in NODAL) we can describe a number of NODAL path ex-
pressions as examples:

URI Description
http://sf.net/index.html#ndl(/) The root node of the document

http://sf.net/index.html
#ndl(../foo) The property named foo of the

node that is the parent of the
path to be applied to.

file:/doc.txt#ndl(15/range(4,16)) The characters between index 4
and 16 on line 15 of the local text
file /doc.txt

5.1 Anchors

As in HTML and the Dexter Reference Model[18], indirect references to Nodes
in other documents or repositories are enabled by the creation of a special kind
of Node, the Anchor. An Anchor is essentially a proxy for another node, and is
completely specified by a path. When the Anchor is encountered, it evaluates the
binding of the Anchor’s path in the context of the path to the Anchor (to handle
relative references) and then acts as the node bound to this path. These anchors
are thus of the style of Nelson’s transclusion operators[1]. We also provide a
facility (as a path operator) to interpret any String or Name as a path URI and
then extract the binding. This is how we implement HTML-style hyperlinks.

6 The NODAL Architecture

This data model and path language are, of course, only useful in the context
of a system to interpret them. The NODAL prototype is a Java middleware
implementation of the data model and path language with a small set of proof-
of-concept format plugins (text, HTML, XML, the NODAL schema language).
This prototype is currently able to interact with data access protocols file:,



http: and imap:. All of these provide documents as bitstreams and thus need
to pass through document decoders in the format plugins before being presented
via access APIs.

7 Future Directions and Potential

We are currently testing the system in this data consumption mode and formulat-
ing a number of pilot projects to assess the ability to build working applications
on top of the NODAL APIs. The NODAL type system is already implemented
based on an interpretation of the data model described in the baseTypes.nls
schema excerpted in Fig. 2. One of the most interesting possibilities is to create
a personal information management environment that can operate by building
semantic indices not only to local and remote files but also to their contents to
provide granular annotation.

Future work is planned on the following items:

– Database interaction: Automatically extracting database schema and allow-
ing the NODAL APIs to access relational and object database systems was
one of the design goals and must now be implemented and tested.

– Read/write functionality for all data sources: Currently we can consume and
reference data from a wide variety of sources but can as yet only write to
local file systems.

– Search: It is important to provide mechanisms for data discovery that go
beyond the simple exploratory metaphor provided by filesystem and link
following. We must be able to search data based on content and structure.

– Versioning: As was stated above, the best unit for attaching metadata and
managing version control is the Node. Each node has a specific structure
and a limited number of possible changes. We can already generate change
records and associate node versions with each transaction. The difficulty
comes layering this functionality on top of inextensible data stores such as
local filesystems.

– Access control: If versioning is best done at the node level, then perhaps
access control is too.

– Synchronization: Once a version management is available, then it should be
possible to enable CVS-like[19] synchronization between local copies and re-
mote repositories. We suggest that it will be easier to automatically extract
difference charts between local and remote modifications, since most of the
node types have a very simple set of modification operators. In fact, the
Simias Collection Store[20] being used by the iFolder project has a very sim-
ilar structure to this one and it is completely designed for synchronization.

With the NODAL data model and path language, we have demonstrated a
new paradigm for opening up all Web-accessible content (not just HTML and
XML) to the advantages of hypertextual information management. We hope to
extend it so that it can become a generic Data layer that can be the foundation
for a next-generation of fully interoperable, collaborative end-user applications.



References

1. Nelson, T.H.: Xanalogical structure: Needed now more than ever: Parallel docu-
ments, deep links to content, deep versioning, and deep re-use. ACM Computing
Surveys 31 (1999)

2. Lassila, O., Swick, R.: Resource description framework (RDF)
model and syntax specification. The World Wide Web Consortium
http://www.w3.org/TR/WD-rdf-syntax (1998)

3. Berners-Lee, T.: The semantic web roadmap.
http://www.w3.org/DesignIssues/Semantic.html (1998)

4. DeRose, S., Maler, E., Jr., R.D.: XML pointer language (XPointer). The World
Wide Web Consortium http://www.w3.org/TR/WD-xptr (2000)

5. Clark, J., DeRose, S.: XML linking language (XLink). The World Wide Web
Consortium http://www.w3.org/TR/xlink (1999)

6. DeRose, S., Maler, E., Orchard, D.: XML path language (XPath). The World
Wide Web Consortium http://www.w3.org/TR/xpath (2001)

7. Fountain, A.M., Hall, W., Heath, I., Davis, H.: MICROCOSM: An open model for
hypermedia with dynamic linking. In: European Conference on Hypertext. (1990)
298–311

8. Yankelovich, N., Haan, J.B., Meyrowitz, N., Drucker, S.: Intermedia: The concept
and the construction of a seamless information environment. IEEE Computer 21
(1988) 81–96

9. Anderson, K., Taylor, R., Whitehead, E.: Chimera: Hypermedia for heterogeneous
software development environments. ACM Transactions on Information Systems
18 (2000) 211–245

10. Iverson, L.: Data, knowledge, context: An application model for collaborative work.
(2004 (submitted))

11. Biron, P.V., Malhotra, A.: XML Schema part 2: Datatypes. The World Wide Web
Consortium http://www.w3.org/TR/xmlschema-2/ (2001)

12. ISO/IEC 9075:1999(E): Information technology - Database languages - SQL. In-
ternational Organization for Standardization (1999)

13. IEEE Standard 754-1985: Binary Floating-Point Arithmetic. IEEE Computer
Society (1985)

14. ISO/IEC 8601:2000: Representations of Dates and Times. International Organi-
zation for Standardization (2000)

15. Ramakrishnan, R., Gehrke, J.: Database Management Systems. 3rd edn. McGraw-
Hill (2003)

16. ISO/IEC 11404:1996: Language-independent Datatypes. International Organiza-
tion for Standardization (1996)

17. Freed, N., Borenstein, N.: Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies. The Internet Society
http://www.ietf.org/rfc/rfc2045.txt (1996)

18. Halasz, F., Schwartz, M.: The Dexter hypertext reference model. Communications
of the ACM 37 (1994) 30–39

19. Berliner, B.: CVS II: Parallelizing software development. In: Proceedings of the
USENIX Winter 1990 Technical Conference, Berkeley, CA, USENIX Association
(1990) 341–352

20. Lasky, M.: The Simias collection store model. Novell Corporation
http://forge.novell.com/modules/xfmod/docman/?group id=1372 (2004)


