
1

Probabilistic Amplitude Shaping and Nonlinearity
Tolerance: Analysis and Sequence Selection Method

Mohammad Taha Askari, Lutz Lampe, Senior Member, IEEE, Jeebak Mitra

Abstract—Probabilistic amplitude shaping (PAS) is a practical
means to achieve a shaping gain in optical fiber communication.
However, PAS and shaping in general also affect the signal-
dependent generation of nonlinear interference. This provides
an opportunity for nonlinearity mitigation through PAS, which
is also referred to as a nonlinear shaping gain. In this paper, we
introduce a linear lowpass filter model that relates transmitted
symbol-energy sequences and nonlinear distortion experienced
in an optical fiber channel. Based on this model, we conduct
a nonlinearity analysis of PAS with respect to shaping block-
length and mapping strategy. Our model explains results and
relationships found in literature and can be used as a design
tool for PAS with improved nonlinearity tolerance. We use the
model to introduce a new metric for PAS with sequence selection.
We perform simulations of selection-based PAS with various
amplitude shapers and mapping strategies to demonstrate the
effectiveness of the new metric in different optical fiber system
scenarios.

Index Terms—Optical fiber communications, probabilistic am-
plitude shaping, nonlinear interference, nonlinearity mitigation,
nonlinear shaping gain, sequence selection, first-order perturba-
tion analysis.

I. INTRODUCTION

PROBABILISTIC constellation shaping is a well-
established approach to improve over uniform signaling

providing an ultimate shaping gain of 1.53 dB for the additive
white Gaussian noise (AWGN) channel [1]. Among the
various probabilistic shaping methods [2], PAS has emerged
as an effective design for integrating shaping and forward
error correction (FEC) coding [3]. The PAS architecture
consists of an inner FEC encoder concatenated with an outer
amplitude shaper (AS). The AS maps uniformly distributed
input bits to amplitudes and generates a non-uniform
amplitude distribution. It operates on finite-length blocks
of amplitudes at a time, which results in a rate loss of the
achievable information rate (AIR) compared to the infinite
blocklength limit.

In addition to the conventional linear shaping gain, shaping
also has the potential to exhibit a nonlinear gain compared
to uniform signaling for the optical fiber channel [4]. Several
previous works, e.g., [5]–[8], attributed the nonlinear shaping
gain to a change in the moments and in particular the kurtosis
of the amplitudes distribution. For PAS, it has furthermore
been demonstrated in [9]–[11] that the effective signal-to-noise
ratio (SNR) depends on the blocklength of the AS. As the AS
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blocklength increases, the nonlinear shaping gain decreases,
while the linear shaping gain increases. Since this trend is
not observed if a symbol interleaver is applied to shaped
sequences, it can be concluded that the temporal properties of
the shaped sequences play a role in the severity of nonlinear
interference (NLI).

Besides the shaping blocklength, the choice of mapping
of amplitudes from one shaping block to the components
of the transmitted signal affects the nonlinearity tolerance
of PAS transmission. In particular, it has been reported that
mapping shaping blocks across in-phase and quadrature-phase
components in single-polarization transmission and also across
x- and y-polarization in dual-polarization transmission can
increase the effective SNR [12]. This effect can be explained
by noting that the optical channel acts as a lowpass filter
on symbol-energy sequences causing NLI, and that finite
blocklength PAS produces a spectral dip at frequency zero for
such sequences [13]. The filter point of view also facilitates
understanding the effect of AS together with other system
parameters such as baud rate on NLI [14]. The significance
of the properties of symbol-energy sequences for the NLI
in PAS transmission is further highlighted by the so-called
energy dispersion index (EDI) introduced in [15]. The EDI
is a measure for the variance of the windowed energy of
the shaped signal, where the window length is infinite in the
case of the exponentially weighted EDI (EEDI) [16]. For PAS
implemented with constant composition distribution matching
(CCDM) [17], both EEDI and EDI have been demonstrated
to be good predictors for effective SNR.

The observations of the interplay between PAS and NLI
suggest a modification of the traditional AS design that in-
cludes the nonlinear shaping gain as an objective. Two types
of such modified designs have emerged in the literature. The
first pairs a conventional AS with a selection module, in which
the latter chooses from a candidate set of shaped amplitude
sequences generated by the AS. The selection is aided by
a criterion that accounts for the nonlinearity of the optical
channel, such as the EDI in the list-encoding CCDM (L-
CCDM) of [18] or the effective SNR obtained from channel
emulation using the split-step Fourier method (SSFM) in
[19]. The generation of candidate sets can be integrated into
the operation of a conventional AS by inserting additional
flipping bits into each information block that is input to the
AS. The second approach for nonlinearity tolerant shaping
directly modifies the sequence generation in the conventional
AS. For example, the trellis of the enumerative sphere shaping
(ESS) algorithm [20] can be adjusted to obtain sequences with
improved nonlinearity tolerance. This has been done based
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Fig. 1. Block diagram for conventional PAS. Superscripts denote the sequence length. u, a, s denote a bit, PAM amplitude, and PAM symbol sequences,
respectively.

on the per-sequence kurtosis in K-ESS [21] and considering
sequence-energy variations in band-trellis ESS (B-ESS) [22].
The bisection-based implementation of CCDM (BS-CCDM)
presented in [23] exploits the redundancy in CCDM to re-
move unfavorable CCDM sequences and thus mitigate fiber
nonlinearity.

In this paper, we revisit the interplay of PAS and fiber
nonlinearity using the first-order perturbation based model for
NLI. First, we develop an effective linear channel model for
the conversion of symbol-energy sequences into NLI. Our
model extends the lowpass filter model from [13] and accounts
for self-phase modulation (SPM) and cross-phase modulation
(XPM) as well as intra-polarization and inter-polarization
effects. Using the frequency domain representation of the
effective linear channel, we provide insights into the nonlin-
earity tolerance of finite-length PAS as a function of system
parameters such as link length and baud rate. This analysis
permits us to explain several phenomenological observations
reported in previous works, such as the optimization of AS
blocklength and mapping strategy to maximize the effective
SNR. As a second contribution, we employ our channel model
to introduce the lowpass-filtered symbol-amplitude sequence
(LSAS) metric for nonlinearity tolerant PAS using sequence
selection.1 We identify its relation to the EDI, which is
interesting in itself as it validates the EDI as a metric for
nonlinearity tolerance of shaped sequences. It furthermore
highlights that different from the EDI, the derivation of the
LSAS metric does not rely on simplifying assumptions for
quantifying NLI caused by symbol-energy sequences, and it
generalizes systematically to XPM and inter-polarization NLI.
The effectiveness of the new metric for PAS with sequence
selection is demonstrated through simulations of single-span
and multi-span fiber links for single-polarization and dual-
polarization setups, which show that the LSAS metric outper-
forms the EDI metric in terms of effective SNR, AIR, and error
rate. Finally, we integrate the different strategies for improved
nonlinearity tolerance with PAS. That is, for the first time, we
combine (i) multidimensional mapping and (ii) nonlinearity
tolerant K-ESS with LSAS-based sequence selection. Our nu-
merical results demonstrate (i) that multidimensional mapping
is effective in reducing the search space and thus complexity
for PAS with sequence selection and (ii) that the combination
of K-ESS and sequence selection yields notable benefits in
terms of, e.g., effective SNR for the nonlinear fiber channel,

compared to applying them individually.
The remainder of this paper is organized as follows. In

Section II, we briefly explain the system model for PAS,
symbol mapping, and sequence selection. In Section III, we
derive the linear channel model between symbol-energy se-
quences and NLI using perturbation theory, and we discuss
the effect of fiber link and system parameters on the channel
properties. We then introduce the LSAS metric in Section IV,
we show how the EDI can be derived as an approximation
of LSAS, and we discuss the computational complexity
associated with sequence selection using EDI and LSAS. In
Section V, we present quantitative comparisons of different
nonlinearity tolerant PAS methods. We highlight the benefits
of the LSAS-metric and its combination with multidimensional
mapping and different AS methods by simulating both short-
haul and long-haul optical fiber transmission scenarios. In
Section VI, we reflect on aspects of our work that merit
further consideration and are thus suggested as future research.
Section VII concludes the paper.

II. PROBABILISTIC AMPLITUDE SHAPING, MAPPING, AND
SEQUENCE SELECTION

In this section, we briefly review conventional PAS and
PAS with sequence selection. We also discuss the options for
mapping symbols to the signal components in dual-polarized
optical fiber transmission.

A. Probabilistic Amplitude Shaping (PAS)

Figure 1 shows the operation of PAS following the de-
scription in [3]. The AS maps a block uk of k independent
and uniformly distributed information bits to a block aℓ of ℓ
amplitudes of a 2m-ary pulse-amplitude modulation (PAM)
constellation. The amplitudes of the PAM symbols have a
marginal distribution Pa. The elements of aℓ are amplitude-
to-bit converted into the sequence u

ℓ(m−1)
a of ℓ(m − 1)

amplitude bits. A sequence uℓ
s of ℓ sign bits is obtained from

αℓ information bits uαℓ, 0 ≤ α ≤ 1 , and (1 − α)ℓ bits
u
(1−α)ℓ
c generated using a systematic FEC encoder. Each m

bits consisting of m−1 amplitude bits from u
ℓ(m−1)
a and one

sign bit from uℓ
s are mapped to a PAM symbol resulting in ℓ

symbols sℓ.

1We note that a special case of the LSAS metric was originally introduced
in our conference paper [24].
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(a)

(b)

(c)
Fig. 2. Block diagram for different mapping strategies: (a) 1D, (b) 2D, and
(c) 4D mapping, followed by sequence selection.

The shaping rate of the system is Rs =
k
ℓ , and the overall

data rate of this PAS scheme is R = Rs + α. The rate loss is
defined as

Rloss = H(Pa)−Rs, (1)

where H(Pa) is the entropy associated with the distribution
Pa.

B. Mapping Strategy

We consider dual-polarized optical fiber transmission us-
ing quadrature amplitude modulation (QAM). This means
that PAM blocks sℓ are mapped to four-dimensional (4D)
symbol sequences, where each symbol has Ix, Qx, Iy, and
Qy components for in-phase and quadrature and x- and y-
polarization dimensions, respectively. We differentiate three
strategies for this mapping, which we refer to as 1D, 2D,
and 4D mapping. For the case of 1D mapping, each shaping
block sℓ is mapped to a separate quadrature and polarization
dimension. The 2D mapping strategy maps each shaping
block across the two quadrature components but to a single
polarization. Finally, each shaping block is mapped to all four
4D-symbol components in 4D mapping. The different mapping
strategies are illustrated in Figure 2 in terms of amplitude
blocks aℓ, i.e., we map the shaped amplitude blocks to the
signal components and apply the sign bits afterward, as this
facilitates the discussion of sequence selection further below.

The choice of mapping has an effect on nonlinearity toler-
ance with PAS for two reasons. First, the mapping strategy
changes the time duration during which the total energy
of one shaping block is transmitted. This can be seen in
Figure 2 comparing the lengths of the amplitude sequences
at the output of the mappers. Thus, the mapping affects the
effective shaping blocklength. Second, 2D and 4D mapping
introduce dependencies between the different components of
the 4D symbols. We will discuss the consequences of these
interactions between the mapping and finite-length PAS in
Section III-D.

C. Sequence Selection

When the AS of the PAS scheme produces several shaped
amplitude blocks for representing the same block of informa-
tion bits, the mapping step discussed in the previous section is
followed by a sequence selector module (see Figure 2). The
generation of candidate shaping blocks is enabled by allocating
the first v out of k bits as redundant bits fv , which are
referred to as flipping bits [18]. Flipping the first bits provides
more variation to the set of generated candidates for common
shaping methods such as CCDM and ESS. The remaining k−v
bits are considered as information bits uk−v . The candidate
generation, which is adopted from [18], is independent of the
selected amplitude shaper, i.e., the same process is applied to
e.g. CCDM or ESS. For each combination of flipping bits, a
shaping block of ℓ PAM amplitude symbols aℓ

f is generated.
The amplitudes are mapped to a block of ℓ/d 4D-amplitude
symbols according to the (d ∈ {1, 2, 4})-dimensional mapping
strategy as shown in Figure 2. The sequence selector computes
a metric for each 4D candidate and selects the best candidate
âℓ/d = [â

ℓ/d
Ix

, . . . , â
ℓ/d
Qy

]. We note that the size of the candidate
set depends on the mapping strategy for a fixed shaping
blocklength ℓ. Since 4/d ASs contribute to the generation of
4D-amplitude symbols, the selection module computes 2

4
d v×d

metrics for producing ℓ 4D symbols. Hence, computational
complexity decreases with the dimension d of the mapping.
After selection, amplitude-to-bit conversion and FEC opera-
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tions are performed in the same way as for the conventional
PAS scheme shown in Figure 1.

When introducing flipping bits, the rate loss expression (1)
generalizes to

Rloss,v = H(Pa)−Rs,v = H(Pa)−
k − v

ℓ
. (2)

In order to have a fixed effective rate R = k−v
ℓ + α, k − v

should be remained fixed. Hence, as v increases, k also
increases, resulting in lower linear shaping gain for given
ℓ. Therefore, sequence selection is a mechanism to trade off
linear with nonlinear shaping gain.

III. LINEAR CHANNEL APPROXIMATION FOR NONLINEAR
DISTORTION

In this section, we derive the approximation of the nonlinear
distortion as the output of a linear channel that is excited by
the symbol-energy sequences as its input. We discuss the prop-
erties of the linear filter representing the channel as a function
of fiber-link parameters. We then use this channel model to
explain the effects of finite-length PAS and multidimensional
mapping on the nonlinear tolerance of transmission.

A. Linear Channel Model Formulation

We consider the optical fiber channel after compensation
of linear distortions at the receiver and focus on nonlinear
distortion from signal-to-signal interactions. We assume dual-
polarization transmission in a wavelength division multiplex-
ing (WDM) system with a set of channels C. The transmit
symbol in polarization p ∈ P = {x, y} and channel c ∈ C
at discrete time n ∈ Z is denoted by s

(c)
p (n), and the symbol

energy is
E(c)

p (n)
∆
= |s(c)p (n)|2. (3)

Then, using the first-order perturbation based distortion model,
as briefly reviewed in the Appendix, and only retaining
symbol-energy terms, we can approximate the corresponding
received sample as

r(c)p (n) ≈ s(c)p (n)

[
1

+ jγ

( ∑
p′∈P

∑
c′∈C

∑
m∈Z

E
(c′)
p′ (n+m)h

(c,c′)
p,p′ (m)

)
︸ ︷︷ ︸

∆
=D

(c)
p (n)

]
, (4)

where γ is the fiber nonlinearity parameter, and h
(c,c′)
p,p′ (m) ∈

R≥0 are coefficients determined by the fiber channel. We
observe that the distortion term can be written as (∗ denotes
convolution)

D(c)
p (n) =

∑
p′∈P

∑
c′∈C

(
E

(c′)
p′ ∗ h(c,c′)

p,p′

)
(n), (5)

i.e., the summation of the linear convolution between the filters
h
(c,c′)
p,p′ and the symbol-energy sequences E

(c′)
p′ for all WDM

channels and both polarizations. The filters h
(c,c′)
p,p′ represent

intra- (p = p′) and inter-polarization (p ̸= p′) interferences of
SPM (c = c′) and XPM (c ̸= c′), respectively. We note that

the linear channel model (5) is not meant to be sufficiently
accurate for perturbation-based nonlinearity compensation.
However, it is suitable for explaining the interplay between
shaping and multidimensional mapping and NLI, and for
guiding the design of nonlinearity tolerant PAS.

It is insightful to develop (4) and (5) further, which also
allows us to connect to other related work. For this, we
introduce the deterministic mean distortion term

D̄(c)
p =

∑
p′∈P

∑
c′∈C

Ē
(c′)
p′

∑
m∈Z

h
(c,c′)
p,p′ (m) (6)

and the distortion variation term

∆D
(c,c′)
p,p′ (n) =

([
E

(c′)
p′ − Ē

(c′)
p′

]
∗ h(c,c′)

p,p′

)
(n), (7)

where (E denotes statistical expectation)

Ē(c)
p = E

[
E(c)

p (n)
]

(8)

is the mean symbol energy. Then, the total distortion (5)
decomposes as

D(c)
p (n) =

∑
p′∈P

∑
c′∈C

∆D
(c,c′)
p,p′ (n) + D̄(c)

p . (9)

Applying (9) and the first order Taylor series approximation of
the exponential function to (4), we obtain the approximation

r(c)p (n) ≈ s(cp (n) exp

[
jγ

( ∑
p′∈P

∑
c′∈C

∆D
(c,c′)
p,p′ (n) + D̄(c)

p

)]
.

(10)
The NLI is now approximated as phase noise, which suggests
that a carrier phase recovery (CPR) may mitigate the distor-
tion. Since the effectiveness of a CPR depends on the dynamic
of the distortion term, the temporal structure of the symbol-
energy and thus the shaped amplitude sequence are important.
Simulation results in [25], [26] suggest that a powerful CPR
can be similarly effective in mitigating NLI as finite-length
PAS, at least in the high SNR regime [25]. But even a mean-
phase recovery would compensate for the deterministic term
D̄

(c)
p , and therefore we will exclude it in the design of a

selection metric in Section IV.
Furthermore, the relationship for the filter coefficients

h
(c,c′)
p,p (n) provided in (30) in the Appendix motivates the

approximation

h
(c,c′)
p,p′ ̸=p(n) ≈

1

2
h(c,c′)
p,p (n)

∆
= h(c,c′)

p (n), ∀c, c′ ∈ C. (11)

This leads to the simplified approximation

D(c)
p (n) ≈

∑
c′∈C

([
2E(c′)

p + E
(c′)
p′ ̸=p

]
∗ h(c,c′)

p

)
(n), (12)

for (5), where the nonlinear distortion is approximated as
linear filtering of the sum of symbol-energy sequences for the
two signal polarizations. The simplified formulation (12) is
equivalent to [13, Eqs. (3) and (4)].
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(a) (b)
Fig. 3. Normalized filters for a fiber link with length 1600 km, 32 GBd, and 50 GHz channel spacing. SPM filter (intra- and inter-polarization) and XPM
(intra polarization) filter from two adjacent channels. (a) Time domain, maximum coefficient normalized to 1. (b) Frequency domain (magnitude), maximum
normalized to 0 dB at f = 0. The insets show an interval around the origin.

B. Filter Properties

We now evaluate the expression for the filters h
(c,c′)
p,p′ for

selected optical fiber links. If not specified otherwise, the link
parameters are as given in Table I.

Figures 3a and 3b show the normalized filter coefficients and
their normalized magnitude Fourier transforms, respectively,
for SPM and for XPM from two adjacent channels for a
1600 km link, i.e., 20 spans of length 80 km. We observe
that all filters have a lowpass characteristic and that the XPM
filters (c ̸= c′) are more frequency-selective than their SPM
counterparts (c = c′). This suggests that the modulation of the
temporal characteristics of amplitude sequences via shaping
will be more effective in suppressing NLI from XPM than
from SPM. We also observe from the two SPM filters in
Figure 3a that the intra-polarization coefficients are two times
higher than the inter-polarization coefficients except for n = 0
(see Appendix). The two XPM filters for c′ = c + 1 and
c′ = c − 1 in Figure 3a are time-reversed functions and
therefore their magnitude frequency responses in Figure 3b
overlap completely.

Figure 4 shows the normalized magnitude frequency re-
sponse for the intra-polarization SPM filters for fiber links
with 1, 10, 20, and 40 spans of 80 km. As the link length
increases, the channel memory increases, and as a result, the
lowpass filters become more selective. For this, the inset in
Figure 4 shows the 3 dB filter bandwidth versus the fiber
link length in a log-log plot. We observe that the trend is
linear with an approximate slope of −1. This is consistent with
channel memory being linearly proportional to link length,
e.g., [15, Eq. (2)]. Similar observations apply for XPM filters,
which we have not shown for brevity. Furthermore, we note
the higher magnitude of filter frequency responses at zero
for longer links, which indicates a more substantial overall
nonlinear distortion.

Fig. 4. Magnitude frequency response for intra-polarization SPM filter for
a transmission with 32 GBd and 50 GHz channel spacing over fibers with
various link lengths. Normalized to a maximum of 0 dB at f = 0. Inset:
3 dB filter bandwidth vs. fiber link length. The corresponding bandwidth of
each filter is shown with the same color code.

Next, we consider a fiber link with a fixed length of 1600 km
and different baud rates of 16 GBd, 32 GBd, and 64 GBd.
Figure 5 shows the normalized magnitude frequency response
for the intra-polarization SPM filter for these cases. A larger
baud rate and thus signal bandwidth results in a more distinct
lowpass characteristic in the frequency domain. The inset
figure shows the 3 dB filter bandwidth versus transmission
baud rate in a log-log plot. We observe that the bandwidth
decreases as the baud rate increases with a linear slope of about
−1. Again, this is consistent with channel memory, measured
in time duration, being linearly proportional to baud rate,
e.g., [15, Eq. (2)]. We also expect more significant nonlinear
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Fig. 5. Magnitude frequency response for intra-polarization SPM filter for
a transmission over a 1600 km fiber link with three different baud rates.
Normalized to a maximum of 0 dB at f = 0. Inset: 3 dB filter bandwidth
vs. baud rate. The corresponding bandwidth of each filter is shown with the
same color code.

SPM effects with increasing baud rate, which is confirmed
by the larger frequency response value at zero. Based on the
observations in Figures 4 and 5, we suggest the relationship
BW ∝ 1

L·B for the 3 dB bandwidth of the SPM intra-
polarization filter, fiber link length L, and baud rate B.

C. Interplay Between Filter and PAS Blocklength

The linear channel model is an effective tool to provide
insights into the role of PAS in the generation of NLI. In
particular, from the channel model (5) and the lowpass filter
characteristics illustrated in the previous section, we conclude
that symbol-energy sequences with weaker low-frequency
components would result in less NLI. Such an argument has
already been made in [13] using the simplified approximation
(12) for comparing multidimensional mappings in conjunction
with finite-length PAS.

Figure 6 shows the magnitude Fourier transform Fx of
the symbol-energy sequence

(
E

(c)
x (n)− Ē

(c)
x

)
in the x-

polarization generated by PAS and for 1D mapping. We note
that we subtract the mean-energy term as suggested in (7).
Link and system parameters from Table I are applied. For PAS,
we consider CCDM blocklength 108 and 300, and ideal AS,
where we directly draw amplitude symbols from the desired
distribution. The curve for uniform signaling is also included
as a reference. Overlaid to these curves is the magnitude
frequency response of the intra-polarization SPM filter, with
the axis on the right-hand side of the figure. The figure
reveals several important observations that support previous
findings considering effective SNR, e.g., [9]. First, ideal AS,
which corresponds to practical AS such as CCDM with an
infinite blocklength, causes more severe NLI than uniform
signaling. Second, finite-length CCDM creates sequences with
a high-pass characteristic, which becomes more pronounced
as blocklength decreases. Hence, due to the lowpass channel

Fig. 6. Left: Frequency domain representation of x-polarization symbol-
energy sequences generated by CCDM with blocklength 108 and 300,
and by uniform signaling and ideal AS. The launch power is −6.5 dBm
per polarization. Right: Normalized magnitude frequency response of intra-
polarization SPM filter. Dashed lines mark the 3 dB bandwidth for the filter.

filter, nonlinear distortion is reduced, and shaped transmission
can become more nonlinearity tolerant than uniform signaling.
This is the reason for the nonlinear shaping gain obtained using
PAS with short blocklengths. The exact cross-over point for
when a gain will be observed depends on the filter bandwidth.

D. Role of Multidimensional Mapping

We can apply the same methodology as above to explain
the role of multidimensional mapping of shaped sequences
(see Section II-B) for the nonlinearity tolerance of PAS.
However, before doing so, we consider a summary statistic
called running digital sum (RDS), which was suggested in
[13], to motivate the effect of multidimensional mapping on
NLI. The RDS is based on the energy terms 2E(c′)

p +E
(c′)
p′ ̸=p in

approximation (12). The authors of [13] only considered the
sum E

(c′)
p + E

(c′)
p′ ̸=p, which is common for both polarizations

p ∈ {x, y}, and introduced the RDS as

λ̃RDS(t) =

t−1∑
n=0

∑
c′∈C

∑
p′∈P

(
E

(c′)
p′ (n)− Ē

(c′)
p′

)
(13)

for t ∈ N. We modify this definition by considering all energy
terms in (12), i.e., we have the RDS for polarization p as

λRDS(t) = λ̃RDS(t) +

t−1∑
n=0

∑
c′∈C

(
E(c′)

p (n)− Ē(c′)
p

)
, (14)

which is a more accurate predictor for nonlinearity tolerance
as we will show.

The RDS can be interpreted as a lowpass filtered version
of the symbol-energy sequence. A small absolute RDS would
thus suggest a weaker nonlinear distortion. For example, for
CCDM with blocklength ℓ and 1D mapping (see Figure 2a),
we have λ̃RDS(t) = λRDS(t) = 0 for t = k · ℓ and
k ∈ N, i.e., the RDS remains smaller for decreasing shaping
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blocklength. A similar argument applies to sphere-shaping
based AS such as ESS, as most of the sequences are selected
from energies near the surface of a sphere. We can extend
the discussion to 2D mapping as done in [13]. When CCDM-
shaped amplitude sequences are mapped in two dimensions
(see Figure 2b), the sequence energy is spread over length ℓ/2
and thus λ̃RDS(t) = λRDS(t) = 0 for all t = k · ℓ/2, which
predicts a further reduction in NLI. However, for 4D mapping
(see Figure 2c), the energy is spread over both polarizations,
and while λ̃RDS(t) = 0 for all t = k · ℓ/4, this is not
the case for λRDS(t). Based on the behavior of λ̃RDS(t), it
was suggested in [13] that PAS with 4D and 2D mapping
is generally superior to PAS with 2D and 1D mapping in
terms of nonlinearity tolerance, respectively. While we concur
with the advantage of 2D over 1D mapping, our refined RDS
metric (14) does not permit the conclusion that 4D mapping
is generally advantageous.

We illustrate our point by plotting the absolute value of the
Fourier transform F s

p of

Es
p(n) = 2

(
E(c)

p (n)− Ē(c)
p

)
+
(
E

(c)
p′ ̸=p(n)− Ē

(c)
p′ ̸=p

)
, (15)

which is the aggregate symbol-energy sequence in (12), for
p = x in Figure 7. We consider CCDM with blocklength
180 and 1D, 2D, and 4D mapping, and we overlay these
curves with the magnitude frequency response of the inter-
polarization SPM filter. Again, link and system parameters
from Table I are applied. We observe that the curve for 2D
mapping is always below that for 1D mapping, which means
that 2D mapping always performs better than 1D mapping
with respect to NLI. The comparison with 4D mapping is
not that simple, as its curve intersects with those for 1D and
2D mapping. It has a shallower but wider dip around zero
frequency than the 1D and 2D mapping curves. Hence, 4D
mapping does not necessarily result in a reduced (or increased)
NLI compared to 1D and 2D mapping, but it depends on the
optical fiber link, which determines the lowpass filter curve
in Figure 7. In particular, we expect 4D mapping to (only)
provide benefits for shorter fiber links, which produce wider
lowpass filters, and long shaping blocklengths, which lead to
a narrower spectral dip. This conclusion is consistent with
the results in [12] and the performance results presented in
Section V.

IV. METRIC FOR PAS WITH SEQUENCE SELECTION

In this section, we utilize the linear channel model (5) to
derive a metric for PAS with sequence selection as introduced
in Section II-C.

A. The LSAS Metric

An effective selection of shaped sequences suppresses the
distortion variations defined in (7). Hence, the proposed metric
is

λLSAS =

ℓ/d−1∑
n=0

∑
p∈P

∣∣∣s(c)p (n)
∑
p′∈P

∑
c′∈C̃⊆C

∆D
(c,c′)
p,p′ (n)

∣∣∣2, (16)

Fig. 7. Left: Frequency domain representation of aggregate symbol-energy
sequence from (15) for x-polarization generated by CCDM with blocklength
180 and 1D, 2D, and 4D mapping. CCDM with ℓ = 180. Launch power is
−6.5 dBm per polarization. Right: Normalized magnitude frequency response
of SPM filter h

(c,c′)
p from (11). Dashed lines mark the 3 dB bandwidth for

the filter.

where, we recall, ℓ is the blocklength of the AS and d the
dimensionality of the mapping. D

(c,c′)
p,p′ is obtained from the

convolution of the energy sequence of each candidate with
the filters h

(c,c′)
p,p′ in (7) and only the central ℓ/d convolution

outputs are used in (16). This renders λLSAS independent for
successive shaping blocks. The metric accounts for nonlin-
earity expressed in terms of symbol amplitudes and filtering
through the fiber channel, and we established in the previous
section that the filters have lowpass characteristics. Therefore,
we refer to it as the lowpass filtered symbol amplitude se-
quence (LSAS) metric, as already used in [24] for the special
case of 1D mapping. Since LSAS measures the total NLI from
a multidimensional shaped amplitude sequence with length
ℓ/d, the selection will be based on the minimum LSAS metric.
In relation to the analysis in Section III-C, we expect that
LSAS-based sequence selection results in a temporal structure
of symbol-energy sequences with a deeper and wider spectral
dip.

We note that we consider XPM nonlinearity from only
a subset C̃ of WDM channels in the LSAS definition (16)
because the significant interference is caused by adjacent
channels. Ideally, a joint selection of amplitude sequences for
all channels is performed. However, since then the number
of candidates would grow exponentially with the number
of WDM channels, we chose to perform the selection of
sequences for different WDM channels sequentially, i.e., in
a greedy fashion, from outer to inner channels of the system.
The details of our greedy selection approach are provided in
Algorithm 1, for a WDM system with a set of channels C, set
of candidate sequences {s(c,ν), c ∈ C, ν ∈ {1, . . . , 2

2|P|
d v}},

and considering the XPM effects from the NXPM closest outer
channels. Fig. 8 illustrates the execution of Algorithm 1 for a
WDM system with |C| = 5 channels and NXPM = 1.
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Fig. 8. Sequence selection for a WDM system with 5 channels C = {1, 2, 3, 4, 5} and NXPM = 1. c and C̃ denote the channel under selection and the
subset of channels from which nonlinear effects are accounted for, respectively. The channel under selection is highlighted in orange, while the channels with
selected symbols are shown in light blue.

Algorithm 1 Greedy LSAS sequence selection algorithm for
WDM systems
Input: set of channels C = {1, 2, . . . , |C|}, set of candidates {s(c,ν), c ∈ C, ν ∈
{1, . . . , 2

2|P|
d

v}}, number of considered XPM channels NXPM

Output: selected sequences {ŝ(c), c ∈ C}
1: T ← ∅ ▷ Set of channels for which selection is completed
2: for α ∈ {1, 2, . . . , |C|+1

2 } do ▷ Loop over channels from outer to center
3: for β ∈ {0, 1} do ▷ For channels equidistant to the center channel
4: c← (−1)β × α + β × (|C|+ 1) ▷ Channel under selection
5: K ← {c−NXPM, . . . , c, . . . , c + NXPM}
6: C̃ ← (T ∩ K) ∪ {c}
7: ŝ(c) ← candidate with minimum LSAS
8: T ← T ∪ {c}
9: end for

10: end for

B. Relation to the EDI Metric

It is insightful to compare the LSAS metric with the EDI
metric from [18]. For this purpose, we show how the latter
can be derived as a simplified version of the former. We
specialize in the case of 1D mapping, single polarization, and
single channel transmission, as EDI has been defined for this
scenario.

The EDI is computed based on the empirical average and
variance of symbol-energy sequences. If we approximate the
average Ē

(c)
p in (8) with the empirical mean

Ẽ(c)
p =

1

ℓ− w

ℓ−w/2∑
n=1+w/2

|s(c)p (n)|2, (17)

where w is the EDI window length, and introduce the average-
free symbol-energy sequence

∆Ẽ(c,c)
p,p (n) =

w/2−1∑
m=−w/2

(E(c)
p (n+m)− Ẽ(c)

p ), (18)

then the EDI metric can be written as

λEDI =
1

(ℓ− w − 1)wẼ
(c)
p

ℓ−w/2∑
n=1+w/2

(
∆Ẽ(c,c)

p,p (n)
)2

. (19)

The relation to the LSAS metric follows from noticing that
the sequence ∆Ẽ

(c,c)
p,p (n) is an approximation of the distortion

variation ∆D
(c,c)
p,p (n) from (7). In particular, the two quantities

would be identical if Ē(c)
p = Ẽ

(c)
p and

h(c,c)
p,p (n) =

{
1, if n ∈ {−w

2 , . . . ,
w
2 − 1}

0, otherwise
(20)

were true. Hence, different from the LSAS metric, the EDI
in (19) does not include the amplitude terms |s(c)p (n)|, uses
an approximation of the lowpass filter of the channel, and it
discards w/2 symbols at both ends of the length-ℓ shaped
sequence to have meaningful empirical estimates. In the
performance results section, we show that for these reasons,
LSAS outperforms EDI for sequence selection.

C. Computational Complexity Analysis
While the main focus of our work has been on insights and

improvement of NLI tolerance through shaping, we would also
like to provide expressions for the associated computational
cost. For this, we count the number of real-valued additions
and multiplications, i.e., floating-point operations (flops), that
are required for candidate generation and metric calculation.

Denoting the number of operations for sequence generation
as Ogen and the number of operations for metric calculation as
Omet, the total number of real-valued operations for shaping
with sequence selection is given by

Otot = 2
2|P|v

d︸ ︷︷ ︸
number of
candidates

Omet + 2v︸︷︷︸
number of
sequences

Ogen. (21)

The generation of each QAM sequence with length ℓ re-
quires Ogen = 2×2m−1 and Ogen = 4×2m−1 flops per QAM
symbol for ESS/K-ESS and arithmetic coding implementation
of CCDM (AC-CCDM), respectively [2].

The EDI metric calculation with window size w, candidate
length ℓ, single polarization, and 1D mapping requires

Omet = 6 + w − w2 + 2w − 4

ℓ
(22)

flops per QAM symbol. We note that EDI complexity increases
linearly with window size w in the long blocklength regime
w ≪ ℓ, where EDI is most useful. Finally, the number of flops
per QAM symbol for evaluating the LSAS metric using filters
of length q, mapping dimension d, |P| polarizations, shaping
blocklength ℓ, and |C| channels can be obtained as

Omet = 6 + |P|Navg −
d

|P|ℓ
+

|P|NavgOconvd

ℓ
. (23)

In (23), Oconv is the number of flops required for each
convolution in (16), and Navg is the average number of
convolutions that are evaluated for the metric calculation of
different channels as

Navg =
2 + (2NXPM + 1) + (|C| − 3)(NXPM + 1)

|C|
, (24)
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TABLE I
SIMULATION PARAMETERS FOR SETUP 1 [18]

Parameter Value
Modulation 256 QAM

Amplitude shaper CCDM
Shaping rate 2.4 bits/amplitude
Polarization Single/Dual

Center wavelength 1550 nm
Symbol rate 32 GBd

WDM spacing 50 GHz
# WDM channels 11

Total bandwidth 550 GHz
Pulse shape Root-raised cosine

Pulse roll-off 0.1
Span length 80 km

# Spans 20
Fiber loss 0.2 dB/km

Dispersion parameter 17 ps/nm/km
Nonlinearity parameter (γ) 1.37 1/W/km

EDFA noise figure 6 dB
Oversampling factor 2

# QAM symbols per run 243,000
# Simulation runs 5

where NXPM is the number of closest outer channels con-
sidered in the greedy procedure of sequence selection (see
Algorithm 1). For simplicity, we assumed that the same
filter lengths are used in all convolutions, which makes the
expression in (23) an upper bound. We note that the LSAS
complexity scales with the product NavgOconv, where Oconv

is a monotonically increasing function of filter length q when
ℓ/d ≥ q+1

2 .
For typical settings (see Section V), Ogen ≲ Omet. Since

furthermore 2v ≤ 2
2|P|v

d , we will present a quantitative
comparison for Omet with EDI and LSAS in Section V-C.

V. PERFORMANCE RESULTS

Sequence selection using EDI and nonlinearity tolerant
amplitude shaping using K-ESS are state-of-the-art schemes
for mitigating nonlinear effects in optical fiber channel. Ac-
cordingly, we consider the two simulation setups from the
respective references to showcase the validity of the energy-
based model and effectiveness of LSAS for sequence selection.

A. Simulation Parameters

The parameters for the two simulation setups are adopted
from [18] and [21] and shown in Tables I and II, respectively.

a) Setup 1 [18]: A multi-span WDM transmission with
11 channels, 32 GBd baud rate, and 50 GHz channel spacing is
simulated using the SSFM. Two times oversampling is applied
to account for fiber nonlinearity. The modulation is 256 QAM
with root raised cosine pulse shaping (roll-off 0.1). Amplitudes
are generated using CCDM with a Maxwell-Boltzmann distri-
bution to achieve an effective rate of 2.4 bits/amplitude, i.e.,
the extra rate loss due to sequence selection is compensated
for by increasing the AS shaping rate.. The PAS scheme
uses a low-density parity-check (LDPC) code with rate 4/5.
The overall rate is thus 5.2 bit/QAM-symbol. The symbols
are transmitted through 20 spans of a standard single-mode
fiber with 80 km span length, fiber loss 0.2 dB/km, chromatic

TABLE II
SIMULATION PARAMETERS FOR SETUP 2 [21]

Parameter Value
Modulation 64 QAM

Amplitude shaper ESS/K-ESS
Shaping rate 1.5 bits/amplitude
Polarization Dual

Center wavelength 1550 nm
Symbol rate 50 GBd

WDM spacing 55 GHz
# WDM channels 1/11

Total bandwidth 55/605 GHz
Pulse shape Root-raised cosine

Pulse roll-off 0.1
Span length 205 km

# Spans 1
Fiber loss 0.2 dB/km

Dispersion parameter 17 ps/nm/km
Nonlinearity parameter (γ) 1.30 1/W/km

EDFA noise figure 5 dB
Oversampling factor 2

# QAM symbols per run 324,000
# Simulation runs 5

dispersion parameter 17 ps/nm/km, and nonlinearity parameter
1.37 W−1km−1. At the end of each span, an erbium doped
amplifier (EDFA) with a 6 dB noise figure is deployed. Both
single and dual polarization transmissions are considered. At
the receiver, chromatic dispersion is compensated, and a mean
phase rotation is applied as a CPR, which is the same as used
in [18] and [21]. The central channel is the channel of interest
for performance results. Results are obtained as the average
from transmitting 243,000 QAM symbols in five independent
simulation runs.

b) Setup 2 [21]: The main differences from Setup 1 are
the adoption of 64 QAM transmission, PAS with ESS and
K-ESS with a shaping rate of 1.5 bits/amplitude and a rate-
5/6 FEC, i.e., the overall rate is 4 bit/QAM-symbol, a baud
rate of 50 GBd, a channel spacing of 55 GHz for the WDM
case, and a single-span link of 205 km. We note that there are
several pairs of maximum energy and kurtosis that result in K-
ESS with the same shaping rate. We used the optimal pair for
blocklength ℓ = 108 as reported in [21] for a fair comparison.
As in [21], we will also consider 64 QAM transmission with
uniform signaling and a rate 2/3-FEC as a baseline to compare
various shaped transmission systems.

The other parameters are identical or similar to Setup 1 (see
Tables I and II).

B. Performance metrics

We use three common performance metrics for assessing the
nonlinearity tolerant schemes. The first is the effective SNR
of symbols after linear equalization:

SNReff =
E
[
|S|2

]
E [|S −R|2]

, (25)

where S and R denote transmitted and received symbol,
respectively. The second is the Q-factor, which is defined based
on uncoded bit error rate (BER) as

Q =
√
2erfc−1(2BER), (26)
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Fig. 9. AIR vs. v for sequence selection using EDI, LSAS with only SPM
components, and LSAS with both SPM and XPM components. Setup 1 with
single-polarization transmission and 1D mapping.

where erfc denotes the complementary error function. The
third metric is the AIR [27]–[29]

AIR = H(Ps)−
2m∑
i=1

H(Pb|r,i)− 2Rloss,v, (27)

where Ps and Pb|r,i denote the distributions of the transmitted
QAM symbol and its ith bit label given the received symbol,
respectively. The effective SNR is useful to highlight the
strength of NLI associated with different shaping schemes.
Q-factor and AIR also account for the linear shaping gain.

C. Setup 1: 256 QAM Transmission

We start with 256 QAM transmission in Setup 1 to compare
the effectiveness of the LSAS metric for sequence selection
with that of the EDI metric from [18].

a) Sequence Selection: We first focus on sequence se-
lection with 1D mapping. If not stated otherwise, single-
polarization transmission is used. For SNR and AIR results,
a launch-power optimization has been performed for each
measurement point.

Figure 9 shows the AIR as a function of the number of
flipping bits v for PAS with different blocklengths and EDI
and LSAS metrics for sequence selection. EDI uses a window
length of w = 100, as suggested in [18]. For the LSAS metric,
we distinguish two cases: (i) C̃ = {c}, i.e., only SPM is
considered (“LSAS (SPM)”), and (ii) C̃ = {c − 1, c, c + 1},
i.e., XPM from two adjacent channels is considered (“LSAS
(SPM+XPM)”) for the center channel of interest. We ob-
serve that LSAS is superior to EDI for all blocklengths. For
ℓ ∈ {180, 300}, we suspect that discarding w symbols from
each shaping block as well as the lowpass-filter approximation
affect the EDI metric. Accounting for XPM does not make a
notable difference for short blocklengths, which is due to the
wide spectral dip for CCDM at ℓ ∈ {180, 300} (see Figure 6)
and the narrow XPM filter (see Figure 3b). For ℓ = 900, the
LSAS is superior to the EDI metric because of the inclusion

of XPM in the selection. Since this requires knowledge of the
data in neighboring channels, it could be impractical in a con-
ventional WDM scenario. However, it would be a legitimate
option for a digital subcarrier multiplexing (DSCM) system.
Furthermore, we note that there is an optimum value for v,
which shifts toward larger v for larger blocklengths. This is
because of the trade-off between linear and nonlinear shaping
gain in the sequence selection scheme. An initially higher
linear shaping gain in the case of larger blocklength provides
more opportunity for increasing the nonlinear shaping gain
using more redundant bits. However, since the computational
complexity of sequence selection grows with v, we choose
v = 2 for the following results.

Figure 10 compares the sequence selection metrics from
Figure 9 for different shaping blocklengths. Shaping without
sequence selection, i.e., v = 0 is shown as the baseline
curve. Selection using EDI converges to the baseline for short
blocklengths, as it requires a blocklength ℓ notably larger than
the window size w to work effectively (see Section IV-B). As
blocklength increases, EDI and LSAS with only SPM converge
to the same performance. As already noted in Figure 9,
LSAS with SPM and XPM components outperforms the other
selection metrics for larger ℓ, with a gain of about 0.3 dB in
SNR and 0.1 bits/QAM-symbol in AIR over shaping without
selection at ℓ = 900. From the AIR in Figure 10b we note
that the optimal shaping blocklength increases from ℓ = 900
in the case of no selection to ℓ = 1350 for selection using
LSAS, which is due to the reduced nonlinear impairments.

To gauge the computational complexity associated with the
two sequence selection metrics, we evaluate the expressions
(22) and (23) in Section IV-C for two shaping blocklengths
ℓ = 108 and ℓ = 900 used in Figure 10. The LSAS metric uses
SPM and XPM filters of lengths 400 and 500, respectively, as
shown in Figure 3. For these values, the evaluation of EDI
and LSAS (SPM) require 11 and 220 flops per QAM symbol,
respectively. At the blocklength ℓ = 900, we have 95, 719,
and 1367 flops per QAM symbol for EDI, LSAS (SPM),
and LSAS (SPM+XPM), respectively, i.e., incorporating the
XPM terms from the first nearest outer channels increases the
computational complexity by a factor of Navg ≈ 2. We thus
observe a significantly increased computational complexity
for LSAS compared to EDI, which is due to the scaling of
complexity with filter length and Navg. However, the LSAS
filter lengths can be shortened with little effect on the perfor-
mance results. For example, we can simply truncate the LSAS
filters using a threshold compared to the maximum coefficient.
Table III shows the number of flops and the corresponding
AIR for different truncation thresholds. We observe that the
computational complexity of LSAS can be reduced to values
almost identical to those for EDI, i.e., 16 vs. 11 flops at a
threshold of −8 dB for ℓ = 108 and 87 vs. 95 flops at a
threshold of −15 dB for ℓ = 900, with a negligible loss in
AIR. We speculate that this can further be improved with more
sophisticated filter approximation approaches.

In the remainder of this section, results for LSAS refer
to LSAS with only SPM components, which is suitable for
blocklengths ℓ ≤ 300.

Next, we present results for dual-polarization transmission.
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(a) (b)
Fig. 10. (a) Effective SNR and (b) AIR vs. shaping blocklength for different selection metrics with v = 2 redundant bits. Shaping without selection (v = 0)
shown as a reference. Setup 1 with single-polarization transmission and 1D mapping.

TABLE III
NUMBER OF REAL-VALUED OPERATIONS PER QAM SYMBOL AND AIR (IN
[BITS/QAM SYMBOL]) FOR LSAS (SPM) AT ℓ = 108 AND ℓ = 900 FOR

DIFFERENT TRUNCATION THRESHOLDS (IN DB).

ℓ Threshold −∞ −20 −15 −8

108
OLSAS 220 145 80 16

AIR 5.30 5.30 5.30 5.29

900
OLSAS 719 176 87

AIR 5.53 5.53 5.52

Fig. 11. Q-factor vs. launch power for different selection metrics with
v = 2 redundant bits. Shaping without selection (v = 0) shown as a
reference. Setup 1 with dual-polarization transmission, 1D mapping, and
shaping blocklength ℓ = 180.

Figure 11 shows the Q-factor as a function of launch power
for dual-polarization transmission and shaping with different
selection metrics. In the case of the LSAS metric, we distin-
guish between (P = {x},P = {y}) and P = {x, y} in (16),

Fig. 12. Left: Frequency domain representation of aggregate symbol-energy
sequence from (15) for x-polarization for shaping methods and system setup
from Figure 11. Launch power is −1 dBm per channel. Right: Normalized
magnitude frequency response of SPM filter h(c,c′)

p from (11). Dashed lines
mark the 3 dB bandwidth for the filter.

i.e., a single-polarization and a dual-polarization version. We
observe that the advantage of the LSAS metric also manifests
in the dual-polarization case, with some slight additional gain
due to performing joint selection over the two polarization
dimensions. We highlight the effect of shaping sequence
selection and the different selection metrics in Figure 12,
which shows the Fourier transforms F s

p of the aggregate
symbol-energy sequences defined in (15) corresponding to
the different shaping methods. We overlay the curves with
the frequency response for the SPM filter h

(c,c′)
p defined in

(11), which provides the approximation for the distortion in
(12). It can be seen that sequence selection makes the spectral
dip wider and deeper, which translates to a decrease in NLI
considering the lowpass channel filter. Moreover, the order of
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Fig. 13. AIR vs. v for sequence selection with LSAS and different mapping
strategies. Setup 1 with dual-polarization transmission.

the curves in Figure 12 matches the order of the corresponding
curves in Figure 11. This again demonstrates the usefulness
of the linear channel model for nonlinearity analysis. As a
final detailed observation, we point out the oscillation of the
Fourier transform signal for the EDI metric in Figure 12. This
results from rectangular-filter approximation in (20), which
corresponds to a sinc-function in the frequency domain, and
thus frequency components at its nulls do not contribute to the
metric.

b) Multidimensional mapping: As the last set of results
for Setup 1, we consider sequence selection with different
amplitude mapping strategies. For this, we need to adopt the
dual-polarization transmission scenario. Furthermore, since the
components of the 4D signal need to be chosen jointly, only
the dual-polarization version of the LSAS metric but not the
EDI can be applied. Figure 13 shows the AIR as a function
of v for the three mapping strategies from Section II-B.
First, we observe that for shaping without selection (v = 0),
the dimensionality of mapping has a notable effect on the
system performance. 4D mapping is superior to 1D and 2D
mapping strategies only for long blocklengths. This result has
been predicted in Section III-D from the channel model for
distortion and the frequency-domain visualization in Figures 6
and 7. Second, as the number of selection bits increases,
the performances for all three mapping strategies become
identical even though they select among different number of
candidates. Therefore, it is preferable to use 4D mapping in
conjunction with sequence selection for its lower complexity.
Regarding the latter, one could also compare the different
mapping strategies for the same number of candidates instead
of fixed shaping blocklength ℓ. For example, denoting the
number of redundant bits for mapping dimension d as vd,
then we can compare v1 = 1 from the 1D mapping curve
with v2 = 2 and v4 = 4 from the 2D and 4D mapping curves
in Figure 13, respectively. From this comparison we observe
that multidimensional mapping is superior to 1D mapping for
relatively longer blocklengths, i.e., ℓ = 900 in Figure 13. For
shorter blocklengths, it is preferable to use a smaller number

Fig. 14. Effective SNR vs. launch power for Setup 2. (a) Single channel
transmission and (b) WDM transmission with 11 channels. Shaping block-
length ℓ = 108 and 4D mapping.

of candidates to avoid the larger rate loss with increasing v.

D. Setup 2: 64 QAM transmission

For Setup 2 from [21], we focus on the comparison of
sequence selection using LSAS with K-ESS, which was pro-
posed for improved nonlinearity tolerance in [21], as well as
for the first time, the combination of the two methods.

Figure 14 shows the effective SNR for the various shaping
schemes for (a) single channel and (b) WDM transmission.
PAS with ℓ = 108 and 4D mapping are applied, where
the latter is beneficial because of the short link length. The
effective SNR for uniform signaling is included as a reference.
We observe that PAS with ESS suffers an SNR loss compared
to uniform signaling, which is due to an increased NLI. A good
fraction of this loss (single-channel case) or even the entire loss
(WDM case) is recovered using K-ESS or adding sequence
selection with LSAS. The combination of K-ESS with LSAS-
based selection outperforms all methods with a gain of more
than 0.5 dB and 0.3 dB over ESS-based shaping in the single-
channel and WDM cases, respectively. The SNR-performance
results can be explained by considering the frequency-domain
representation of the corresponding symbol-energy signals and
the linear channel filter in Figure 15. It can be seen that K-
ESS is effective in lowering the higher-frequency components,
which is a result of generating a distribution with lower
kurtosis. The selection-based schemes optimize the temporal
structure of symbols to minimize the NLI with the same
distribution, which translates to a wider and deeper spectral
dip at frequency zero. As a result, we expect that the selection-
based schemes perform well for a wide variety of transmission
setups, while K-ESS is only beneficial for short fiber links
corresponding to a wide lowpass filter. This conclusion is
consistent with the observations in [21].

Finally, to examine our hypothesis about K-ESS, we con-
sider Setup 2 but with a single channel transmission through a
long-haul fiber link with 20 spans of length 80 km. Figure 16
shows the Q-factor curves obtained with ESS and K-ESS
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Fig. 15. Left: Frequency domain representation of aggregate symbol-energy
sequence from (15) for x-polarization for shaping methods from Figure 14(b).
Launch power is 9 dBm per channel. Right: Normalized magnitude frequency
response of SPM filter h

(c,c′)
p from (11). Dashed lines mark the 3 dB

bandwidth for the filter.

Fig. 16. Q-factor vs. launch power for Setup 2 but with a single channel
transmission through 20 spans of 80 km. Shaping blocklength ℓ = 108 and
2D mapping strategy.

with ℓ = 108 and with and without LSAS-based sequence
selection. 2D mapping is chosen as it is the best mapping
strategy for this longer link. As suggested by our linear channel
model analysis, ESS outperforms K-ESS in this scenario.
Furthermore, sequence selection provides a gain when applied
to either baseline AS.

VI. FURTHER DISCUSSION

In the derivation of the LSAS metric we applied several
simplifications that permitted us to apply sequence selection
for each shaping block independently. First, we ignored the
terms in the perturbative model (28) that also depend on signal
phases. This is because the latter are determined by the sign
bits that are generated by the FEC encoder (see Section II-A).
As one FEC block typically consists of several shaping blocks,

sign bits and thus signal phases are dependent on multiple
shaping blocks. Second, the channel memory, i.e., the con-
volution of energy sequences with the filters h

(c,c′)
p,p′ in (7),

creates dependencies between NLI of adjacent shaping blocks.
In the LSAS metric (16) we ignored these dependencies by
applying energy sequences for each shaping block separately
to the convolution operation. Despite these simplifications,
our results in Section V showed that the proposed linear
channel model and selection metric are sensitive enough to
guide the interaction between shaping and fiber nonlinearity.
A natural extension of this work is a selection mechanism that
accounts for sign bits and fully includes the channel memory.
In this case, a joint selection over multiple shaping blocks
is in order. However, a naive approach would substantially
increase the computational complexity, as the number of
possible sequences grows exponentially with the number of
shaping blocks. Therefore, it is interesting to explore possible
alternative methods that do not suffer from the complexity
growth.

Besides the sign bits, we note that the implementation of
the CPR also affects the nonlinear gain of PAS [25]. The
proposed LSAS metric accounts for a mean phase rotation at
the receiver. Similarly, the simulation setup used in Section V
applies such a CPR, which has been consistent with the setups
in related previous works [18], [21]. This choice is motivated
as it enables us to better delineate the effects of nonlinearity
tolerant shaping and different selection metrics, which is the
main focus of this paper. To further demonstrate the perfor-
mance with sequence selection entirely independent of a CPR
implementation, we consider the nonlinear phase noise intro-
duced by the fiber channel based on the additive-multiplicative
distortion model obtained from first-order perturbation theory
[30]. We apply Setup 1 with single polarization transmission
and evaluate the phase noise terms in the distortion model to
account for SPM and XPM from the two adjacent channels
on either side of the channel of interest. In Figure 17, we
present the estimated standard deviation of nonlinear phase
noise plotted versus the shaping blocklength for different
selection metrics. The figure compares PAS without sequence
selection (v = 0), selection using EDI, and selection using
LSAS. The results show that sequence selection successfully
suppresses nonlinear phase noise. Similar to the effective-
SNR performance metric in Figure 10a, selection using the
EDI metric does not produce any nonlinear gain in the short
blocklength regime. However, for longer blocklengths, all
selection metrics decrease the standard deviation of nonlinear
phase noise. Furthermore, the order of curves in Figure 17
matches the effective-SNR result in Figure 10a. Considering
the interplay of PAS and CPR for suppressing nonlinear phase
noise, a desirable extension of this work is the formulation of a
sequence-selection metric that accounts for receiver processing
with a more potent CPR method than a mean phase rotation.

VII. CONCLUSION

In this paper, we revisited the signal-dependent generation
of NLI in optical channels and presented a linear lowpass
channel model to approximately describe this process. The
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Fig. 17. Estimated standard deviation of nonlinear phase noise vs. shaping
blocklength for PAS without (v = 0) and with sequence selection (v =
2). Sequence selection using EDI and LSAS metrics. Setup 1 with single-
polarization transmission and 1D mapping.

model considers symbol-energy sequences as input and there-
fore permits the analysis of the interplay between amplitude
shaping and nonlinear distortion. We showed the evolution
of filter coefficients for different fiber setups and introduced a
frequency domain visualization as a useful tool for the analysis
and design of PAS schemes for nonlinearity mitigation. We
applied the model to develop the LSAS metric for PAS with
sequence selection. LSAS naturally includes inter-polarization
and inter-channel nonlinear effects and extends to multidi-
mensional mapping. The latter permits the combination of
sequence selection with multidimensional mapping for lower
complexity. Through extensive simulations, we showed the
performance benefits resulting from LSAS, and we confirmed
the accuracy of the predictions based on the linear model.

APPENDIX

In this appendix, we derive the approximation (4) for the
linear channel model between symbol-energy sequences and
nonlinear distortions.

We start with the expression [31, Eq. (3)] for the non-
linear distortion term from signal-signal interactions based
on the first-order perturbation analysis of a multi-span dual-
polarization coherent WDM system. Accordingly, the input-
output relationship for the x-polarization signal in WDM

channel c ∈ C after linear equalization can be written as

r(c)x (n) = s(c)x (n)

+ jγ
∑
m∈Z

∑
k∈Z

(
s(c)x (m+ n)[s(c)x (k +m+ n)]∗s(c)x (k + n)

+ s(c)y (m+ n)[s(c)y (k +m+ n)]∗s(c)x (k + n)

)
h(c)
spm(m, k)

+ jγ
∑
c′∈

C\{c}

∑
m∈Z

∑
k∈Z

(
2s(c

′)
x (m+n)[s(c

′)
x (k+m+n)]∗s(c)x (k+n)

+ s(c
′)

y (m+ n)[s(c
′)

y (k +m+ n)]∗s(c)x (k + n)

+ s(c
′)

x (m+ n)[s(c
′)

y (k +m+ n)]∗s(c)y (k + n)

)
h(c,c′)
xpm (m, k),

(28)

where s
(c)
p (n) and r

(c)
p (n) are the nth transmitted symbol

and received sample in polarization p ∈ {x, y} and channel
c ∈ C, respectively, and γ is the fiber nonlinearity parameter.
h
(c)
spm and h

(c,c′)
xpm contain the perturbation coefficients for intra-

channel and inter-channel NLI, respectively. An analogous
expression to (28) can be written for the y-polarization signal.

To arrive at the representation used for the distortion model
based on symbol-energy sequences, we approximate (28) by
retaining only the symbol-energy dependent terms in the
summations:

r(c)x (n) ≈ s(c)x (n)
[
1+

jγ
∑
m∈Z

(
|s(c)x (m+ n)|2 + |s(c)y (m+ n)|2

)
h(c)
spm(m, 0)

+ jγ
∑

k∈Z\{0}

(
|s(c)x (k + n)|2

)
h(c)
spm(0, k)

+ jγ
∑
c′∈

C\{c}

∑
m∈Z

(
2|s(c

′)
x (m+n)|2+|s(c

′)
y (m+n)|2

)
h(c,c′)
xpm (m, 0)

]
.

(29)

Then, noting that h(c)
spm(m, 0) = h

(c)
spm(0,m) [32], and defining

filters h
(c,c′)
p,p′ as

c′ = c, p′ = p : h
(c,c′)
p,p′ (n) =

{
2h

(c)
spm(n, 0), n ̸= 0

h
(c)
spm(n, 0), n = 0

c′ = c, p′ ̸= p : h
(c,c′)
p,p′ (n) = h(c)

spm(n, 0)

c′ ̸= c, p′ = p : h
(c,c′)
p,p′ (n) = 2h(c)

xpm(n, 0)

c′ ̸= c, p′ ̸= p : h
(c,c′)
p,p′ (n) = h(c)

xpm(n, 0)

(30)

to describe both intra- and inter-channel NLI effects, we obtain
(4) in Section III.

Furthermore, as it can be seen in (30), the intra-polarization
coefficients are two times the inter-polarization coefficients,
except for n = 0 for SPM. This motivates the approximation of
the relation between filter coefficients in (11) in Section III-A.
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