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Abstract—While 5G has seen only limited use of large-scale

antenna arrays and millimeter-wave bands, 6G is expected to
support their broader adoption. A key enabler of the required
precise beam steering and spatial multiplexing in these systems
is hybrid beamforming with phase-shifter networks (PSNs).
However, phase deviations arising from manufacturing toler-
ances, hardware aging, and temperature fluctuations can severely
degrade beamforming performance, especially for the precise
beamsteering required in 6G systems, making regular PSN
calibration essential. To overcome the limitations of conventional
model-based iterative algorithms, we introduce the first machine
learning–driven online calibration method for PSNs in hybrid
beamforming systems. Our approach leverages graph neural
networks (GNNs) to learn the mapping from received pilot
signals to PSN phase deviation estimates. Simulation results show
that the proposed GNN architecture outperforms traditional
optimization-based calibration methods and maintains robust-
ness in dynamically changing environments.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communications
have undergone a dramatic transformation, from their initial
deployment in 4G, to beamforming-centric designs in 5G, and
now toward native MIMO support and emphasis on MIMO in
frequency-division duplex (FDD) bands for 6G [1]. The advent
of millimeter-wave (mmWave) technology in 5G has driven
extensive research into massive MIMO systems with high-gain
directional beamforming. Although mmWave uptake in 5G
has lagged behind early projections, the continuing demand
for spectrum above 6 GHz, coupled with rapid advances in
mmWave and multi-antenna technologies, indicates that 6G
will make more extensive use of mmWave bands [1], [2].
Hybrid beamforming (HBF) remains the cornerstone archi-
tecture for realizing the benefits of massive MIMO [3]. While
6G is expected to introduce more advanced HBF architectures
and integrate machine-learning techniques, these systems will
continue to rely on phase shifter networks (PSNs) to steer and
shape radiation patterns. Given the increasing demand for pre-
cise beam alignment and the high sensitivity of beamforming
performance to phase deviations [1], accurate PSN calibration
[4] will be essential for effective HBF operation in 6G.

Conventional PSN calibration methods, referred to as offline

calibration, are conducted in an anechoic chamber prior to an
array’s deployment. They aim to compensate for static errors
primarily arising from manufacturing failures and hardware
impairments [5], [6]. However, offline calibration has become
overly time-consuming, costly, and increasingly impractical
for large antenna systems used in mmWave communications
[5], [7]. A more suitable approach for PSN calibration is on-

line calibration, which utilizes over-the-air pilot measurements
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obtained in-situ during the operation of an antenna array. By
eliminating the need for a separate, environmentally controlled
calibration procedure, this approach not only reduces time and
cost but also enables periodic calibration which further address
dynamic phase errors caused by transistor aging, electrical
stress, and temperature fluctuations. Consequently, it ensures
optimal system performance is maintained [6], [7]. State-of-
the-art online calibration methods for hybrid beamforming
systems [8]–[10] rely on optimization techniques to solve
highly non-convex programs. This results in computationally
demanding algorithms, with high complexity especially for
large antenna systems.

Deep learning–based approaches offer a powerful alterna-
tive for solving complex wireless communication problems.
Already integrated into 5G systems, they are poised to play an
even more prominent role in 6G by tackling high-dimensional
challenges that are intractable for classical methods [1], [2]. In
this context, graph neural network (GNN) architectures have
been shown to outperform traditional optimization approaches,
by effectively exploiting graph representations of wireless
systems. Such architectures exhibit robust generalization ca-
pabilities across unseen environmental parameters and inher-
ently integrate domain-specific prior knowledge into the NN’s
architecture, thereby enhancing efficiency, performance and
scalability. These advantages are exemplified in [11], where
GNNs are applied to power control and hybrid precoding in
wireless systems. Furthermore, by modeling a reconfigurable
intelligent surface and users as interconnected graph nodes,
[12] leverages a GNN to directly map received pilots to phase
shifts and beamforming matrices, bypassing explicit channel
estimation. For beamforming design in a multi-user multiple-
input single-output (MISO) downlink system, [13] employs
a bipartite GNN over a weighted graph with antennas and
users as disjoint node types. [14] introduces a framework with
parallel GNNs, each satisfying desired permutation properties,
that map uplink pilots directly to analog and digital precoders.
This design avoids explicit channel prediction and achieves
high performance, low overhead, and strong generalization.

Building on recent advancements in GNN applications, we
summarize our main contributions and key findings as follows:

• We introduce a GNN architecture for online calibration of
PSNs, marking the first data-driven framework dedicated
for this task. Our design employ a heterogeneous bipartite
graph that represent antenna elements and users as nodes,
thereby embedding domain-specific prior knowledge.

• The proposed GNN design directly maps received pilots
and applied PSN phase settings to estimated phase devia-
tions, effectively bypassing the need for explicit channel
estimation. In addition, it facilitates independent, parallel
estimation of PSN deviations across RF chains.
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Fig. 1. Left: Multi-user system with hybrid beamforming at the BS. Right:
Representation through a heterogeneous bipartite graph.

• Scalability and robustness are further enhanced by shar-
ing layer-wise model parameters among nodes of the
same type and exploiting the inherent permutation equiv-
ariance (PE) and invariance (PI) properties of our design,
features that are challenging to uphold using conventional
NNs. This allows our model to adapt to diverse system
configurations without the need for retraining.

• Performance evaluations for mmWave multi-user systems
and comparisons with the state-of-the-art method [8]
confirm the effectiveness of the proposed GNN.

II. SYSTEM MODEL

Although our GNN-aided PSN calibration approach is ag-
nostic to the operating frequency band, we adopt the system
model from the closely related work [8], which considers a
mmWave multiuser scenario in which single-antenna users
transmit uplink pilot signals to calibrate a uniform linear
array (ULA) at the base station (BS). As shown on the left
side of Fig. 1, we consider NUE users and a BS equipped
with NR antenna elements and NRF RF chains. For sim-
plicity, we assume that a fully-connected NRF ⇥ NR PSN
is deployed to enable hybrid combining. Nevertheless, our
proposed method is directly applicable to HBF systems with
a partially-connected architecture.

1) Uplink Pilot Transmission: The PSN calibration pro-
cedure involves a pilot transmission stage, in which each
user transmits a training sequence on a dedicated resource
to prevent signal interference [8]. During pilot transmission,
the BS configures the PSN with Q randomly selected training
combiners �q 2 CNRF⇥NR , q = 1, . . . , Q, with unit-modulus
elements, each applied to the pilot signals from all users. Let
xk 2 C be a pilot symbol transmitted from the k-th user,
where k = 1, . . . , NUE. Then, the sampled received signal
yk,q 2 CNRF⇥1 at the BS combiner output can be written as

yk,q = �qhkxk + nk, (1)

where the BS selects the q-th training combiner �q , hk 2

CNR⇥1 is the complex channel gain vector, and nk ⇠

CN
�
0,�2

nI
�

is additive white Gaussian noise.
2) Channel Model: As stipulated in (1), we model the

channel between the k-th user and the BS ULA to be a
narrow-band, flat-fading channel. For simplicity, following
[8], we assume a line-of-sight (LOS) channel represented by
hk = �k a(✓k), where �k and ✓k 2 [�⇡/2,⇡/2) are the

complex fading gain and angle of arrival (AoA) for the k-
th user, respectively, and a(✓) is the array response vector
in direction ✓ at the BS. We make the common assumption
that the channel characteristics remain unchanged during the
Q measurements. Since the LOS channel scenario reflects the
most likely condition for active in-situ calibration by service
providers, we omit the straightforward extension to non-LOS
case considering the space constraints for this paper.

3) Phase Deviation Model: We consider B-bit phase
shifters with NB = 2B discrete phase states and a resolution
step size of � = 2⇡

NB
. Therefore, the nominal phases of

the elements of combiner matrices �q are from the set
S = {�⇡ +�, . . . ,�⇡ + (NB � 1)�,⇡}. The deviations
from the nominal phases are collected in ⌦ 2 RNRF⇥NR .
The entry [⌦](j,i) = !j,i, captures the error for the phase
shift applied between the j-th RF chain and i-th antenna
element. Common stochastic models assume that these errors
are independent and identically distributed (i.i.d.) according
to a uniform distribution [8] !j,i ⇠ U [��, �], or a Gaussian
distribution [4] !j,i ⇠ N

�
0,�2

�
. Overall, the actual phases

of the PSN are governed by �q�V (⌦), where the entries of
V (⌦) 2 CNRF⇥NR are vj,i = ej!j,i for j = 1, . . . , NRF, i =
1, . . . , NR. Accordingly, we modify (1) as

yk,q = (�q � V (⌦))hkxk + nk, (2)

where � denote the Hadamard product. Using (2), and assum-
ing without loss of generality that xk = 1 for all pilots, we
can write the matrix Y q =

⇥
y1,q, . . . ,yNUE,q

⇤
2 CNRF⇥NUE of

received pilots from all users at the q-th measurement as

Y q = (�q � V (⌦))A(⇥)B +N , (3)

where A(⇥) = [a(✓1), . . . ,a(✓NUE)], B =
diag

�
[�1, . . . ,�NUE ]

T
�
, and N = [n1, . . . ,nNUE ]. diag(·)

denotes the operator that maps a vector to a diagonal matrix.
We note that a more comprehensive error model, such as the

one considered in [9], would make phase deviations depend
on the nominal phase states. For ease of exposition, we retain
the simpler phase deviation model. However, the solution
we present in the next section can readily be extended to
accommodate this more complex model.

III. GNN-BASED CALIBRATION

The online calibration task of the PSN involves estimating
the NRNRF elements of ⌦ to compensate for non-ideal system
components. Traditional optimization approaches rely on (3)
and a mean-squared error (MSE) formulation as the objective
function. This leads to iteratively solving a highly non-convex
optimization problem of joint channel and phase deviation
estimation [8]. In the following, we first address the phase
ambiguities present in traditional optimization-based online
calibration, and then propose an alternative approach based
on learning from data using GNNs.

A. Ambiguities in Online Calibration

In the case of joint calibration and channel estimation
as in [8], PSN calibration is insensitive to an absolute



signal delay and the absolute orientation of the antenna
array. Considering (3), delay ambiguity can be seen from
the fact that infinitely many equivalent solutions exist in
the form {(ej⌧V (⌦), e�j⌧B), ⌧ 2 [�⇡,⇡)}. Similarly, by
defining R(⇢) = diag

⇣⇥
1, ej⇢, . . . , ej(NR�1)⇢

⇤T⌘
, all solutions

in
�
(V (⌦)R(⇢), (R(⇢))�1A(⇥), ⇢ 2 [�⇡,⇡)

 
are indistin-

guishable, indicating an angle ambiguity.
In [8], where the MSE between Y q and the reconstructed

pilots is applied as objective function, ambiguities are man-
aged by subtracting the first components !̂1,1 and ✓̂1,1 from
all phase deviation and channel AoA estimations, respectively,
when comparing the estimates with the correspondingly ad-
justed true vectors. However, this is not applicable for our
learned solution, which does not estimate the channel directly.
Instead, we adopt a supervised approach, which renders the
loss function free from such ambiguities.

B. Data-driven Approach

Motivated by [12], our design directly maps received pilot
signals, acquired based on the employed combiner settings, to
phase deviations, i.e.,

⌦̂ = F(Y ,�|W), (4)

where F denotes the mapping realized by a GNN with the
set W of learnable parameters, Y =

⇥
Y T

1,Y
T

2, . . . ,Y
T

Q

⇤T
2

CQNRF⇥NUE , and � =
⇥
�T

1,�
T

2, . . . ,�
T

Q

⇤T
2 CQNRF⇥NR .

We note that the mapping (4) bypasses the need for explicit
channel estimation. The GNN parameters are trained using the
loss function

MSE =
1

NRNRF
E
���⌦̂�⌦

���
2

F

�
. (5)

This supervised learning approach could be based on, for
example, synthesized data, a choice justified by the GNN’s
strong generalization capabilities as we will discuss in Sec-
tion IV-C. However, we note that in-situ fine-tuning of the
GNN model under distribution shifts cannot rely on supervised
learning. To address this challenge, an unsupervised fine-
tuning solution will be discussed in Section IV-C.

C. GNN Architecture

As opposed to conventional NNs, GNNs naturally retain
several beneficial features. They intrinsically capture the in-
teractions between users and antenna elements by embedding
their relational structure as prior knowledge. Furthermore, as
introduced later in this section, an important desired aspect
of the proposed GNN is its design to exhibit PI with respect
to the user nodes and PE with respect to the antenna nodes.
In other words, the learned model is constrained so that the
estimated phase deviations ⌦̂ remain unaffected by users’ or-
dering and are permuted accordingly with any rearrangement
of the antenna nodes. This can be expressed as: ⌦̂⇧R =
F(Y ⇧UE,�⇧R|W), where ⇧R and ⇧UE are permutation
matrices that permutes the antenna elements and users indices,
respectively. These matrices are individually applied to each
sub-matrix Y q and �q . While these properties are naturally

embedded in GNNs, they are difficult to uphold using feed-
forward NNs. Finally, as we will see, further sharing the model
parameters across user nodes at each layer enables our GNN
to adapt to fluctuations in user count without the need for
retraining, a flexibility that feed-forward NNs lack, as they
necessitate input layer adjustments and thus retraining.

To address the PSN online calibration task formulated
in (4), we propose a heterogeneous GNN architecture. Our
design leverages the spatial-based graph convolutional net-
work (GCN) framework of message passing neural networks
(MPNN) [15]. In MPNN, each node in the graph is repre-
sented by a hidden state vector. For brevity, our complete
architecture is referred to as a GNN.

1) Graph Representation: For the GNN model to incor-
porate structural knowledge about the problem formulation,
we represent our system as a heterogeneous undirected fully-
connected bipartite graph as shown on the right side of Fig. 1.
The graph comprises NR antenna nodes and NUE user nodes.
We associate a hidden state vector with each node: di 2

RDh , i = 1, 2, . . . , NR, and bk 2 RDh , k = 1, 2, . . . , NUE for
the antenna nodes and user nodes, respectively, with the hyper-
parameter Dh denoting their dimension. These vectors encode
the essential node-specific information. To further capture and
manage the unique characteristics and relationships among
system components, we incorporate NN layer-wise parameter
sharing across nodes of the same type.

During operation, the GNN iteratively updates the hidden
states layer by layer, enabling the extraction of richer knowl-
edge. This updating process follows the message-passing
paradigm, where each node modifies its own hidden state
based on the aggregated information of hidden states from
its neighboring nodes at the preceding layer. After applying
multiple layers, the hidden state vectors of the antenna nodes
are used for estimating the PSN phase deviation.

In the proposed graph representation, we intentionally omit
the possible relation between pilot signals received at different
RF chains for the estimation task. The GNN is therefore
trained for a single RF chain and subsequently replicated
across all RF chains to estimate the phase deviations respective
to each chain’s phase shifters. This design choice not only
renders our architecture independent of the number of RF
chains and thus scalable with respect to this parameter, but
also simplifies the training phase and enables efficient parallel
calibration during inference.

2) GNN Design: The details of our proposed GNN archi-
tecture are shown in Fig. 2. Since we consider one RF chain,
our estimation goal becomes the vector ⌦ 2 R(NRF=1)⇥NR .
Furthermore, the inputs to the GNN are the combiner phase
settings for each of the NR phase shifters across Q measure-
ments, which we denote by �i 2 CQ⇥1, i = 1, . . . , NR, and
the pilots received over Q measurements from the NUE users,
which we denote by yk 2 CQ⇥1, k = 1, . . . , NUE. The GNN
consists of an initialization module, followed by T MPNN
update layers, each comprising aggregation and combination
stages, and a readout function as a final module to estimate
the PSN phase deviations.
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Fig. 2. The proposed GNN architecture, consisting of an initialization
module, T update layers, and a final readout function.

a) Initialization: The initialization module assigns an
initial hidden state to each node for the subsequent iterative
hidden state update process. It employs input embedding to
increase the dimensions of the node features. Type-specific
fully-connected NNs are utilized to generate initial hidden
states for each node type. The initial hidden states of the
user nodes b(0)k , k = 1, . . . , NUE, are generated based on the
received pilot signals as input:

b(0)k = IUE(Re{yk}, Im{yk}), (6)

where (·, ·) denotes concatenation, and Re(·), and Im(·)
extract the element-wise real and imaginary parts, respectively.
The hidden states of the antenna nodes d(0)

i , i = 1, . . . , NR,
are initialized based on the phase shifters’ settings as input:

d(0)
i = IAN(Re{�i}, Im{�i}). (7)

Both IUE and IAN are implemented using a two-layer fully-
connected NN, with each layer comprising a linear layer
followed by batch-normalization (BN), and a leaky rectified
linear unit (LeakyReLU) activation function. The users’ hid-
den states vectors b(0)1 , . . . , b(0)NUE

now contain features related
to the channels and the PSN deviation, while the antennas
hidden states vectors d(0)

1 , . . . ,d(0)
NR

hold information about
the PSN’s desired assigned phases.

b) MPNN Update Layers: The update of the nodes’
hidden states in our GNN is based on the message passing
paradigm, where each update layer consists of aggregation

and combination stages [11]. Accordingly, the update of the
user nodes’ hidden states can be written as

a(t)
k = Pi2NUE(k)

⇣
µ(t)

i,k

⌘
= Pi2NUE(k)

⇣
M

(t)
UE

⇣
d(t�1)
i

⌘⌘
,

(8a)

b(t)k = U
(t)
UE

⇣⇣
D

(t)
UE

⇣
b(t�1)
k

⌘
,a(t)

k

⌘⌘
, (8b)

and analogously for the update of the antenna nodes’ hidden
states, we write

c(t)i = Pk2NAN(i)

⇣
⌫(t)
k,i

⌘
= Pk2NAN(i)

⇣
M

(t)
AN

⇣
b(t�1)
k

⌘⌘
,

(9a)

d(t)
i = U

(t)
AN

⇣⇣
D

(t)
AN

⇣
d(t�1)
i

⌘
, c(t)i

⌘⌘
. (9b)
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Fig. 3. Block diagram for hidden state update for the i-th antenna node.

In (8a) and (9a), µ(t)
i,k and ⌫(t)

k,i represent the messages
computed from the i-th antenna node to the k-th user node
and vice versa at layer t. The sets NUE(k) and NAN(i) denote
the neighboring nodes of the k-th user and i-th antenna, re-
spectively, and P is a pooling function that operates over these
sets to aggregate incoming messages. The message generation
functions, M(t)

UE and M
(t)
AN, produce the individual messages,

while the combination functions, U (t)
UE and U

(t)
AN, integrate the

aggregated messages with each node’s previous hidden state.
Additionally, the functions D

(t)
UE and D

(t)
AN modify the hidden

state before combination. These functions are node-specific,
corresponding to either users (UE) or antennas (AN), and are
implemented using single-layer fully connected NNs, each
consisting of a linear layer followed by BN, a LeakyReLU
activation function, and a dropout layer for regularization.

Note that the update stage for the nodes can be executed in
parallel. Furthermore, the proposed GNN framework updates
the hidden states at each layer using NNs with weights
shared across nodes of the same type. In particular, using
the same weights for all user nodes facilitates generalization
across varying number of users without requiring retraining.
Indeed, the learned aggregation and combination operations,
as detailed in (9a) and (9b), can accommodate changes in user
count since such changes only alter the size of the input graph.
A block diagram for the update of antenna nodes as described
in (9) is shown in Fig. 3.

c) Final Module: After T update steps, the hidden state
vectors of the antenna nodes, d(T )

i , i = 1, . . . , NR, produced
by the GNN in the final iteration, are fed into a readout
function R to estimate the PSN phase deviations. For this
purpose, a single-layer fully-connected NN is utilized:

[⌦̂](1,i) = R

⇣
d(T )
i

⌘
. (10)

A sigmoid activation function is included to map the outputs
onto the range of [�,] via 2 sigm(·)�, with  = � when
!j,i ⇠ U [��, �], and  = 3� when !j,i ⇠ N (0,�2).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our GNN-
based online calibration method. First, we introduce the sys-
tem parameters and the specifics of GNN training and testing,
followed by the presentation of our quantitative results.



A. Simulation Setup

1) Antenna Array and PSN: We consider a BS equipped
with an NR-element ULA, with element spacing d = �/2. As
the proposed calibration operates independently for each RF
chain, without loss of generality, we assume NRF = 1. Similar
to [8], we analyze scenarios with NUE = 4, and NR = 16, 32.
We note that this would be the numbers of antennas per RF
chain in a partially connected hybrid beamforming system
and thus represent meaningful massive MIMO scenarios. The
ULA employs (B = 5)-bit phase shifters, commonly available
commercially, and we set the number of the randomly selected
training combiners to Q = 16 for NR = 16, and Q = 28 for
NR = 32. The PSN phase deviations follow an i.i.d. Gaus-
sian distribution N (0,�2), with � ⇡ 5.8�, representing the
standard deviation of a uniform distribution over [�10�, 10�].

2) Channel: The AoAs for all users are uniformly dis-
tributed as U

⇥
�

⇡
2 ,

⇡
2

⇤
[8]. Unless stated otherwise, we follow

[8] and set the complex fading gains to be unit modulus with
random phases from U [�⇡,⇡].

3) Performance and SNR: For performance evaluation, we
measure the empirical Monte-Carlo approximation of the root-
MSE (RMSE) per PSN element, i.e., RMSE =

p
MSE with

the MSE from (5). To assess the estimator performance under
a given noise condition, we define the signal-to-noise ratio
(SNR) as the ratio of the received signal power, averaged over
PSN phase deviations and channel realizations, to the noise
power.

B. GNN Training and Testing

The GNN was implemented using the Deep Graph Library
(DGL) with PyTorch. It was trained over 200 epochs, utilizing
387, 072 samples per epoch, with validation on additional
34, 816 samples conducted every three epochs. Hyperparam-
eter were tuned via random search, uniformly selecting batch
sizes, learning rates, and weight decay values from the sets
{512, 1024}, {0.5, 1, 5, 10}⇥10�4 and {0, 0.1, 1, 10}⇥10�7,
respectively. Dropout values were uniformly distributed across
the range [0, 0.5], and the hidden state size, Dh, within
[128, 1400] for NR = 16 antennas, and between [256, 2300]
for NR = 32 antennas. Our GNN architecture utilized T = 2
update layers, and employ the element-wise mean as the
pooling function for (8a) and (9a) based on its empirical per-
formance. For optimization, we adopted the Adam optimizer
paired with PyTorch ReduceLROnPlateau learning rate sched-
uler, which reduced the learning rate by a factor of 0.5 after
five consecutive epochs without validation loss improvement.
Training was terminated if no validation improvement was
observed over 13 consecutive validation epochs. The empirical
RMSE values reported in our performance evaluation were
derived from a testing dataset consisting of 17, 408 samples.

C. Performance Results

1) Comparison With Benchmark: We consider the state-
of-the-art optimization-based method developed in [8] as
the benchmark. Since their calibration method achieves the
Cramér-Rao bound (CRB) as shown in [8, Fig. 3], we directly

Fig. 4. Performance of the proposed GNN vs. SNR with NR = 32. CRB
curves as benchmarks, and �B/2 := ⇡/NB values, corresponding to B =
4, 5, 6 bits, as target values for phase shifter error correction.

compare against the CRB performance predictions in the
following. Fig. 4 shows the RMSE in degrees as a function
of SNR for NR = 32 antennas. The figure includes the CRBs
for NRF = 1, 2, 4 and the calibration curve for the GNN.
Our first observation is the significant gap between the GNN
curve and CRB values as the SNR decreases. This is due to
the fact that the learning-based method is able to incorporate
statistical information about phase deviations through the use
of the supervised MSE loss (5). Such a seamless integra-
tion of prior information is not possible in the traditional
optimization methods, which treat the unknown parameters
as deterministic. Consequently, their performance is confined
by the CRB. Second, although our method performs slightly
above the CRB at SNRs beyond 26 dB, the accuracy achieved
at lower SNRs is more practically significant since such
conditions are common in online calibration. We note that
RMSE values around the range of 2� � 5� are meaningful
calibration accuracies considering typical 4 to 6 bits phase
shifters (i.e., within �/2 = ⇡

NB
, which are also shown in the

figure). Hence, the performance gains displayed in Fig. 4 are
substantial. Third, the CRB curves for NRF > 1 indicate that
joint estimation across multiple RF chains is beneficial for
calibration. This is because calibration includes the explicit
(as in [8]) or implicit (as in our GNN) task of channel
estimation, which is common for all RF chains. However, the
corresponding gains are small. This supports our design choice
to treat each RF chain separately, resulting in a smaller, more
efficient GNN model that is independent of the number of RF
chains and can be duplicated to run in parallel for each chain.

2) Complexity Comparison: Besides the performance ad-
vantage, the GNN-based approach also enjoys a lower com-
putational complexity than the optimization-based method. To
make this more concrete, we consider the number of real-
valued multiplications required for inference. Consulting [8],
we obtain that the computational complexity of their algorithm
is O

�
CNRF

⇥
C1NUE

�
QNR log(NR) +Q2NRNRF

�
+ C2N2

R
⇤�

,
where C,C1 and C2 are the number of iterations for the
outer loop, and the two inner loops, respectively. For the



GNN, considering that all nodes participate during initializa-
tion and updating phases, while only antenna element nodes
are involved in the readout phase, the overall computational
complexity per RF chain is O

�
(NR +NUE)

�
DhQ+ TD2

h
��

.
Different from the traditional method, the GNN-based ap-
proach scales linearly in each of NR, NRF and Q, offering
a clear complexity advantage as system dimensions increase.

3) Robustness: Next, we assess the generalization capa-
bilities of the trained GNN, i.e., its ability to perform under
system conditions that differ from those encountered during
training. For this analysis, we consider NR = 16, and
train the GNN model under evaluation using the optimized
hyperparameters at an SNR of 15 dB.

a) Channel Model: We first examine the case of changes
in the channel model. For this we dispense with the unit-
modulus assumption for path gains but generate their ampli-
tudes uniformly distributed within [0.6, 1.0], i.e., accounting
for gain variations across paths. This resulted in a negligible
increase in RMSE from 3.94� in the matched case to 4.14�

in the mismatched case.
b) Number of Users: Next, we vary the number of

users NUE between training and testing. Fig. 5 shows the
RMSE as a function of N test

UE when (i) N test
UE = N train

UE and
(ii) training is fixed with N train

UE = 4 and N test
UE varies. We

observe that the proposed GNN exhibits strong generalization
capabilities by closely following the benchmark, experiencing
only a subtle performance loss of less than 0.11�. This
highlights the versatility of our GNN model, which effectively
handles dynamically varying input sizes without the need for
retraining, through weight sharing and PI design.

c) Phase Deviation Model: Finally, we test the GNN’s
resilience to shifts in the distribution of PSN phase devia-
tions from Gaussian distribution during training to uniform
distribution during inference, maintaining the same standard
deviation of � = 5.8�. The RMSE is only slightly increased
from 3.62� for the matched case to 3.73� for the mismatched
case.

4) Fine Tuning: Overall, these results are encouraging in
that the trained GNN can effectively operate across various en-
vironments, which supports the supervised learning approach
pursued in this work. Nevertheless, the model could be fine-
tuned infrequently during operation, particularly in response
to significant channel shifts. This can be accomplished with
unsupervised training using the MSE loss function as in
[8] aided by an existing channel estimator to evaluate the
loss. We note that although the channel is jointly estimated
across multiple RF chains, the GNN continues to operate
independently, preserving its modular design.

V. CONCLUSION

PSN calibration is a critical enabler for large-scale antenna
deployments and precise beam steering in 6G networks. State-
of-the-art online PSN calibration methods rely on compu-
tationally intensive iterative algorithms. In this paper, we
introduce the first learning-based online calibration method
for phase shifter networks in massive MIMO systems. Our

Fig. 5. Robustness performance of the GNN vs. the number of users for
NR = 16 and SNR = 15 dB. The GNN was trained with N train

UE = 4.

solution employs a computationally efficient and robust het-
erogeneous GNN architecture that estimates PSN phase devia-
tions directly from received pilot signals, eliminating the need
for explicit channel estimation. By training on phase-deviation
samples, the network learns real-world deviation patterns and
integrates prior knowledge of their distribution. Simulation
results demonstrate that our method surpasses the CRB and
generalizes effectively to changing environments.

REFERENCES

[1] J. G. Andrews, T. E. Humphreys, and T. Ji, “6G takes shape,” IEEE

BITS Inf. Theory Mag., vol. 4, no. 1, pp. 2–24, 2024.
[2] C.-X. Wang et al., “On the road to 6G: Visions, requirements, key

technologies, and testbeds,” IEEE Commun. Surv. Tuts., vol. 25, no. 2,
pp. 905–974, 2023.

[3] I. Ahmed et al., “A survey on hybrid beamforming techniques in 5G:
Architecture and system model perspectives,” IEEE Commun. Surv.

Tuts., vol. 20, no. 4, pp. 3060–3097, 2018.
[4] A. J. van den Biggelaar, U. Johannsen, P. Mattheijssen, and A. B.

Smolders, “Improved statistical model on the effect of random errors in
the phase and amplitude of element excitations on the array radiation
pattern,” IEEE Trans. Antennas Propag., no. 5, pp. 2309–2317, 2018.

[5] Y. Qi et al., “5G over-the-air measurement challenges: Overview,” IEEE

Trans. Electromagn. Compat., vol. 59, no. 6, pp. 1661–1670, 2017.
[6] M. A. Salas-Natera, R. M. Rodriguez-Osorio, and L. de Haro, “Proce-

dure for measurement, characterization, and calibration of active antenna
arrays,” IEEE Trans. Instrum. Meas., vol. 62, no. 2, pp. 377–391, 2012.

[7] T. Moon, J. Gaun, and H. Hassanieh, “Online millimeter wave phased
array calibration based on channel estimation,” in VTS, pp. 1–6, 2019.

[8] X. Wei, Y. Jiang, Q. Liu, and X. Wang, “Calibration of phase shifter
network for hybrid beamforming in mmWave massive MIMO systems,”
IEEE Trans. Signal Process., vol. 68, pp. 2302–2315, 2020.

[9] W. Zhang and Y. Jiang, “Over-the-air calibration of phase shifter
network for hybrid MIMO systems,” IEEE Trans. Signal Process.,
vol. 70, pp. 3456–3467, 2022.

[10] M. Wang, J. Chen, J. Tao, and H. Li, “Over-the-air antenna array
calibration for mmWave hybrid beamforming systems based on Monte
Carlo Markov chain method,” IEEE Trans. Veh. Technol., vol. 72, 2022.

[11] Y. Shen, J. Zhang, S. H. Song, and K. B. Letaief, “Graph neural
networks for wireless communications: From theory to practice,” IEEE

Trans. Wireless Commun., vol. 22, no. 5, pp. 3554–3569, 2023.
[12] T. Jiang, H. V. Cheng, and W. Yu, “Learning to reflect and to beamform

for intelligent reflecting surface with implicit channel estimation,” IEEE

J. Sel. Areas Commun., vol. 39, no. 7, pp. 1931–1945, 2021.
[13] J. Kim, H. Lee, S.-E. Hong, and S.-H. Park, “A bipartite graph neural

network approach for scalable beamforming optimization,” IEEE Trans.

Wireless Commun., vol. 22, no. 1, pp. 333–347, 2023.
[14] R. Wang, C. Yang, S. Han, J. Wu, S. Han, and X. Wang, “Learning end-

to-end hybrid precoding for multi-user mmWave mobile system with
GNNs,” IEEE Trans. Mach. Learn. Commun. Netw., vol. 2, 2024.

[15] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in ICML, 2017.


