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Abstract—This paper considers the application of widely linear
(WL) receivers in an uplink multi-user system using real-valued
modulation schemes, where the cellular base station (BS) with
multiple antennas provides connectivity for randomly deployed
single-antenna users. The targeted use case is massive machine
type communication (mMTC) with grant-free access in the
uplink, where the network is required to host a large number of
low data rate devices transmitting in an uncoordinated fashion.
Four types of WL receivers are investigated, namely the WL
zero-forcing (ZF) and the WL minimum mean-squared error
(MMSE) receivers, along with their enhanced versions employing
successive interference cancellation (SIC) with channel-dependent
ordering, i.e., the WL-ZF-SIC and WL-MMSE-SIC receivers.
The outage performances of these receivers are analytically
characterized in the high signal-to-noise ratio (SNR) regime and
compared to those of conventional linear (CL) receivers using
complex-valued modulation schemes. For the non-SIC receivers,
we show that, when compared to the CL counterparts, the WL
receivers yield a higher diversity gain when decoding the same
number of users and have the same diversity gain but a decreased
coding gain when the number of users is nearly doubled. The
outage performance analysis of WL-SIC receivers is facilitated
by the marginal distribution of ordered eigenvalues of a real-
valued Wishart matrix. It is shown that the SIC operation
with channel-dependent ordering brings no additional diversity
gain to the WL receivers but instead increases the coding gain.
Moreover, the coding gain of WL-SIC receivers grows as the
number of users increases and even exceeds that of CL-SIC
receivers under suitable conditions. For the mMTC scenario
with grant-free transmission, it is demonstrated that the WL
receivers outperform their CL counterparts in terms of offering
a lower outage (and packet drop) probability and a higher system
throughput for a given packet drop probability.

Index Terms—Multi-user communication, grant-free access,
massive machine type communication (mMTC), multi-user de-
tection, widely linear (WL) receiver, multi-input multi-output
(MIMO), zero-forcing (ZF), minimum mean-squared error
(MMSE), successive interference cancellation (SIC), outage prob-
ability, real Wishart matrix, ordered eigenvalues.

I. INTRODUCTION

Uplink multi-user communication to a base station (BS)
with multiple receiver antennas forms a multi-input multi-
output (MIMO) system, whose performance is dominated by
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the coordination and processing of multi-user signals. A key
innovation has been the conception of multi-user detection
techniques, which permit the simultaneous reliable transmis-
sion of multiple user streams [1], [2]. Among various multi-
user detection techniques, linear multi-user and successive in-
terference cancellation (SIC) detection are of particular interest
due to their favorable complexity-performance trade-offs.

The performance of conventional linear (CL) multi-user
detection can, in certain scenarios, be enhanced by widely
linear (WL) processing [3]. In the context of data communica-
tion, while CL processing refers to the use of complex-valued
signal constellations for signal transmission and reception, WL
processing refers to the use of one-dimensional constellations
transmitted over a complex-valued channel. This specifically
includes real-valued transmission with pulse amplitude mod-
ulation (PAM), but also complex-valued modulations such
as offset quadrature amplitude modulation (offset QAM),
minimum shift keying (MSK) and Gaussian minimum shift
keying (GMSK), that can be interpreted as PAM transmission
after a derotation operation at the receiver [4], [5]. As an
important instance of this, WL processing has been adopted at
the receiver to perform single antenna interference cancellation
(SAIC) in cellular networks involving one-dimensional modu-
lated signals, such as, binary phase shift keying (BPSK), MSK,
and GMSK [4], [5]. In this scenario, it has been demonstrated
that the optimal WL receiver with an array of N antennas
can process up to 2N − 1 interference signals, while the
conventional receiver requires 2N antennas to do the same
[5].

More generally, it has been shown that WL processing can
improve the receiver performance in MIMO systems if the
received signal is second-order noncircular or improper [6],
such as in the case of PAM or GMSK transmission. For ex-
ample, the receiver performance improvement obtained using
WL detection for single user MIMO systems is demonstrated
in [7]–[10]. Particularly, in [9], [10], the transmitted codes are
constructed using a linear combination of input symbols and
their complex conjugate, which aids in WL processing. The
applications of WL processing in various multi-user MIMO
systems with real-valued constellations were investigated in
[11]–[14].

In the present age, numerous Internet of things (IoT) appli-
cations, such as, smart metering systems and smart buildings,
are envisioned under the massive machine type communication
(mMTC) framework, which hosts a large number of users
demanding low data rates while being delay tolerant. In such
scenarios, grant-free transmission is the preferred multiple
access strategy [15]–[17]. Our previous works [18], [19]
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demonstrated that the user density in mMTC systems with
grant-free access can be further enhanced by adopting real-
valued modulation along with WL detection at the base station.
We presented an analytical outage performance characteri-
zation of the WL zero-forcing (WL-ZF) and WL minimum
mean-squared error (WL-MMSE) receivers in these works.
Specifically, in [19], we considered the packet drop probability
for a fixed target rate for both CL and WL users and grant-
free access in an mMTC scenario as a performance indicator.
Based on this metric, we computed the supported user density
as the maximum number of supported users per cell such
that the packet drop probability does not exceed a given
threshold (please see [19, eq. (39)], and the system throughput
as the number of correctly decoded packets per second per
Hz (please see [19, eq. (40)]). Further, we demonstrated that
the packet drop probability was dominated by the collision
probability of the users. We showed that, for a fixed target
data rate and transmission time interval (TTI) of the mMTC
user application, (i) WL receivers are capable of resolving
more colliding packets, thereby resulting in a lower packet
drop probability than the CL receivers for a given number of
users, or alternatively, (ii) WL processing supports a higher
user density and offers a larger system throughput than CL
processing for a given packet drop probability.

In this work, we further analyze the outage performance
of WL receivers for uplink multi-user MIMO systems. While
the analysis is agnostic with regards to specific applications,
the targeted use-case is mMTC using grant-free access mech-
anisms as considered in our previous works [18], [19]. We
derive the analytical expressions for diversity and coding gains
of the WL-ZF and WL-MMSE receivers, based on their outage
probability in the high signal-to-noise ratio (SNR) regime.
These expressions enable us to analytically characterize the
performance of these WL receivers in high and low data
rate scenarios, unlike the characterization based on heuristic
arguments presented in our previous works [18], [19]. We
also introduce the SIC counterparts of these WL receivers,
i.e., WL-ZF-SIC and WL-MMSE-SIC receivers, analyze their
outage performance and demonstrate the system throughput
obtained by the use of the SIC-based WL receivers in an
mMTC scenario with grant-free access. Moreover, the outage
performance analysis of WL-SIC receivers is facilitated by the
marginal distribution of the ordered eigenvalues of real-valued
Wishart matrix, which is constructed from the complex chan-
nel matrix. However, for real-valued Wishart matrices, there
are no closed-form expressions for the marginal distribution
of their ordered eigenvalues, that can directly be employed or
derived from the existing results for complex-valued Wishart
matrices [20]–[26]. Therefore, we derive the polynomial ap-
proximation of the marginal cumulative distribution function
(CDF) of those ordered eigenvalues around zero, which is
shown to be accurate enough for the outage performance
analysis of WL-SIC receivers in the high SNR regime. It
is worth pointing out that our results of the polynomial
approximation for the ordered-eigenvalue distribution of real
Wishart matrix are also novel.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model for the uplink multi-

user MIMO system with real-valued modulation schemes and
presents the WL versions of conventional ZF and MMSE
receivers. Section III analyzes the outage performance of WL-
ZF and WL-MMSE receivers. Section IV covers the outage
performance analysis of the corresponding WL-SIC receivers.
Numerical results are presented in Section V, followed by
conclusions in Section VI.

II. SYSTEM MODEL AND WIDELY LINEAR RECEIVERS

A. System Model

We consider a cellular uplink transmission scenario, in
which the BS with M receive antennas supports a population
of single-antenna users. Assuming that N users are active in
the current transmission interval, the complex baseband model
for the multi-user uplink channel is given by

ȳ =
√
pT,avH̄Ψ

1
2x+ n̄, (1)

where ȳ ∈ CM×1 is the vector of complex received samples,
pT,av denotes the average transmit power, and H̄ ∈ CM×N
is the matrix of M × N small-scale fading coefficients. For
concreteness, we assume independent and circularly symmet-
ric standard complex Gaussian distributed entries of H̄ , i.e.,
h̄i,j ∼ CN (0, 1) for 1 ≤ i ≤ M , 1 ≤ j ≤ N . The diagonal
matrix Ψ , diag([ξ1, ξ2, . . . , ξN ]) accounts for the received
power variation due to power control and large-scale fading.
Its ith diagonal entry can be expressed as

ξi =
pT,iβiψi
pT,av

, (2)

where pT,i, βi and ψi denote the instantaneous transmit power,
the pathloss and the shadowing fading factor for user i,
respectively. We assume that ξi, 1 ≤ i ≤ N , are independently
and identically distributed (i.i.d.) random variables, whose
distribution is determined by the user deployment, large-scale
fading model and power control strategies [27]. Without power
control, we have pT,i = pT,av, 1 ≤ i ≤ N , and the power
variation term ξi = βiψi is the large-scale fading. With perfect
power compensation (PPC), pT,i = pT,av

(βiψi)
−1

Eβiψi{(βiψi)−1} ,
where Ex{·} denotes the statistical expectation with respect
to x, and the large-scale fading is fully compensated so that
ξi = 1

Eβiψi{(βiψi)−1} , ξPPC, 1 ≤ i ≤ N . Other cases lie in
between those two extremes. The vector x contains the data
symbols simultaneously transmitted by the N users, which are
generated from one-dimensional constellations, i.e., x ∈ RN .
As the N data streams come from multiple independent users,
we assume that Ex

{
xxT

}
= IN , where (·)T and IN denote

the transpose operator and the identity matrix of size N ×N ,
respectively. The complex noise n̄ ∈ CN is modelled to
be white Gaussian with n̄ ∼ CN

(
0, σ2

c

)
, where σ2

c is the
variance. For further use, we define the transmit SNR as

snr ,
pT,av
σ2
c

. (3)

In addition to typical real-valued modulations, i.e., PAM, the
MIMO model considered in (1) is also applicable to complex-
valued modulation schemes, such as Gaussian minimum-shift
keying (GMSK), whose complex amplitude can be considered
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as a filtered version of a real-valued modulation after a
derotation operation [28].

Considering the real-valued transmission, we apply the
WL transform1 T : x̄ ∈ CM → x ∈ R2M with
x =

[
Re
(
x̄T
)

Im
(
x̄T
)]T

, where Re (·) and Im (·) denote
the real and imaginary parts, respectively, of the complex-
valued vector ȳ defined above. Then we can rewrite the signal
model in (1) as

y =
√
pT,avHΨ

1
2x+ n (4)

where H =
[
Re
(
H̄

T
)
, Im

(
H̄

T
)]T

is the 2M × N real-
valued channel matrix with i.i.d. entries hi,j ∼ N (0, 0.5) for
1 ≤ i ≤ 2M , and n =

[
Re
(
n̄T
)
, Im

(
n̄T
)]T

is the 2M × 1
real-valued noise vector with n ∼ N

(
0, 0.5σ2

cIN
)
. The WL

transform virtually extends the complex data vector ȳ ∈ CM
to the real vector2 y ∈ R2M .

One could employ the CL-ZF and CL-MMSE receivers to
the original complex-valued data vector ȳ in (1) for decoding
the N user data streams, regardless of the prior knowledge
about real-valued transmission. Consequently, the maximum
number of detectable users for the CL receivers would be
limited to be M . However, with the WL transform, the number
of receive antennas will be virtually doubled and thus up-
to-2M user data streams can simultaneously be decoded by
applying the WL-ZF or WL-MMSE detector to the real-valued
data vector y in (4), as briefly discussed next.

B. Widely Linear Receivers
We assume that the maximum number of detectable users

is restricted to be N ≤ 2M , and the channel state information
(CSI) can be perfectly tracked by the BS receiver, i.e., HΨ

1
2

is known at the receiver. In analogy to the CL multi-user
detection, we consider the ZF and MMSE criteria for the
WL receiver model (4). One can obtain the detection matrix
W ∈ R2M×N using the expressions for CL multi-user
detection [2] as

W =

HΨ
1
2

(
Ψ

1
2HTHΨ

1
2

)−1
for WL ZF

HΨ
1
2

(
Ψ

1
2HTHΨ

1
2 + 1

2snrIN

)−1
for WL MMSE.

(5)
Applying W to the real-valued data model (4), we obtain the
output signal-to-interference-plus-noise ratios (SINRs) of WL-
ZF and WL-MMSE detectors for the nth data stream as [19],
[29]

γWL−ZF,n =
2snrξn[(

HTH
)−1]

n,n

(6a)

1The WL transform herein augments the M -receiver antenna into an
equivalent 2M -receiver antenna MIMO system, which allows us to apply the
methodology for the analysis of conventional MIMO systems from e.g. [2],
[29]. It is different from the transform that stacks the complex-valued signal
and its complex conjugate, which has widely been used in the literature [3],
[5]–[7], [30], [31] for the sake of convenience in differentiating a real-valued
function with respect to a complex argument.

2The log-likelihood ratio (LLR) computation in WL detection will be same
as that adopted in CL processing. That is, after linear or SIC processing, an
effective additive Gaussian noise (AWGN) channel is assumed and LLRs are
computed based on, for example, the max-log approximation.

= 2snrξnh
T
nP
⊥
Hn
hn (6b)

and

γWL−MMSE,n =
2snrξn[(

HTH + 1
2snrΨ

−1
)−1]

n,n

− 1 (7a)

= 2snrξnh
T
n P̃
⊥
Hn
hn (7b)

where hn is the nth column of H and

P⊥Hn
= I2M −Hn

(
HT

nHn

)−1
HT

n (8a)

P̃
⊥
Hn

= I2M −Hn

(
HT

nHn +
1

2snr
Ψ−1n

)−1
HT

n . (8b)

In P⊥Hn
and P̃

⊥
Hn

, Hn ∈ R2M×(N−1) is H with the nth

column removed and Ψn ∈ R(N−1)×(N−1) is Ψ with the nth

column and nth row removed.
Similar to their CL counterparts, the WL receivers discussed

above enable relatively low-complexity detection at the price
of sub-optimal error-rate performance. Considering that the
performance of CL receivers can be enhanced using SIC with
channel-dependent ordering [2], we attempt to improve the
performance of WL receivers using the same methodology.
Specifically, for CL-SIC receivers, the optimal ordering is
to choose the user to decode such that the output SINR is
maximized at each decoding stage [32]. We apply this SINR-
maximization ordering rule to the WL-SIC receivers, and then
obtain the nth-stage output SINRs of the WL-ZF-SIC and WL-
MMSE-SIC receivers as

γ
(n)
WL−ZSIC = max

n

{
γ
(n)
WL−ZF,1, · · · , γ

(n)
WL−ZF,N−n+1

}
(9a)

γ
(n)
WL−MSIC = max

n

{
γ
(n)
WL−MMSE,1, · · · , γ

(n)
WL−MMSE,N−n+1

}
(9b)

where γ
(n)
WL−ZF,i and γ

(n)
WL−MMSE,i represent the nth-stage

output SINRs of the WL-ZF and WL-MMSE detectors, re-
spectively, for the ith data stream that remains after previous
(n− 1) SIC stages, i.e., 1 ≤ i ≤ N − n+ 1.

III. OUTAGE PERFORMANCE OF WIDELY LINEAR
RECEIVERS

In this section, we consider the WL-ZF and WL-MMSE
receivers using W from (5). We first briefly state the SINR
and outage probability results from our previous work [19],
which are then used to establish the diversity and coding gains.

The outage probability for WL receivers can be expressed
as [2]

P = Pr

(
1

2
log (1 + SINR) ≤ R

)
(10)

where the factor 1/2 is due to the use of real-valued trans-
mission and R is the target data rate in bits/sec/Hz. Based
on the behaviour of P in the high SNR regime, the outage
probability of a communication system as defined in (10) can
be expressed as [2]

P (snr) ' (C · snr)−d (11)
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where C is the outage coding gain, d is the outage diversity
gain, and ' denotes the asymptotic equality in the high
SNR regime. Using the diversity and coding gains, we can
make an analytical comparison between the asymptotic outage
behaviours of WL and CL receivers.

A. Previous Results [19]

1) SINR Distribution: The SINR of the WL-ZF receiver is
distributed according to

γWL−ZF,n

ξn
∼ snr · χ2

2M−N+1 , (12)

where χ2
2M−N+1 represents the standard Chi-squared dis-

tribution with 2M − N + 1 degrees of freedom. As it is
difficult to directly characterize the SINR distribution of the
WL-MMSE receiver, we decompose the scaled SINR of WL-
MMSE receiver, i.e., γWL−MMSE,n

ξn
as the sum of the scaled

WL-ZF SINR, i.e., γWL−ZF,n

ξn
and the residual term ηWL,n

given by

γWL−MMSE,n

ξn
=
γWL−ZF,n

ξn
+ ηWL,n , (13)

where the residual term ηWL,n , γWL−MMSE,n

ξn
− γWL−ZF,n

ξn
=

2snrhTn

(
P⊥Hn

− P̃
⊥
Hn

)
hn can be shown to be independent

of γWL−ZF,n/ξn and approximated as

ηWL,n ' hTnHn

(
HT

nHn

)−1
Ψ−1n

(
HT

nHn

)−1
HT

nhn
(14)

in the high SNR regime, i.e., snr → ∞. Intuitively, the term
ηWL,n represents the power of the signal component “hidden”
in the range of Hn that is recovered by the WL-MMSE
receiver, but nulled out by the WL-ZF receiver.

In general, it is difficult to derive the analytical distribution
of SINR gap ηWL,n. However, for the case of perfect compen-
sation of large-scale fading we have ξn = ξPPC, 1 ≤ n ≤ N ,
and thus Ψ = ξPPCIN . Then, we can provide the closed-form
distribution for the scaled version of ηWL,n as

2M −N + 2

N − 1
ξPPC · ηWL,n ∼ FN−1,2M−N+2, (15)

where FN−1,2M−N+2 denotes the standard F -distribution
with degree-of-freedom (DoF) parameters d1 = N − 1 and
d2 = 2M − N + 2 as defined in [29, Footnote 2]. Note that
the F distribution is interpreted as the ratio of two chi-squared
distributions with degrees of freedom d1 and d2 respectively.

2) Outage Probability: Applying the SINR distributions
from above to the outage probability (10), we obtain

PWL−ZF = Pr

(
1

2
log (1 + γWL−ZF,n) ≤ R

)
= Pr

(
γWL−ZF,n

snr · ξn
≤ 22R − 1

snr · ξn

)
= Eξn

{
Fχ2

2M−N+1

(
γWLT

snr · ξn

)}
,

(16a)

PWL−MMSE = Pr

(
1

2
log (1 + γWL−MMSE,n) ≤ R

)
' Pr

(
γWL−ZF,n

snr · ξn
+
ηWL,n

snr
≤ 22R − 1

snr · ξn

)
= Eξn,ηWL,n

{
Fχ2

2M−N+1

(
γWLT

snr

[
1

ξn
− ηWL,n

γWLT

]+)}
,

(16b)

where γWLT = 22R−1 is the SINR threshold of WL receivers,
Fχ2

2M−N+1
is the CDF of χ2

2M−N+1 and [x]+ = max(x, 0).
In the PPC case, the outage probability expressions can be
simplified to

PWL−ZF = Fχ2
2M−N+1

(
γWLT

snr · ξPPC

)
(17a)

PWL−MMSE '

EηWL,n

{
Fχ2

2M−N+1

(
γWLT

snr · ξPPC

[
1− ξPPC

γWLT
ηWL,n

]+)}
(17b)

where the probability density function (PDF) of ηWL,n can be
obtained according to (15).

B. Comparative Analysis

We now use the expressions in (16) to study the diversity
and coding gains for WL detection. For this, we note that the
polynomial approximation of Fχ2

k
(x) around x = 0 is given

by

Fχ2
k

(x) =
1

(k/2) 2k/2Γ (k/2)
xk/2 + o

(
xk/2

)
, (18)

where Γ(a) ,
∫∞
0
e−tta−1dt is the Gamma function. Con-

sidering the high SNR regime such that γWLT

snr → 0 and
letting dWL = 2M − (N − 1) /2, we can expand the outage
probability expressions of WL-ZF and WL-MMSE receivers
using (18) in (16a) and (16b), as follows:

PWL−ZF ' Eξn

{
1

dWL2dWLΓ (dWL)

(
γWLT

snr · ξn

)dWL
}

=

[Eξn
{

2−dWL

dWLΓ (dWL)

(
γWLT

ξn

)dWL
}]−1/dWL

· snr

−dWL

,

PWL−MMSE '

Eξn,ηWL,n

 2−dWL

dWLΓ (dWL)

(
γWLT

snr

[
1

ξn
− ηWL,n

γWLT

]+)dWL


=

([
Eξn,ηWL,n

{
2−dWL

dWLΓ (dWL)
×

(
γWLT

[
1

ξn
− ηWL,n

γWLT

]+)dWL
}]−1/dWL

· snr

)−dWL

.

It is clear that the outage diversity and coding gains of WL-ZF
and WL-MMSE receivers are expressed as

dWL−ZF = dWL−MMSE = dWL (19a)
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CWL−ZF =
2 (dWLΓ(dWL))

1/dWL

γWLT
TWL−ZF (19b)

CWL−MMSE =
2 (dWLΓ(dWL))

1/dWL

γWLT
TWL−MMSE , (19c)

where

TWL−ZF =
[
Eξn

{
ξ−dWL
n

}]−1/dWL (20a)

TWL−MMSE =

Eξn,ηWL,n


([

1

ξn
− ηWL,n

γWLT

]+)dWL


−1/dWL

.

(20b)

We observe that the WL-MMSE receiver does not pro-
vide an extra diversity gain over the WL-ZF receiver but
rather yields an increase in coding gain since TWL−MMSE >
TWL−ZF. As γWLT →∞, we have TWL−MMSE → TWL−ZF,
i.e., in a high data rate scenario, the WL-MMSE receiver
has no significant outage performance superiority over the
WL-ZF receiver. In contrast, in a low rate scenario where
γWLT → 0, the WL-MMSE receiver is expected to have a
notably increased coding gain when compared to the WL-ZF
receiver. It should be noted that these insights were presented
using heuristic arguments in our previous work [19].

For the purpose of a WL-vs.-CL comparison, we present
the diversity and coding gains of CL-ZF and CL-MMSE
receivers for decoding data streams generated by complex-
valued modulations3

dCL−ZF = dCL−MMSE = dCL = M − (N − 1) (21a)

CCL−ZF =
(dCLΓ(dCL))

1/dCL

γCLT
TCL−ZF (21b)

CCL−MMSE =
(dCLΓ(dCL))

1/dCL

γCLT
TCL−MMSE , (21c)

where γCLT = 2R − 1 and

TCL−ZF =
[
Eξn

{
ξ−dCL
n

}]−1/dCL (22a)

TCL−MMSE =

Eξn,ηCL,n


([

1

ξn
− ηCL,n

γCLT

]+)dCL


−1/dCL

(22b)

with ηCL,n being the SINR difference between the CL-ZF and
CL-MMSE receivers. In the PPC case, the additional term
ηCL,n is a scaled F -distributed random variable with DoF
parameters d1 = 2(N − 1) and d2 = 2(M −N + 2) [29].

For a fair comparison, we assume that the number of receive
antennas M at the BS and the target rate R for each user are
the same for the WL and CL systems. Denoting the number
of users by NWL and NCL for the two system paradigms, we
can make the following observations.
• For NWL = NCL, we have dWL > dCL, i.e., for detection

of the same number of users, the diversity gain of WL

3Since the diversity and coding gains of CL-ZF/-MMSE receivers with
complex-valued modulation can be derived using the same approach as that
for deriving (19a)-(19c), their intermediate steps are omitted due to the
space limit. Note that the outage probability expression for complex-valued
transmission should be applied to the output SINR of CL-ZF/MMSE receivers
derived from the complex-valued model (1).

receivers is greater than that of CL receivers. Therefore,
in the high SNR regime, the WL system will have a better
error-rate performance than the CL system.

• For NWL < 2NCL−1, we have dWL > dCL. This means
that the number of users can be nearly doubled with WL
detection, while having an improved diversity gain.

• For NWL = 2NCL − 1, we have dWL = dCL and

CWL−ZF

CCL−ZF
=

2γCLT

γWLT
=

2
(
2R − 1

)
22R − 1

, L(R). (23)

Since L(R) < 1, the WL-ZF receiver suffers from
a decrease in coding gain in this case. However, as
L(R) → 1 for R → 0, the decrease in coding gain of
the WL-ZF receiver becomes negligible for lower target
rates.
Since the MMSE receivers converge to the ZF receivers
in the high data rate regime, it follows that

CWL−MMSE

CCL−MMSE
≈ CWL−ZF

CCL−ZF
= L(R), for large R. (24)

Hence, the WL-MMSE receiver also has a decreased
coding gain compared to the CL-MMSE counterpart.
When R is small, i.e., in the low rate regime, it is difficult
to analytically compare CWL−MMSE and CCL−MMSE.
Through the numerical results, it will be shown that the
decrease in coding gain for the WL-MMSE receiver also
becomes negligible in this case.

• As stipulated from the WL MIMO channel model earlier,
the largest number of users supported by the WL receivers
with a positive diversity gain is NWL = 2M .

IV. OUTAGE PERFORMANCE OF WL-SIC RECEIVERS

In this section, we enhance the WL-ZF and WL-MMSE
receivers through the application of SIC and analyze their
outage performances in the high SNR regime. In order to
facilitate the outage probability analysis for WL-SIC receivers,
we first derive the polynomial approximation of the marginal
distribution of ordered eigenvalues for real Wishart matrices .

A. Ordered-Eigenvalue Distribution of Real Wishart Matrix

Let X ∈ Rn×m be a matrix with its entries drawn i.i.d.
from a real-valued Gaussian distribution with zero mean and
unit variance and assume n ≤ m. Furthermore, let λk for
1 ≤ k ≤ n denote the sorted eigenvalues of the real central
Wishart matrix XXT with 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn <∞.

Theorem 1. The polynomial expansion of the marginal CDF
of λk around λk = 0 can be expressed as

Pr(λk < ε) = βkε
dk + o(εdk), (25)

where βk is a coefficient independent of ε and

dk =
1

2
k (m− n+ k) . (26)

Hence, the marginal CDF of λk satisfies the following asymp-
totical property:

lim
ε→0+

log Pr(λk < ε)

log ε
= dk, 1 ≤ k ≤ n. (27)
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The proof is provided in Appendix A. Theorem 1 has
complemented the polynomial approximation of the marginal
CDF of the ordered eigenvalues for complex-valued Wishart
matrices provided in [33].

Theorem 2. The polynomial expansion (25) for the marginal
CDF of the smallest eigenvalue λ1 has the parameters

d1 =
1

2
(m− n+ 1) (28a)

β1 = K−1nmd
−1
1

√
|J | (28b)

with Knm =
(
2m

π

)n
2
∏n
i=1 Γ

(
m−i+1

2

)
Γ
(
n−i+1

2

)
. For n odd,

the skew-symmetric matrix J is (n−1)× (n−1) with entries

[J ]i,j = −[J ]j,i

= 2bi+bj+1Γ(bi)Γ(bj)

j−i∑
k=1

2−(bi+bj−k)Γ(bi + bj − k)

Γ(bi)Γ(bj−k+1)
,

(29)

where 1 ≤ i < j ≤ n− 1 and bi = 1
2 (m− n+ 1) + i. For n

even, the skew-symmetric matrix J is n× n with [J ]i,j given
by (29) for 1 ≤ i < j ≤ n − 1 and the additional entries
given by [J ]i,n = −[J ]n,i = 2biΓ(bi) for 1 ≤ i ≤ n− 1 and
[J ]n,n = 0.

The proof of this theorem is analogous to the proof of
Theorem 1 provided in Appendix A. In particular, it makes
use of Lemma 1 and performs the three steps of expressing the
joint PDF fλ(φ) as a product of terms (Step 1), marginalizing
the PDF (Step 2), and developing the polynomial expansion
(Step 3). A final 4th step is added to obtain the coefficients in
(29). The details are provided in [34, Appendix B].

B. Asymptotic Outage Probability

Following the analysis of diversity-multiplexing tradeoff for
CL-SIC receivers in [29], one can show that, for any ordering
rule, the outage probability of WL-SIC receivers for the nth

user is asymptotically equal to that for the first-layer detection.
Hence, for the nth user, the outage probability of WL-ZF-
SIC and WL-MMSE-SIC receivers with SINR-maximization
ordering is given by

PWL−ZSIC,n ' Pr

(
max

1≤i≤N
{γWL−ZF,i} ≤ γWLT

)
(30a)

PWL−MSIC,n ' Pr

(
max

1≤i≤N
{γWL−MMSE,i} ≤ γWLT

)
.

(30b)

If the output SINRs were independent, we could readily
calculate PWL−ZSIC,n and PWL−MSIC,n using the simple
order statistics for independent random variables as in [35].
However, from (6b) and (7b), we observe that the output
SINRs are highly correlated, and thus a different approach
is needed.

1) WL-ZF-SIC Receiver: For convenience, we introduce

ωn ,

[(
2HTH

)−1]
n,n

, (31)

such that (6a) becomes

γWL−ZF,n = snr
ξn
ωn
. (32)

Let 2HTH = V ΛV T be the eigenvalue decomposition,
where V ∈ RN×N is an orthonormal matrix and Λ =
diag {λ1, λ2, . . . , λN} is diagonal with the ordered eigenval-
ues λ1 ≤ · · · ≤ λN . Since

ωn =
[
V Λ−1V T

]
n,n

= vTnΛ
−1vn=

N∑
i=1

v2n,iλ
−1
i ≥ v

2
n,1λ

−1
1 ,

(33)
where vn is the nth column of V T and vn,i is the ith entry
of vn. Then, the output SINR of the WL-ZF receiver is upper
bounded as

snr
ξn
ωn
≤ snr · λ1

ξn
v2n,1

. (34)

Hence, we have the lower bound

PWL−ZF,n ≥ Pr

(
snr · λ1

ξn
v2n,1

≤ γWLT

)
. (35)

Using Theorem 1 and a proof similar to that for the CL case
[29, Lemma VI.1] , we can show that the lower bound above
is asymptotically tight, i.e.,

PWL−ZF,n ' Pr

(
snr · λ1

ξn
v2n,1

≤ γWLT

)
. (36)

Hence, the asymptotic outage performance of the WL-ZF
receiver is determined by the smallest eigenvalue of real
Wishart matrix 2HTH . Applying this result to (30a) and
defining θn , v2n,1/ξn and θmin , minn{θn}, we obtain the
asymptotic outage probability for the WL-ZF-SIC receiver as

PWL−ZSIC,n ' Pr

(
max
n

{
snr

λ1
θn

}
≤ γWLT

)
= Pr

(
λ1 ≤

γWLT

snr
θmin

)
(37)

Since 2HTH is a real central Wishart matrix, the orthonor-
mal matrix V is Haar-distributed and independent of Λ [36,
Sec. 3.2.5], which implies the statistical independence between
{θ1, . . . , θN} and {λ1, . . . , λN}. From (37) and Theorem 2,
it follows that

PWL−ZSIC,n ' Eθmin

{
βWL

(γWLT

snr
θmin

)dWL
}
, (38)

where βWL = K−1N,2Md
−1
WL

√
|JWL| and JWL equals to the

matrix J in Theorem 2 with n = N and m = 2M . From this,
the diversity and coding gains follow as

dWL−ZSIC = dWL (39a)

CWL−ZSIC =
β
−1/dWL

WL

γWLT

[
Eθmin

{
(θmin)dWL

}]−1/dWL
. (39b)

From (36) we also obtain an alternative expression of the
coding gain of WL-ZF receiver

CWL−ZF =
β
−1/dWL

WL

γWLT

[
Eθn

{
(θn)dWL

}]−1/dWL
, (40)
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which can be shown to be equal to (19b).
Comparing (39b) and (40), we observe that the SIC opera-

tion with channel-dependent ordering, although not improving
the diversity gain, increases the coding gain. Moreover, the
coding gain CWL−ZSIC increases with N , because the SIC
receiver has more candidate users to choose from for ordering.

2) WL-MMSE-SIC Receiver: It is not tractable to analyze
the outage probability of the WL-MMSE-SIC receiver directly
from (7a), since the diagonal entries of Ψ are unequal.
Therefore, we turn to the lower and upper bounds of (7a).
In particular, one can easily show that the output SINR (7a)
can be bounded by

γLBn ≤ γWL−MMSE,n ≤ γUB
n , (41)

where

γLBn =
snr · ξn[(

2HTH + ξ−1
max

snr IN

)−1]
n,n

− 1 (42a)

γUB
n =

snr · ξn[(
2HTH +

ξ−1
min

snr IN

)−1]
n,n

− 1 (42b)

with ξmax , maxn{ξn} and ξmin , minn{ξn}. Following the
same derivations for the WL-ZF-SIC receiver above, we arrive
at

PWL−MSIC,n ' (CWL−MSIC,nsnr)
−dWL , (43)

where CWL−MSIC,n is the coding gain bounded as CLB
n ≤

CWL−MSIC,n ≤ CUB
n with

CLB
n = a1

Eθmin,ξmax


([

θmin −
ξ−1max

a2

]+)dWL


−1/dWL

(44)

CUB
n = a1

Eθmin,ξmin


([

θmin −
ξ−1min

a2

]+)dWL


−1/dWL

(45)

obtained from γLBn and γUB
n , respectively, and a1 =

β
−1/dWL
WL

γWLT+1
and a2 = γWLT + 1.

Since it is difficult to gain insights into the effect of SIC
on the coding gain for WL-MMSE, we consider an alternative
path to bound CWL−MSIC,n. Combining (13) and (36) yields

PWL−MSIC,n ' Pr

(
max
n

{
snrλ1

ξn
v2n1

+ ξnηWL,n

}
≤ γWLT

)
(46)

≤ Pr

(
λ1 ≤

γWLT

snr
min
n

[
v2n1
ξn
− ηWL,n

γWLT
v2n1

])
,

(47)

where for (47) we upper-bounded the asymptotic outage prob-
ability assuming an ordering rule which does not necessarily
maximize the SINR. Defining

ϑn ,

[
v2n1
ξn
− ηWL,n

γWLT
v2n1

]
, ϑmin , min

n
ϑn, (48)

and using Theorem 2 and the fact that λ1 and ϑmin are
statistically independent,

Pr
(
λ1 ≤

γWLT

snr
ϑmin

)
' Eϑmin

{
βWL

([γWLT

snr
ϑmin

]+)dWL
}

(49)

Accordingly, the coding gain of the WL-MMSE-SIC receiver
is lower bounded as

CWL−MSIC ≥
β
−1/dWL

WL

γWLT

[
Eϑmin

{(
[ϑmin]

+
)dWL

}]−1/dWL

(50)
For a comparison, coding gain of the WL-MMSE receiver can
be re-expressed as

CWL−MMSE =
β
−1/dWL

WL

γWLT

[
Eϑn

{(
[ϑn]

+
)dWL

}]−1/dWL

(51)
which follows from (46) without the max-operator. Comparing
(50) and (51), we observe that, similar to the WL-ZF case, SIC
with channel-dependent ordering increases the coding gain of
the WL-MMSE receiver. The difference to the WL-ZF case
is the contribution of the SINR difference term ηWL,n in
ϑn, which creates stronger fluctuation in the SINR. Hence,
we expect that coding gain improvement due to SIC is more
pronounced for WL-MMSE than for WL-ZF.

3) WL-SIC Receivers with PPC: In the PPC case, we obtain
the coding gain of the WL-ZF-SIC receiver as

CPPC
WL−ZSIC =

β
−1/dWL

WL ξPPC

γWLT

[
Eumin

{
(umin)dWL

}]−1/dWL
,

(52)
where umin , minn{un} and un , |vn,1|2. Since ξmin =
ξmax = ξPPC, the lower and upper bounds in (44) and (45)
coincide, and thus the coding gain of the WL-MMSE-SIC
receiver can be calculated as

CPPC
WL−MSIC = a3

Eumin


([

umin −
1

a2

]+)dWL


−1/dWL

,

(53)
where a3 =

β
−1/dWL
WL ξPPC

γWLT+1 . For such a system, the SIC
operation can only exploit the SINR fluctuation from small-
scale fading and the resulting improvement in coding gain is
less significant than that for the system without power control.

C. Comparative Analysis

As the diversity gain does not change when applying SIC,
we only compare the coding gains of WL-SIC and CL-SIC
receivers. Furthermore, since for NWL < 2NCL − 1, the WL-
SIC receivers are expected to have a better outage performance
than the CL-SIC receivers in the high SNR regime due to
dWL > dCL (see Section III-B), we are interested in the case
of NWL = 2NCL−1. Finally, for analytical tractability of the
comparison, we focus on the PPC case and comment on the
general cases at the end of this section.

First, we combine (19b) and (52) for the coding gain of
WL-ZF with PPC to obtain the identity

βWL = 2−dWL (dWLΓ(dWL))
−1 [Eun{(un)dWL}

]−1
, (54)
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with which we can further rewrite (52) as

CPPC
WL−ZSIC =

2 (dWLΓ (dWL))
1/dWL ξPPC

γWLT
×[

Eun{(un)dWL}
]1/dWL

[
Eumin{(umin)dWL}

]−1/dWL
.

(55)

Then, following the derivations for the WL-ZF-SIC case, the
coding gain for the CL-ZF-SIC receiver is obtained as

CPPC
CL−ZSIC =

(dCLΓ(dCL))
1/dCL ξPPC

γCLT
×[

Eµn{(µn)dCL}
]1/dCL

[
Eµmin

{(µmin)dCL}
]−1/dCL

,
(56)

where µn = |νn,1|2, µmin = minn{µn}, νn,1 is the first
entry of vector νn, and νn is a unit-length eigenvector of
the complex Wishart matrix H̄H

H̄ . Relating (55) and (56)
for the case NWL = 2NCL − 1 and thus dWL = dCL , d, we
have

CWL−ZSIC

CCL−ZSIC
=

2γCLT

γWLT

[
Eun{(un)d}/Eumin

{(umin)d}
]1/d

[Eµn{(µn)d}/Eµmin{(µmin)d}]1/d
.

(57)
Furthermore, we can show that

Eµn{(µn)d}/Eµmin
{(µmin)d} = (NCL)d, (58a)

Eun{(un)d}/Eµmin
{(umin)d} & (NWL)

d
, (58b)

where & means “asymptotically” for NWL →∞. In particular,
it has been shown in [29] that NCLµmin ∼ µn holds for all
NCL. Hence, we arrive at E

{
(NCLµmin)

d
}

= E
{
µdn
}

, or
equivalently (58a). We can similarly prove (58b), and refer
for the details to [34, Appendix C]. Thus, we obtain

CWL−ZSIC

CCL−ZSIC
&

2γCLT

γWLT

NWL

NCL
=

2γCLT

γWLT

2NCL − 1

NCL
≈ 2L (R) .

(59)
As L(R) → 1 for R → 0 (see (23)), we have
CWL−ZSIC/CCL−ZSIC & 2. That is, in low data-rate scenarios,
the WL-ZF-SIC receiver has a greater coding gain than the CL-
ZF-SIC receiver, which is contrary to our earlier result for the
WL-ZF receiver. This can be explained by the fact that the WL
receiver has more candidate users to choose from for ordering
and thus the coding gain improvement by SIC is considerably
higher for WL than for CL receivers. On the other hand, for
high data-rate scenarios, it is hard to completely compensate
the decrease in coding gain of the WL-ZF receiver, even with
the use of SIC. Consequently, CWL−ZSIC < CCL−ZSIC for
large R.

In summary, as the WL receivers are capable of detecting
more users, they benefit more from SIC than the CL receivers,
which is manifested in terms of the improvement in coding
gain, especially in low-rate scenarios. This improvement is
analogous to the multi-user diversity gain in opportunistic
communications [2]. For this reason, we expect that WL-SIC
compares even more favourably to CL-SIC for transmission
without or with limited power control, since the instantaneous
received powers fluctuate more and thus the system provides
more diversity.
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Fig. 1. CDF of the kth smallest eigenvalue of real-valued central Wishart
matrix XXT with X ∈ Rn×m. Solid lines: Asymptotic approximations
from Theorems 1 and 2. Dashed lines: empirical results from simulation.

V. NUMERICAL RESULTS

In this section, we present numerical performance results
to illustrate (a) the convergence of the asymptotic results in
Theorems 1 and 2, (b) the advantages for various types of WL
receivers compared to their CL counterparts in terms of outage
performance, packet drop-out probability and eventually the
system throughput.

A. CDFs of Smallest Eigenvalues

Theorems 1 and 2 provide the asymptotic result

Fλ1(ε) = Pr(λ1 < ε)

=

√
|J |

Knm · (m− n+ 1)/2
ε(m−n+1)/2 + o(ε(m−n+1)/2)

(60)

for the smallest eigenvalue of real-valued central Wishart
matrices with n ≤ m, where J and Knm are given in The-
orem 2. Fig. 1 shows the asymptotic approximation together
with the empirical result from simulating λ1 (curves labeled
with k = 1) for several combinations of n and m. For
clarity, the x-axis is set to be − log10(ε). We observe that
the asymptotic approximations converge well to the empirical
results as ε→ 0. Fig. 1 also includes the empirical CDF for the
second (k = 2) smallest eigenvalue in the case of n = m = 2.
We note that this CDF curve runs parallel to the one for the
smallest eigenvalue (k = 1) and n = 3 and m = 6, which has
the same polynomial order 1

2k (m− n+ k) = 2, as predicted
by Theorem 1.

B. Outage Performance

For the outage performance evaluation, we consider trans-
mission without power control as an illustrative example. We
generate the power variation term for the ith user as

ξi = βi + ψi dB, (61)
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(b) With perfect power control

Fig. 2. Outage probability vs. transmit SNR for different WL receivers. N =
4 users with data rate R = 2 bits/sec/Hz and a base station with M = 2
receive antennas.

where βi = −120.9 − 37.6 log10(ri) 0 ≤ ri ≤ rcell is the
pathloss model used in the third Generation Partnership Project
(3GPP) standardization [37] for cellular MTC systems, with ri
being the distance in kilometers between user i and the base
station, and rcell = 0.91 km the cell radius. The shadowing
fading factor ψi in dB is a normally distributed random
variable with zero mean and standard deviation 8 dB. We
assume uniformly randomly distributed user locations, so that
the statistical variation of ξi comes from both the shadowing
factor ψi and the distance-dependent pathloss factor βi. The
per-user rate R is fixed for both WL and CL receivers,
which corresponds to the target data rate of the mMTC
user application. Recall that the WL receiver processes one-

dimensional modulated signals while the CL receiver works
with complex-valued modulation. Thus, to ensure the required
rate, if a WL receiver, for instance, adopts a channel code
rate of r with BPSK modulation over a TTI equal to T , the
corresponding CL receiver chosen for comparison will adopt
quaternary PSK (QPSK) with a code rate r/2 over the same
TTI (T ).

Fig. 2(a) and Fig. 2(b) show the analytical and simulated
results4 for the outage probability (10) versus transmit SNR (3)
for the investigated WL receivers without power control and
with perfect power control (PPC), respectively. The scenario
of N = 4 users with a data rate R = 2 bits/sec/Hz and
a base station with M = 2 receive antennas is considered.
The analytical results for WL-ZF, WL-MMSE and WL-ZF-
SIC receivers converge to the simulated curves in performance
range of interest, i.e., at the outage probability of about 10−1 to
10−2. Note that for the WL-MMSE-SIC receiver, the asymp-
totic result is obtained from the lower bound of the coding gain
(50), and hence the simulated curve is below the asymptotic
curve in the high SNR regime. We further observe that, as
it has been shown by the analysis in Section IV, the SIC
operation does not provide an extra diversity gain but increases
the coding gain. Moreover, as pointed out in Section IV-C, the
improvement in coding gain is more significant for the WL-
MMSE than for the WL-ZF detection.

Finally, we compare the performance of WL and CL re-
ceivers based on asymptotic outage probabilities. Fig. 3 shows
the results for M = 2 receive antennas and different numbers
of users NWL for the WL and NCL for the CL case, and
different target rates R. The asymptotic results for the WL-
MMSE-SIC and CL-MMSE-SIC receivers are obtained from
the corresponding lower bounds of the coding gain (see (50)
for the WL case).

For the case of equal number of users, NWL = NCL = 2
in Fig. 3(a), we observe that the diversity gains of all WL
receivers are greater than those of the CL receivers. Therefore,
one can expect that the WL receivers will provide improved
transmission reliability (i.e., lower outage probability) over
their CL counterparts at high SNR.

Next, we consider NWL = 2NCL−1 such that the diversity
gains of WL and CL receivers become identical and compare
the asymptotic outage probabilities for different target data
rates. Figs. 3(b) and 3(c) show the results for NWL =
2NCL − 1 = 3 and a relatively high and a low target rate,
respectively. For the high-rate case with R = 4 bits/sec/Hz, we
observe that the WL receivers experience a decrease in coding
gain, which is less pronounced for the WL-SIC receivers. The
situation changes when the target data rate is decreased to
R = 0.3 bits/sec/Hz. For WL-ZF and WL-MMSE receivers,
the decrease in coding gain compared to CL-ZF and CL-

4When calculating the asymptotic outage probability of WL receivers,
we encounter the statistical expectations in the coding gains (20a), (20b),
(39b) and (50) for the WL-ZF, WL-MMSE, WL-ZF-SIC and WL-MMSE-
SIC receivers, respectively. These expectations can be quickly computed via
the Monte Carlo integration, which needs to generate i.i.d. samples of ξn,
ηWL,n and vn,1 for 1 ≤ n ≤ N . The i.i.d. samples of ξn and ηWL,n can
be easily generated using (61) and (14), respectively. The i.i.d. samples of
{vn,1} can be conveniently drawn from the standard normal distribution (see
[34, Appendix C]).
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(b) NWL = 3, NCL = 2, R = 4 bits/sec/Hz
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(c) NWL = 3, NCL = 2, R = 0.3 bits/sec/Hz
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(d) NWL = 4, NCL = 2, R = 0.3 bits/sec/Hz

Fig. 3. Asymptotic outage probabilities vs. transmit SNR for different WL and CL receivers. The number of receiver antennas at the base station is fixed to
M = 2. The number of users and the target rates vary. The asymptotic results for both WL-MMSE-SIC and CL-MMSE-SIC receivers are obtained from the
corresponding asymptotic lower bounds for the coding gains.

MMSE becomes negligible (see Section III-B). Consequently,
the WL-SIC receivers obtain even improved coding gains
compared to those for the CL-SIC counterparts, which was
predicted by the discussion in Section IV-C.

In Fig. 3(d), the number of WL users is further increased
to NWL = 2NCL = 4, while the target data rate is kept to be
R = 0.3 bits/sec/Hz. We observe that in this case the the WL
receivers have a lower diversity gain than the CL receivers,
which is clearly undesirable at high SNR. We remark that
for all the comparisons above, the rates per user were chosen
identical for WL and CL cases and thus the overall system
rate is constant when NWL = NCL and higher for the WL
scenarios when NWL > NCL. In summary, the numerical
results at high SNR match well with our asymptotic analysis
for both high and low rate scenarios.

The outage probability analysis can be used to determine the
packet drop-out probability and hence the system throughput

[19], which is described in the following subsection.

C. Packet Drop-out Probability and System Throughput

1) Simulation set-up: The simulation set-up for characteriz-
ing the performance of the proposed WL receivers corresponds
to an NB-IoT scenario operating over a system bandwidth of
180 kHz (48 tones with a subcarrier spacing of 3.75 kHz).
We adopt a grant-free access mechanism, where users access
the network in a contention based manner. We consider
open loop power control where each user transmits at the
maximum allowable transmit power (23 dBm) over a single
subcarrier. The path-loss/shadowing follows the 3GPP path-
loss model in [Annex D, [37]]. The TTI for a WL user
is taken to be 32 ms for a transport block (packet) size
is 32 bits. The data arrival process is Poisson with a rate
λa = 4.16 × 10−6 packets/TTI/user. The target data rate for
each user is R = 0.3 bits/s/Hz. The quality of a link is
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Fig. 4. Performance comparison of CL and WL receivers with same TTI.
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Fig. 5. Performance comparison with CL and WL receivers with CL users occupying half TTI.

considered to be good if the packet drop probability is ≤1%.
As mentioned in Section V-B, the WL and CL users adopt
BPSK and QPSK, respectively, and they transmit for the same
TTI. Hence, the code rate of the WL users is set to r, while
that of the CL users is set to r/2 (in order to maintain the
same target rate R).

2) Results: Fig. 4(a) and Fig. 4(b) demonstrate the results
for packet drop probability and system throughput, respec-
tively, computed as per our previous work in [19]. Specifically,
we have considered the best performing receivers for CL and
WL, CL-MMSE-SIC and WL-MMSE-SIC, respectively, and
the simplest WL receiver (WL-ZF). It is evident from Fig. 4(a)
that the number of users supported by CL is around 50k users

per cell, while that using WL is about 500k for M = 1. When
M = 2, CL and WL support around 650k users and 3 million
users per cell, respectively. The improvement obtained in WL
processing is because of its ability to resolve collisions more
effectively than CL.

3) Discussion: Hitherto we have considered that users
transmit over the same duration. If this restriction is relaxed,
the CL users could operate in a mode where the code rate is
equal to that of the WL users, i.e., r, but the transmission rate
is 2R over half the duration (TTI/2) as that of WL users (in
order to maintain the same target rate R). Such a mode would
be advantageous for CL users, since it helps to reduce collision
rates owing to the shorter transmission interval. In this case,
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the outage probability analysis can be done by replacing R
with 2R in the equations corresponding to CL receivers. The
packet-drop and throughput in this case can be analyzed by
using the packet transmission rate as λa/2 per TTI. The results
corresponding to this mode of operation are indicated by the
label CL (half TTI) in Fig. 5. As expected, CL (half TTI)
results in lower packet drop probability when compared to
CL using the same TTI. Consequently, for a packet drop
probability of 1%, the CL (half TTI) supports around 80k
users per cell and 1.2 million users per cell for M = 1 and
M = 2, respectively.

We note that one could choose a larger constellation and re-
duce the transmission interval for WL users too, e.g. the com-
bination of 4-PAM and TTI/2 for WL users. However, even
without this alteration, WL processing supports higher number
of users (500k and 3 million users per cell, respectively)
than CL (half TTI), since it is better at resolving collisions.
Furthermore, we would like to point that an optimization of
the transmission duration would not be suitable for grant-free
transmission. Thus, our analysis and the results above indicate
that the use of real-valued transmission with WL detection for
uplink transmission would support a larger number of users,
i.e., N > M per time-frequency resource.

VI. CONCLUSIONS

In this paper, we have analyzed the outage performance of
various WL receivers in an uplink multi-user MIMO system
with real-valued modulations, in terms of diversity and coding
gains. We prove that WL receivers with NWL real-valued user
signals have a higher diversity gain than their CL counterparts
with NCL complex-valued user signals when NWL < 2NCL−1
and provide the same diversity gain when NWL = 2NCL − 1.
We show that WL receivers with M antennas can support
a maximum number of NWL = 2M users with a positive
diversity gain. Amongst the WL receivers serving N users, we
show that the WL-ZF and WL-MMSE receivers have the same
diversity gain (dWL = M − (N − 1)/2), but different coding
gains. Moreover, the SIC operation with channel-dependent
ordering brings no additional diversity gain to the WL-ZF and
WL-MMSE receivers but increases their coding gains. The
increase in coding gain due to SIC grows as the number of
users increases. Furthermore, through analytical comparisons
and numerical results, we show that the WL receivers are
superior to the CL receivers. For grant-free mMTC (with a
fixed TTI), WL processing results in improved transmission
reliability (higher diversity gain) and user-multiplexing capa-
bility (supporting more users). Finally, we note that the WL
receiver performance has been analyzed for Rayleigh fading
channels. The analysis for more general cases, such as Ricean
fading channels, is expected to be more intricate and will
thus be an interesting direction of work in the near future.
We conclude that WL processing would be beneficial for
numerous mMTC applications, such as, data transfer from
smart metering systems, industrial asset tracking, transport
fleet management, smart buildings, etc. that demand low per-
user data rates and are also delay tolerant while supporting
high user densities.

APPENDIX A
PROOF OF THEOREM 1

We first present three Lemmas that we will use for proving
Theorem 1.

Lemma 1. [26] For an arbitrary n× n matrix Φ(x) whose
(i, j)th entry can be expressed as [Φ(x)]i,j = Φi(xj) for 1 ≤
i, j ≤ n, the following identity holds:∫

Dord

|Φ(x)|dx = Pf[A], (62)

where Dord = {a ≤ x1 ≤ . . . ≤ xn ≤ b} stands for the inte-
gral domain with ordered entries of x = [x1 x2 . . . xn]T ,
|Φ(x)| denotes the determinant of Φ(x) and Pf[A] is the
Pfaffian of the skew-symmetric matrix A. The Pfaffian of skew-
symmetric matrix A is a polynomial in the entries of A whose
square is the determinant |A|, i.e., [Pf(A)]

2
= |A|.

For n even, matrix A is n× n with its (i, j)th entry

ai,j =

∫ b

a

∫ b

a

R(y − x)Φi(x)Φj(y)dxdy, 1 ≤ i < j ≤ n.
(63)

where R(y−x) is equal to 1 for y ≥ x and to −1 otherwise.
For n odd, the skew-symmetric matrix A is (n+ 1)× (n+ 1)
with ai,j given by (63) for 1 ≤ i < j ≤ n. The additional
entries are ai,n+1 = −an+1,i =

∫ b
a

Φi(x)dx for 1 ≤ i ≤ n
and an+1,n+1 = 0.

Lemma 2. [38] Let A ∈ R2m×2m be a skew-symmetric
matrix with its (i, j)th entry ai,j , 1 ≤ i, j ≤ 2m. The Pfaffian
of A can be expressed as

Pf[A] =
∑
σ∈S

sgn(σ)

m∏
i=1

aσ2i−1,σ2i
(64a)

=

m∑
k=1

∑
σ∈Sk

sgn(σ)aσ2k−1,2m

m∏
i=1,i6=k

aσ2i−1,σ2i (64b)

where σ = σ1, σ2, · · · , σ2m is a permutation of the integers
1, 2, ..., 2m, S is the set of all permutations σ satisfying
σ1 < σ3 < · · · < σ2m−1 and σ2i−1 < σ2i for 1 ≤ i ≤ m,
and Sk is the kth subset of S including all permutations
satisfying σ2k = 2m. In (64a) and (64b), the sums are over all
permutations in the set S and Sk, respectively. sgn(σ) denotes
the sign of permutation σ, which equals to either +1 or −1
and is determined by the number of transpositions to obtain
the permutation.

Lemma 3. [25] Let 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn < ∞ be
the ordered eigenvalues of the real-valued central Wishart
matrix XXT ∈ Rn×n, where each entry of X is i.i.d.
drawn from the standard normal distribution. The joint PDF
of λ = [λ1, λ2, · · · , λn]T is expressed as

fλ(φ) = K−1nm |U(φ)|

[
n∏
i=1

e−
1
2φiφ

1
2 (m−n−1)
i

]
, (65)

where φ = [φ1 φ2 . . . φn]
T with 0 ≤ φ1 ≤ φ2 ≤ . . . ≤ φn <

∞, U(φ) ∈ Rn×n is a Vandermonde matrix with the (i, j)th
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entry [U(φ)]i,j = φi−1j and |U(φ)| is its determinant, given
by

|U(φ)| =
n−1∏
i=1

n∏
j=i+1

(φj − φi). (66)

From Lemma 3, we can express the marginal PDF of the
kth ordered eigenvalue as

fλk(φk) =

∫
D+
k

∫
D−
k

fλ(φ)dφ−k dφ+
k

=

∫
D+
k

∫
D−
k

K−1nm |U(φ)|

[
n∏
i=1

e−
1
2φiφ

1
2 (m−n−1)
i

]
dφ−k dφ+

k

(67)

where D−k = {0 ≤ φ1 ≤ . . . ≤ φk−1 ≤ φk} and D+
k =

{φk ≤ φk+1 ≤ . . . ≤ φn <∞} are the integral domains with
ordered eigenvalues φ−k = [φ1 φ2 . . . φk−1]T and φ+

k =
[φk+1 φk+1 . . . φn]T , respectively. Now we can proceed with
the proof of Theorem 1 as follows.

Step 1: Express the joint PDF fλ(φ) as a product of
three parts such that terms only depending on φ−k and
φ+
k are separated.

Step 2: Calculate the integrals in φ−k and φ+
k using

Lemmas 1 and 2.
Step 3: Simplify the result using the polynomial approx-
imation around zero.

a) Step 1: We can write (66) as

|U(φ)| =
∣∣U(φ−k )

∣∣ k−1∏
i=1

n∏
j=k

(φj − φi)×

∣∣U(φ+
k )
∣∣ n∏
j=k+1

(φj − φk)

(68)

and accordingly rewrite the joint PDF in (65) as

fλ(φ) =
∣∣U(φ−k )

∣∣ k−1∏
i=1

e−
1
2φiφ

1
2 (m−n−1)
i

n∏
j=k

(φj − φi)×

K−1nme−
1
2φkφ

1
2 (m−n−1)
k ×∣∣U(φ+

k )
∣∣ n∏
i=k+1

e−
1
2φiφ

1
2 (m−n−1)
i (φi − φk),

(69)

for which the product terms in the second line only depend
on φk and φ+

k .
b) Step 2: We first consider the integration of fλ(φ) with

respect to φ−k . In order to apply Lemma 1, we define

g(φi, φk,φ
+
k ) , e−

1
2φiφ

1
2 (m−n−1)
i

n∏
j=k

(φj − φi) (70)

h(φk,φ
+
k ) , K−1nme−

1
2φkφ

1
2 (m−n−1)
k ×∣∣U(φ+

k )
∣∣ [ n∏

i=k+1

e−
1
2φiφ

1
2 (m−n−1)
i (φi − φk)

]
(71)

and then express the joint PDF as

fλ(φ) = h(φk,φ
+
k )
∣∣U(φ−k )

∣∣ k−1∏
i=1

g(φi, φk,φ
+
k ). (72)

By identifying Φi(xj) in Lemma 1 with xi−1j g(xj , φk,φ
+
k ),

we can calculate the joint PDF of λk and λ+
k =

[λk+1, ..., λn]T as

fλk,λ+
k

(φk,φ
+
k ) =

∫
D−
k

fλ(φ)dφ−k

= h(φk,φ
+
k )

∫
D−
k

∣∣U(φ−k )
∣∣ k−1∏
i=1

g(φi, φk,φ
+
k )dφ−k

= h(φk,φ
+
k )Pf[J(φk,φ

+
k )],

(73)

where the entries of the skew-symmetric matrix J(φk,φ
+
k )

are[
J(φk,φ

+
k )
]
i,j

=

∫ φk

0

∫ φk

0

R(y − x)xi−1g(x, φk,φ
+
k )yj−1g(y, φk,φ

+
k )dxdy

=

∫ φk

0

∫ φk

0

ei,j(x, y)

n∏
s=k

(φs − x)(φs − y)dxdy

(74)

for 1 ≤ i < j ≤ k − 1 and

ei,j(x, y) = R(y − x)e−
1
2xe−

1
2yx

1
2 (m−n−1)+(i−1)×

y
1
2 (m−n−1)+(j−1) . (75)

For odd k, J(φk,φ
+
k ) has size (k−1)× (k−1), and for even

k, J(φk,φ
+
k ) has size k × k, and the additional entries are

given by[
J(φk,φ

+
k )
]
i,k

= −
[
J(φk,φ

+
k )
]
k,i

=

∫ φk

0

xi−1g(x, φk,φ
+
k )dx (76)

for i < k and
[
J(φk,φ

+
k )
]
k,k

= 0.
Inserting (73) into (67) yields the marginal PDF of λk as

fλk(φk) =

∫
D+
k

fλk,λ+
k

(φk,φ
+
k )dφ+

k

=

∫
D+
k

h(φk,φ
+
k )Pf[J(φk,φ

+
k )]dφ+

k , (77)

and we turn to the integration with respect to φ+
k . For this, it

is necessary to expand Pf[J−k (φk,φ
+
k )] via Lemma 2.

For odd k, we apply (64a) to (77) and obtain

fλk(φk) =
∑
σ∈S

sgn(σ)

∫
D+
k

h(φk,φ
+
k )×

(k−1)/2∏
i=1

[
J(φk,φ

+
k )
]
σ2i−1,σ2i

dφ+
k . (78)

Next, to apply Lemma 1, we consider the
expression for J(φk,φ

+
k ) in (74) and define

x , [x1, · · · , x(k−1)/2]T , y , [y1, · · · , y(k−1)/2]T and
Dxy , {0 ≤ x ≤ φk1,0 ≤ y ≤ φk1}, where 0 and 1 are the
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all-zero and all-one vector of length (k − 1)/2, respectively,
and we obtain

(k−1)/2∏
i=1

[
J(φk,φ

+
k )
]
σ2i−1,σ2i

=

∫
Dxy

(k−1)/2∏
i=1

eσ2i−1,σ2i
(xi, yi)

n∏
s=k

(φs − xi)(φs − yi)dxdy

=

∫
Dxy

(k−1)/2∏
i=1

eσ2i−1,σ2i
(xi, yi)(φk − xi)(φk − yi)×

(k−1)/2∏
i=1

n∏
s=k+1

(φs − xi)(φs − yi)dxdy. (79)

Substituting (79) into (78) yields

fλk(φk) =
∑
σ∈S

sgn(σ)

∫
Dxy

(k−1)/2∏
i=1

eσ2i−1,σ2i(xi, yi)×

(φk − xi)(φk − yi)p(φk, xi, yi)dxdy, (80)

where

p (φk, xi, yi)

=

∫
D+
k

h
(
φk,φ

+
k

) (k−1)/2∏
i=1

n∏
s=k+1

(φs − xi) (φs − yi) dφ+
k

= K−1nme−
1
2φkφ

1
2 (m−n−1)
k ×∫

D+
k

∣∣U(φ+
k )
∣∣ n∏
s=k+1

q(φk, φs, xi, yi)dφ
+
k (81)

with

q(φk, φs, xi, yi) =e−
1
2φsφ

1
2 (m−n−1)
s (φs − φk)×

(k−1)/2∏
i=1

(φs − xi)(φs − yi). (82)

We can now apply Lemma 1 to (81) and then obtain

p(φk, xi, yi) = K−1nme−
1
2φkφ

1
2 (m−n−1)
k Pf[J̃(φk, xi, yi)],

(83)
where the concrete expression of the elements of the skew-
symmetric matrix J̃(φk, xi, yi) is not required for subsequent
derivations and thus omitted. Substituting (83) into (80) and
reverting back to single-variate integrals, we finally get

fλk(φk) =K−1nme−
1
2φkφ

1
2 (m−n−1)
k ×∑

σ∈S
sgn(σ)

(k−1)/2∏
i=1

zσ2i−1,σ2i
(φk), (84)

where

zσ2i−1,σ2i
(φk) =

∫ φk

0

∫ φk

0

eσ2i−1,σ2i
(x, y)× (85)

(φk − x)(φk − y)Pf[J̃(φk, x, y)] dxdy.
(86)

For even k, we apply (64b) to (77) and following the
analogous steps as above, obtain

fλk(φk) = K−1nme−
1
2φkφ

1
2 (m−n−1)
k ×

k/2∑
`=1

∑
σ∈S`

sgn(σ)z̃σ2`−1,k(φk)

k/2∏
i=1,i6=`

zσ2i−1,σ2i
(φk), (87)

where

z̃σ2`−1,k(φk) =

∫ φk

0

e−
1
2 tt

1
2 (m−n−1)+σ2`−1−1(φk − t)dt.

(88)
c) Step 3: We consider the polynomial approximation of

fλk(φk) in (84) and (87) around φk = 0. We write the first-
order Taylor-series expansion of Pf[J̃(φk, x, y)] as

Pf
[
J̃ (φk, x, y)

]
= Pf

[
J̃ (0, 0, 0)

]
+D (φk, x, y) (89)

where D (φk, x, y) , Dφφk +Dxx+Dyy+ o (φk) + o (x) +
o (y), with Dφ, Dx and Dy being the partial derivatives of
Pf[J̃(φk, x, y)] with respect to φk, x and y, all evaluated at
0. As φk → 0, it is not hard to show that∫ φk

0

∫ φk

0

ei,j(x, y)(φk − x)(φk − y)dxdy

= αi,jφ
(m−n+1)+i+j
k + o

(
φ
(m−n+1)+i+j
k

)
, (90)

where αi,j is a coefficient determined by ei,j(x, y). Conse-
quently, we have

zσ2i−1,σ2i(φk) =Pf[J̃(0, 0, 0)]ασ2i−1,σ2iφ
(m−n+1)+σ2i−1+σ2i

k

+ o
(
φ
(m−n+1)+σ2i−1+σ2i

k

)
. (91)

Furthermore, the first-order expansion of z̃σ2i−1,σk (φk)
around φk = 0 is given by

z̃σ2`−1,k (φk) =α̃σ2`−1,kφ
1
2 (m−n−1)+σ2`−1+1

k

+ o
(
φ

1
2 (m−n−1)+σ2`−1+1

k

)
(92)

where α̃σ2`−1,k is determined by the integrand in (88).
Then, inserting (91) into (84) yields the polynomial approx-

imation of the marginal PDF of λk for odd k, and using (91)
and (92) in (87) yields the polynomial approximation of the
marginal PDF of λk for even k.

Next, noting that e−
1
2φk = 1 + o (1) and

(k−1)/2∏
i=1

φ
(m−n+1)+σ2i−1+σ2i

k = φ
1
2 (k−1)(m−n+1)+ 1

2k(k−1)
k

(93a)

φ
1
2 (m−n−1)+σ2`−1+1

k

k/2∏
i=1,i6=`

φ
(m−n+1)+σ2i−1+σ2i

k

= φ
1
2 (k−1)(m−n+1)+ 1

2k(k−1)
k (93b)

we obtain

fλk(φk) = K−1nmPf[Jα]φd̃kk + o(φd̃kk ), (94)

where, for odd k, Jα is a (k − 1) × (k − 1) skew-
symmetric matrix with its (i, j)th entry given by [Jα]i,j =
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Pf[J̃(0, 0, 0)]αi,j , and for even k, Jα is k × k, with the
additional entries [Jα]i,k = −[Jα]k,i = α̃i,k for 1 ≤ i ≤ k−1
and [Jα]k,k = 0, and d̃k = 1

2k (m− n+ k − 2) + (k − 1).
Hence, the marginal CDF of λk is polynomially expanded

as
Fλk(φk) = βkφ

dk
k + o(φdkk ), (95)

where

βk = d−1k K−1nmPf[Jα] (96a)

dk =
1

2
k(m− n+ k). (96b)
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