EECE 478 Midterm Exam February 27, 2003

Name:

Student #:

The exam is worth 40 pts (20% of course grade). Assuming 1 point per minute, try to finish in 40 minutes.

Use the following transform notations:

- $T(\mathbf{v})$ is translation by the vector \mathbf{v} .
- $S(s_y, s_y, s_z)$ is scaling by s_x in the x direction etc.
- $R_{\mathbf{v}}(\theta)$ is rotation by θ around the vector \mathbf{v} .

1. Viewing (7pts)

- a. (5) Draw a picture of the pinhole camera model, clearly labeling the center of projection, view plane, focal length, field of view, and gaze direction.
- b. (2) Describe the location and view direction of the canonical pinhole camera in OpenGL.

2. Basic Transforms (5pts)

- a. (1) What is the inverse of the translation $T(\mathbf{v})$?
- b. (1) What is the inverse of the scaling transform $S(s_x, s_y, s_z)$?
- c. (1) What is the inverse of the rotation $R_r(\theta)$?
- d. (2) If $R_r(\theta)$ is represented as a matrix, what is the matrix equation for the inverse?

3. Using Transforms (10pts)

- a. (3) Assuming a combined model-view matrix VM, what is V for a camera at position \mathbf{p} rotated by θ around the axis \mathbf{v} from the canonical position.
- b. (3) Write the matrix equation for an *instance transform*.
- c. (4) Write the matrix equation for a rotation by **R** around the point **p**.

4. Geometry (6pts)

a. (6) Describe two different techniques for reducing the complexity of geometry passing through a rendering pipeline without reducing apparent scene complexity?

5. Lighting (12pts)

- a. (4) What two shading components form the Lambertian shading model?
- b. (2) What component is added by the Phong shading model?
- c. (4) Given the four basic shading vectors (**l**, **n**, **r**, and **v**), what is the equation for the Lambertian shading model (without attenuation)?
- d. (4) What is the equation for the extra component added by Phong?