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Abstract—In this work, joint design of fronthaul compression
and precoding is studied for full-duplex (FD) cloud radio access
networks (C-RANs). Multiple uplink (UL) and downlink (DL)
users equipped with multiple antennas communicate with a
control unit (CU) in the “cloud” through a set of multi-antenna
FD radio units (RUs) which are connected to the CU through
limited capacity fronthaul links. In the first part of the paper, we
address the weighted sum-rate maximization problem to compute
the optimal precoding and the quantization noise covariance
matrices. By exploiting the relationship between weighted-sum-
rate maximization and weighted minimum-mean-square-error
(WMMSE) minimization problems, and leveraging the successive
convex approximation (SCA) method, we propose an iterative
algorithm that guarantees convergence to a stationary point. In
the second part of the paper, we address the stochastic sum-rate
maximization problem under fast-fading channels, where only
the statistics of the channel-state-information (CSI) is available.
Casting this non-convex problem as a difference of convex (DC)
problem, an iterative algorithm based on the combination of
stochastic successive upper bound minimization (SSUM) and SCA
approaches that guarantees convergence to a stationary point is
proposed. Numerical results demonstrate the advantage of the
proposed algorithms.

Keywords—Fast fading, fronthaul, full-duplex, MIMO, multi-
user, self-interference.

I. INTRODUCTION

In current wireless communication systems, downlink (DL)
and uplink (UL) channels are designed to operate in half-
duplex (HD) mode, i.e., orthogonal channels. Full-duplex (FD)
communication, which enables UL and DL communication
at the same time slot on the same frequency, is a promising
technique to double the spectral efficiency [1]. Although there
are several designs to deal with the self-interference inherent
in FD radios, due to the imperfections of radio devices, the
self-interference cannot be canceled completely in reality.

On a parallel avenue, cloud radio access networks (C-RANs)
have emerged as a novel mobile network architecture for next-
generation wireless cellular systems that migrates the baseband
operations of a cluster of radio units (RUs) to a centralized
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control unit (CU) via finite-capacity fronthaul links [2], [3].
Since the fronthaul links typically have limited capacity and
are known to impose a formidable bottleneck to the system
performance, it is important to carefully design precoding and
fronthaul compression strategies to achieve a high spectral
efficiency.

The significant potential advantages of FD in the C-RAN
architecture with sufficient fronthaul capacity and appropriate
scheduling was analyzed in [4]. Combining the benefits of FD
transmission at RUs with the FD fronthaul leads to efficient
reuse of RAN spectrum, alleviates the need to obtain dedicated
spectrum for fronthaul, and facilitates hardware implementa-
tion by enabling the use of same hardware for access links and
fronthaul links. While the FD operation can ideally double the
spectral efficiency in a link, the network-level gain of exploit-
ing FD transmission in the fronthaul remains unclear due to the
complicated interference environment, e.g., self-interference
and co-channel interference (CCI) at the fronthaul and access
links [5]. Therefore, the usefulness of an FD fronthaul over
the popular HD fronthaul is not immediately evident. In this
work, we consider an FD C-RAN where RUs operating in FD
mode serve multiple UL and DL users simultaneously, and
connect to a CU via finite-capacity fronthaul links to transfer
the interference management task to be done by the centralized
baseband processing effectively. The contributions of the paper
are as follows:

• The sum-power minimization problem under quality of
service constraints in FD C-RAN systems has been
investigated in [6]. However, single antenna users and
sufficiently high capacity fronthaul links are assumed
in [6]. In this paper, we investigate the impact of finite-
capacity fronthaul links in an FD C-RAN and users
are equipped with multiple antennas. In particular, in
Section III, the weighted sum-rate maximization subject
to finite wired fronthaul rate constraints at each RU
on the UL and DL channels, and power constraints
at the RUs and UL users to find the optimal transmit
beamformers and quantization noise covariance matri-
ces (due to compression) is considered. We employ
an iterative algorithm converging to a stationary point
based on the combination of successive convex approx-
imation (SCA) algorithm [7], [8] and the relationship
between weighted-sum-rate maximization and weighted
minimum-mean-square-error (WMMSE) minimization
problems [9]-[10].

• As discussed in [11], the self-interference channel (even
if through an RF circulator for a single antenna) still
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depends on the positions of the nearby moving reflec-
tors, and thus can be modeled as fast-fading. Unlike
slow fading channels where instantaneous channel state
information (CSI) can be estimated with a reasonable
accuracy, here we do not assume any instantaneous CSI
feedback from the receiver. Instead, we assume that
the receiver feeds the transmitter with statistical CSI
(the mean and variance of the channel). In this case,
the reliability of the FD system could be decreased
due to lack of CSI knowledge in beamforming design
and the reduced number of receive antennas for FD
transmission [12]. Previous works on the design of
fronthaul compression and precoding [2], [5], [6] assume
that the knowledge of the instantaneous CSI is available
at the CU, which may be impractical due to channel
aging, channel estimation errors and nearby reflectors. In
contrast, in the second part of Section III, we consider
a scenario, where only stochastic CSI (distribution of
the channels) is available at the CU and the knowledge
of the statistics of the CSI is used at the transmitter to
design optimal beamforming schedules. The stochastic
(ergodic) sum-rate maximization of the network subject
to finite wired fronthaul rate and power constraints on
the respective entities is solved. An iterative algorithm
converging to a stationary point based on the combina-
tion of stochastic successive upper bound minimization
(SSUM) approach [13] and SCA approach, which solves
a sequence of convex problems obtained by linearizing
the non-convex parts in the original problem [8].

The simulation results show the enhancement of the spectral
efficiency, thanks to the FD operation of RUs, compared to an
HD C-RAN system.

Notation: Matrices and vectors are denoted as bold capital
and lowercase letters, respectively. (·)T is the transpose, and
(·)H is the conjugate transpose. E [·] denotes the statistical
expectation, IN is the N by N identity matrix, and 0N×M
is the N by M zero matrix. tr{·} is the trace, |·| is the
determinant. CM×N denotes the set of complex matrices
with a dimension of M × N , CN

(
µ, σ2

)
denotes complex

Gaussian distribution with mean µ and variance σ2, and
diag{a1, · · · , an} denotes a diagonal matrix with the diagonal
elements given by a1, · · · , an. Finally, σmax (A) is the largest
singular value of matrix A.

II. SYSTEM MODEL

The general architecture of a C-RAN consists of a central-
ized CU, RUs with antennas located at the remote sites and
a fronthaul (wireless or wired) that connects RUs to the CU.
The C-RAN communication can be viewed as a special case
of a relay communication with a wireless first-hop (second-
hop) and a wireless/wired second-hop (first-hop) in the uplink
(downlink) [2], [3]. The RUs are used to provide a high
data rate service for the users with a limited coverage, by
transmitting radio frequency (RF) signals to the users in the
downlink and forwarding the baseband signals from the users
to the CU for centralized processing in the uplink.

In practice, the fronthauls are capacity and time (latency)
constrained, which affect the spectral efficiency gains obtained

by the usage of C-RANs [2]. To overcome the fronthaul
constrains of C-RANs, compression/quantization design over
the constrained fronthaul and precoding/decoding over the RUs
are deemed to be of critical importance. Moreover, beam-
former design taking the constrained fronthaul into account is
important to mitigate interference which results in improved
spectral efficiency and energy efficiency, and reduced power
consumption [2], [3].

In this paper, we assume that the RUs operate in FD mode.
In particular, in the uplink channel, the RUs compress and
forward the signals received from the uplink users to the
centralized CU via the limited-capacity wired fronthaul links.
The centralized CU then performs joint decoding of all uplink
users based on the compressed data received from all RUs.
In the downlink channel, the centralized CU first precodes
the data streams of each downlink user in order to mitigate
both inter-user interference among downlink users and inter-
stream interference among the data streams of a downlink
user. The centralized CU then compresses the precoded sig-
nals and transmits the compressed data to the RUs via the
limited-capacity wired fronthaul links. The RUs decompress
the compressed signal received from the centralized CU and
forwards it to the downlink users on the wireless downlink
channel.

The network-level gain of exploiting FD transmission in the
fronthaul remains unclear due to the complicated interference
environment, e.g., self-interference and CCI at the fronthaul
and access links among the RUs and users. Therefore, the
usefulness of an FD fronthaul over the popular HD fronthaul is
not immediately evident. As shown in [2], [3], the compression
design in both uplink and downlink channels can be trans-
formed into an optimization design of the covariance matrix
of the quantization noises across RUs. Therefore, in this paper,
we jointly optimize the covariance matrix of the quantization
noises across FD RUs and the transmit beamforming matrices
to maximize sum-rate of the uplink and downlink users in the
FD C-RAN system under the fronthaul capacity constraints
and power constraints of the transmitting nodes.

We consider a C-RAN system where a CU is connected to
KR FD RUs serving KUL UL and KDL DL users simultane-
ously through wired finite-capacity fronthaul links as shown in
Fig. 11. The kth FD RU is equipped with Mk transmit and Nk
receive antennas with a total of MDL =

∑KR

k=1Mk transmit
and NUL =

∑KR

k=1Nk receive antennas at the RUs, and the
number of antennas at the kth UL and DL users are Tk and
Rk, respectively. In wired fronthaul, the sum of data streams
of all uplink users should be less than or equal to the transmit
antennas at the uplink users and the sum of receive antennas
of all RUs. In particular,

∑KUL

k=1 d
UL
k ≤

∑KUL

k=1 Tk ≤ NUL.
In the downlink channel, sum of data streams of all downlink
users should be less than or equal to the receive antennas at

1In our analysis, we assume that separate physical (wired) links between
the CU and the RUs for the uplink and downlink communication are used.
The reason is that using the same physical link in the fronthaul for the uplink
and dowlink can result in co-channel interference, which may lead to more
constraint on the already existing capacity constraint of the non-ideal fronthaul
links. The usage of separate physical links between the CU and the RUs in
FD systems have also been considered in [14].
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Fig. 1. Full-duplex cloud radio access network. The solid and dashed lines
refer to UL and DL transmission, respectively.

the downlink users and the sum of transmit antennas of all
RUs. In particular,

∑KDL

k=1 dDLk ≤
∑KDL

k=1 Rk ≤MDL. Let us
denote SUL, SDL and SRU as the set of all UL users, DL
users, and RUs, respectively.

A. Downlink System
In the DL system, the transmit signal vector at the CU

x̃DL =
[(

x̃DL1

)T
, . . . ,

(
x̃DLKR

)T ]T ∈ CMDL×1 is expressed
as

x̃DL =

KDL∑
k=1

VDL
k sDLk . (1)

Here VDL
k ∈ CMDL×dDL

k denotes the precoding matrix for
the data symbol of the kth DL user represented as sDLk ∈
CdDL

k ×1 ∼ CN
(
0, IdDL

k

)
, where dDLk is the number of data

streams destined to the kth DL user, k ∈ SDL. The vector
transfered from the CU to the ith RU is the ith subvector of
x̃DL denoted as x̃DLi = EH

i x̃DL, where Ei is defined as

Ei =

[
0T∑i−1

k=1Mk×Mi
, ITMi×Mi

, 0T∑KR
k=i+1Mk×Mi

]T
.

The CU compresses the baseband signal x̃DLi by quantizing
and forwards on the fronthaul links to the corresponding RUs.
The received signal at the ith RU is given as

xDLi = x̃DLi + qDLi , i ∈ SRU , (2)

where qDLi ∼ CN
(
0, ΥDL

i

)
is the quantization noise at the

ith RU in the DL channel.
Similar to [15], [16], we assume that the signals are

compressed independently so that the quantization noises of
different RUs are uncorrelated. The independent quantization
noise across RUs can be realized via separate quantizers for
the signals of different RUs2.

2Note that the possibility to leverage quantization noise correlation across
the RUs via joint quantization has been explored in [17] for static channels.

The quantization and forwarding scheme is usually stud-
ied under an information-theoretical Gaussian test channel
model [2]. According to rate-distortion theory, the Gaussian
quantization test channel has a quantization noise modelled as
an independent Gaussian random variable with variance linked
to the test channel capacity [18].

Given (2), the DL fronthaul rate and power constraints at
the ith RU are given, respectively, as

log

∣∣∣∣∣EH
i

KDL∑
k=1

VDL
k

(
VDL
k

)H
Ei + ΥDL

i

∣∣∣∣∣
− log

∣∣∣ΥDL
i

∣∣∣ ≤ CDLi , i ∈ SRU , (3)

tr

{
EH
i

KDL∑
k=1

VDL
k

(
VDL
k

)H
Ei + ΥDL

i

}
≤ PDLi , i ∈ SRU(4)

where CDLi and PDLi are the DL fronthaul rate and power
constraints at the ith RU, respectively.

The RUs decompress the received signal from the CU and
forward it to the downlink users3. The received signal at the
kth DL user is expressed as

yDLk = HDL
k xDL +

KUL∑
l=1

HDU
kl xULl + nDLk , k ∈ SDL, (5)

where HDL
ki ∈ CRk×Mi represents the channel matrix from

the ith RU to the kth DL user, and the stacked matrix
HDL
k ∈ CRk×MDL

is denoted as HDL
k =

[
HDL
k1 , . . . ,H

DL
kKR

]
.

Moreover, HDU
kl ∈ CRk×Tl denotes the co-channel interfer-

ence (CCI) channel from the lth UL user to the kth DL
user. The stacked transmit vector is denoted as xDL =[(

xDL1

)T
, . . . ,

(
xDLKR

)T ]T ∈ CMDL×1, and xULl ∈ CTl×1

is the transmit signal vector of the lth UL user. Finally,
nDLk ∼ CN

(
0, σ2

DLIRk

)
denotes the additive white Gaussian

noise (AWGN) at the kth DL user.
Given (5), the achievable rate at the kth DL user, k ∈ SDL

is given as

RDLk = log
∣∣∣HDL

k VDL
k

(
VDL
k

)H (
HDL
k

)H
+ ΣDL

k

(
ṼDL
k , Υ̃

DL
, ˜HDL

k

)∣∣∣
− log

∣∣∣ΣDL
k

(
ṼDL
k , Υ̃

DL
, H̃DL

k

)∣∣∣ , (6)

where ΣDL
k

(
ṼDL
k , Υ̃

DL
, H̃DL

k

)
denotes the interference-

plus-noise covariance matrix at the kth DL user, and is
given at the top of the following page. In (6), the function

3The RUs operating in FD mode are similar to the decode-and-forward (DF)
FD relay nodes, which have been studied extensively in the literature. As in
the case for DF FD relay nodes, in our scheme, the FD RU is not receiving
from the CU and transmitting to the downlink users the same data streams
simultaneously. There is a processing delay associated with the decoding of the
signals, which we have omitted as the final optimization will not be affected
(i.e., independent of the processing delay). Dropping the processing delay
in optimization problems associated with the FD systems can be also seen
in [19]-[26].
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ΣDL
k

(
ṼDL
k , Υ̃

DL
, H̃DL

k

)
= HDL

k

 KDL∑
l=1,l 6=k

VDL
l

(
VDL
l

)H
+ Υ̃

DL

(HDL
k

)H
+

KUL∑
l=1

HDU
kl VUL

l

(
VUL
l

)H(
HDU
kl

)H
+ σ2

DLIRk
,

ΣUL
k

(
ṼUL
k , Υ̃

UL
, H̃UL

k

)
=

KUL∑
l=1,l 6=k

HUL
l VUL

l

(
VUL
l

)H (
HUL
l

)H
+ HUD

(
KDL∑
l=1

VDL
l

(
VDL
l

)H
+ Υ̃

DL

)(
HUD

)H
+ Υ̃

UL
+ σ2

ULINUL .

variables are denoted as Υ̃
X

= diag
{

ΥX
1 , . . . ,Υ

X
KR

}
, X ∈

{UL,DL}, ṼDL
k =

[{
VUL
l

}KUL

l=1
,
{
VDL
l

}KDL

l=1,l 6=k

]
, and

H̃DL
k =

[{
HDU
kl

}KUL

l=1
,HDL

k

]
.

B. Uplink System

In the UL channel, the received signal at the ith RU is given
as

yULi =

KUL∑
k=1

HUL
ik VUL

k sULk +

KR∑
j=1

HUD
ij xDLj + nULi , i ∈ SRU(7)

where VUL
k ∈ CTk×dUL

k denotes the precoding matrix for
the data symbol of the kth UL user represented as sULk ∈
CdUL

k ×1 ∼ CN
(
0, IdUL

k

)
, where dULk is the number of data

streams of the kth UL user. Here, HUL
ik ∈ CNi×Tk represents

the channel matrix from kth UL user to the ith RU, and
HUD
ij ∈ CNi×Mj represents the residual self-interference

channel matrix from the jth RU to the ith RU. Finally, the
vector nULi ∼ CN

(
0, σ2

ULINi

)
denotes the AWGN at the ith

RU. The power constraint at the kth UL user is given as

tr
{

VUL
k

(
VUL
k

)H} ≤ PULk , k ∈ SUL, (8)

where PULk is the maximum allowed transmit power at the kth
UL user.

Upon receiving the signal (7), the ith RU forwards the
compressed version of the signal (7) to the CU, given as

ỹULi = yULi + qULi , i ∈ SRU , (9)

where qULi ∼ CN
(
0, ΥUL

i

)
is the quantization noise at the

ith RU in the UL channel. Given (9), the CU can recover the
signal of the ith RU only when the following UL fronthaul
rate condition is satisfied:

log
∣∣∣ΦUL

i + ΥUL
i

∣∣∣− log
∣∣∣ΥUL

i

∣∣∣ ≤ CULi , i ∈ SRU , (10)

where CULi is the UL fronthaul rate constraint at the ith RU,
and ΦUL

i is the covariance matrix of the received signal yULi

in (7) given as

ΦUL
i =

KUL∑
k=1

HUL
ik VUL

k

(
VUL
k

)H (
HUL
ik

)H
+ σ2

ULINi

+ H̃UD
i

(
KDL∑
k=1

VDL
k

(
VDL
k

)H
+ Υ̃

DL

)(
H̃UD
i

)H
,

where H̃UD
i =

[(
HUD
i1

)
, . . . ,

(
HUD
iKR

)]
.

Stacking the received signal vectors at the CU as ỹUL =[(
ỹUL1

)T
, . . . ,

(
ỹULKR

)T ]T
, and applying the linear minimum

mean squared error (MMSE) decoding, the achievable rate for
kth UL user is given as [16]:

RULk = log
∣∣∣HUL

k VUL
k

(
HUL
k VUL

k

)H
+ ΣUL

k

(
ṼUL
k , Υ̃

UL
, H̃UL

k

)∣∣∣
− log

∣∣∣ΣUL
k

(
ṼUL
k , Υ̃

UL
, H̃UL

k

)∣∣∣ , (11)

where ΣUL
k

(
ṼUL
k , Υ̃

UL
, H̃UL

k

)
denotes the interference-

plus-noise covariance matrix and is expressed at the
top of the page. Here, the stacked channel matrices
in ΣUL

k

(
ṼUL
k , Υ̃

UL
, H̃UL

k

)
are denoted as HUL

k =[(
HUL

1k

)T
, . . . ,

(
HUL
KRk

)T ]T
and HUD =

[
HUD

1 , . . . ,HUD
KR

]
,

where HUD
j =

[(
HUD

1j

)T
, . . . ,

(
HUD
KRj

)T ]T
.

Moreover, the function variables are denoted
as ṼUL

k =
[{

VUL
l

}KUL

l=1,l 6=k ,
{
VDL
l

}KDL

l=1

]
, and

H̃UL
k =

[{
HUD,

{
HUL
l

}KUL

l=1,l 6=k

}]
.

III. JOINT DESIGN OF FRONTHAUL COMPRESSION AND
PRECODING

As discussed in Section II, the design of covariance matrix
of quantization noises across all RUs is important to overcome
the capacity constrains of the fronthaul links. Moreover, the
precoding design taking the constrained fronthaul into account
is important to mitigate the interference among RUs and users
which results in improved spectral efficiency. Therefore, in this
section, we jointly optimize the precoding and quantization
noise covariance matrices to maximize the sum-rate of the
uplink and downlink users in the FD C-RAN system subject
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to power constraints in (4) and (8), and wired fronthaul rate
constraints in (3) and (10). We consider two scenarios, i) the
CU has perfect instantaneous information about the channel
matrices, where the design of the precoding matrix and the
covariance matrix of quantization noises can be adapted to
the channel realization, and ii) the CU is only aware of the
stochastic CSI, i.e., distribution of the channel matrices such
as mean, variance, spatial correlation of the channels. The
knowledge of the statistics of the CSI is used at the CU to
design optimal precoding matrices and covariance matrices of
quantization noises. The CSI acquisition is practically limited
by how fast the channel conditions are changing. In fast
fading systems where channel conditions vary rapidly under
the transmission of a single information symbol, only statistical
CSI is reasonable. On the other hand, in slow fading systems,
instantaneous CSI can be estimated with reasonable accuracy
and can be used in transmission adaptation for some time
before being outdated.

A. Instantaneous CSI
In this section, we jointly optimize the precoding and quan-

tization noise covariance matrices to maximize the weighted
sum-rate of the FD C-RAN system subject to power constraints
in (4) and (8), and fronthaul rate constraints in (3) and (10).
The problem is formulated as:

max
V,Υ

KDL∑
k=1

αDLk RDLk +

KUL∑
k=1

αULk RULk (12a)

s.t. (3), (4), (8), (10), (12b)
ΥX
i � 0, i ∈ SRU , X ∈ {UL,DL} , (12c)

where αXk denote the weights representing the priorities as-
sociated with the mobile users. Here, the optimization vari-
ables V ,

{
VX
k : ∀k ∈ SX , X ∈ {UL,DL}

}
and Υ ,{

ΥX
i : ∀i ∈ SRU , X ∈ {UL,DL}

}
denote the set of all

precoding and quantization noise covariance matrices, respec-
tively.

Since the objective function (12a), and the fronthaul con-
straints (3) and (10) are non-convex, solving the problem (12)
is challenging. To that end, firstly, we will use Lemma 1, which
is described below, to approximate the fronthaul constraints (3)
and (10), and secondly apply the WMMSE approach in [9],
[10] to approximate the objective function (12a) in a MMSE
matrix form. Finally, we will use the SCA algorithm [7], [8]
in order to find a suboptimal solution of (12) by solving a
sequence of resulting approximate problems iteratively.

Before we move on, we will first state the following lemma
obtained via Fenchel conjugate arguments [27].

Lemma 1: Let d be any integer and E ∈ Cd×d be any posi-
tive definite Hermitian matrix. Consider the function f (W) =
log |W| − tr {EW}+ d. Then,

log
∣∣E−1∣∣ = max

W∈Cd×d,W�0
f (W) .

From Lemma 1, we have the inequality f (W) ≤ log
∣∣E−1∣∣,

and the equality is achieved at the optimal W̃ = E−1. Using

this inequality, the fronthaul rate constraints in (3) and (10)
can be rewritten as

tr

{(
ΘDL
i

)−1(
EH
i

KDL∑
k=1

VDL
k

(
VDL
k

)H
Ei + ΥDL

i

)}
+ log

∣∣∣ΘDL
i

∣∣∣− log
∣∣∣ΥDL

i

∣∣∣ ≤ CDLi +Mi, i ∈ SRU ,(13)

tr
{(

ΘUL
i

)−1 (
ΦUL
i + ΥUL

i

)}
+ log

∣∣∣ΘUL
i

∣∣∣
− log

∣∣∣ΥUL
i

∣∣∣ ≤ CULi +Ni, i ∈ SRU . (14)

The constraints (3) and (10) are equivalent to (13) and (14),
respectively when the auxiliary matrices are

ΘDL
i = EH

i

KDL∑
k=1

VDL
k

(
VDL
k

)H
Ei + ΥDL

i , (15)

ΘUL
i = ΦUL

i + ΥUL
i . (16)

Now we approximate the objective function (12a) using the
WMMSE approximation. Let UUL

k ∈ CNUL×dUL
k and UDL

k ∈
CRk×dDL

k be the linear receiver applied at the CU and kth
DL user, respectively. By applying Lemma 1, the following
relationship for the rates in (6) and (11) was established in [9],
[10]:

RXk = max
UX

k ,W
X
k

(
log
∣∣WX

k

∣∣− tr
{
FXk WX

k

}
+ dXk

)
, (17)

where WX
k ∈ CdXk ×dXk is the weight matrix, and FXk is the

MSE matrix defined as

FXk =
((

UX
k

)H
HX
k VX

k − IdXk

)((
UX
k

)H
HX
k VX

k − IdXk

)H
+
(
UX
k

)H
ΣX
k

(
ṼX
k , Υ̃

X
, H̃X

k

)
UX
k . (18)

Using the fronthaul rate approximations in (13) and (14),
objective function reformulation (17) , the weighted sum-rate
maximization problem (12) can be reformulated as:

max
V,Υ,U
W,Θ

KDL∑
k=1

αDLk
(
log
∣∣WDL

k

∣∣− tr
{
FDLk WDL

k

})
+

KUL∑
k=1

αULk
(
log
∣∣WUL

k

∣∣− tr
{
FULk WUL

k

})
(19a)

s.t. (4), (8), (12c), (13), (14), (19b)

where (U,W,Θ) are the additional optimization variables,
and (U,W) ,

{(
UX
k ,W

X
k

)
: ∀k ∈ SX , X ∈ {UL,DL}

}
denote the set of all receive beamforming and weight matrices,
and Θ ,

{
ΘX
i : ∀i ∈ SRU , X ∈ {UL,DL}

}
denote the set

of all auxiliary matrices.
Although the optimization problem (19) is still non-convex,

it is component-wise convex, i.e., it is convex with respect
to any one of the optimization variables when the other
optimization variables are fixed. In particular, when the other
variables are fixed, the optimal auxiliary matrices is given
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in (15) and (16); the optimal receive beamforming matrix is
MMSE receiver given as

ŨX
k =

(
HX
k VX

k

(
HX
k VX

k

)H
+ ΣX

k

)−1
HX
k VX

k , (20)

and the optimal weight matrix is given as

W̃X
k =

(
FXk
)−1

. (21)

The steps of the proposed algorithm4 is illustrated in Algo-
rithm 1.

Algorithm 1 Weighted-Sum-Rate Maximization Algorithm
1: Set the iteration number n = 0 and initialize the precoding V[n] ← ε1 and the

quantization noise covariance matrices Υ[n] ← I , ε = 0.001.
2: repeat
3: n← n+ 1.
4: Update Θ[n] from (15) and (16).
5: Update the receive matrices U[n] from (20).
6: Update the weight matrices W[n] from (21).
7: Update the precoding V[n] and the quantization noise covariance matrices Υ[n]

by solving the convex problem (19) when Θ[n], U[n], and W[n] are fixed.
8: until convergence or maximum number of iterations is reached.

The proposed algorithm in Algorithm 1 yields a non-
decreasing sequence of objective values for problem (19).
Particularly, due to the use of convex approximations at each
iteration of Algorithm 1, the optimal solution obtained at
iteration n is a feasible point of the convex problem at iteration
n + 1. Therefore, the objective value for (19) obtained at
iteration n + 1 is equal to or larger than that of at iteration
n. This results in a non-decreasing sequences of objectives
for (19). Moreover, since the objective is upper bounded due
to the power constraints, the iterative algorithm converges.

B. Statistical CSI
In this section, we jointly optimize the precoding and

quantization noise covariance matrices to maximize the ergodic
sum-rate of the FD C-RAN system subject to power constraints
in (4) and (8), and fronthaul rate constraints in (3) and (10)
under the knowledge of statistical CSI. To this end, we first
denote QX

k = E
[
VX
k

(
VX
k

)H]
. The statistical problem is

formulated as:

max
Q,Υ

KDL∑
k=1

E
[
RDLk

]
+

KUL∑
k=1

E
[
RULk

]
(22a)

s.t. (3), (4), (8), (12c), (22b)

E
[
log
∣∣∣ΦUL

i + ΥUL
i

∣∣∣]− log
∣∣∣ΥUL

i

∣∣∣
≤ CULi , i ∈ SRU , (22c)

QX
k � 0, k ∈ SX , X ∈ {UL,DL} , (22d)

where the variable Q denotes Q ,{
QX
k : ∀k ∈ SX , X ∈ {UL,DL}

}
. The expectation

in (22a) is taken over the distribution of the channels.

4Please note that if the used initialization matrices violate the maximum
power constraint for a users or a BS, they are scaled down to comply with
the power limitations.

Observing that the objective function (22a), and the fron-
thaul constraints (3) and (10) are in difference of convex (DC)
form, we can apply an iterative algorithm based on SSUM [13],
[28] and SCA methods [7], [8], which solves a sequence of
locally tight (stochastic) convex lower bounds by linearizing
the non-convex functions in the optimization problem (22) at
each iteration [8].

The proposed SSUM algorithm has two nested loops. At
each outer iteration n, a new channel matrix realization
H[n] is drawn based on the availability of stochastic CSI at
the CU, where H includes all the channels in the network
under investigation. The outer loop aims at maximizing a
stochastic lower bound on the objective function. The inner
loop tackles the nonconvex DC constraints (3) and (10) via
the SCA algorithm, i.e., by applying successive locally tight
convex lower bounds to the left-hand side of the constraints.
Specifically, at the rth inner iteration of the nth outer iteration,
the convex problem (23) given at the top of the following page
is solved. In (23), the function f(A,B) is the first-order Taylor
approximation of log-det function, and is given as

f(A,B) , log |B|+ 1

ln 2
tr
{
B−1 (A−B)

}
.

The idea of convex approximation in wireless communi-
cations has been previously used in [29], [30]. In our opti-
mization problem, the fronthaul constraints (3) and (10) are in
the form log |A + B| − log |B|. This function is non-convex
due to the presence of the second term log |B|, which is
indeed a concave function. An approximate solution is found
in [29] via an iterative scheme where the term log |B| is
approximated using a first-order Taylor expansion. With the
approximation, the nonconvex part of the optimal problem
can locally linearized to its first-order Taylor expansion. Thus,
the nonconvex optimization problem can be iteratively solved
through successive convex programming of its convexified
version.

The steps of the proposed algorithm is illustrated in Algo-
rithm 2.

Algorithm 2 Sum-Rate Maximization Algorithm under Statistical
CSI
1: Set the iteration number n = 0 and initialize the precoding V[n] ← ε1 and the

quantization noise covariance matrices Υ[n] ← I , ε = 0.001.
2: repeat
3: n← n+ 1.
4: Generate a channel matrix realization H[n] using the available stochastic CSI.
5: Set the iteration number r = 0 and initialize the source covariance Q[n,r] =

Q[n−1] and the quantization noise covariance matrices Υ[n,r] = Υ[n−1].
6: repeat
7: r ← r + 1.
8: Update Q[n,r] and Υ[n,r] by solving the problem (23).
9: until convergence.

10: Update Q[n] = Q[n,r] and Υ[n] = Υ[n,r]

11: until convergence or maximum number of iterations is reached.
12: Calculate the precoding matrices VX

k from the source covariance matrices QX
k via

rank reduction method [31] as VX
k = λX

k g
(
VX

k , d
X
k

)
, ∀k ∈ SX , X ∈

{UL,DL}, where the function g (V, d) is a unitary matrix containing the d
eigenvectors as columns corresponding to the largest d eigenvalues of the semi-
positive definite matrix V, and λX

k is the normalization factor computed from the
power constraints.

Remarks: In addition to the sum-rate maximization de-
sign under power constraints considered in subsections III-A
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max
Q,Υ

1

n

∑
X∈{UL,DL}

KX∑
k=1

n∑
l=1

(
log

∣∣∣∣HX,[l]
k QX

k

(
H

X,[l]
k

)H
+ ΣX

k

(
Q̃X

k , Υ̃
X
, H̃

X,[l]
k

)∣∣∣∣
− f

(
ΣX

k

(
Q̃X

k , Υ̃
X
, H̃

X,[l]
k

)
,ΣX

k

(
Q̃

X,[l−1]
k , Υ̃

X,[l−1]
, H̃

X,[l]
k

)))
(23a)

s.t. f

(
EH

i

KDL∑
k=1

QDL
k Ei + ΥDL

i ,EH
i

KDL∑
k=1

Q
DL,[n,r−1]
k Ei + Υ

DL,[n,r−1]
i

)
− log

∣∣∣ΥDL
i

∣∣∣ ≤ CDL
i , i ∈ SRU , (23b)

n∑
l=1

f
(
Φ

UL,[l]
i + ΥUL

i ,Φ
UL,[l−1]
i + Υ

UL,[l−1]
i

)
− log

∣∣∣ΥUL
i

∣∣∣ ≤ CUL
i , i ∈ SRU , (23c)

tr

{
EH

i

KDL∑
k=1

QDL
k Ei + ΥDL

i

}
≤ PDL

i , i ∈ SRU , tr
{

QUL
k

}
≤ PUL

k , k ∈ SUL, (12c), (22d). (23d)

and III-B, we can also include a target rate for each UL/DL
user as a constraint. The motivation behind this design as will
be seen in the simulations is that even if FD outperforms HD
in terms of total throughput, this does not guarantee that all
UL/DL users are served evenly in every time slot. In some
instances an UL user may achieve a lower rate in order to
reduce the amount of interference present in the system. To that
end, QoS-constrained optimization problem is reformulated as

max
V,Υ

KDL∑
k=1

αDLk RDLk +

KUL∑
k=1

αULk RULk (24a)

s.t. (3), (4), (8), (10), (24b)
ΥX
i � 0, i ∈ SRU , X ∈ {UL,DL} , (24c)

RDLk ≥ rDL, k = 1, . . . ,KDL, (24d)
RULk ≥ rUL, k = 1, . . . ,KUL, (24e)

where rDL and rUL are the minimum data rates required
by the DL and UL users, respectively. The key difficulty in
solving the problem (24) is the rate constraints (24d) and (24e).
However, we can use the local approximation used in (23a) to
approximate these nonlinear and non-concave functions and
then solve the problem (24) successively using SCA, which
we will not repeat due to space limitations. The simulations
results corroborate the importance of fairness introduced with
this QoS constrained problem5.

Remarks: The acquisition of an accurate CSI in an C-RAN
communication is vital to the optimal design of precoding
matrices and covariance matrices of quantization noises. In
this paper, the proposed algorithms for wired fronthauls (Sec-
tion III) assume the availability of perfect CSI at the centralized
CU. In particular, all the channel matrices are estimated and
reported to the CU. Similar to the FD channel estimation
in [19], [20], we assume that before the FD data transmission

5Please note that the previously given initialization in Algorithm 1 may lead
to infeasibility, due to the additional QoS constraints. In this regard, the algo-
rithm is firstly executed by replacing the objective with the rate deficiencies.
For a standard optimization problem, min

x
f(x) s.t. gi(x) ≥ 0, ∀i, this is

formulated as: min
x,ci

∑
i ci s.t. gi(x)+ci ≥ 0, ci ≥ 0, where ci represents

the rate deficiencies. The algorithm declares infeasibility if converges to a non-
zero objective. The obtained solution will then serve as an initialization point.
For the variations of the popular penalty methods please see [32].

period, an HD channel training period (e.g., time-division
duplexing (TDD)) is used to exploit the existing channel
estimation methods and to estimate the additional interference
terms introduced with the FD data transmission (e.g., self-
interference, co-channel interference). For example, an RU
can estimate the channel matrices of uplink and downlink
users based on standard uplink training. The channel matrices
between the downlink users and the RUs can be estimated by
the RUs using the reciprocity existing in TDD systems. Upon
the channel estimation of the users, the RU can forward (or
feed back) the estimated channel to the CU via the fronthaul
links.

As C-RAN systems are similar to relaying systems, the
existing literature on the channel estimation of the relaying
systems can be reused for the channel estimation of the C-
RAN systems. An overview of channel estimation techniques
proposed for C-RANs has been discussed in [33]. For example,
the superimposed training scheme in [34] is a promising
solution to estimate the channels in C-RANs, in which the RU
superimposes its own training sequence on the received one
from the users such that the individual CSIs can be estimated
at the CU.

Although we have assumed perfect CSI acquisition in our
work, obtaining perfect CSI is very challenging resulting in
estimation errors, quantization errors, and feedback delays.
Therefore, an analysis of FD C-RANs under the assumption
of imperfect CSI is an interesting direction to explore.

IV. SIMULATION RESULTS

In this section, we compare the sum-rate performance of
the proposed FD C-RAN scheme with that of the HD C-RAN
scheme, under various system conditions. Unless otherwise
stated, the following parameters are used in our simulations:
KR = 4, Mk = Nk = 2, ∀k ∈ SRU , KDL = KUL = 4,
αULk = αDLk = 1, and Tk = Rk = 2, ∀k. Moreover, we
assume that every RU and every UL user have the same power
constraints, i.e, PDLi = PDL = 26 dBm, i ∈ SRU and
PULk = PUL = 23 dBm, k ∈ SUL, and the noise powers
in both UL and DL channels are equal σ2

DL = σ2
UL = −107

dBm. The fronthaul constraints are assumed to be the same for
all RUs in both UL and DL channels, i.e., CXi = CFH = 107

bits/sec, ∀i ∈ SRU , X ∈ {UL,DL}, and the wireless system
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Fig. 2. The simulated setup. RUs are located at the center of each small
square (50× 50), where the UL and DL users are located randomly.
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Fig. 3. Sum rate [bits/sec./Hz] vs. algorithm iterations. The convergence is
obtained in average within 8-12 optimization iterations.

operates on the bandwidth of 10 MHz. The users are randomly
located in a square area of side length 100 m. Dividing this
square into 4 equal small squares with a side length 50m,
each of KR = 4 RUs is located at the center of these 4
small squares, see Fig. 2. The position of the UL and DL
users within each square area is chosen randomly for each
channel realization. For the self-interference channel, we adopt
the model in [1], in which the self-interference channel HUD

ii

at the ith RU is distributed as Rician with mean
√

σ2
SIκ

1+κ and

variance σ2
SI

1+κ , where κ and σ2
SI represent the Rician factor and

the residual self-interference power, respectively. The rest of
the channel matrices follows a complex Gaussian distribution
with path-loss defined as PL = 22.9 + 37.5 log10 d in dB
where d is the distance in meters between relevant entities. For
the statistical design, we assume a channel estimation error
model in the form of H = Ĥ + Z, where H is the actual
channel and Ĥ is the estimated channel. In this regard, Z
represents the estimation error such that Z = Z0Z̃, where
the elements of Z̃ are zero-mean complex Gaussian i.i.d.
with unit variance, and Z0 represents the matrix with all
elements equal to 0.1, and builds the spatial correlation for
the estimation error. Unlike the FD setup, where UL and DL
users can be active simultaneously, a time-division-duplexing
(TDD) scheme is considered for an equivalent HD setup to
connect the UL and DL users in the subsequent time slots.
In the Figs. 3-6, the resulting sum rate of the users are depicted

−150 −125 −100 −75 −50
0

5

10

15

20

25

30

35

40

σ2
SI [dB]

S
u
m

R
at
e
[b
it
s/
se
c.
/H

z]

 

 

FD
FD−DL
FD−UL
HD
HD−DL
HD−UL

FD

HD

Fig. 4. Sum rate [bits/sec./Hz] vs. residual self-interference intensity. The
sum rate of the FD system decreases as σ2

SI increases.
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Fig. 5. Sum rate [bits/sec./Hz] vs. available fronthaul capacity. Higher CFH
results in a higher network sum rate in both UL and DL.
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Fig. 6. Sum rate [bits/sec./Hz] vs. available power (PUL = PDL). A higher
transmit power results in a higher network performance.

in terms of the different system parameters, evaluating both FD
and the HD systems. In this respect, ”FD-DL”, ”FD-UL” and
”FD” represent the network sum rate for DL, UL and for all
users, respectively. Moreover, ”HD-DL”, ”HD-UL” and ”HD”
respectively represent the same concept for the equivalent HD
setup6. Both UL and DL rates, as well as the sum user rate of

6The HD system benchmarks for both exact CSI and the statistical cases are
obtained by separating the UL and DL communications in two subsequent time
periods, and to apply the Algorithms 1, 2 in order to obtain the solution. This is
implemented by adding zero-enforcing constraints on the transmit precoders,
i.e., V = 0 within the optimization routines, for the communications which
are turned-off due to the HD operation. The time periods for the UL and DL
are assumed to be equal.
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the network are evaluated. For each realization of the network
the location of UL and DL users are chosen randomly, and
the channels are randomly obtained as described. The resulting
performance is then averaged over 100 channel realizations.

As explained in Algorithm 1, due to the non-convex nature
of the resulting optimization problem an iterative solution is
proposed with a guaranteed convergence. In this regard, the
average convergence behavior of the network is depicted in
Fig. 3. As observed, the convergence is obtained in average
after 8-12 number of iterations. Note that the convergence
speed is an important factor regarding the efficiency of the
optimization method in terms of the computational complexity.

In Fig. 4, the resulting sum rate for UL and DL users are
depicted for different levels of the residual self-interference
intensity. It is observed that as σ2

SI increases the resulting
sum rate decreases for the FD system, where the performance
of the HD system remains unchanged, as it employs a TDD
scheme to avoid simultaneous operation of UL and DL users.
On the other hand, it is observable that as σ2

SI increases, the
performance of overall FD system reaches close to that of the
HD system. This is perceivable, since for a system with high
residual self-interference intensity, only one communication
direction is activated to avoid severe self-interference effect.
Moreover, the DL communication links has the advantage of
higher transmit power and the coordinated transmit beamform-
ing compared to the UL counterparts which results in a higher
sum rate for DL users7.

In Fig. 5, the resulting sum rate is depicted for different
levels of fronthaul capacity. Since the fronthaul connection is
the necessary connection link from the RUs to the CU, the
limitations on fronthaul link results in a severe damage on the
overall network performance. In this respect, it is observable
that as CFH increases the user sum rate increases in both FD
and HD setups8. Nevertheless, the resulting sum rate saturates
after a certain point, due to the other limitations on the network
performance, i.e., noise, interference. Moreover, an FD system
can simultaneously make use of fronthaul links in both UL and
DL. This results in a higher relative gain of an FD system,
compared to the TDD-based HD counterpart, when the value
of CFH becomes small.

In Fig. 6, the impact of the maximum transmit power on the
system sum rate is depicted. As expected, a higher transmit
power results in a higher network performance. On the other
hand, as PUL = PDL increases, the relative gain of the FD
setup in comparison to the HD counterpart decreases. This is
since, a higher transmit power results in a higher interference
intensity, e.g., self-interference and CCI, which are inherent
to the simultaneous operation in UL and DL, and pushes the
optimal operation of an FD system towards a HD operation.

7It is worth mentioning that a successive interference cancellation decoding
can be considered as a gainful measure to reduce the impact of interference.
In particular, it can be implemented at the DL users in order to mitigate the
impact of co-channel interference, or mitigating the residual self-interference
signal at the RUs when self-interference cancellation is limited to passive
suppression [35], [36].

8It can be also interpreted as a larger CFH results in a larger feasible space
imposed by the constraints (13) and (14) which leads to a higher sum rate
performance.

Nevertheless, the resulting sum rate performance is saturated
after a certain level of transmit power due to the other network
limitations, e.g., limited fronthaul capacity.
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Fig. 8. Coordination gain for various antenna array size, Tk = Rk = 1.

In Figs. 7 the joint impact of coordination, as well as the
self-interference cancellation at the RUs are depicted. Please
note that when the fronthaul capacity is low (and hence appears
as the bottleneck), the system automatically switches to a
single RU association, in order to reduce the fronthaul traffic.
Similarly, when self-interference cancellation capability is low
(σ2

SI is high) the system automatically switches to the tradi-
tional half-duplex (HD) operation. However, the full-duplexing
(coordination) gain is evident, as the self-interference cancel-
lation capability (fronthaul capacity) increases. Moreover, it is
observed that the FD-HD gain is more significant for a system
with a limited backhaul.

In Fig. 8, the impact of different array size is depicted.
As expected, a higher antenna array size results in a high
network performance, due to the better beamforming accuracy.
It is particularly apparent for a system with a high fronthaul
capacity, where the signal arrays (obtained from multiple
transmit/receive antennas) can be accurately communicated to
the central unit. Moreover, it is observed that the gain obtained
via full-duplexing is increased when the number of antennas
increase. This is expected, since a higher beamforming accu-
racy result in a better control of the interference paths which
appear as a result of FD operation, e.g., interference among
BSs and the self-interference.

A. QoS consideration
In this part we consider the QoS constrained design dis-

cussed in (24). In Figs. 9-11 the network behavior is studied
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Fig. 9. Sum rate [bits/sec./Hz] vs. residual self-interference intensity.
Imposition of Rmin results in a higher fairness between UL and DL users,
specially as σ2

SI increases.
TABLE I. COMPARISON OF THE REQUIRED CPU TIME.

CPU Time (SCA-SCA) CPU Time (SCA-WMMSE)
T = R = 1 61.1 [sec] 9.2 [sec]
T = R = 2 138.5 [sec] 32.8 [sec]

under the effect of minimum required rate, where Rmin :=
rUL = rDL, see (24).

In Fig. 9, the sum rate of the network is depicted, with
and without the imposition of minimum rate constraints. It
is observed that for a small value of σ2

SI , where the self-
interference is effectively eliminated, the imposition Rmin does
not impact the sum network performance. However, as σ2

SI
increases, the network sacrifices the quality of DL users
to preserve the QoS requirement in UL, hence, promoting
fairness. However, the improved fairness is obtained at the
cost of a reduced network sum rate.

In Fig. 10, the rate of the weakest link, as an indication of
network fairness, is depicted for different values of Rmin. It
is observed that a higher Rmin results in a stronger weakest
link. This is particularly effective among the UL users, where
the link quality is severely degraded under poor interference
conditions. However, the aforementioned enhancement comes
at the expense of occasional infeasibility of the rate constraints.
In this respect, a higher portion of network realizations fail
to satisfy the minimum rate requirement constraints as Rmin
increases.

In Fig. 11, the average rate of the network is depicted for
different values of Rmin. It is observed that the average UL
performance increases for a higher Rmin, promoting fairness
among DL and UL users. However this comes at the expense of
degrading the DL performance. Note that the average network
performance degrades as Rmin increases, due to the imposition
of an additional constraint in the sum rate maximization
problem. However, it shows an increasing behavior for large
values of Rmin. This is grounded in the fact that large values
of Rmin lead to the infeasibility of a meaningful portion of
channel realizations, see Fig. 10, leaving only good channel
realizations in the averaging process. In all of the studied cases,
the imposition of a higher Rmin results in a higher fairness
among the UL and DL average performance, as well as among
the individual links.
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Fig. 10. Rate of the weakest link vs. minimum required rate, i.e., Rmin. A
higher Rmin results in a stronger weakest link. The parameter η represents the
ratio of feasible network realizations. σ2

SI = −50 dB.
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Fig. 12. Performance comparison of Algorithm 1 to the SCA-SCA framework
in [14], Tk = T,Rk = R.

In Fig 12, the performance of the proposed joint SCA frame-
work in [14] is evaluated in comparison to the Algorithm 1
(WMMSE-SCA). In particular, the SCA-SCA curve represents
the performance of the SCA framework with rank relaxation.
However, please consider that the obtained general-rank co-
variance may not be linearly constructed, hence resulting in an
infeasible solution. Hence, decomposition based rank reduction
is applied to obtain a (feasible) linear precoder similar to [14,
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Alg. 1], i.e., SCA-SCA RR. An observable performance loss
is observed as a result of the introduced rank-reduction, which
effectively results in a slightly better system performance for
the proposed WMMSE-SCA method. Moreover, it is observed
from Table I that the SCA-SCA method results in a higher CPU
time. This is perceivable, since the SDP variable dimention is
reduced due to the WMMSE structure, and the closed-form
expression given in (21).

B. Statistical CSI
For the case that the statistical knowledge of the channels

are available, the proposed design in Subsection III.B is em-
ployed. In this respect, the statistical behavior of the network
performance in both FD and HD cases are evaluated, over
different realizations of channel matrices. Due to the iterative
nature of the proposed design, where a number of channel
realizations are drawn randomly with a known distribution, the
statistical convergence behavior of the design is of interest.
In Fig. 13, the cumulative probability distribution (CDF) of
the network sum rate is depicted where 1000 realizations of
channel matrices are considered with the defined distribution
in the previous subsection. It is observed that the network
performance is enhanced by employing a higher number of
channel realizations in terms of the rate statistics. This is
expected, since the channel statistics is better captured by
employing a higher number of realizations. Moreover, the
network performance converges after employing around 20
channel realizations9. This is particularly important since the
application of a high number of channel realizations results in
a higher design complexity.

In Fig. 14, it is observed that knowledge of the CSI statistics
can result in a significant gain, compared to a setup where
the erroneous instantaneous CSI is used. In this regard, ”Inst-
Sum”, ”Inst-DL” and ”Inst-UL” respectively represent the
obtained total, DL, and UL users sum rate using the design
proposed in Subsection II.A, where ”Stat-Sum”, ”Stat-DL” and
”Stat-UL” represent the same concept with the application
of the design proposed in Subsection III.B. In particular, it
is observed that a positive gains results for the sum rate of
both UL and DL users. Nevertheless, as expected, the system
performance is degraded compared to the scenario where the
exact instantaneous values for CSI matrices where available.

In Fig. 15-16, the CDF of the network sum rate is evaluated
for different values of fronthaul link capacity, as well as the
residual self-interference intensity.

Similar to the scenario with deterministic CSI, it is observed
in Fig. 15 that the network performance for the FD setup
enhances as the σ2

SI decreases. Moreover, where the residual
self-interference intensity is adequately high, the network
performance is close to that of the HD system, since in such
a case simultaneous operation of UL and DL users results in
a high residual self-interference intensity.

In Fig. 16, the CDF of network sum rate is depicted for
different levels of CFH. Similar to the case with deterministic

9The average performance information can be also obtained from the CDF
curves, however, CDF also indicates information regarding the performance
variance, and also how the obtained overall performance is distributed among
the evaluated population.
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Fig. 15. Cumulative probability distribution (CDF) of the network sum rate
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channel knowledge, it is observed that a higher fronthaul
capacity results in a higher network performance for both HD
and FD setups.

V. CONCLUSION

In this work, joint design of fronthaul compression and
precoding is studied for single-cell FD MIMO C-RANs. We
first address the weighted sum-rate maximization problem for
this setup and show that FD C-RAN system with sufficient self-
interference cancellation at the RUs brings significant sum-rate
gains over the HD scheme. In the second part of the paper, we
address the stochastic sum-rate maximization problem under
fast-fading channels, and show the importance of accurate
channel estimation in FD systems.
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