
1

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

EECE 478

Game Planning

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Team Roles

Game Designer (20%)
– Visionary, game concept and game play

Programmers (50%)
– System architecture and programming

Art Designer (20%)
– Modelling, textures and animation

Sound Designer (10%)
– Sound effects and modeling

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Design Document

“The Anatomy of a Design Document”
• http://www.gamasutra.com/features/19991019/ryan_01.htm

• http://www.gamasutra.com/features/19991217/ryan_01.htm

• “The purpose of design documentation
is to express the vision for the game,
describe the contents, and present a
plan for implementation.”

2

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Other Documents
(From Stanford CS248)

Storyboard
– “Comicbook” of your game in action – this is a tool, not an art

piece focus on important screens (start, end, game over,
win!, etc.), use of graphics advanced features, and
interaction

Task list
– List of work items, priorities, time estimates and owners
– Priorities should be: Must Have, Priority 1, Priority 2, CUT

Schedule
– High level calendar when/what should be done, constraints

your teammates may have

Content/Artwork Map
– List of 3D models, textures and images you think you need

and where you will get them from
http://www.gamasutra.com/features/20020903/london_01.htm

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Task Priorities

1. Basic visual mockup
• Get anything on screen with some bare-bones

interaction

2. A working demo
• Minimal visual “style” but nearly full interactivity

and game play

3. Full first version
• Complete world, basic graphics and sound

4. Completion
• Details. Higher quality. Optional features.

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Incremental Development

• Always maintain a working version
– Have a clear definition of working!

– Test constantly

– Never reduce playability of game

• Modularize high-risk development
– Branch for features that take some time to

complete

– Don’t merge with mainline until all working

– Avoid committing entire team to branch

3

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Use CVS

• Source code versioning system
• Remote repository
• Keep a local copy on your disk

– cvs update will synchronize your version
with repository

– cvs commit will commit your changes to
repository

– Use ssh for remote access
http://www.gnu.org/manual/cvs/html_chapter/cvs_toc.html

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Lessons From the Past
(From Stanford CS248)

• Test your code before checking it in
• Work in the same room if you can
• Have members read up relevant SDKs, techniques,

websites and share the knowledge verbally with the
team

• Make people experts and owners of areas so they
can coordinate the work in that domain

• Build features on the side, test, test, test then
integrate

• Think, talk, think, code, repeat is better than code,
code, code,…

• Find the right tool for the task - Profiler vs. “printf and
getime”, 3DStudioMax vs. “emacs”

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Lessons From the Past
(From Stanford CS248)

• Do something exciting to watch - go for the features
that will impress people in 5 min. e.g., the perfect feel
of control for a soccer kick probably won't come
across in the demo, but if you have a screaming
ambulance come on the field every time a player gets
hurt, that's awesome

• Creating Artwork takes a lot of time – pilfer the web

4

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

My Advice

• Divide up tasks and keep team expectations
clear

• Maintain both team and individual journals
with research, brainstorm summaries, ideas
explored and rejected, and reasons for the
decisions you made
– This will be essential resource for preparing your

reports

• Ask for my help and advice (a lot)

