Eat-A-Lot Software

Dude*X

Project Documentation

Version <1.0>

Contributors

Tyler MacWilliam
Ben Randall

Albert Sodyl
Andre Soesilo
Andrew Thompson

Dude*X

Version: <1.0>

Game ConceptDocumentation

Date: 4/14/2008

1 Game Concept
2 Functional Specification
3 Technical Specification

4 Closure Report

Table of Contents

14

28

50

Dude*X Version: <1.0>

Project Documentation Date: 4/14/2008

Letter of Transmittal

The following report is a combination of 4 separate and distinct reports developed over the software
lifecycle for our game: Dude*X. The reports are:

1) Game Concept-outlines the ideas and creative thinking process we went through before
designing the game. This is similar to a vision document

2) Functional Specification-this document is intended for management and the design team of the
game. It gives a more specific overview of all elements of gameplay needed to create Dude*X

3) Technical Specification-this document is intended for the game developers and specifically
discusses the design of the game based on many of the elements described in the functional
specification

4) Closure Document-this document is intended for management and anyone who worked on the
game. It contains a list of objectives that were met as well as some specific achievements. It
also provides some screenshots of the release candidate version of the game. Finally it provides
recommendations for future production.

As noted, each of these documents is intended for a separate audience, but as a whole they should be
enough to replicate the production of a similar game. They have been compiled here in one document
solely for marking purposes for EECE478.

Eat-A-Lot Software

Dude*X

Game Concept

Version <1.0>

Contributors

Tyler MacWilliam
Ben Randall

Albert Sodyl
Andre Soesilo
Andrew Thompson

Dude*X Version: <1.0>

Game Concept Date: 4/14/2008

Table of Contents

1 Introduction 6
2 Background 6
3 Description 7
4 Key features 7
5 Genre 8
6 Platforms 9
7 Market Analysis 9
8 Scheduling 9
9 Concept Art 11
Appendix A: Works Cited 13
List of Figures
Figure 2.1 Cursorl0 Screenshot 6
Figure 2.2 Cursorl0 6th Floor 7
Figure 8.1 Gantt Chart 10
Figure 9.1 Level Concept 11
Figure 9.2 Game Screen Outline 12

Figure 9.3 Dude getting into elevator 12

Dude*X Version: <1.0>

Game Concept Date: 4/14/2008

1 Introduction

Dude*X is a 3D third person turn-based strategy game for PC, OS X and Linux in which the gamer is
challenged to cooperate with “ghosts” of their previous lives to reach the highest floor of the game. The
game consists of 5 lives with each life lasting roughly 45 seconds, after which a new “ghost” is created
that repeats its actions for the remaining lives. The gamer is required to use these “ghosts” to solve
problems and make it up a series of elevators in order to reach the highest floor and win the game.

2 Background

Dude*X is based off of the graphically simplistic, flash-based game Cursor10 (see|Figure 2.1} (Ishii, 2008).

FLOOR HGH-SCORE O
SCLORE O

CURSOR LIFE
193
R kRERERE

Figure 2.1 Cursor10 Screenshot

In cursor10 the gamer begins with 10 “cursors” that they can use to navigate through 16 floors similar to
the one in Each time the gamer clicks on the pyramids their points increase. Clicking on the
stairs takes the gamer to the next floor. All the actions the current makes are recorded, and when the
cursor’s life runs out (see bottom right o the gamer is reset back to floor 1, and has one less
cursor. Nevertheless, all the actions of previous cursors are repeated and shown on screen as “ghost”
cursors.

The challenge of the game is that it is necessary to use all 10 cursors cooperatively to make it to the 16™
floor. For example, on the 6" floor there is a button that needs to be pressed and held along with 3
other buttons on the 16" floor to win. This means 3 cursor “ghosts” need to spend their entire lifetime
getting to the correct floor and holding the button down. Other challenges like this need to be
completed, meaning it is very difficult to beat the game the first time around, and even more impossible
to collect all the pyramids.

Dude*X Version: <1.0>

Game Concept Date: 4/14/2008

FLODR G HOUHSCORE O
SCORE O

CURSOR LIFE
1 48
Gl kb

Figure 2.2 Cursor10 6th Floor

Dudel10 will be written from scratch by the game developers. For more information about the existing
set of code, as well as the various libraries, that will be used in development please see (MacWilliam,
2008).

3 Description

Dude*X will be borrowing some of the game play concepts of Cursor10, but it will be drastically different
in its visuals and style. At its core Dude*X will require you to control a “Dude” that will navigate a 3D
environment. Like Cursor10, Dude*X will require you to complete a series of tasks on each floor that will
necessitate the use of “ghost” dudes (previously run dudes). Each floor will immerse you in its sound
and sights and will challenge your ability to see the whole picture. You need to make every movement
and click for every Dude count if you have a chance of making it through the all elevators to get to the
top floor while collecting all the pyramids along the way. Dude*X is a single player game that feels like a
multiplayer game in which the only person you’re playing with is yourself.

4 Key features

Dude*X will differentiate itself from Cursorl0 and any similar game because of its rich feature set that

includes:

e Portability: As describe below in sectionElDude*X will be available for the PC, Mac and Linux.

e Scripting Language: it will take advantage of the powerful scripting language Lua to create the
levels and sounds. This will allow gamers to potentially develop a customized game for
themselves by creating new levels, or even changing the sound; all with only a little bit of

Dude*X

Version: <1.0>

Game Concept Date: 4/14/2008

scripting knowledge. By utilizing Lua any changes the gamer makes will not require a recompile,
and hence the source code will not have to be released.

Transparent and translucent objects: The “ghosts” will be rendered to be transparent so they
can be easily differentiated against the current dude. Some objects (such as glass or water) may
be created as translucent objects that will bring an even more realistic feel to the game.
Multiple Skyboxes: A single skybox is used to create the terrain with a secondary moving skybox
used to simulate the earth rotating.

Level of detail: Techniques such as mipmapping will be used to maximize game performance.
Physical simulation: The physics engine in Dude*X will simulate real life physics. It will be
integrated with collision detection to make the dudes interaction with objects as realistic as
possible.

Key frame animation: The Dude will be the most visibly animated object in the game, but the
various buttons, switches, etc will also be animated.

Collision detection: As mentioned above collision detection will be an integral part of the
physics engine needed to keep Dude*X exciting and fresh. Collision detection will be necessary
for the Dude to interact with coins, buttons, switches, balls, etc. that will be present in the
game.

Shadows: Shadows will be applied to objects to give them depth.

Multi-pass rendering: Stencil buffer will be used to create reflections on the floor of all objects,
including the Dude.

Sound effects: Dude*X'’s sounds will bring a unique twist to the game. The sounds will all be
recorded specifically for Dude*X. Should the gamer not enjoy the sounds they will potentially be
able to modify the Lua scripts to use sounds of their liking.

User Intelligence: Unlike most games Dude*X will not require any Al, because the game play will
only be as smart as the user playing it. The user is playing with themselves and against the clock;
they must solely use their own intelligence to beat the game.

5 Genre

Dudel0

is a unique game that is similar to a third person turn-based strategy. However, unlike a turn-

based strategy, which is usually multiplayer, the gamer plays every single turn. The gamer’s strategy is

based o
amount

n utilizing each turn effectively in order to always have a dude at the right position for the right
of time. If this does not occur there is no way the game can be beat.

Dude*X Version: <1.0>

Game Concept Date: 4/14/2008

6 Platforms

e Windows 2003/XP/Vista
e MacO0SX10.4+

e Linux

There is no platform that is preferred. All platforms should play Dude*X correctly. The game speed may
change depending on the graphics card, system memory, etc. that the gamer has. Nevertheless, the
game should work as designed for the majority of computers that support any of the platforms listed
above.

7 Market Analysis

Strategy games continue to be popular with games such as Halo and Everquest continuing to attract
gamers. A quick search of strategy game trends showed that Canada and the USA ranked 6 and 7,
respectively in their searches for strategy games (Google Inc.). Although Cursor10 is a relatively new
game it is trending positively as well. Overall the outlook for this market remains positive.

Nevertheless, even though the strategy game market continues to remain a large market, it has been
decided by Eat-A-Lot Software that Dude*X will not be sold for profit. It will either remain solely in the
possession of the developers and UBC or may be hosted for free play on the internet by a member of
Eat-A-Lot Software.

8 Scheduling

8.1 Risks

The top 5 risks that could hamper the successful release of Dude*X are as follows:

Risk

Lack of game development
1 knowledge and experience
for team

User-interface shortfalls
Poor initial design
Lack of time to complete all
necessary requirements
Feature creep

Table 1. Top 5 Risks

g B WN

Dude*X

Version: <1.0>

Game Concept

Date: 4/14/2008

8.2 Estimated Schedule

Dude*X is expected to use 5 part time developers to create with a development time of 12 weeks.
Figure 8.1is a representation of the estimated schedule for the development of Dude*X. A majority of

the time will be spent creating the basic engine, which includes setting up the cameras, lighting and

textures. Once this stage is completed the development team will be able to split off and focus on their

areas of expertise. The parallel work structure will culminate with a final product that can be tested by
the demonstration date of Apr 18, 2008.

Start Date: 20/01/2008 0
w [} 8’
2 °o B T
E & & 5w
= o 0o E E
5 g 2o 8§ & 8828882383838 23
€ 8 £ 22 5 RITRRS2NIscc
Task Tasks Sat End 3 2 S 838 - CSiiSdsssssss
1 Dude10 Game 1/20/08 1/22/08 2 0% 2 0 2 .
1.1 Develop Requirements/Specs doc 1/20/08 1/22/08 3 0% 0 3
1.2 Create Basic Game Engine 1/21/08 2/09/08 20 0% 15 0 20
1.3 Add Objects, Walls, etc. 2/10/08 2/19/08 10 0% 7 0 10
1.8 Implement Scripting Language 2/15/08 3/05/08 20 0% 14 0 20
1.4 Refine game engine with visual effects 2/20/08 3/15/08 25 0% 18 0 25
1.7 Implement Sound 3/01/08 3/15/08 15 0% 10 0 15
1.6 Implement Animation 3/01/08 3/25/08 25 0% 17 0 25
1.5 Implement Collission Detection 3/01/08 3/30/08 30 0% 20 0 30
1.9 Create New Levels 3/15/08 3/20/08 6 0% 4 0 6
2.0 Final Tests 3/21/08 4/05/08 16 0% 11 0 16
2.1 Finalize presentation and documents 4/06/08 4/10/08 5 0% 4 0 5

Figure 8.1 Gantt Chart

10

Dude*X Version: <1.0>

Game Concept Date: 4/14/2008

9 ConceptArt

This section explores the Dude*X concept in art form |Figure 9.1|is a drawing of the progression of floors
(or levels as labeled in the figure) that will make up the game. Currently Dude*X is made up of a title

screen and 5 floors. The drawings of each floor are done from a top down view.

Figure 9.1 Level Concept

is a drawing of what the game screen is envisioned to look like at any given point in time. This
is the true 3D representation of walls, ceilings, an elevator and multiple pyramids that the gamer must
collect to increase their score. There will be a heads up display that notifies the gamer of how many
Dudes are left, the time left before the current Dude expires, the current level of the Dude and how
many points the gamer has.

11

Dude*X Version: <1.0>

Game Concept

Date: 4/14/2008

Figure 9.2 Game Screen Outline

is a 3D representation of the main game screen , but this time it is showing the
Dude getting into an elevator. The elevator will transport the Dude to the next floor where there will be
new challenges for the gamer to complete as the Dude. The camera will be placed such that it is in the
elevator with the Dude when the elevator closes (e.g. comes up from the bottom).

Figure 9.3 Dude getting into elevator

12

Dude*X Version: <1.0>

Game Concept Date: 4/14/2008

Appendix A: Works Cited

443 Software Inc. ISeeFin Risk Managment Plan. Vancouver, 2008.

Google Inc. Google Trends: strategy game. 23 March 2008. 23 March 2008
<http://www.google.com/trends?q=strategy+game&ctab=0&geo=all&date=all&sort=0>.

Ishii, Yoshio. Cursor*10 . January 2008. 16 January 2008
<http://www.nekogames.jp/mt/2008/01/cursor10.html>.

MacWilliam, T. et al. Dude10-Technical Specification. Vancouver: Eat-A-Lot Software, 2008.

Eat-A-Lot Software

Dude*X

Functional Specification

Version <1.0>
Contributors

Tyler MacWilliam
Ben Randall

Albert Sodyl
Andre Soesilo
Andrew Thompson

Dude*X

Version: <1.0>

Functional Specification

Date: 4/14/2008

1 Game Mechanics

1.1 Core Game Play

1.2 Game Flow

1.3 Characters

1.4 Game Play Elements

Table of Contents

1.5 Game Physics and Statistics

2 Gamer Interface

2.1 Flow Chart

2.2 Functional Requirements

3 Art
3.1 Overall Goals

3.2 2D Art & Animation

3.3 3D Art & Animation

4 Sound and Music
4.1 Sound Effects

4.2 Music

5 Story

6 Level Requirements

6.1 Level Requirements

15

16
16

16

17

17

18

19
19

20

23
23

23

24

25
25

26

26

26
26

Dude*X Version: <1.0>

Functional Specification Date: 4/14/2008

1 Game Mechanics

This section will outline the game mechanics for Dude*X. It will focus on describing the vision of the
core game play, followed by the game flow, which traces the player activity in a typical game. It will
conclude with sections devoted to characters and game play elements.

1.1 Core Game Play

Dudel0 will be a 3D third person turn-based strategy game borrowing some of the core game play
concepts of Cursor10 (see section 2.0 of Game Concept document), but it will be drastically different in
its visuals and style. At its core Dude10 will require the gamer to:

e Control a “Dude” that will navigate a 3D environment.

e Complete a series of tasks on each floor that will necessitate the use of “ghost” dudes
(previously run dudes).

e Also collect coins on each level to accumulate their score.

Dude*X is a single player game that acts like a multiplayer game because the gamer is controlling a
variety of characters that are cooperating with each other.

1.2 Game Flow

The game flow of Dude*X is quite basic, with the first floor being relatively simple in comparison to the
rest of floors, each of which require greater skill to complete the higher the gamer goes. The gamer will
be in control of a “Dude” and will use the keyboard and mouse to move the Dude around the level. The
levels will each have rotating coins that the gamer can run through to collect points. These will be tallied
in a heads up display. Each floor will have one elevator that takes the Dude to the next level, and one
level to take the Dude down a level (except for the first level). Once the gamer walks the Dude into the
elevator it will close, the screen will fade out, and then fade back in to reveal the next level. The game
timer will be stopped during this changing of levels.

Some levels will have buttons that need to be pressed down before the elevator for that floor can be
opened up. This will require a Dude to hold this button down, and when the Dude dies its ghost will hold
the button down for the currently alive Dude. Other floors will require the Dude to run into large boxes
dispersed around the floor in which the elevator to the next level has been hidden. Some floors will
require the gamer to run over a button and click their mouse 100 times before the elevator is opened.
This task will typically not be possible to complete without the help of a ghost Dude.

16

Dude*X Version: <1.0>

Functional Specification Date: 4/14/2008

The gamer will be under a 45 second time limit for each Dude and they will only have a limited number
of Dudes. This information along with the gamers score will be visible to the gamer at all times by way of
a heads up display.

1.3 Characters

Dude*X will have a single character: the Dude. The Dude will be created using modeling software that
can also create the animations for walking and running. The Dude is a simplistic character in that it does
not have any special powers or abilities that need to be tracked. The only characteristic that will need to
be tracked is the number of Dudes that are left that aren’t ghosts. This number needs to be made
readily available to the gamer so they can make an informed decision on how to use all their remaining
Dudes.

The Dude will also have some sounds associated with its movement. Please see section|4.1.2|for more
information.

1.4 Game Play Elements

This section outlines the variety of elements that the Dude will interact with during the course of a
game. Each subsection will provide a description of the element, where the element will appear in the
game, and how it will be used by the Dude.

1.4.1 Coins

Coins will be made in real world likeness, but with custom textures for each face of the coin. The
coins will be distributed around each floor. They will remain in place and rotating until the Dude or
ghost Dude runs over them, at which point they will be “collected” and the gamer’s score will be
updated accordingly. Each coin that is collected will be removed from view for the duration of the
round. They will be reset at the beginning of each new life.

1.4.2 Elevators

Elevators will be made using modeling software, and will provide the method of getting the Dude
from one floor to the next. Each floor (with the exception of the first) will have 2 elevators: one the
Dude will arrive in and one the Dude will depart for the next floor in. The elevators will be
activated by the Dude by stepping on the correct button. On some floors the gamer will also need
to complete certain tasks before the elevator can be opened.

1.4.3 Boxes

Boxes will be made in real world likeness, and will be used to hide items such as elevators. These
boxes will need to be run into by the Dude, at which point they will be “destroyed” and the item
inside (if any) will be revealed for the Dude to collect or use.

17

Dude*X Version: <1.0>

Functional Specification Date: 4/14/2008

1.4.4 Buttons

The buttons will be visible on some levels (see section and will require a Dude to press down
on them in order for the elevator to open. Some buttons are timed so the elevator begins to close
as soon as the Dude gets off the button. These buttons will be placed such that they are nowhere
near the elevator. This will make it impossible for a single Dude to use the button and get to the
elevator. It will require one or more ghost Dudes to work the button in order for the current Dude
to make it to the elevator.

1.5 Game Physics and Statistics

This section will cover the general physics and statistics needed to make Dude*X as realistic as possible
for the gamer.

1.5.1 Movement

The Dude should be able to walk along the floor at a quick enough pace that the gamer can get
around each floor within 5-10 seconds. Gravity will be present for all elements in the game,
meaning elements must be grounded. Coins will technically defy laws of momentum because they
will be spinning in place. This is acceptable for the game because it will make the coins more
obvious to the gamer.

1.5.2 Collision

Collision detection will be required for all objects that the Dude will interact with. This includes
coins, boxes, elevators, buttons, and walls. Each object must have a bounding region that will be
used to notify the program when the Dude has entered the bounding region. Depending on what
the object is the Dude has collided with certain actions will be performed. If it is a coin, the coin will
disappear and the score will be updated. If it is a box it should disappear and reveal its contents (if
any). When the Dude collides with a wall it should stop the Dude as a wall would in real life. In
levels without walls the Dude should still be stopped on the edge as if it was afraid of heights and
does not want to fall off, regardless of what the gamer would like. Buttons and switches should be
compressed/flicked when the Dude collides with them. All ghost Dudes must perform the same
actions they did when they were alive, including interacting with the same objects (if they are still
there).

1.5.3 Statistics
The statistics that must be kept visible to the gamer in order for the game to be successful are:

e Number of lives remaining
e Time remaining

e Score

e Levels completed

18

Dude*X

Version: <1.0>

Functional Specification Date: 4/14/2008

However, in order to implement each ghost Dude separate statistics need to be generated based

around the movements of the current living Dude, which will later become the movements of a
ghost Dude. When the ghost dude appears in the next round its movements will be coordinated by
these statistics, such that it can emulate the previous Dude’s movements almost perfectly.

2 Gamer Interface

This section outlines the Gamer Interface aspects of Dude*X. It provides a description of the various
windows and objects that will make up the Dude*X GUI. It will also provide the functional requirements

for some of the key GUI objects.

2.1 Flow Chart

Below is a basic flow chart [Figure 2.1) that outlines the various GUI windows Dude*X will have. There
are basically 4 screens:

The intro screen that appears when the game is first loaded

The main menu screen that appears after the main screen

The options screen that can be selected from the main menu screen

The game screen that appears when Start Game or Continue (if there is a paused game) is
selected. The game screen contains a heads up display, the Dude, the floor and walls of the level
(not shown) and any game objects for that floor (see section.

See sectionfor a detailed breakdown of each of the windows’ functional requirements.

19

Dude*X Version: <1.0>

Functional Specification Date: 4/14/2008

bpti-:.-n-s_

Press Space to Continue
Exit
Heards Up Display
I 3

: Lives 5 Time 0:12 Score 10 |

Dude 10 = Continue

Resolution G40x480
Full Screen OFF
Music ON Elevator —
Music Volume 100
Sound Effects oM
Sound Volume 100
Back

f)
Box Coin
Figure 2.1 GUI Flowchart

2.2 Functional Requirements

This section will outline the expected outcome for the gamers’ actions for each of the screens displayed

above in|Figure 2.1| Each screen will be discussed in its own subsection.

2.2.1 Main Menu Screen

This screen will notify the gamer that they are about to start playing Dude*X. The expected action is
for the gamer to press the Spacebar. This action will take the gamer to the main menu screen (see
below). The gamer can also press ESC to quit the game completely.

2.2.2 Selection Menu Screen

This screen will give the gamer four options, which are discussed below. Each option can be
selected by using the arrow keys to navigate to the option and pressing the Enter button. This is
similar to navigating menus for most computer games and should not differ greatly from the
established mental models of the gamer.

New Game

Selecting this option will begin a new game. This entails loading the game screen (see below)
with the gamer starting on Floor 1 with the correct initial number of lives, the correct initial
time on the clock and a score of 0. All objects must appear in their correct places, such that the
first level looks exactly the same every single time a round begins (5 rounds in one game).

20

Dude*X

Version: <1.0>

Functional Specification Date: 4/14/2008

Continue

Selecting this option will continue a paused game. It will be similar to New Game, except the
game screen will be loaded with the Dude at its last known position and all lives, scores and
time reflecting their last known states. All objects that have been collected or destroyed by the
Dude prior to pausing the game will remain collected or destroyed.

Options
Selecting this option will take the gamer to the Options screen (see below).

2.2.3 Options Screen
This screen gives the gamer seven options, which are discussed below. Each option can be selected

by using the arrow keys to navigate to the option and pressing the Enter button. This is similar to

navigating menus for most computer games and should not differ greatly from the established

mental models of the gamer.

Resolution
This option allows the gamer to toggle through a variety of screen resolutions that can be used
to view the game.

Full Screen

This option toggles on or off the ability to play the game full screen. If it is toggled on the
game’s resolution will be maximized to fit the size of the gamer’s screen. If it is toggled off the
screen resolution in the “Resolution” option (see above) will be utilized.

Music
This option toggles on or off the game’s background music (see section . Ifitis set to on
the background music will play. If it is set to off the background music will not play.

Music Volume

This is the volume level for the background music. The gamer will use the left and right arrow
keys to increase or decrease these numbers. A value of 100 means the max volume and a value
of 0 means the background music will be off. A value of 0 will be the same as setting Music to
“off” (see above).

Sound Effects
This option toggles on or off the game’s sound effects (see section. If it is set to on the
sound effects will play as necessary. If it is set to off the sound effects will not be played.

Sound Volume
This is the volume level for the sound effects (see section. The gamer will use the left and
right arrow keys to increase or decrease these numbers. A value of 100 means the max volume

21

Dude*X Version: <1.0>

Functional Specification Date: 4/14/2008

for the sound effects, and a value of 0 means the sound effects music will be off. A value of 0
will be the same as setting Sound Effects to “off” (see above).

22

Dude*X Version: <1.0>

Functional Specification Date: 4/14/2008

3 Art

This section will outline the art needed to give Dude*X its look and feel. It should be noted that Dude*X
will be created such that it can be easily customized by the gamer and even Eat-A-Lot Software in the
future if need be. The art and video outlined in the subsections will be the basis for what appears in the
release candidate version of Dude*X.

3.1 Overall Goals

All art and video created for Dude10 should be based on real world models so they can be recognized by
the gamer. However, as long as the model is built on real world models artistic flair can be used to give a
custom look and feel. The general art direction should be consistent with a slightly cartoony style, and
the mood of the art should evoke a light and possibly happy feeling from the gamer.

3.2 2D Art & Animation

A majority of the art generated for Dude*X will be 2D, because of the strong reliance on texture
mapping to create the objects, as well as all the graphics needed to create the menus. This section has
been broken down into smaller subsections that outline the 2D art needed to create each of the
components.

GUI Screens

The screens have been kept relatively simple (see section , so the only art that will be
needed is to generate the text options for each menu screen. The currently selected option
text should be drawn differently such that it is distinguishable from non-selected text. The
HUD text should be drawn such that it contrasts against the game screen’s background. This
may require drawing a filled box behind the text so it can show up more clearly.

Although the mouse will be used during game play a custom icon will not be generated in
order to maintain the gamers’ mental models. However a custom application icon will be
created to distinguish Dude*X from other opened applications.

Terrain

Because Dude*X will require multiple floors, in order to keep the look consistent, only a few
textures will be needed. The floors will have a transparent floor, so a tile texture will be used,
with each tile transparent. Only the borders between each tile will be seen. A skybox will be
developed that will be textured with a cloud scene. This skybox will rotate, as if the earth were
rotating. A secondary skybox with a mountain texture will be put in front of the clouds skybox.
These two skyboxes will help give the gamer the feeling the level is actually floating in space.

Dude*X

Version: <1.0>

Functional Specification Date: 4/14/2008

Any floors with walls will have the same brick textures, and the ceilings will also have a brick
texture.

Game Play Elements

The coins and boxes (see section will be made up of 2D textures for each face. The coin
textures will be custom-made for Dude*X, but they will be based off of a Canadian quarter.
The coins will be animated by changing their rotation along the y-axis every time the screen is
redrawn. The textures for the boxes will be utilizing a wood box texture to give it the
appearance of a wooden crate.

Special Effects

Whenever a coin is picked up an explosion of color particles will appear as the coin disappears.

3.3 3D Art & Animation

This section has been broken down into smaller subsections similar to those found in section These
subsections will outline the 3D art needed to create each of the components critical to Dude*X’s

successful look.

GUI Screens
There are no 3D components for the GUI screens. Please see sectionfor information on
generating the 2D art.

Terrain

Although the terrain texture maps will all be using 2D art, the actual instances of terrain and
objects must be in 3D. The sky box must be a cube with the sky texture mapped to each face.
The walls must be rectangular prisms with the wall texture mapped to each face. The floor
must also be a rectangular prism with the floor texture applied to it. It must also have the
correct alpha value set such that the skybox may be visible to the gamer and the appearance
of a glass floor is maintained.

Game Play Elements

Like the terrain elements the game play elements must be 3D objects with 2D textures
mapped to the correct face. The coins must be cylinders with the front and back face textures
mapped to the correct face. Boxes must be cubes with the wood textures mapped to each
face. All boxes must be the same size.

The elevator will be too complicated to create using the solids API that OpenGL provides, so
the elevator model should be developed using modeling software. This software can also

24

Dude*X Version: <1.0>

Functional Specification Date: 4/14/2008

create the animation of the elevator opening and closing that can be called when the gamer
wants to get in and out of the elevator. Two distinct elevators need to be created: one for
going up and one for going down.

The Dude will be too complicated to create using the solids API that OpenGL provides, so the
Dude model should be developed using modeling software. This software can also create the
animation of the Dude walking and running can be called when the gamer moves the Dude on
screen.

Special Effects

Boxes will appear to explode when they are run into by the Dude. This will require animating a
box that has a solid state (i.e. not touched) and an animation that has it exploding into pieces
(i.e. touched). This will require modeling software. The box will disappear once the animation
is complete.

4 Sound and Music

This section will explore the various music and sound effects that will be created and used to take
Dude*X to the next level. Like the art in Dude*X (see section the music and sound will be
customizable. This will be accomplished through simple modifications of the sound scripts and will not
require the gamer to recompile code that makes up the game. However, when shipping the game
Dude*X will come with custom built music and sounds that are outlined below.

4.1 Sound Effects

41.1 GUI
The GUI itself will not have any sounds. This is because there are not a lot of GUI components and
fewer sounds will help to keep the game size relatively small.

4.1.2 Character

The Dude will have a minimal set of voice recordings. These sounds will consist of a “Let’s go!”
every time a new Dude starts or a new floor is reached. Every time a Dude dies there will be a
moan.

4.1.3 Game Play Elements

Coins will make a “cha-ching” sound when they are collected by the Dude. Boxes will have an
explosion sound when broken apart. Switches and buttons will have “click”-esque sounds. The
elevator will require a sound for opening and closing.

25

Dude*X Version: <1.0>

Functional Specification Date: 4/14/2008

4.1.4 Environment

Because the game revolves around a closed environment there will not be any ambient sounds,
except for the floors which are exposed. This level will have sounds such as airplanes and birds to
further give the impression this game takes place in the sky.

4.1.5 Motion
The Dude will have a minimal set of motion sounds, but these sounds will help to make it more
lifelike. The sounds will consist of various walking sounds depending on how fast the Dude is

moving, and what type of ground the Dude is walking on.

4.2 Music

4.2.1 Event Jingles

There will be a victory song when the game is beat or the gamer runs out of lives and cannot finish

the game. Sound effects will be played when the Dude lives and dies (see section|4.1.2).

4.2.2 Shell Screens

There will be a track that plays during the Intro, Main, and Option screens (see sectio. Once

the game starts the music will change (see below).

4.2.3 Level Theme

Each floor will have its own theme music to clearly define the floors for the gamer. These tracks will

be short (<45 secs) and will loop.

5 Story

There is not a back story associated with Dude*X. The game play story consists of getting the Dude to
the top floor as quickly as possible. It has been designed to be a simple game that anyone can pick up

quickly and be challenged. For more information about the story please see sections

11

and

1.2

6 Level Requirements

This section outlines the design of the levels and how each level will be combined and revealed to make

up the game.

6.1 Level Requirements

Dude*X is a linear campaign game in which the gamer begins on the first level and makes their way up
to the final level, completing challenges and picking up coins along the way. Below is an outline of the

26

Dude*X Version: <1.0>

Functional Specification Date: 4/14/2008

first 7 levels of the game (the expected limit). Please refer to section 9 of the Game Concept document
for concept art that inspired some of these levels.

6.1.1 Levell

This is the introductory level. It has been kept fairly simple in order to allow the gamer to get associated
with the environment and game play. It will consist of coins and an elevator that will take the gamer to
the 2" level.

6.1.2 Level 2
This level will have more coins, but it will also have a button that needs to be pushed down by the Dude
in order to open up the elevator to the 3" level.

6.1.3 Level 3

This level will be similar to level 2, except this time there are two buttons that need to be held down.
One button activates the elevator on the 3™ floor, and the other one activates the elevator on the 5th
floor. When a Dude steps off the button the respective elevator for that button will close.

6.1.4 Level 4
This level will consist of a button in the middle of the floor. The Dude needs to step on the button and
click 100 times to activate the elevator to the 5" floor.

6.1.5 Level5
This level will have a single button that needs to be pressed down along with the button on level 3 in
order to access the elevator to level 6.

6.1.6 Level6
This level will consist of a bunch of randomly placed boxes (see sectio the gamer must break
open in order to find the hidden elevator to the 7" and final floor.

6.1.7 Level7

This is the final floor. This level will consist of a lot of coins for the gamer to pick up. There will not be a
door on the 7 level; the gamer runs around and picks up as many coins as they can before time runs
out. Once time runs out a new screen will pop up that will notify the gamer they have beat the game.
Any key press will take them back to the main screen.

27

Eat-A-Lot Software

Dude*X

Technical Specification

Version <1.0>

Contributors

Tyler MacWilliam
Ben Randall

Albert Sodyl
Andre Soesilo
Andrew Thompson

Dude*X

Version: <1.0>

Technical Specification

Date: 4/14/2008

Table of Contents

Introduction

1.1 Intended Audience

1.2 Game Overview

Game Mechanics

2.1 Platform
2.2 External Code

2.3 Control Loop
Game Object Data

Game Physics

4.1 Physical Objects
4.2 Bounding Volumes

4.3 Collision Detection and Response
Artificial Intelligence

Gamer Interface

6.1 Game Shell

6.2 Main Play Screen

Art and Video
7.1 Graphics Engine

7.2 Artist Instructions

Sound and Music

8.1 Sound Engineering

8.2 Level Specific Code

Appendix A: WORKS CITED

31
31

31

31
31

32

33

36

40
40

40

41

42

43
43

45

46
46

47

48
48

48

Error! Bookmark not defined.

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008
List of Figures

Figure 2.1 Game LOOP FIOWCNAITccocuiiiiiceeee ettt e e e tee e e et be e e e e ansaenneee e e ennees 34
Figure 2.2 EVeNt LOOP FIOWCNAITcoiiiiieicce ettt ettt e e et a e e e e e naee e e ennees 35
Figure 3.1 Main Class DIagram.........cccciiuiiieieiiiieeeciee e eccitee e esve e e e e sate e e s eseeeessabreeesensaeeesansaneaesseeeenssseeesennsens 36
Figure 3.2 Game EVeNnt Class DIiagIramccccuuiiiiiiiieeeeeciieritee e e eette e e e e etae e e e e aba e nbeeeeesnbaeeessasreeeeennsseennsens 37
Figure 3.3 Controller Class DIiagram.........ceccciuieeeeiiieeeecee e e eciite e e e ette e e e e ate e e e et eeeesatteeeeesasteeeseareeeasaseeesensens 38
=V N A RV W @ T DIT- ={ -1 o o[PS SR 38
Figure 3.5 TOOIKIT3DS Class DIagram........ccccccuiiieeeiiiieeeeieeeciite e e eettte e e e sttre e e e e e e esabaeeeeesnbeeeesenreeeeeaneesennsens 39

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

1 Introduction

This document will be used to define the blueprint design for Dude*X. Each section will outline the
design of a specific component of the game. The intention is to combine all sections to create an
application that can be tested and will lead up to the final release candidate version of the game.

1.1 Intended Audience

This document is intended to be viewed by the lead programmer, and, as needed, the game developers
themselves. The technical language has been kept so as to not lose the details needed to create the
envisioned game.

1.2 Game Overview

Dude*X is a 3D third person strategy game for PC, OS X and Linux in which the gamer is challenged to
cooperate with “ghosts” of themselves to reach the highest floor of the game. The game consists of 10
rounds with each round of roughly 60 seconds creating a new “ghost” that repeats its action for the
remaining rounds. The gamer is required to use these “ghosts” to solve problems and make it up a
series of stairs in order to reach the highest floor and win the game.

For more information please see (MacWilliam 2008).

2 Game Mechanics

This section outlines the technical specifications of the systems and code needed to run Dude10.
2.1 Platform

Dude*X will be a downloadable desktop application that works on the following operating systems:

e Windows 2003/XP/Vista

e MacOSX10.4.10+

e Linux
The minimum requirements to play Dude*X at the game speed intended the following minimum
requirements are required:

e Processor exceeding 1.0 GHz

e 512 MBRAM

e Video card with onboard memory (not required, but will result in better performance)

e Stereo Speakers (not required, but increases game experience)

31

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

2.2 External Code

This section will describe the various external code and libraries that will be used to create Dude*X.

2.2.1 SDL
Graphics
Simple DirectMedia Layer is a cross-platform multimedia library designed to provide low level
access to audio, keyboard, mouse, joystick, 3D hardware via OpenGL, and 2D video frame buffer
(Simple DirectMedial Layer). SDL will be used in Dude*X to handle the user interaction as well as
the video management needed to give Dude*X its look and feel.
Audio
To create the unique sound of Dude*X SDL_mixer will be used. SDL_mixer is a special project
under the SDL group. It is similar to the standard audio that comes with SDL, except it can
handle a variety of audio formats, and can play multiple channels of sound. This means that the
game developers can easily program Dude*X to have background music playing while multiple
sound effects are be playing all at once, with no effect on the game play . SDL_mixer also
provides cross fading and grouping of sounds, enabling the game developers to greatly enhance
game play through sound if time permits.

2.2.2 Lua

Lua is a powerful, fast, light-weight, embeddable scripting language. It combines simple procedural
syntax with powerful data description constructs based on associative arrays and extensible semantics.
Lua is dynamically typed, runs by interpreting bytecode for a register-based virtual machine, and has
automatic memory management with incremental garbage collection; making it ideal for configuration,
scripting, and rapid prototyping (Pontifical Catholic University of Rio de Janeiro 2008).

Lua will be used by the game developers to easily modify components of the game without recompiling.
It will be used extensively to handle scripts of objects and sounds that can be used to dynamically create
new levels. Lua can also be used by future gamers to customize components of Dude*X to their liking.

2.2.3 3D Studio Max

3D Studio Max (3Ds) is a full-featured 3D modeling, animation, rendering, and effects solution to
produce video and game content (Autodesk n.d.). It will be used in Dude*X to create some of the more
complicated objects, as well as the animation (see section. 3Ds will allow the developers to create
models for the Dude, as well as the buttons and switches needed for the game. These models will also
utilize 3Ds’ ability to easily develop complex keyframe animation in order to bring more lifelike to the
game.

Nevertheless, in order to import 3Ds files into Dude*X a 3Ds loader will need to be created by the
developers to read in the 3Ds files and extract the model and animation information. This information
will then be used by the game developers and coded into the game through Lua and SDL.

32

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

2.3 Control Loop

The main function for Dude*X will set up the correct graphics, video and audio settings for displaying the
game. This includes setting the screen size and enabling the various OpenGL properties that are require
for the game (such as the shading mode and culling settings). Some of these settings will be based on
the gamers’ preferences that are saved each time the game is played.

Once the correct graphics, video and sound have been set the peripherals are initialized. This includes
setting up the managers for the keyboard, mouse, screen and any other events needed during the game.
Finally the Lua scripting engine will be initialized. This sets up the basic Lua functionality that is required
by the majority of the game components. No, game specific content is loaded at this time. Specific
levels level information (walls, models, sounds, etc.) are loaded when they are needed. Once the Lua
engine is complete the main menu is displayed and the main event loop is entered.

The main event loop will handle the timer that will synchronize all the updates. It will handle calling the
correct update routines utilized by SDL and Dude*X. Because each major component of the game
(screen, keyboard, mouse, Dude, coin, elevator, sound, event manager, etc) will have their very own
update methods, the main event loop will handle calling them at the appropriate time. Once all the
update methods have been called the updated screen will be displayed for the gamer. The goal is to
achieve a frame rate of greater than 60 frames per second.

For a detailed view of the flow of the main game control loop please see Figure 2.1 below. A detailed

breakdown of the event loop within the main game loop can be found in|Figure 2.2

33

Dude*X

Version: <1.0>

Technical Specification

Date: 4/14/2008

Initialize SDL
and Display

4

Initialize
additional
components

A
Create
MainMenuScreen
and add to
ScreenManager

4

Execute
Event Loop

Exit Event
Received?

Terminate
Application

Figure 2.1 Game Loop Flowchart

34

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

Check for

Y

SDL Events

Is there
an event?

Process
SDL Event

Calculate timestep

Update the input) .
since previous

managers update
Generate input Update
events and pass —» individual
to event manager controllers
A
Update
ScreenManager
stack (Add/

Remove Screens)

4

Get Next Screen
and Update

Are there
buffered events?

additional
creens?

A

Er:ofc?s:saszz Pass Event Was Event Restore Event to
P to Screen Processed? Event Queue
events

4

Clear Screen .| Draw Screens .| Flush Screen and

Buffer Bottom-Up Swap Buffers

Figure 2.2 Event Loop Flowchart

35

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

3 Game Object Data

Because Dude*X will require the managing of a plethora of objects, instead of discussing each object in detail the following class diagram has
been given as an outline for the design and interaction of all objects within the game. Discussion of major classes will be discussed after the

[—
[
e P e ¥ Ipsatezse
wbic i paic niic ot
Lght Gamera Saceszazger Eventiarager ‘GameHanager
= = s o= o=
s ot Dt +lpiste e
DudeCaners whlc = [E—.
= et Tookia0SHodel Gierager GinMidel Backgraundiax Waltodel Bachgraundiode] Glndetodel Sobereicel Gl Doke Febiertodel =
sl e s i e i e T e s nid e
Eevtrrsisdel Sutoasdshdel
AT +osinsize s o
Sehdirseen Wehensarzen HUDsazes [EndbiGameSeren Gneiren Ugtinssorees fedesreen
viem v viem v vsemm tom vom v5ma
Dotz st
pres—

Figure 3.1 Main Class Diagram

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

3.1.1 Screen
Screen is an abstract class that implements the IDrawable and IUpdateable interfaces. It defines key
virtual methods draw() and update() that must be defined by all classes implementing Screen. These
classes include:

e SelectionScreen

e MainMenuScreen

e HUDScreen

e ConsoleScreen

e EndOfGameScreen

e GameScreen

e OptionsScreen

e FadeScreen
Each of these screens will be accessed and drawn to the screen as needed through a ScreenManager
class, which will contain a list of all screens, as well as a list of buffered screens. For a detailed
breakdown of what each screen is for please see sectionlEl

3.1.2 Event

outlines the implementation of the abstract Event class that is used to define events that are
handled in the game. The virtual methods that need to be implemented in each class that inherits Event
are play(), getType(), getModel() and getTarget().

Event ¥
Abstract Class
public public
GameEvent ¥ MovementEvent ¥
Class Class
=¥ Event =¥ Event

Figure 3.2 Game Event Class Diagram

3.1.3 Controller

outlines the implementation of the abstract IController class that is used to define the various
controllers in the game. All controller classes implement the abstract IController class. The virtual
methods that need to be implemented in each class that inherits IController are attachTo(), update(),

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

isEnabled(),and setEnabled(). All controllers are managed by the ControllerManager class that has an
array of IController objects. The ControllerManager class allows an easy way to add, remove and get the
various controllers active in the game.

IController =

public public public public

DudeController = MouseController ¥ MultiController B3 KeyboardController 3
Class Class Class Class
& IController -+ IController =& IController & IController

public
HelicopterController =
Class

—# KeyboardController

Figure 3.3 Controller Class Diagram

3.14 Lua

outlines the implementation of the abstract ILuaFunctExporter class that is used to define the
interface for all classes wanting to interact with the Lua scripting engine. The Lua scripting engine is
handled by the LuaC class and Lua functions can be called in game through the game console (Console
class) or through Lua scripts. The ILuaFunctExporter defines two static functions:

e registerFunct(lua_State *pLuaState)-exports function to a Lua State
e registerFunct(LuaC* luaObj) — exports function to a LuaC object

Every class that inherits ILuaFunctExporter must create an array of LuaFunctions (defined in LuaC) that
will be called from Lua scripts or through the console. These LuaFunctions are pointers to functions
defined in the inheriting class (i.e. LuaObjMgr). Once the array of LuaFunctions is initialized with the
correct function pointers the class must also implement both registerFunct functions, which will export
the functions into the correct Lua states and LuaC objects. Once the LuaFunctions have been registered
correctly they can be called from within the Console or through a Lua script.

%«

| ILuaFunctExport...
Class

public public public public public

| LuaObjMgr ¥ | LuaPhysicMgr ¥ | LuaPrefsMgr ¥ | CameraManager ¥ LuaSoundMgr
Class Class Class Class Class
=¥ [LuaFunctExporter =¥ ILuaFunctExporter = ILuaFunctExporter = ILuzFunctExpaorter = ILuaFunctExporter

Figure 3.4 Lua Class Diagram

38

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

Lua will be used for testing and making large changes to the game without the need to recompile. As
such, some critical components that will need to have Lua implementations are:

e Obijects (walls, floors, coins, etc)

e Physics (bounding boxes)

e Preferences (resolution, fullscreen)

e Sound (sound effects, background music)

Each of these components will be initialized and controlled through a component manager class (i.e.
SoundManager) that will have functions to access and use a list of loaded components (i.e. play or pause
music). Together these Lua components will be used to create Lua scripts of each level defined in section
6.1 of the Functional Specification document (MacWilliam 2008).

3.1.5 3DS Models
outlines the implementation of the 3DS models in the game. Toolkit3DSModel inherits from
the abstract Model class. Toolkit3DSModel implements some critical functions that are needed for
animating any object. These functions include:

e draw(void) —transforms and draws the 3Ds mesh

e update() — updates all meshes

e StartAnimation(int animationNumber) — starts the animation

e StopAnimation(int animationNumber) — stops the animation

e ResetAnimation(int animationNumber) — resets the animation

e void setPlaybackSpeed(float value) — sets hows fast or slow the animation runs

e setlLooping(bool value) — sets whether or not the animation should loop

Toolkit3DSModel ¥
Class

= Model
public public
Elevator3dsModel [Button3dsModel ¥
Class Class
= ToolkitsDSHodal = Toolkit3DSModal
public
DownElevator3dsModel ¥

Class
= Elevator3dsModel

Figure 3.5 Toolkit3DS Class Diagram

39

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

With the exception of loading the Dude model (which creates a Toolkit3DSModel of the Dude within the
Dude class) the only other 3DS models implemented in the game are the up elevator (red teacup), down
elevator (blue teacup) and the buttons that the Dude will stand on. These each inherit and implement
functions from Toolkit3DSToolkit so they can work specific to their model (i.e. the up elevator runs an

animation that opens and closes the elevator door), see|Figure 3.1

4 Game Physics

As part of the Dude*X game engine, the physics engine will provide support for modeling physical
objects in the game world. Essentially, it will be responsible for controlling the movement of objects
and their interaction, i.e. collision detection and response.

4.1 Physical Objects

Three kinds of physical objects will be possible in the engine:
e Dynamic objects —objects that move between frames and have associated:
Position
Rotation
Velocity
Mass
Angular velocity
Friction coefficient of the bottom
Elasticity
Any forces that are applied to it

O O O O O O O

o Bounding volume
e Static objects —objects that do not move between frames and thus these objects consist only of
a bounding volume.

e Space bound —the bounding volume of the game world. Although it is similar to a static object,
it will be treated slightly different.

4.2 Bounding Volumes

Bounding volumes are closed shapes that contain the physical objects of interest and are geometrically
simpler than the objects to improve the efficiency of geometric operations. Currently, the physics
engine will support only a single bounding volume per object; in the future it could be expanded to
follow the models and have possible bounding volumes at each tree node. The engine will support
three kinds of bounding volumes:

e Sphere
e Cuboid (a.k.a. Box)
e Cylinder

40

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

For each volume there will be an option of whether collisions should be monitored inside the volume or
outside. This is in part a performance optimization that reduces the number of bounding tests
necessary. The “inside” variant could be used for the box volume shape to keep elements inside the
box, which is useful for the space bound. Usually, the “outside” variant will be used since not many
objects will be encompassed within other objects in Dude*X.

The cuboid volume shape is the most complex shape because it tests against six finite planes. Since
collision detection and response for non-axis aligned finite planes is complex and not necessary for our
game, the engine will only support axis-aligned bounding boxes. However, for the “inside” case, infinite
planes can be used, and thus support non-axis aligned boxes for that variant. This means that the space
bound does not have to be axis-aligned.

Cylinders are infinite in length. Although collision detection for finite cylinders is not difficult, calculating
the response would be more involved and is not necessary for the game. Sphere bounding volumes are
the simplest and specified by their radius. A radius of zero would create a point that could be used for
some collision detection scenarios.

4.3 Collision Detection and Response

Collision detection will work by finding the distance between bounding volumes at the next frame. If a
collision occurs at the next frame, then the collision response is calculated and the physical object is
diverted from the collision. This process occurs only to dynamic objects, as static objects do not move
between frames. For each dynamic object, the following will occur for each frame:
1. Any current forces and acceleration, including gravity are applied.
Velocity from acceleration is updated
Any constant velocity setting from controllers is applied
Test against collisions between other dynamic objects
Test against collisions between static objects
Test against collisions between the object and the space bound
Apply any collision response if there was a collision

O NV A WN

Actually move the object by translating it by its velocity

9. Update and apply friction
Note that all dynamic objects are tested against all other objects, meaning a complexity of O(n?) is used
for collision detection, where n is the number of dynamic objects. This solution will be acceptable since
there will not be many dynamic objects, and collision detection functions should actually take a
negligible amount of execution time compared to the rest of the game.

Since collisions will involve different combinations of static and dynamic objects as well as different
shapes, only collisions that are needed will be implemented, namely the following is a list of collisions
will be supported by the physics engine:

e Sphere vs. static cuboid

e Sphere vs. static infinite cylinder

e Sphere vs. static sphere

41

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

e Sphere vs. dynamic sphere
e Infinite cylinder vs. static cuboid
e Infinite cylinder vs. static sphere
e Infinite cylinder vs. dynamic sphere
Details of the math for each collision will not be discussed here. Collision detection for each
combination of shapes is a bit different, but collision response will almost always uses the same formula:

R=2(—1eN)N+ 1/

Where R is the response vector, I is the incident vector, and N is the vector normal to the surface of the
collision. In each case, the methods to determine the normal will be slightly different and sometimes
approximations are used. The incident vector will usually be the velocity.

5 Artificial Intelligence

As mentioned in the Game Concept document (MacWilliam 2008) “Dude*X does not have any Al”. The
gamer must use all the Dudes they have and their own intelligence to complete the game. This section
discusses how the “artificial intelligence” of the “ghosts” will be developed to accurately re-enact, step
by step, the previous dudes’ actions.

In order to record what happened in a previous round, there are two approaches that can be taken. The
events of interest may be recorded, or the gamer input could be recorded. With either method, the
recorded entities would be played back for each round. Event-based recording (see section|3.1.2

should be used because it is more efficient and would rule out any accuracy issues that might be faced if
going with input-based recording instead. This type of recording is different than a “timedemo” because
interaction still occurs with the recorded state of the game.

There are two kinds of events that will be recorded: continuously sampled events that are “polled” and
action-driven events that are “pushed”. These will be called MovementEvents and GameEvents,
respectively. Other classes or subclasses of these events may be created to specify alternate event
conditions. Both will be subclasses of an abstract Event class that contains the time the event occurred,
and an interface for how it should be replayed. MovementEvents will be recorded at a specified
sampling frequency of around 60 Hz for smoothness, and will contain the position and rotation of the
recorded character. GameEvents contain information on the type of event, such as a coin pickup or
button press, and the associated game model with that event. All events will be stored in a linked list
that is traversed as the events are played back, and any new events will be inserted as they occur.

42

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

6 Gamer Interface

This section outlines the design of the gamer interface necessary to correctly play Dude*X. The
section will explore the design of all screens other than the Main Play Screen, which will itself be
outlined in section The intention is that this section will provide enough detail for the lead
programmer and game developers to understand and implement Dude*X’s gamer interface.

6.1 Game Shell

As mentioned in sectionthere are a variety of screens that will be handled by the ScreenManager
class. Each screen implementation is discussed in their own section below.

6.1.1 MainMenuScreen

The MainMenuScreen class will implement the Main Menu Screen discussed in section 2.2.1 of the
Functional Specification (MacWilliam 2008). It will be the first screen loaded and displayed when the
gamer starts up Dude*X. The screen should be simple and should display the name of the game and any
instructions needed to take the gamer to the next screen: the SelectionScreen. When the next screen is
loaded it should be pushed on to the list in ScreenManager. MainMenuScreen will remain in the list until
the game is exited.

6.1.2 SelectionScreen

The SelectionScreen class will implement the Selection Menu Screen discussed in section 2.2.2 of the
Functional Specification (MacWilliam 2008). It will have to draw each of the gamer-selectable menu
items, which can be highlighted using the up or down arrow keys. The SelectionScreen class will also
need to be able to process which menu option the gamer has selected. If the New Game option is
selected a new game will need to be loaded. This means fading the screen (see section and
loading the game and HUD screens (see sectionsand 6.1.6). If a game is in process the Continue
option can be selected which will return the gamer back into the game at the same position they paused
the game by popping the SelectionScreen off the ScreenManager stack. Selecting the options screen
will push the OptionsScreen onto the ScreenManager stack which will draw the OptionsScreen. Selecting
the Exit option will push an end game notifier to the event queue, which will then properly dispose of all
objects correctly and shut the game down.

6.1.3 HUDScreen

This class will handle drawing the heads up display that will be visible to the gamer at all times. The
HUD will show the gamer the number of lives remaining, the level they are on, the points they have
achieved and the time remaining. These values will be retrieved from the GamerManager class and will
be updated every time GameManager’s updated method is called and the screen is redrawn. It is not
interactive, thus the only event that needs to be handled is the end game event. In this case the HUD
screen will be popped from the list in ScreenManager so it is no longer displayed.

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

6.1.4 ConsoleScreen

This class will handle drawing the drop down console screen defined in the Console class that can be
used to interface with Lua (see section. The instance of the Console class will be accessed by the
ConsoleScreen through the Singleton design pattern. The Console class’ draw method will draw a
background box for viewing commands over top of the GameScreen and HUDScreen, and a separate
background box for entering commands. The gamer can type Lua commands and when they press enter
the input will be processed by Lua and the command along with any output will be drawn to the
background box for entering commands. When the Console is deactivated the ConsoleScreen will be
popped out of the list in ScreenManager, so it will no longer be drawn.

6.1.5 EndOfGameScreen

This class will handle the drawing of a simple screen on top of the GameScreen that will help to notify
the gamer they have lost. A message telling the gamer they have lost is appropriate. When the game is
exited or the gamer wants to return to the SelectionScreen this screen is popped and an EndGame event
is pushed onto the InputEvent queue.

6.1.6 OptionsScreen

This class will handle the drawing of the Options screen discussed in section 2.2.3 of the Functional
Specification (MacWilliam 2008). It will have to draw each of the gamer-selectable option menu items,
which can be highlighted using the up or down arrow keys. The OptionsScreen class will also need to be
able to process which option the gamer has pressed the left or right arrows because these will be used
to change the values of the currently selected option.

For the resolution option there will be a list of accepted game resolutions that the gamer can select
from. When pressing the left arrow the next resolution needs to be retrieved and displayed. If the
gamer presses the left arrow the previous resolution needs to be retrieved and displayed. Each time the
resolution is changed the resolution is written to the preferences file defined in the Preferences class.

The gamer can select between fullscreen on and off. Like resolution, each time the option is changed it
is written to the preferences file.

The background music can also be toggled on or off. Each change will be written to the preferences file.

The music volume can also be set. Pressing the left arrow key will decrease the volume by 1, and
pressing the right value will increase it by 1. 100 is the maximum volume level and 0 is the minimum.

Sound effects can also be toggled on or off. Each change will be written to the preferences file.

The sound effects volume can also be set. Pressing the left arrow key will decrease the volume by 1, and
pressing the right value will increase it by 1. 100 is the maximum volume level and 0 is the minimum.

44

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

Selecting the Back option will save all the preferences and pop the OptionsScreen off the list in
ScreenManager, thus revealing the SelectionScreen again.

6.1.7 FadeScreen

This class will handle the drawing of a screen that will fade in and out for a developer programmed
period of time (most likely 1-2 seconds). The FadeScreen will be pushed on top of all screens in the
ScreenManager list when a new level is loaded. The fade colour should be set as white. Alpha blending
will be used for both fading in and out, thus GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA should be
used for the glBlendFunc. When fading in the Alpha value should be set to 0 and should increase linearly
in steps of

fade time
fade duration

where A is the new alpha value. When the fade is complete the Alpha value needs to be set to 1, just in
case the fraction is not exactly equal to 1.

For fading out, which will occur once the new level has loaded the alpha should start at 1 and the alpha
fade out value should be

fade time

Arpgooge = 1— —————
Fadeout fade duration

6.2 Main Play Screen

The main play screen is the most complicated of all the screens previously discussed. Whenever the
main play screen is loaded (through a call to its load function) the cameras, models, lights and
controllers all need to be initialized (see section. Each of these components will have their own
initialization functions to make the code easier to understand and use. Once all the components have
been initialized the Dude model can be activated and all mouse events will be cleared. This is done so
the camera (which is controlled by the mouse) can always start by facing the same direction every time
the game screen is loaded.

Drawing the main play screen is complicated because each component needs to be drawn in the correct
order. First the background skybox is drawn, followed by the terrain skybox. The lighting effects are
then implemented by calling the draw function of the LightManager class. Once the lighting has been
set all objects (Dude, coins, walls, etc.) are drawn by calling the draw function of the DrawManager
class. Finally the cameras and particle effects are drawn.

Every time the main play screen’s update method is called the background is updated, any events that
occurred are updated and recorded, and finally all objects (Dude, coins, walls, etc.) are updated. Once
all the correct update methods are called the main play screen is redrawn to reflect the updates.

45

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

7 Artand Video

This section discusses the details of the graphics engine and the creation of any animations. The
graphics engine will discuss the implementation of cameras, textures, models lighting and fonts that will
be needed to give Dude*X it distinct look.

7.1 Graphics Engine

The graphics engine of Dude*X is responsible for translating the effects of the rest of the game engine
into images which are rendered to the screen. This consists of a number of parts including Cameras,
Models, and Lighting, among other smaller components.

7.1.1 Cameras

The basic purpose of the camera object is to provide a view point and orientation through which the
screen is rendered. The camera can represent a variety of things. A free camera can provide an
overview of the map/game. A fixed camera representing an actual camera object in-game through
which the character can view some other part of the world. A controllable camera can represent the
characters view, either in first person or third person depending on the method used to control the

camera.

As the game will require a number of these different camera types a camera system needs to be
developed to allow multiple cameras to exist at any given time. From this point, any given camera can
be activated, at which point the scene being rendered will appear from the viewpoint of the active
camera. The camera objects should be controllable in the same manner as other game objects to allow
ease of control.

7.1.2 Textures

Textures are often a very resources intensive part of a game and as such, there needs to be a method to
manage textures within the game. A texture manager should keep track of all textures that are loaded
and ensure that any given texture is only loaded once. Additionally, the texture manager is responsible
for generating mipmaps for the loaded textures to improve game performance.

7.1.3 Models
A model represents the abstract concept of any object that can be draw within the game. To simplify

management of objects, all drawable objects should inherit from the same base class, |IDrawable.
IDrawable provides a method draw() which is overridden to provide the actual drawing functionality of
the model. This functionality will vary depending on the model.

Simple models such as the Skybox will draw a number of quads textured with the skybox. This involves
specifying the textures that will be used for each side of the skybox, and drawing a single textured quad

46

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

for each section of the box. The skybox object is always positioned in the same place as the current
camera to produce the illusion of a distant background.

More complex models such as the game walls are not constantly the same shape and thus are not well
suited for generating as 3DS models. Walls must also be affected by game lighting so they must be
made up of larger numbers of quads. This is done by subdividing the wall into an arbitrary number of
chucks and drawing a quad for each. The quads are textured so as to seamlessly repeat the texture. The
display lists for the walls should be generated a single time to maximize performance.

Finally, more complex in game models (3DS models) are loaded into the game using a 3DS file parser.
This includes a number of steps. First, the meshes are loaded into an object. As 3DS files do not contain
normal vectors for vertices, these are now generated. Second, all animations are loaded from the file
and converted into the internal format. Finally a display list is generated for each mesh. Each mesh has
an individual display list to allow run-time modification (animation) of individual meshes in a model.
During this step, any materials or textures required are created or loaded.

During the drawing step for any model, any specific transforms are applied which positions the model in
the scene with respect to the camera. Second, the drawing code is executed. This usually includes a
display list but can include other OpenGL calls to manually create objects. For a 3DS model this involves
transforming each individual mesh before drawing it.

7.1.4 Lighting

Lighting is an important part of any 3D game as it provides a way to make objects appear much more 3D
and realistic. There must be an easy way to interact with the lighting system to allow creating new
lights, and enabling and disabling lights. Similar to most other components, lights must be controllable
to allow them to be animated, positioned, and controlled easily.

7.1.5 Fonts

Text is the standard way to provide feedback to the gamer whether it is in the form of a menu system or
an in-game heads up display. The graphics engine should provide a way to load a number of pre-
generated font textures into the game and then use them to print various strings to the screen. Similar
to the texture manager, fonts should only be loaded a single time and re-used by the various
components of the game.

7.2 Artist Instructions

A 3Ds models will need to be created of the Dude. The Dude should be simplistic and gender-neutral. It
must be simplistic such that any animations will be created (i.e. walking/running) will not be difficult to
parse and implement in the game. Any elevators, buttons and switches should also be completed in 3Ds
to give them the detail and accurate animation.

47

Dude*X Version: <1.0>

Technical Specification Date: 4/14/2008

Textures will need to be created for the walls, floor, balls, coins and boxes. Any textures created for the
game must have dimensions equal to 2". All textures should be accurately cropped in production such
that alpha blending will not need to be utilized except in necessary conditions.

8 Sound and Music

This section outlines the implementation of sound in Dude*X. It begins with a brief discussion of the
various requirements for recording background music and sound effects in order for them to play
properly in the game, and concludes with a brief overview of how the code will need to be developed in
order for the correct sounds and music to play at the appropriate times.

8.1 Sound Engineering

Background music can be encoded in any currently accepted music format. However, in order to keep
the size of the background music minimal it should be recorded in MP3 or AAC format at around 128-
192kbps. Background music can be longer, but should be able to loop without the gamer noticing.
Looping is inevitable if the gamers spends their entire time on the same floor; unlikely, but still possible.

Any sound effects need to be recorded in WAV format and must be dual channel. The frequency should
be set at 22050 kHz and should be encoded using 16 bit waveforms. Sound effects should be no longer
than 5 seconds.

8.2 Level Specific Code

All code will be handled by a Sound Manager that will be created by the game developers. The functions
of the Sound Manager will include those that can load, play and pause both background music and
sound effects. These functions should be accessible through the Lua scripting interface, such that all
sound effects can be loaded through a single file at the start of the game through the Lua initializing
function (see sectio. Code that calls the correct sound effect ID to play for a specific event (i.e.
coin is collected) will need to be implemented by the game developers at the correct spot in code (i.e.
collision with coin is detected).

The background music will also be loaded at the start of the game, but because it is level specific it will
be handled in each level’s Lua file. These level files will be read in the Lua initializing function (see
section and the background music will be loaded at the same time. Code will need to be developed
such that when a new floor is loaded the correct background music plays as the floor appears (i.e. in the
Level Manager). The background music will help to differentiate the various floors.

48

Dude*X

Version: <1.0>

Technical Specification

Date: 4/14/2008

Appendix A:

Autodesk. Autodesk-Autodesk 3Ds Max.

Works Cited

http://usa.autodesk.com/adsk/servlet/index?sitelD=123112&id=5659302 (accessed January 31, 2008).

Gold Standard Group. GLUT-Open GL Utility Toolkit. http://www.opengl.org/resources/libraries/glut/

(accessed January 15, 2008).

Ishii, Yoshio. Cursor*10 . January 2008. http://www.nekogames.jp/mt/2008/01/cursor10.html (accessed

January 16, 2008).

MacWilliam, T. et al. Dude10 Game Concept. Vancouver: Eat-A-Lot Software, 2008.

Pontifical Catholic University of Rio de Janeiro. Lua:About. January 7, 2008.

http://www.lua.org/about.html (accessed January 25, 2008).

Simple DirectMedial Layer. http://www.libsdl.org/index.php (accessed January 15, 2008).

49

Eat-A-Lot Software

Dude*X

Closure Document

Version <1.0>

Contributors

Tyler MacWilliam
Ben Randall

Albert Sodyl
Andre Soesilo
Andrew Thompson

Dude*X

Version: <1.0>

Closure Document

Date: 4/14/2008

Table of Contents

1 Introduction

2 Achievement

2.1 Original Objectives
2.2 Milestones

2.3 Project Results
3 Project Performance
4 Recommendations

Appendix A: Development Breakdown

53

53
53

54

55

59

62

64

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008

List of Tables

Table 1 Game CoNCEPt ODJECHIVESccviiiee ettt e e e et ste e e e et e e e s e eabtee e e e earaesteeeeennnrenas 53
Table 2 MiIleSTONES SUMMIAIY ... ittt e e e e et ere e e e e et e e e e e e abtaeeeeeessaesteeeesanstaeeeennsens 54
Table 3 GameE PerfOrmMantec.ueo ittt et sae et st e b et e be e sareesneeebeeeas 60
List of Figures
Figure 2.1 FINal GaNntt CRart.. ..ottt e ettt e e e e ettt e e e e e e eabt e e e e e sabtaeeesentntaseeesanssaneassnnses 55
Figure 2.2 Main IMENU SCrEENSNOT.........uiiii ittt ettt e e e et ste e e e e e bte e e e e esabre e e e e e abaesteeeeeeanrenas 55
Figure 2.3 Options MENU SCrEENSNOTccciciiiiiie ittt e e e e e e s ree e e e e bt ee e e e enraeeeeeseeennnees 56
Figure 2.4 First LeVEl SCre@NSNOTcooceeiiiee e et e e e et e e e e eaba e e e e e tare e e e e enreeas 56
Figure 2.5 Ghost Dudes and Particle Effect SCreenshotcooocuiiiiiiciiiice e 57
Figure 2.6 Cloud Screenshot #1, Figure 2.7 Cloud Screenshot #2ccccveeeiieciiiee i e 57
Figure 2.8 Clickable Button Screenshot #1, Figure 2.9 Clickable Button Screenshot #2.............c..cc........ 58
Figure 2.10 LOSE GAaME SCrEENSNOT........uiiiiieciiiie ettt ettt e e e e e et e e et e e e e bte e e e e eeabreeeeeeabaeesreeeennnrenas 58
FIGUIE 3.1 SLOC VS TIMI ceettieiitiiiiieieeee e e e e e e e stttettttba e resse e e e eeeeeeeeatataaasabaaaaasaeeeeesaeasestasssssssnnnnnnnnnaaesesenaes 59
Figure 3.2 Engine Library Code BreakaOWNcuuiiiiiiiiiiieececiciieee e e eettee e e e eettee e e e eatataeeessensaeeeesnrseeeaeanns 61
Figure 3.3 GL Library Code BreakaOWN.........cceee ittt e e eeeeetttee e e e e sre e e e e e e e e e e s e e e snenbraaaeeeesreneees 62
Figure A.1 Development DistribUtioNccoii i e e e e e e s 64

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008

1 Introduction

This document has been produced to outline the achievements, performance and future
recommendations for Dude*X. It is intended that the recommendations can be used when developing
future and similar games as that of Dude*X. Itis intended for management as well as anyone who
participated in the development of the game.

2 Achievement

The Dude*X project originally began with a simple concept in mind: a 3D third person strategy game for
PC, OS X and Linux in which the gamer is challenged to cooperate with “ghosts” of them to reach the
highest floor of the game (MacWilliam, Dude10 Game Concept 2008). This concept was further refined
through the creation of 2 critical documents: the Game Concept (MacWilliam, Dude10 Game Concept
2008) and Technical Specification (MacWilliam, Dude10-Technical Specification 2008). Although the
requirements changed over time the fundamental concept remained the same.

This section gives an overview of the objectives of the project as well as some of the key milestones
reached during the creation of Dude*X. It concludes with a brief section on the final results of the
Dude*X game.

2.1 Original Objectives
Of the features outlined in both the Game Concept (MacWilliam, Dude10 Game Concept 2008) and
Technical Specification (MacWilliam, Dude10-Technical Specification 2008) the following were met:

Portability Achieved
Shadows Missed
Scripting Language Achieved
Transparent and translucent Achieved
objects

Multiple Skyboxes Achieved
Level of detail Achieved
Physical simulation Achieved
Key frame animation Achieved
Collision detection Achieved
Multi-pass rendering Achieved
Sound effects Achieved
Gamer Intelligence Achieved
Level of Detail (MipMapping) Achieved

Table 1 Game Concept Objectives

53

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008

Additionally, the following components were also added to the game:
U Particle Engine

. Level Culling — Similar to frustrum culling but specific to this game. Objects on other
levels are not draw while still physically affecting the gamestate.

2.2 Milestones

Dudel0 was designed to be a small-sized computer game that was to be developed over a 12 week
period by a team of five amateur game developers. The sections described in the technical specification
(MacWilliam, Dude10-Technical Specification 2008) were split amongst the developers with the
intention of integrating them one by one to create the final release candidateis a summary of
these milestones.

Date Milestone

30/01/2008 Project Inception

19/02/2008 Completion of Basic Engine
30/03/2008 Additional Levels implemented
12/04/2008 Game completed

18/04/2008 Release Candidate Demonstrated

Table 2 Milestones Summary

Below is an updated Gantt chart reflecting the actual order of tasks worked on, with the start and end
dates for each component. All tasks and their respective numbers have been kept the same as those
found in Section 8.2 of the Game Concept (MacWilliam, Dude10 Game Concept 2008). The major
differences to this Gantt chart and the one originally proposed is in the lengths of time needed to
complete each task, and a much larger delay in the start date for the sound and visual effects tasks.

54

Dude*X

Version: <1.0>

Closure Document

Date: 4/14/2008

Start Date: 20/01/2008 0
2 o 3£
8 o & B ®
= @ o g E
§ & 2 8¢ 2 1Bls13123|2[21323|e|2|2
g 3 £ 249 ISR N
Task Tasks Start End a 2 = 8 8 e N P P P P A A P P e
1 Dude10 Game 1/20/08 4/18/08 89 98% 65 87 2 I
1.1 Develop Requirements/Specs doc 1/20/08 1/29/08 10 100% 7 10 0
1.2 Create Basic Game Engine 1/21/08 2/19/08 30 100% 22 30 0
1.3 Add Objects, Walls, etc. 2/20/08 3/20/08 30 100% 22 30 0
1.8 Implement Scripting Language 2/15/08 2/24/08 10 100% 6 10 0
1.4 Refine game engine with visual effects 3/21/08 4/07/08 18 100% 12 18 0
1.7 Implement Sound 3/21/08 4/04/08 15 100% 11 15 0
1.6 Implement Animation 2/11/08 3/06/08 25 100% 19 25 0
1.5 Implement Collission Detection 3/01/08 4/09/08 40 100% 28 40 0
1.9 Create New Levels 3/15/08 3/20/08 6 100% 4 6 0
2.0 Final Tests 4/11/08 4/18/08 8 75% 6 6 2
2.1 Finalize presentation and documents 4/01/08 4/13/08 1 85% 9 1M1 2

2.3 Project Results
This section will explore the current state of the game. A brief discussion regarding some key features

of the game will be provided along with some screenshots.

2.3.1 Features

Figure 2.1 Final Gantt Chart

The selection menu screen that was discussed in section 2.2.2 of the Functional Specification and 6.1.2
of the Technical Specification is shown in Figure 2.2. Because a game is not in progress the “continue”

option is not selectable.

Dude10 - FPS: 59

NEW GAME

Figure 2.2 Main Menu Screenshot

Figure 2.3|shows the option menu screen discussed in section 2.2.3 of the Functional Specification and
section 6.1.6 of the Technical Specification. All options can be changed with the preferences being

saved automatically.

55

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008

Figure 2.3 Options Menu Screenshot

is a screenshot of the first level of the game. This is what the gamer will see when they first
click "New Game™" on selection menu screen. The HUD is displayed along the top of the screen. The
Dude is front and center in the Hawaiian shirt. Directly in front of the Dude on the other side of the
room is an up elevator (signified by the red teacup). There are collectable coins to the left and right of
the Dude. Notice the transparent floor with the terrain skybox visible.

Dudel0 - FPS: 59

Figure 2.4 First Level Screenshot

56

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008

Figure 2.5|shows 2 ghost Dudes and the currently played Dude. Notice how the lives have been
decreased to 3, because 2 ghosts are active, which means the gamer has already played through 2
rounds of 45 seconds. Although it is hard to see the ghost Dude in the rear has just collected a coin and

the particle effect is shown as the coin disappears.

Dudel0 - FPS: 59
Points: 30

Figure 2.5 Ghost Dudes and Particle Effect Screenshot

Figure 2.6 and Figure 2.7 show the second level at two distinct periods in time (22.3 and 15.8 seconds).
This is to show the clouds skybox is rotating while the terrain skybox remains in the same position.
These figures also show a button the gamer has to walk over to open the up elevator to the 3™ level (the
elevator with the red teacup).

Figure 2.6 Cloud Screenshot #1 Figure 2.7 Cloud Screenshot #2

57

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008

Figure 2.8 and Figure 2.9 show a clickable button found on level 4. Figure 2.9 shows the button when
the gamer walks up to it for the first time. Figure 2.10 shows the same button that has been clicked 13
times. At this same point in the next round the now ghost Dude will have clicked the button to 87, but if
the current Dude for that round was also clicking the same amount the result displayed would be 74.

Dude10 - FPS. 39

Dude:

Figure 2.8 Clickable Button Screenshot #1 Figure 2.9 Clickable Button Screenshot #2

Figure 2.10|is a screenshot of the End of Game Screen discussed in section 6.1.5 of the Technical
Specification. It is displayed when all the lives have run out, which occurs when the time reaches 0 on

the Dude’s last life.

Dudel0 - FPS: 59

(EXcept Apple Fanboys and Piel!)

Figure 2.10 Lose Game Screenshot

58

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008

2.3.2 Bugs
For a list of bugs that have been discovered, as well as the status for each bug, please see

http://eece478.pbwiki.com|(invite key: ‘tyler’)

3 Project Performance

In terms of development statistics Dude10 achieved the following:
SLOC: 22452

Number of Files: 209

Average File Size: 107.4 lines

The development of Dudel0 increased steadily over time as can be seen in|Figure 3.1

22,500

20,000

17,500

15,000

12,500

Lines

10,000

7,500

5,000

2,500

21-Jan
28=]an
4-Feb
11-Feb
18-Feb
25=Feb
3-Mar
10-Mar
17=Mar
24-Mar
31=Mar
T-Apr
14-Apr

Date

Figure 3.1 SLOC vs Time

Below is a table of the various platforms the Dude*X was run on, along with the average frames per
second, as well as the amount of system memory and CPU time used.

59

http://eece478.pbwiki.com/

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008
Platform FPS System Memory CPU
IBM Thinkpad 20 73MB 50%
Core Duo processor T2400
@1.86Ghz,
1G memory,

Windows Vista Business

ATI Mobility Radeon X1400

Macbook Pro 59 89MB ~97%
Core 2 Duo 2.2GHz

2GB Memory

4 GB L2 Cache

Macbook 20 90MB ~99%
2GHz Core duo

1 GB 667 MHz DDR2 SDRAM

Table 3 Game Performance

To determine which parts of the code are run most often a 30 second sample of normal game play was
run through Shark (Apple Inc. 2004) on OSX 10.5 to generate a time profile. The Engine library which
encompassed the entire code base of our game used 58.6% of the processing power of the game. The
rest was devoted to the mach_kernel library.

Figure 3.2|is the result of performing some data mining on the Engine library. By focusing on the
SDL_main class, which contains the main function of the program, it is obvious that a majority of the

program is spent inside the eventLoop function, as expected. Outside and inside of the eventloop
function the a lot of time is spent getting the instance of the ScreenManager class and updating the
ScreenManager. This too is expected, because ScreenManager controls which screens are displayed and
is needed to redraw the screen. Nothing appears to be out of the ordinary, but further investigation will
be required in order to locate and optimize the code.

60

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008
! Self Total w Library Symbal
0.0% 100.0% Engine ¥ S50DL_main
0.2% 99.9% Engine ¥ eventLoop()
0.1% 66.2% SDL b 5DL_PollEvent
0.0% 31.0% Engine b display(
0.2% 1.3% SDL b 5DL_GetTicks
0.0% 0.4% Engine p ScreenManager::update(unsigned)
0.2% 0.2% SDL SOL_GCetkeyName
0.2% 0.2% libSystem.B.dylib gettimeofday
0.0% 0.1% SDL » SDL_GL_SwapBuffers
0.1% 0.1% SDL SDL_SoftStretch
0.0% 0.1% SDL b SOL_WM_SetCaption
0.1% 0.1% Engine dyld_stub_SDL_CetTicks
0.0% 0.0% Engine p KeyboardinputManager::update(unsigned)
0.0% 0.0% SOL SDL_PeepEvents
0.0% 0.0% Engine ScreenManager: drawil)
0.0% 0.0% Engine MouselnputManager::update{unsigned)
0.0% 0.0% Engine InputEventQueue:copyTolstd:deque<InputEventType, std:allocator<InputEventType= =*)
0.0% 0.0% libGL.dylib glClear
0.1% 0.1% SDL SOL_GCetTicks
0.0% 0.0% Engine ScreenManager::Instance()
0.0% 0.0% SDL SOL_GL_SwapBuffers
0.0% 0.0% Engine ScreenManager::update{unsigned)

Figure 3.2 Engine Library Code Breakdown

Figure 3.3|is for reference only and is a breakdown of the various calls to the OpenGL library during a
typical 30 second game play sample. As can be seen a lot of time is spent rendering quads and triangles,
as is expected.

61

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008
Total Library Symbal
- ‘mach kemel mlsetinterrupts_enabled
8.4% 8.4% w0Ox14e91280 [972B]
0.0% 7.5% | GLEngine » gleFlushAtomicFunc
0.0% 0.4% CLEngine P glEnd_Exec
0.0% 0.1% | GLEngine p gleFlushTriQuadstripFunc
0.0% 0.1% GLEngine b gleRenderSmoothTrianglesFunc
0.0% 0.1% | GLEngine p gleRendersmoothQuadsFunc
0.0% 0.1% CLEngine b gleDrawArraysOrElements_ListExecCore
0.0% 0.1% | GLEngine p gleRendersmoothTriangleFanFunc
0.0% 0.0% GLEngine p gleRendersmoothQuadstripFunc
0.0% 0.0% GLEngine b glEndRDirty_Exec
0.0% 0.0% GLEngine » gleRendersmoothTriangleStripFunc
B.3% 8.3% | GLEngine wgleVexLightRCGBAFrant
0.0% 8.3% GLEngine » gleRenderSmoothTrianglesFunc
3.3% 3.3% libGLImage.dylib b vioid glgConvertTo_32 <CLGConverter_RCBS_ARGES, (CLCMemory)l>
2.7% 2.7% | com.apple.driver ApplelntelG_.. Intel315Memory::allocTiledRegion{GLEMemoryElement*, unsigned lor
[1] 2.4% 2.4% p Ox14e91a8d [99B]
2.2% 2.2% commpage [libSystem.B.dylib] »__memcpy
1.9% 1.9% b 0x14e917bb [634B]
1.6% 1.6% commpage [libSystem.B.dylib] » _ spin_lock
1.5% 1.5% GLEngine ¥ specular_pow_sse
0.0% 1.3% GLEngine » gleVexLightRGBAFront
0.0% 0.1% GLEngine b glevixLightColorMaterialRGBAFront
0.0% 0.1% GLEngine p gleRendersmoothTrianglesFunc
0.0% 0.0% | GLEngine b glevixLightRGBAFrontPtr
0.0% 0.0% | GLEngine p glevixLightColorMarerialRGEAFrontPr
0.0% 0.0% | GLEngine b gleRenderSmoothQuadsFunc
1.4% 1.4% ApplelntelGMA950GLDriver w glrintelLoadDiffuse
0.0% 1.1% ApplelntelGMAS50GLDriver p girintelRenderTriangles
0.0% 0.1% ApplelntelGMA950CLDriver » girintelRenderQuads
0.0% 0.1% AppleintelGMA950CLDriver p girintelRenderPalygonPtr
0.0% 0.1% GLEngine b gleRenderSmoothTrianglesFunc
0.0% 0.0% ApplelntelGMA50CLDriver p glrintelRenderTriangleStrip
0.0% 0.0% ApplelntelGMA950CLDriver b glrintelRenderTriangleFan
0.0% 0.0% ApplelntelGMA50CLDriver p glrintelRenderQuadStrip
0.0% 0.0% ApplelntelGMA950CLDriver P glrintelRenderLinesPtr
0.0% 0.0% | GLEngine b gleRenderSmoothTriangleStripFunc
0.0% 0.0% GLEngine p gleRendersmoothQuadstripFunc
0.0% 0.0% | GLEngine b gleRendersmoothQuadsFunc
1.2% 1.2% mach_kernel lo_alltraps
1.1% 1.1% mach_kernel lo_mach_scall
1.1% 1.1% libSystem.B.dylib » mach_msg_trap
1.1% 1.1% libGLU.dylib b gluBuild2 DMipmapsCTXCore(_CCGLContextObject®, unsigned, int, int, i
1.0% 1.0% GLEngine p glevtxLightFastRGEAFront
1.0% 1.0% CLEngine # gleLightExponentPow
1.0% 1.0% mach_kernel » blkclr
1.0% 1.0% mach_kernel B pmap_enter
0.8% 0.8% GLEngine P specular_pow
0.8% 0.8% CoreFoundation b CFRunLoopRunSpecific
0.8% 0.8% commpage [libSystem.B.dylib] »__nanotime

Figure 3.3 GL Library Code Breakdown

4 Recommendations

Overall the developers are quite pleased with the results of Dude*X, but there is still some room for
improvement. To make the game more realistic shadows should be implemented for all characters and

62

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008

objects (except for ghost dudes, because they are ghosts). The ghost Dudes are currently not animated,
and even though they float around like ghosts the developers feel that in the future they should be
animated.

In the original planning session of the game more complicated levels had been brainstormed, but they
could not be implemented due to the time frame. These levels included moving boxes to cross a chasm,
pulling on ropes to open doors, as well as the use of switches along with the buttons that have already
been implemented. These additions could be implemented in the existing 7 level structure of the game,
or they could be added as new levels. Of course, if they are new levels the life for each Dude will need
to be increased.

Finally, as mentioned in section now that the code base has been completed and is relatively mature
the focus should be on optimizing the code to obtain a better frame rate or decrease the amount of
memory or processor power needed.

63

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008

Appendix A: Development Breakdown

The breakdown of development was as follows:

Development Distribution

Figure A.1 Development Distribution

For detailed work logs and other statistics please see the StatSVN page for the Dude*X project that can
be found at|https://exit.ath.cx/statsvn! For more information about the resources, project ideas and
practices we used please see|http://eece478.pbwiki.com|(pass key: ‘tyler’)

To summarize the information found on both sites, the key features developed by the programmers

were:
Tyler MacWilliam
e Documentation

o Wrote up all documentation except for sections 4,5 and 7.1 of the Technical
specification and Appendix A of this document (everyone wrote their individual parts)

o It was decided that one person should be in charge of the documentation in order to
maintain consistency and give it the priority it needed (25% of the final grade)

e Sound

o Create a sound manager class that loaded and played sound effects and background
music. Both types of sounds were treated differently and could be called either using a

unique id number or the filename

64

http://eece478.pbwiki.com/
https://exit.ath.cx/statsvn

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008

o Modified and added code from LuaObjMgr class to create the LuaSoundMgr class which
brought sound functionality created in the sound Manager class to Lua. These
commands (i.e. playAudiolD(letsGo)) could be called through the Lua Console or in Lua
scripts

o Implemented the correct function calls at appropriate places in the code to call the
sounds (i.e. change background music for each new level)

o Recorded custom sounds (coin pick up, Dude voiceover, elevators) and found royalty
free loops and effects that could be used when the sounds couldn’t be created

e Coin

o Wrote the base code needed to place and draw coins through Lua. Ben helped with
drawing the textures correctly and rotating them. Albert helped figure out how the
coins could be reset each time a new round starts so either ghost Dudes or the current
Dude could collect them

Ben Randall
e Main graphics engine functionality

o Modified Vertex classes (created by Neema Teymory) and created simple Quaternion
class to be used for rotations.

o Implemented cameras and camera manager classes. All camera functionality is
manually implemented (i.e. no GLU methods used). Quaternions used to manage
rotations.

e Game State Management

o ScreenManager classes to handle the screen stack. Supports multiple screens overlayed
overtop of each other (HUDScreen overtop of GameScreen).

o Screen Stack also used to handle transitions between screens using FadeScreen.

o GameEvent system supports ‘asynchronous’ event sources and bubbling events to
communicate between various screens.

e Game Object and Animation System

o IControllable/IController base class to provide a way to easily manipulate game items.
This is used to move/rotate ingame items. Any IControllable can be controlled by any
IController. This is used by Lights, Cameras, Models, etc.

65

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008

o Keyframeable animation system allows basic tweening of IControllable properties with
ease.

e Additional 3DS Model loading work
o Mostly loading 3DS animations and converting to internal animation system.
o Extended animation system to allow animating individual model meshes

e Dude Implementation

o Created Dude Class to handle the 3DS Dude Model | created along with the 3™ person
camera and controller.

o Created Dude Controller. This is a combination of some existing KeyboardController
stuff along with MouseController for easy management.

e Lighting System
o LightingManager and Light classes to more easily interface with OpenGL lighting
e Font System

o Loading of font textures (also generated by our group) and manually create display lists
for drawing the fonts. Handling of all setup and teardown involved in that as well. No
existing font system functionality used.

e In-Game Console

o Access Lua functionality and view Lua output. Allows easy modification of game
properties at runtime via LuaGL (Lua bindings for OpenGL).

o Command scroll back for easy modification and re-execution of previous commands

Albert Sodyl
e Physics Engine

o All collision detection and response, bounding volumes and physical objects and
anything else in the Physics Engine.

o Later add support for generating events based on collisions.

e Resource Manager

66

Dude*X

Version: <1.0>

Closure

Document Date: 4/14/2008

o Cross-platform abstraction layer to load and read files, supporting multiple search
directories for resources and the ability to switch game types for the game engine.

Background Sky
o Created the initial sky model (non-rotating).
Portability

o Modified 3dsftk library to support other platforms better, including fixes for Big Endian
systems and 64-bit machines.

o Created PlatformUtils, UnixUtils, MacUtils, and WinUtils to deal with platform
differences for certain functionality.

o Keep code constantly workable on Linux and Mac, including library differences, and
keep the Linux makefile and Xcode project up-to-date.

Menus

o Expanded original title screen to several screens, including a main menu and options
screen with controllable items that can be selected, unselected, and disabled.

Preferences

o Implement ability to retrieve and set preferences through the game interface, with an
abstraction layer of how the preferences are saved. These can be used for many
options, including top scores.

Event Handling and Recording

o Created an event-driven system with an event manager and plug-in listeners for “push”
based events that can be recorded.

o Recording both “poll” and “push” events and replaying them for each round.
Particle Effect System

o Basic particle effects that vary depending on the configuration.

o Add particle effect manager that controls all current particle effects.
Mouse Support

o Added ability to control the game via the mouse in addition to the keyboard.

67

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008

Andre Soesilo
e Implemented Lua functionality:

o Enable addition, removal and modification of all available models (e.g. elevator, button,
walls) in real-time. Modifications of models include changing the position, the rotation
and the size of the models.

o Loading and saving the models
o Enable addition and removal of bounding volumes for physics engine
o Added functionality to execute Lua methods from Console
e Created and added elevator models
o Created the elevator model in 3DS Max Studio

o Added the elevator model to the game and its properties (e.g. activated/de-activated, to
next/previous level)

e Created and added button models

o Added the button model (created by Ben Randall) to the game and implemented its
behaviour (e.g. pressed/released, which elevator it is associated with, number of mouse
clicks needed to be activate the elevator, toggle/switch button)

o Implemented multiple life and multiple levels functionality to the game
o Transition between levels
o Transition to the next life
o Created the levels (i.e. location of each model, what each level does)

o Created DudeManager to manage the current dude and keeping track of the older
dudes

o Created DrawManager to give flexibility in adding models to draw in the level and
knowing which models to draw for each level

e Added the Skybox (not BackgroundModel)

68

Dude*X Version: <1.0>

Closure Document Date: 4/14/2008

o Modified BackgroundModel to be rotatable

e Kept track of the team to make sure that we were in the right track and that everyone was
progressing fine with their tasks

Andrew Thompson
e Implemented Toolkit 3DS File Loader
o Parsed 3DS file to obtain model vertices, normals, colours and materials
o Also obtained animation key frames for certain models (i.e. The Dude and Elevator)
o Interpolated key frame data for translation and scaling.
o Created display lists for model components
e Game Screens

o Designed HUD screen (Heads Up Display) so that timing, lives, level...etc information is
displayed to the gamer

o Implemented the end of game screen to trigger when time ran out
o Helped with the continual porting of our game to the MAC OS X platform

o Modifying project settings and keeping the project up to date

69

	Introduction
	Background
	Description
	Key features
	Genre
	Platforms
	Market Analysis
	Scheduling
	Risks
	Estimated Schedule

	Concept Art
	Works Cited

