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Abstract—We propose low-rank adaptation (LoRA) for ma-
chine learning-aided hybrid beamforming (HBF) in episodi-
cally dynamic millimeter-wave multiple-input multiple-output
(MIMO) systems. This approach introduces low-rank trainable
matrices and uses a small buffer with recent channel samples,
making it ideal for real-time adjustments. Evaluated for a large
MIMO HBF system across both an environment-specific channel
using ray tracing and clustered delay line channel models,
simulation results show that rank-2 LoRA achieves efficient
retraining with only 6% of the original network’s parameters
and 128 samples, improving average achievable information rate
(AIR) by over 45% compared to the pre-trained model in
both scenarios. The method significantly outperforms transfer-
learning with full-model online fine-tuning and model-agnostic
meta-learning with its “almost-no-inner-loop” variant.

Index Terms—hybrid beamforming, machine learning, low-
rank adaptation (LoRA), model-agnostic meta-learning (MAML)

I. INTRODUCTION

Millimeter-wave (mmWave) multiple-input and multiple-
output (MIMO) transceivers are an integral component of
advanced wireless communication systems. They often incor-
porate hybrid beamforming (HBF) architectures to balance
performance with device cost and power efficiency [1]. Recent
work has explored HBF optimization using machine learning
(ML) techniques, notably through residual convolutional neu-
ral networks (ResNets) with the achievable information rate
(AIR) as the loss function to train the ML model [2]–[5].
Learned HBF transfers time-intensive non-convex optimiza-
tion tasks to the offline training phase, provides improved
performance especially when channel models or channel state
information (CSI) are imperfect, and benefits from highly
parallelizable computations on ML accelerators.

In practical scenarios, channel conditions can vary episod-
ically due to factors such as user mobility and environmental
changes [6]. For example, a vehicle or drone with beamform-
ing capabilities might encounter various propagation environ-
ments along its path, transitioning from dense urban areas
with high multipath effects to more open or suburban settings.
Training an ML model on mixed data from multiple scenarios
can degrade performance in specific environments, limiting the
model’s ability to generalize effectively. Consequently, achiev-
ing optimal performance requires periodic or performance-
driven online fine-tuning for ML-based beamforming and CSI
prediction and compression [6]–[10].

F. Jabbarvaziri and L. Lampe are with the University of British Columbia,
Vancouver, BC, Canada (e-mail: jabbarva@ece.ubc.ca, lampe@ece.ubc.ca).

Online fine-tuning for ML-based beamforming has tradi-
tionally relied on methods like model-agnostic meta-learning
(MAML) [7], [8], [11] and direct transfer learning (TL) with
online retraining [7], [10]. Direct TL with online training
requires a relatively large number of retraining iterations,
making it unsuitable for low-complexity online adaptation in
ML-based HBF. Additionally, both MAML and TL approaches
also share a key limitation: they require resource-intensive full-
model fine-tuning (FMF). To address this, [8] introduced a
modular online fine-tuning approach using a MAML variant
called almost-no-inner-loop (ANIL) [12] for ML-based HBF.
ANIL reduces the number of trainable parameters and data
requirements for online training. However, both MAML and
ANIL face challenges in the meta-learning stage, as they
require second-order derivative (Hessian) calculations for each
task in every training iteration. The Hessian matrix in the
original MAML method grows quadratically with the num-
ber of parameters, making computation and memory costs
prohibitively high for large models. This limitation could
be mitigated by first-order approximations for Hessian-free
MAML [13].

Considering the state-of-the-art ResNet-based HBF tech-
niques [2]–[5] and building on recent advances in low-
complexity fine-tuning methods in natural language process-
ing, this paper applies low-rank adaptation (LoRA) [14] to
enable rapid adaptation in ML-based beamforming within
episodically dynamic channels. LoRA is a parameter-efficient
fine-tuning approach that bypasses the computational overhead
of offline meta-learning by relying directly on the pre-trained
model. This is unlike MAML, which requires a modified
initial training process. During online fine-tuning, LoRA only
updates low-rank matrices added to the pre-trained weights,
significantly reducing the number of trainable parameters and
the amount of retraining data needed for effective adaptation.
This makes LoRA well-suited for online fine-tuning of ML-
based HBF, ensuring computational efficiency and sample
effectiveness during channel transitions. Simulation results
across two dynamic channel environments—a ray tracing (RT)
model and a mix of clustered delay line (CDL) models—show
that our LoRA-based method with rank 2 and 128 samples sig-
nificantly outperforms the pre-trained model, MAML, ANIL,
and TL with FMF while maintaining a reduced catastrophic
forgetting.

II. SYSTEM MODEL

We consider the downlink of a single-user MIMO orthog-
onal frequency-division multiplexing (OFDM) HBF system.
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We assume that the base station (BS) is equipped with Na
B

antennas and NRF
B radio frequency (RF) chains, while each

user device has Na
U antennas and NRF

U RF chains, operating
over K subcarriers. Digital precoding and combining are
conducted in the discrete Fourier transform (DFT) domain,
with analog precoding and combining applied to the up-
converted signal via a network of tunable phase shifters and
signal adders.

A. Channel Model

For performance evaluations, we use both the RT sim-
ulator from [15] and a statistical channel model. The RT
simulator models radio propagation with customizable scenes
and propagation paths, which are transformed into channel
impulse responses for link-level simulations. For the statistical
channel model, we adopt the CDL model, commonly used
for simulating scenarios across 0.5 GHz to 100 GHz [16].
The CDL model includes various types (A through E) that
cover a wide range of environments a high-mobility user might
encounter in an episodically dynamic setting. CDL channels
consist of a line-of-sight (LOS) component and NC non-
line-of-sight (NLOS) scattering clusters, each containing NL

scatterers. The Na
U×Na

B channel matrix experienced by the kth

OFDM subcarrier for downlink transmission can be written as

H[k] =

NC∑
c=0

NL∑
l=1

αc,lar(β
r
c,l)(at(β

t
c,l))

He−j2πηc
k
K (1)

where ar and at are the uniform linear antenna (ULA)
array responses of the user receiver and the BS transmitter,
respectively. Furthermore, αc,l is the path gain, βr

c,l and βt
c,l

are the angle of arrival (AoA) and angle of departure (AoD) of
the lth reflecting element of the cth cluster, respectively, and
ηc denotes the time lag of the cth cluster. The cluster c = 0
corresponds to the LOS component and the path gains account
for the Ricean factor.

B. MIMO-OFDM HBF

Let S[k] ∈ AN denote the signal sent from the BS to the
user over subcarrier k of an OFDM symbol, where A is the
quadrature amplitude modulation (QAM) signal constellation
of size M = |A|, and N is the number of data streams.
Furthermore, let V D[k] ∈ CNRF

B ×N and V RF be the digital
and analog precoders and WD[k] ∈ CNRF

U ×N and WRF be
the digital and analog combiners, respectively. Moreover, ID

represents the D × D identity matrix and E(·) signifies the
expected value operator. Then, we can express the received
vector Y ns

[k] ∈ CN as

Y [k] = G[k]S[k] + (WRFWD[k])
HZ[k], (2)

where

G[k] = (WRFWD[k])
HH[k]V RFV D[k] (3)

represents the transmission path gain of the user’s data sig-
nal. In (2), Z[k] ∈ CNa

U denotes additive white Gaussian
noise (AWGN) at the user side. We further assume that
E{S[k]} = E{Z[k]} = 0 and E{S[k](S[k])H} = IN .

During data transmission, Y [k] is processed to compute log-
likelihood ratios (LLRs) for the bits represented by S[k]. For
this, we adopt a pragmatic approach as in [2] and separate
the data streams using a linear minimum mean-squared error
(LMMSE) equalizer. Following [17], during equalization, we
assume that the interference plus noise has a known covari-
ance matrix C. The LMMSE equalizer output signal is then
obtained as [2]

R[k] = diag
(
(G[k])H(G[k](G[k])H+C)−1G[k]

)−1

× (G[k])H(G[k](G[k])H +C)−1Y [k],
(4)

where diag(·) returns a square matrix in which the diagonal
elements of the input matrix are placed on the main diagonal,
and all off-diagonal elements are zero. The LLR for the mth

bit associated with the nth symbol in S[k] is calculated as

Ln,m[k] = log

(∑
x∈Am,1

e−|rn[k]−x|2/σ2[k]∑
x∈Am,0

e−|rn[k]−x|2/σ2[k]

)
, (5)

where Am,b represents the subset of constellation points with
the mth bit label equal to b and rn[k] denotes the nth element
of R[k]. Furthermore, σ2[k] represents the post-equalization
noise power of the LMMSE equalizer on the kth subcarrier,
which is given in [17, Lemma B.19]. The LLRs obtained from
the demodulation in (5) can be used to define a posterior
distribution for the associated bit as

P (bn,m[k]|rn[k]) = 1

1 + e(−1)b
n,m[k]Ln,m[k])

. (6)

Following [18], we can compute the empirical binary cross
entropy (BCE)

E[k] = − 1

N

log2 M∑
m=1

N∑
n=1

log2 (P (bn,m[k]|rn[k])) (7)

for subcarrier k and average it over several frames with
independent channel realizations to obtain Ē[k]. The empirical
approximation of the AIR is

R[k] = log2(M)− Ē[k]. (8)

III. PROPOSED METHOD

We adopt a DNN structure grounded in established hybrid
beamforming literature [4], [5], [19] to optimize the precoding
and combining matrices, and we propose a LoRA-based online
fine-tuning procedure that activates periodically. The following
sections detail the adopted DNN architecture, as well as the
training and fine-tuning procedures.

A. DNN Architecture and Training Procedure

To address the requirements for subcarrier-specific and
aggregate OFDM signal processing in the digital and analog
components of HBF systems, we adopt the model structure
proposed in [19], which features two distinct branches for gen-
erating the digital and analog parts of the beamforming. In this
setup, the analog branch processes channel matrix products
summed across all subcarriers, i.e., P =

∑
k(H[k])HH[k]
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Figure 1. The structure of the considered neural network, includes ResNet-
A and ResNet-D modules, which utilize 2D kernels of size 3 × 3 and 3D
kernels of size 3× 3× 3, respectively. Max pooling layers (MP), labeled as
MP analog combining (MP-AC), MP analog precoding (MP-AP), MP digital
combining (MP-DC), and MP digital precoding (MP-DP), have pool sizes
of [1, Na

B], [N
a
U, 1], [1, Na

U

NRF
U

,
Na

B
N

], and [1,
Na

U

NRF
B

,
Na

B
N

], respectively, with
padding. These layers ensure that the shapes of data streams from the input
channel matrices align correctly with the output precoding and combining
matrices. A complex concatenation (CC) layer then combines the two input
channels as real and imaginary parts to create a complex-valued tensor. The
activation functions fBS

RF and fUE
RF enforce unit-amplitude constraints on the

elements of the analog beamforming matrices, while fB
D normalizes transmit

power as specified in equation (9).

for optimizing the analog precoder and combiners1, while the
digital branch operates on per-subcarrier channels H[k] gen-
erating subcarrier-specific precoding and combining matrices.
To reduce the computational cost of the DNN model from
[19], we incorporate the ResNet architecture proposed in [4],
[5] for HBF optimization.

Figure 1 shows the corresponding architecture of the consid-
ered DNN detailing trainable modules and activation functions.
To satisfy the unit amplitude constraint for the elements in the
analog precoding and combining matrices, Euler’s formula is
applied [19], followed by reshaping operations fB

RF and fUE
RF

to align the final outputs of the V RF and WRF branches with
the required matrix forms. Moreover, following [19] we apply

fB
D(V D[k]) = V D[k]

√
P

Tr(V RFV D[k]V
H
D[k]V

H
RF)

, (9)

to adjust the signal transmission power, where P is the
maximum per-subcarrier transmission power. For training, we
follow [4], [18], [19] in adopting a self-supervised approach
with the negative of the AIR as the loss function. As shown in
[18, Appendix B], minimizing the BCE of the received bits,
as in equation (7), is equivalent to maximizing AIR, aligning
with the beamforming system’s objective. This method can
be generalized to multi-user cases by extending the input
to include all users’ CSI and adopting sum-AIR as the loss
function.

B. LoRA Fine-Tuning

In ML-based HBF, the model must adapt to changing
channel conditions using minimal computational resources and
a small buffer of recent channel samples. LoRA offers an

1As shown in [19, Section III.A], averaging channel matrix products over
all subcarriers is sufficient for optimizing the analog component of the
beamforming.

efficient solution by fine-tuning fewer parameters, making it
particularly suited for beamforming adjustments in episodi-
cally dynamic channels caused by user mobility.

LoRA fine-tunes a low-rank adapter matrix added to each
layer of the DNN while keeping the original pre-trained
weights fixed [14, Fig. 1]. For convolutional layers, adapter
matrices require an additional reshaping operation to align
with the layer’s filter structure. Note that the upper branch
in Fig. 1 contains 2D convolutional layers in the ResNet-A
structure, while the lower branch contains 3D convolutional
layers in the ResNet-D structure. As proposed in [20], for
a 2D convolutional layer with Cin input features, Cout out-
put channels, and a kernel size of K1 × K2, the low-rank
adapted weights are represented as F = F 0 + ∆F , where
F 0 ∈ RK1×K2×Cin×Cout denotes the fixed, pre-trained weight
matrix and ∆F = ϕ(FBFA) is the low-rank trainable matrix
with FB ∈ R(Cin·K1)×r and FA ∈ Rr×(K2·Cout), where r
represents the rank. The operator ϕ(·) reshapes the product
FBFA to the original layer dimensions, K1×K2×Cin×Cout.
To generalize LoRA to a 3D convolutional layer with kernel
size of K1 × K2 × K3, we absorb the additional kernel
dimension by FB, resulting in low-rank matrices FB ∈
R(Cin·K1·K2)×r and FA ∈ Rr×(K3·Cout). As in the 2D case,
the operator ϕ(·) reshapes FBFA to the target dimensions,
K1 ×K2 ×K3 × Cin × Cout.

To apply LoRA to the DNN structure shown in Fig. 1, we
form and add the ∆F tensor to the weights of each convolu-
tional layer within the ResNet structure. During offline train-
ing, LoRA integrates seamlessly with pre-training, while for
online retraining, only low-rank adapters are updated, reducing
backpropagation parameters. This ensures rapid adaptation
with minimal samples, making LoRA effective for the fine-
tuning task. Our results in the next section validate the efficacy
of this approach, demonstrating substantial performance gains.

IV. NUMERICAL RESULTS

Inspired by practical scenarios in fifth-generation mobile
networks (5G), we assume the BS is equipped with 64 anten-
nas and 8 RF chains transmitting 2 data streams, while the user
has 8 antennas and 2 RF chains. Pre-training is performed on
10,000 samples using a CDL channel [16]. Meta-learning is
conducted on 20,000 samples across CDL-A (NLOS), CDL-
C (NLOS), CDL-D (LOS), and CDL-E (LOS), with 5,000
samples for each channel type. During pre-training of TL-
FMF and LoRA and meta-learning of MAML and ANIL,
we use the adaptive moment estimation (ADAM) optimization
algorithm [21]. During fine-tuning, TL-FMF and LoRA retain
ADAM, while MAML and ANIL employ stochastic gradient
descent (SGD) to align with the inner-loop structure of meta-
learning approaches. In ANIL, adaptation is performed only
on the last layer of the neural network—the most influential
layer during fine-tuning [12]. The initial learning rate in both
cases is set to 10−4. To monitor generalization and prevent
overfitting, a validation set of 1,024 samples is used, and early
stopping is implemented to improve computational efficiency,
limiting training to 20 epochs. For evaluation, we consider
two online fine-tuning scenarios in a macro-cell environment.
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Figure 2. Empirical CCDF (solid lines) and average AIR (dashed lines) of
the simulated AIR results for the first online fine-tuning scenario.

First, we simulate an urban area in Munich using NVIDIA’s
RT simulator [15], placing a 12-meter base station atop the 98-
meter Frauenkirche tower. A user moves randomly within a
400-meter radius of the base station for 1,024 steps. To reduce
computational cost, the number of ray-object interactions is
limited to 5. For LoRA and TL with FMF (TL-FMF), we use
a model pre-trained on a CDL-C channel, while for MAML
and ANIL, meta-learning is conducted as previously described.
In this simulation, online fine-tuning is performed every 128
steps using the latest 128 channel samples, resulting in a total
of 8 fine-tuning updates. In this simulation, the signal and
noise spectral power densities are set to −55 dBm/Hz and
−174 dBm/Hz, respectively. Second, we conduct a statistical
analysis of macro-cell channel transitions across CDL-A, C, D,
and E channels, with an average signal-to-noise ratio (SNR) of
−5 dB. In these simulations, the signal constellation A is set
to 16-QAM with K = 1024 subcarriers. The carrier frequency
is 28 GHz, with an antenna spacing of half wavelength and
a CDL channel delay spread of 300 ns. The user moves at a
speed of 10 m/s in a random direction parallel to the ground,
maintaining a constant height of 1.5 meters.

Fig. 2 presents the empirical complementary cumulative
distribution function (CCDF) of the simulated AIR results for
the first online fine-tuning scenario along with the average
AIR achieved by each method. These environment-specific
results indicate that LoRA outperforms all other methods,
exhibiting a higher frequency of elevated AIR values with
a 45% improvement in average AIR over the pre-trained
model. The CCDFs of MAML and ANIL intersect around 2
bits/symbol, where MAML demonstrates better performance
in avoiding very low AIRs but struggles to achieve higher
AIRs compared to ANIL leading to a higher average AIR for
ANIL. Also, TL-FMF consistently outperforms the pre-trained
model across the range.

In the second scenario, we conduct a more generalizable
analysis by extending our simulations to channel transitions
in a macro-cell scenario defined by the CDL model (1).
Fig. 3 illustrates the AIR performances as functions of the
number of trainable parameters for the different CDL model
transitions, with results averaged over 4,096 simulations. This

figure includes performances for both a small fine-tuning
dataset (128 samples) and a moderate fine-tuning dataset (512
samples) as indicated on the plots. As shown on the x-axis of
Fig. 3, the number of trainable parameters—a proxy for the
computational cost of online fine-tuning—for the considered
methods are 73k for ANIL, 261k/267k/549k for LoRA rank-
2/4/8, and 4.268M for MAML and TL-FMF. The results show
that LoRA achieves more than 50% improvement over the pre-
trained model and consistently outperforms all benchmarks
across both dataset sizes. Notably, LoRA with rank-2 matrices
performs best for the small 128-sample fine-tuning dataset. An
increase in the rank of the adaptation matrices is beneficial
only if the fine-tuning dataset size also increases (512 samples
vs. 128 samples). This underscores the importance of balanc-
ing dataset size with model complexity in LoRA-based fine-
tuning. The comparisons show that neither MAML nor ANIL
consistently outperforms the other, highlighting differences in
their adaptability across scenarios. This observation suggests
that ANIL’s previously noted disadvantage in avoiding low
AIRs from the RT scenario may not extend across all condi-
tions. However, ANIL’s fewer fine-tunable parameters makes
it preferable under computational constraints.

For the second scenario, we also analyzed the catastrophic
forgetting (CF) phenomenon, with the results summarized in
Table I. The table reports the relative change in AIR when
the DNN is trained on CDL-C, subsequently fine-tuned on
CDL-A, CDL-D, or CDL-E, and then evaluated on CDL-
C, compared to the ideal case where no fine-tuning with
a mismatched channel is performed. The results show that
MAML experiences the most significant forgetting as its focus
on rapid adaptability increases susceptibility to deviations
from previous configurations [22]. LoRA and ANIL exhibit
stronger resilience to CF by fine-tuning only a small subset
of model parameters, preserving prior knowledge while en-
abling effective adaptation. Notably, rank-2 LoRA outperforms
higher-rank configurations, aligning with findings in [23] and
further demonstrating its efficiency in mitigating catastrophic
forgetting.

Table I
PERFORMANCE DEGRADATION DUE TO FINE-TUNING ON MISMATCHED

CHANNELS. PRE-TRAINING IS DONE ON CDL-C.

Method
Finetuned on CDL-A CDL-D CDL-E

ANIL −9% −10% −9%
LoRA-2 −12% −11% −14%
LoRA-4 −20% −23% −15%
LoRA-8 −17% −26% −20%
TL-FMF −20% −23% −21%
MAML −36% −27% −37%

V. CONCLUSION

In this paper, we have proposed LoRA for online adaptation
of ML-based HBF in dynamically changing channels. We
demonstrated its effectiveness through simulations across a
range of channel realizations. In particular, our simulations
have shown that LoRA achieves an over 45% improvement
in AIR compared to pre-trained models and outperforms
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Figure 3. Performance comparison after fine-tuning for channel transitions. Numbers shown on the plots represent the number of fine-tuning samples.

traditional fine-tuning methods, including MAML, ANIL,
and TL-FMF. Rank-2 LoRA and ANIL both benefit from
a dramatically reduced number of parameters, making them
practical choices for online fine-tuning of ML-based HBF
optimizers amid channel transitions. However, LoRA consis-
tently achieves a higher AIR in all simulated scenarios while
maintaining a low CF, striking a favorable trade-off between
complexity and performance.
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