©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

EECE 478

Game Planning

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Team Roles

Game Designer (20%)

— Visionary, game concept and game play
Programmers (50%)

— System architecture and programming
Art Designer (20%)

— Modelling, textures and animation
Sound Designer (10%)

— Sound effects and modeling

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Design Document

“The Anatomy of a Design Document”

http://www.gamasutra.com/features/19991019/ryan_01.htm

http://www.gamasutra.com/features/19991217/ryan_01.htm

e "The purpose of design documentation
is to express the vision for the game,
describe the contents, and present a
plan for implementation.”

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Other Documents

(From Stanford CS248)

Storyboard
— “Comicbook” of your game in action — this is a tool, not an art
piece focus on important screens (start, end, game over,
win!, etc.), use of graphics advanced features, and
interaction
Task list
— List of work items, priorities, time estimates and owners
— Priorities should be: Must Have, Priority 1, Priority 2, CUT
Schedule
— High level calendar when/what should be done, constraints
your teammates may have
Content/Artwork Map

— List of 3D models, textures and images you think you need
and where you will get them from

http://www.gamasutra.com/features/2()3/london_01.htm

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Task Priorities

1. Basic visual mockup

¢ Get anything on screen with some bare-bones
interaction

2. A working demo

« Minimal visual “style” but nearly full interactivity
and game play

3. Fullfirst version

« Complete world, basic graphics and sound
4. Completion

« Details. Higher quality. Optional features.

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Incremental Development

¢ Always maintain a working version
— Have a clear definition of working!
— Test constantly
— Never reduce playability of game

« Modularize high-risk development

— Branch for features that take some time to
complete

— Don’t merge with mainline until all working
— Avoid committing entire team to branch

©2003,

Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Use CVS

Source code versioning system
Remote repository

Keep a local copy on your disk

- cvs update will synchronize your version
with repository

- cvs commit will commit your changes to
repository

— Use ssh for remote access

http://www.gnu.org/manual/cvs/html_chapter/cvs_toc.html

©2003,

Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Lessons From the Past

(From Stanford CS248)

Test your code before checking it in

Work in the same room if you can

Have members read up relevant SDKs, techniques,
websites and share the knowledge verbally with the
team

Make people experts and owners of areas so they
can coordinate the work in that domain

Build features on the side, test, test, test then
integrate

Think, talk, think, code, repeat is better than code,
code, code,...

Find the right tool for the task - Profiler vs. “printf and
getime”, 3DStudioMax vs. “emacs”

©2003,

Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

Lessons From the Past

(From Stanford CS248)

Do something exciting to watch - go for the features
that will impress people in 5 min. e.g., the perfect feel
of control for a soccer kick probably won't come
across in the demo, but if you have a screaming
ambulance come on the field every time a player gets
hurt, that's awesome

Creating Artwork takes a lot of time — pilfer the web

©2003, Lee Iverson <leei@ece.ubc.ca> UBC Dept. of ECE

My Advice

« Divide up tasks and keep team expectations
clear

« Maintain both team and individual journals

with research, brainstorm summaries, ideas

explored and rejected, and reasons for the

decisions you made

— This will be essential resource for preparing your
reports

Ask for my help and advice (a lot)

