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Abstract—The Internet of Things (IoT) extends network con-
nectivity and computing capability to physical devices. However,
data from IoT devices may increase the risk of privacy violations.
In this paper, we consider smart meters as a prominent early
instance of the IoT, and we investigate their privacy protection
solutions at customer premises. In particular, we design a load
hiding approach that obscures household consumption with the
help of energy storage units. For this purpose, we leverage the
opportunistic use of existing household energy storage units
to render load hiding less costly. We propose combining the
use of electric vehicles (EVs) and heating, ventilating, and air
conditioning (HVAC) systems to reduce or eliminate the reliance
on local rechargeable batteries for load hiding. To this end, we
formulate a Markov decision process to account for the stochastic
nature of customer demand and use a Q-learning algorithm
to adapt the control policies for the energy storage units. We
also provide an idealized benchmark system by formulating a
deterministic optimization problem and deriving its equivalent
convex form. We evaluate the performance of our approach
for different combinations of storage units and with different
benchmark methods. Our results show that the opportunistic
joint use of EV and HVAC units can reduce the need of dedicated
large-capacity or fast-charging-cycle batteries for load hiding.

Index Terms—Internet of Things, privacy, smart metering,
Markov decision process, Q-learning, electric vehicle.

I. INTRODUCTION

The continuous evolution of pervasive computation, com-
munication and control is creating a new world populated
by intelligent connectivity on physical devices. The emerging
Internet of Things (IoT) provides technology-enabled solutions
for physical assets, which covers a broad spectrum of use
cases that are driven by the ability to connect, monitor,
exchange information, and take autonomous actions [1]. An
important and rapidly growing realization of IoT is the smart
grid. By connecting different grid devices to a communication
network for real-time monitoring and surveillance, the smart
grid can extend computing intelligence into power system
infrastructures, which creates an Internet of Energy [2].

A key element of the smart grid is the advanced metering
infrastructure (AMI), which relies on smart meters for bi-
directional power flow and communication capabilities. The
mass rollout of smart meters provides significant benefits for
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managing energy supply and demand for power utilities and
customers alike. However, this industrial IoT solution increas-
es the risk of privacy violations. For example, by using non-
intrusive load monitoring (NILM) data analysis techniques,
the fine-grained smart meter readings can be disaggregated
to reveal customer usage patterns, personal routines, and
behavioral preferences [3]–[6]. In general, privacy concerns
are amplified by the presence of IoT devices, which expand
the reach of tracking, monitoring, and surveillance. In this
paper, we focus on privacy-preserving mechanisms for user
consumption data reported by smart meters.

Data protection techniques, such as data anonymization and
data aggregation, can be applied to mitigate the potential
privacy leakage of smart meters. Data anonymization removes
any attribute information from the meter readings to obscure
their relationship with the customers. It relies on an escrow
company as an intermediary to pseudonymize meter mea-
surements [7], [8]. However, those pseudonymized traces can
still be associated with the households that produced them
[9]. Data aggregation, on the other hand, aims to reduce
the amount of sensitive information that can be leaked. The
privacy-preserving aggregation relies on the homomorphic fea-
tures of cryptographic computation [10]–[13]. These methods
are limited by their required computation or communication
complexity, and their performance depends on specific model
design with respect to privacy protection [14]. Furthermore,
aggregation is primarily designed to tackle the computation
overhead and resource management issues caused by storing
and analyzing the huge volumes of measurement data.

The above solutions are designed from the utility compa-
nies’ perspective. In general, these solutions can be applied
to other IoT applications that collect private information,
e.g., e-healthcare data management. However, IoT privacy
challenges go beyond these conventional methods in that
different participants (e.g., utility companies and customers) in
the IoT marketplace may have unaligned interests in collecting
and using the data. Therefore, customer-oriented solutions are
required to accommodate individual privacy preferences.

One approach to achieve customer-oriented privacy protec-
tion is through data perturbation. For example, smart meter
measurements can be perturbed by injecting random noise or
applying data compression techniques [15]–[17]. The trade-
off between the measurement precision and perturbation noise
is analyzed in [18]. However, tampering with smart meter
readings before transmission to the utility company may
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reduce their relevance for billing purposes. An alternative
approach applies data obfuscation to alter the actual energy
consumption that is measured and reported by the smart meter.
The customer energy profile can be distorted by integrating an
alternative energy source such as a renewable energy gener-
ation unit [19]–[22] or with the help of energy storage units
at the customer premises. In this paper, we pursue a privacy-
preserving approach that builds on the use of household energy
storage units, which we refer to as household load hiding.

A. Related Work

Prior load hiding schemes obfuscate the smart meter mea-
surements by using either a local rechargeable battery or a
user controllable load. The former and latter are commonly
referred to as battery-based load hiding (BLH) and load-based
load hiding (LLH).

BLH methods hide the energy consumption variations
through controlling the battery charging and discharging pro-
cess. The variances of household load profile can be offset
to maintain a constant output load with the presence of a
rechargeable battery [23]–[25]. The physical constraints of
the battery, however, make it often impractical to flatten out
the actual power variations. BLH schemes can also achieve
hiding by randomizing the load profile to preserve a certain
differential privacy [26], or using stochastic battery control
strategy to minimize information leakage [27]. The trade-off
between the smart meter privacy and electricity cost in the
context of home energy management and demand response
by using a rechargeable battery is addressed in [28]–[32].
Considering the battery purchase expenses, however, BLH
methods can be costly to implement. Different from these BLH
methods, this paper aims to exploit alternative energy storage
that has already been in place in the household to reduce the
cost incurred by batteries, and thus to render load hiding less
costly in the implementation phase.

LLH methods achieve hiding by shifting the energy demand
of user controllable loads. The proposed schemes either flatten
the energy consumption or inject artificial power signatures
to hide the load profile and prevent attack cases such as
occupancy detection [33]–[36]. Considering the restrictions of
using appliances that are interruptible and can store energy,
the available options are limited for LLH schemes. Different
from these LLH schemes, this paper aims to combine BLH and
LLH by exploiting the potential use of household controllable
loads with local dedicated batteries, and thus to render load
hiding more practical in the implementation phase.

The idea of using assistive battery to achieve hiding was
first proposed in [37], [38] through the integration of electric
vehicles (EVs). A convex optimization problem was formulat-
ed to exploit the combined use of EVs with local dedicated
rechargeable batteries to disguise the household load profile
[37]. The use of EVs as assistive batteries to replace local
dedicated large-capacity or fast-charging-cycle batteries for
load hiding was discussed in [38], where the stochastic nature
of both the EV charging process and household energy demand
are captured by the Markov decision process (MDP). The
use of cascaded rechargeable batteries to alleviate the privacy

leakage from smart meter measurement was discussed in [39].
In this paper, we extend the approach from [37], [38] to the
combined use of existing household energy storage units (e.g.,
controllable loads, EVs) to design more cost-effective privacy-
preserving solutions for customers. Our proposed solution
is different from [37]–[39] in that we aim to exploit the
existing household energy storage units for load hiding. In
particular, we consider their use cases as both assistive and
alternative energy storage solution to a dedicated battery to
achieve hiding by leveraging the combination of BLH and
LLH. Therefore, our proposed solution can address smart
meter privacy concerns and accommodate individual privacy
preference completely at the customer premises in a cost-
effective manner.

B. Contributions

Achieving our proposed combined load hiding is a challeng-
ing problem, mainly due to the limited predictability of house-
hold demand, physical charging and discharging constraints
of energy storage units, and the fact that thermal appliances
first and foremost need to satisfy the customer’s comfort
requirements. This is aggravated by the interdependencies of
scheduling decisions, i.e., current scheduling decisions affect
the availability of energy storage and demand in the future.
Our main contributions can be summarized as follows:

• We formulate an MDP problem to capture the uncertain-
ties in household demand and customer behavior. The
MDP addresses the difficulties in how to schedule the
energy storage units considering the charging and dis-
charging constraints as well as the limited predictability
of customer demand.

• We propose a model-free learning method that can adapt
to the optimal control policies for scheduling the energy
storage units, which addresses the difficulty added by
the interdependencies of scheduling decisions. We also
derive a benchmark system by formulating a deterministic
optimization problem, which can be used to evaluate the
effectiveness of our learning method.

• We evaluate our approach by simulation using different
combinations of energy storage with a local dedicated
battery, an EV, and a heating, ventilating, and air con-
ditioning (HVAC) unit. Our results show that the latter
can be effectively used as assistive batteries, trading off
the level of privacy achieved through load hiding and the
aggregate cost for energy consumption. By comparing
with different benchmark methods, we also validate our
idea that the combination of BLH and LLH as well as
the opportunistic use of typical household energy storage
units (e.g., EV, HVAC system) can greatly alleviate the
need for local dedicated large-capacity or fast-charging-
cycle batteries.

The rest of the paper is organized as follows. Section II
introduces the system model. Section III presents an MDP for-
mulation. A model-free learning method for solving the MDP
problem is proposed in Section IV, together with a bench-
mark by formulating a deterministic optimization problem.
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Fig. 1. A general household load hiding framework.

Simulation results are presented and discussed in Section V.
Section VI concludes the paper.

II. SYSTEM MODEL

Household load hiding is a customer-oriented approach to
avoid possible privacy leakage from the consumption data
reported by the smart meters. Fig. 1 shows the general frame-
work for a single residential household that has both chemical
and thermal energy storage units available which can be used
to alter the energy drawn from the power grid. A smart meter
is installed to measure the household power consumption.
It interacts with the utility company to exchange electricity
pricing information and household load measurements for
billing purposes. A local control unit (LCU) is designed to
optimize the operation schedules of the thermal and chemical
energy storage units based on the time of use (TOU) pricing
information from the smart meter and the current energy
demand of the customer, while satisfying a set of customer
preferences and requirements. The household base load and
the usage of those energy storage units are combined when
monitored and reported by the smart meter. Thus, the measured
consumption data transmitted to the utility company has been
distorted to disguise the original household load profile.

We discretize time according to the typical smart meter
sampling intervals, denoted by ∆t, to derive the proposed load
hiding scheme. Each load scheduling period then consists of
a set of discrete time slots, denoted by T = {1, 2, . . . , T}
and T ≤ ∞. We now introduce the models for thermal and
chemical energy storage units, which are characterized by
different system dynamics and physical constraints.

A. Thermal Energy Storage Unit Model

Thermal energy storage units include thermostatically con-
trollable loads such as HVAC systems and electric water
tanks, which we refer to as thermal appliances in this paper
and denote their set by Ψ. Thermal appliances can convert
electricity to heat. Their storage and load-shifting behavior is
affected by thermal dynamics and customer activities.

Let T in
i,t and T amb

i,t denote the temperature inside and outside
the space of appliance i ∈ Ψ at time t ∈ T , respectively.
Given its heat rated power qi,t, we further introduce θi and
σi,t to specify the thermal coefficient (rate-of-heat flow) of
appliance i and the heat transfer between appliance i and its
surrounding environment at time t, respectively. The system
thermal dynamics can be expressed by [40]

T in
i,t = T in

i,t−1 + σi,t

(
T amb
i,t − T in

i,t−1

)
+ θiqi,t. (1)

Note that θi > 0 if the thermal appliance is heating, and θi < 0
if it is cooling. σi,t can be calculated based on [41] and [42]
for different types of thermal appliances.

Furthermore, we have constraints which account for the
maximum heat rated power that thermal appliance i can pro-
vide and the comfort zone required by the customer, denoted
by qmax

i and
[
Tmin
i , Tmax

i

]
, respectively, as given by

0 ≤ qi,t ≤ qmax
i , i ∈ Ψ, t ∈ T , (2)

Tmin
i ≤ T in

i,t ≤ Tmax
i , i ∈ Ψ, t ∈ T . (3)

B. Chemical Energy Storage Unit Model

Local rechargeable batteries and batteries in EVs are chem-
ical energy storage units that can change the household power
consumption through controlling their charging or discharging
process. Let Ci, qmin

i and qmax
i , SOC init

i , SOCmin
i and

SOCmax
i , and ei denote the capacity, the minimum and

maximum charging rate, the initial state of charge (SOC), the
lower and upper limit of the SOC, and the charging efficiency
factor of a local rechargeable battery (i = B) or an EV
(i = EV), respectively. While a local rechargeable battery
can always be scheduled, an EV can only be scheduled when
plugged-in at the household. Denoting the set of all time
slots for which the EV is plugged-in during one arrival and
departure event by TEV = {ta, ta+1, . . . , td} ⊂ T , we have
the following constraints:

qmin
B ≤ qB,t ≤ qmax

B , t ∈ T , (4)

SOCB,t = SOCB,t−1 +
qB,t−1∆t eB

CB
, t ∈ T , (5)

qmin
EV ≤ qEV,t ≤ qmax

EV , t ∈ TEV, (6)

qEV,t = 0, t ∈ T \ TEV, (7)

SOCEV,t+1 = SOCEV,t +
qEV,t∆t eEV

CEV
, t ∈ TEV \ {td},

(8)
SOCmin

i ≤ SOCi,t ≤ SOCmax
i , i ∈ {B,EV} , t ∈ T , (9)

where SOCB,0=SOC init
B and SOCEV,ta =SOC init

EV .
Moreover, customers require a certain SOC level when the

EV departs, denoted by SOCreq
EV , and thus

SOCEV,td = SOCreq
EV. (10)

Notice that the EV can have multiple arrival and departure
events during one scheduling period and it will follow the
above constraints whenever such an event occurs.

C. Combining Energy Storage Units for Load Hiding

We consider three specific combinations of different energy
storage units for load hiding purposes.

1) A dedicated local rechargeable battery with thermal
appliances: The thermal appliances demand can be shifted
to alleviate the need for a large-capacity or fast-charging-
cycle battery. Customers can choose to use those loads during
off-peak hours instead of peak hours based on their comfort
requirements. Customers may also be given an incentive by the
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utility company to apply such load shifting through demand
response program, unrelated to privacy protection.

2) A dedicated local rechargeable battery with an EV: The
use of an EV can also reduce the reliance on a dedicated
large-capacity or fast-charging-cycle battery. Although the EV
can only be scheduled when parked at home, its plugged-
in time often overlaps with residential peak demand periods.
Therefore, the EV can be exploited as an assistive battery
which is beneficial in both load hiding and peak reduction.

3) An EV and thermal appliances: An EV and thermal
appliances can jointly be used for load hiding. The EV serves
as the battery when plugged-in at home, while the thermal
appliances are assistive energy storage units when the EV
departs. By using those existing energy storage units, no extra
expenses for battery purchase and installation will be incurred.

III. COMBINING ENERGY STORAGE UNITS: AN
OPTIMIZATION FRAMEWORK

In this section, we propose an optimization framework
to combine household energy storage units to achieve load
hiding. Our primary objective is to protect customer privacy
in a cost-effective manner. Specifically, we are motivated by
the fact that household electricity consumption essentially
comes from the inhabitants’ activities. This indicates that
the household occupancy patterns can be associated with the
finite set of on-off household appliance loads. Markovian
models have been shown to be effective in simulating active
occupancy patterns [43]. To this end, we formulate an MDP
problem that captures the uncertainties of household demand
and energy storage availability as well as the interdependencies
of scheduling decisions.

A. State Space and Action Space

We consider a finite horizon time model where the decision
epochs are indexed by t ∈ T . There are a total of W energy
storage units used for load hiding, which are selected from the
appliance set Ψ, the local dedicated battery, and the EV. Let
φi,t and φt denote the state vector of the ith energy storage
unit and all the storage units used at time t, respectively, such
that φt = [φ1,t, . . . ,φW,t]. Denoting the state vector of the
household base load at time t by lt, we define the system
state at time t as st = [lt,φt] ∈ S , where S is the state space.

For thermal energy storage units, we have φi,t =(
T in
i,t, T

amb
i,t ,σi,t

)
, and the system state update follows equa-

tion (1). For chemical energy storage units, we differentiate
between a local dedicated rechargeable battery and an EV. We
introduce a binary indicator aEV,t to denote the EV plugged-
in status, where aEV,t = 1 when the EV is plugged-in at time
t and can be scheduled, and aEV,t = 0 otherwise. We also
introduce dEV,t ∈ N to denote the remaining plugged-in time
of the EV at time t. We have dEV,t = 0 when aEV,t = 0.
When aEV,t = 1, i.e., t ∈ TEV, we have dEV,ta = td− ta and
dEV,t = dEV,t−1 − 1 for all t ∈ TEV \ {ta}. Thus, the state
vectors of the local dedicated battery and the EV are given
by φB,t = SOCB,t and φEV,t = (SOCEV,t, aEV,t, dEV,t),
respectively.

At each decision epoch, the LCU needs to choose an action
to schedule the energy storage units. Let ut denote the control
action vector at time t, where ut = (q1,t, . . . , qW,t). Due to
the constraints of the energy storage units, not all the actions
can be chosen at a given state. We thus introduce U(s) to
denote the feasible set of all possible actions given state s.
U(s) satisfies equations (1) – (3) for thermal appliances, and
equations (4) – (10) for batteries.

B. System Dynamics

Given the system state st and control action ut, the evolu-
tion of the MDP can be described by the system state transition
probability P(st+1 |st, ut), for some st, st+1 ∈ S , ut ∈ U(st),
and t ∈ T . We assume the household base load evolves
according to a Markov chain, with its transition probabilities
dependent only on occupancy patterns, where the evolution of
the household base load is not affected by the control actions
of the energy storage units. Therefore, the system transition
probabilities between the composite states st and st+1 ∈ S
when action ut is taken can be expressed as

P(st+1 | st, ut) = P(lt+1 | lt)P(φt+1 | φt, ut). (11)

Since the state of a specific energy storage unit evolves with
transition probabilities independent of other energy storage
units, we have

P(φt+1 | φt, ut) =
W∏

i=1

P(φi,t+1 | φi,t, qi,t). (12)

We now describe how to determine P(φi,t+1 | φi,t, qi,t).
For thermal appliances, we assume that heat transfer be-

tween appliance i and its surrounding environment again
evolves according to a Markov chain, independent of temper-
ature as well as the control action. To simplify the discussion,
we also assume T amb

i,t to be known, which can be obtained
from the day-ahead forecast information. Therefore,

P(φi,t+1 | φi,t, qi,t) =

{
P(σi,t+1 | σi,t), if (1) and (3) hold,
0, otherwise.

(13)
The plugged-in status and remaining plugged-in time of the
EV are mainly affected by the customer driving preference.
Here we assume that their transition probabilities are inde-
pendent of the control actions and energy level of the EV.
Therefore, we have

P(φEV,t+1 | φEV,t, qEV,t)

=

{
P(aEV,t+1, dEV,t+1 | aEV,t, dEV,t), if (8)− (10) hold,
0, otherwise.

(14)
As shown in Fig. 2, there are only two states for the EV arrival
status. When aEV,t = 0, the EV has not arrived at home.
Consequently dEV,t = 0. Then it is with probability pt,0 that
the EV still does not arrive at time t+ 1. If the EV arrives at
time t + 1, and assuming we have N different states for the
possible remaining parking duration dEV,t+1, the transitions
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at time t.

to state (1, k′) occurs with probability pt,k′ . Note that we
have

∑N
k′=0 pt,k′ = 1. When the EV is parking at home,

its arrival and remaining parking duration states will move
to (aEV,t+2, dEV,t+2) = (1, dEV,t+1 − 1) with probability
p = 1 in the next time slot. The process is repeated until
the remaining parking duration becomes zero and the EV
departs. Therefore, the evolution of the EV plugged-in status
and remaining plugged-in time can be expressed as

P(aEV,t+1 = j′, dEV,t+1 = k′ | aEV,t = j, dEV,t = k)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, j′ = j = 1, k′ = k − 1,
1, j′ = k′ = 0, j = k = 1,
pt,0, j′ = j = 0, k′ = k = 0,
pt,k′ , j′ = 1, j = k = 0, k′ ∈ {1, . . . , N} ,
0, otherwise.

(15)

For the local rechargeable battery, we have
P(φB,t+1 | φB,t, qB,t) = 1 if (5) and (9) hold, and
P(φB,t+1 | φB,t, qB,t) = 0 otherwise.

C. Objective Function
We consider both privacy leakage and electricity cost in

the objective of the proposed load hiding scheme, since the
customers may only be willing to tolerate certain additional
consumption costs for the sake of privacy. Intuitively, a con-
stant reported electricity usage can eliminate the possibility
of inferring individual appliances usages. We thus aim to
maintain a constant load and quantify the reduction in privacy
leakage as to what extent the scheduled operations can reduce
the energy fluctuations. Specifically, denoting the constant load
we want to maintain (i.e., the average consumption over a
scheduling period) by lc, the privacy leakage f(st, ut) given
system state st and action taken ut can be expressed as

f(st, ut) =

∥∥∥∥∥

lc − lt −
W∑
i=1

qi,t∆t

lc

∥∥∥∥∥
2

, t ∈ T . (16)

The household purchases and sells electricity at prices hc
t and

hd
t at time t, respectively, which are assumed to be perfectly

known, as the utility companies generally use fixed price plans
as the TOU prices at the residential sector. The electricity cost
given system state st and action taken ut can be written as

g(st, ut) = hc
t

[
W∑

i=1

qi,t∆t+ lt

]+

− hd
t

[
−

W∑

i=1

qi,t∆t− lt

]+

,

(17)

where t ∈ T and [x]+ = max (x, 0).
The one-step cost function at time t given system state st

and action taken ut is then defined as

c (st, ut) = λg(st, ut) + (1− λ) f(st, ut), t ∈ T , (18)

where the weighting parameter λ ∈ [0, 1].
At each decision epoch, the LCU implements a policy π,

which is a mapping from each state s ∈ S to an action u ∈
U(s). Given the initial state s1, following π yields a random
path which consists of a sequence of states, actions, and costs
over the entire scheduling period. For each decision epoch
t, we have ut = π(st) and st+1 is reached with probability
P(st+1 |st, ut). We refer to such a sequence as an episode. Our
goal is to minimize the total costs of the episode, which is a
random variable dependent on the state transition probabilities.
Thus, we define the objective function as the expected total
cost and can be given as

Js1 (π) = Eπ
s1

{
T∑

t=1

c (st, ut) | s1

}
. (19)

The objective of the LCU is to find an optimal policy π∗ that
minimizes the expected total cost (19).

IV. SOLUTION METHODOLOGY

In this section, we present the solution for the MDP
problem. We devise a model-free learning method to mini-
mize the objective function (19). In addition, we present a
benchmark for the performance achieved with this practical
stochastic problem framework by formulating a deterministic
problem that considers household demand and the availability
of storage as perfectly known for the duration of a scheduling
period. We show how to solve the deterministic problem by
transforming it into an equivalent convex form.

A. Model-Free Learning Using the Q-learning Algorithm
To determine the optimal policy of our MDP problem, we

need to know the state transition probabilities P(lt+1 | lt) and
P(φt+1 | φt, ut). Unfortunately, the non-stationary transition
probabilities of household base load and energy storage are
difficult to approximate. The usage of energy storage units
largely depends on customer preferences, and the household
base load can vary drastically from peak to off-peak hours.
Therefore, we use a model-free learning method. Specifically,
we adopt the Q-learning algorithm for its simplicity [44]. The
algorithm learns the action-value function that captures the
expected cost associated with a state-action pair (s, u), which
is defined as their Q value, by repeatedly choosing an action,
yielding some costs, and obtaining information about outcome
states. The optimal scheduling policy can then be constructed
by selecting the action with the least cost in each state once
the action-value function is learned.

The Q-learning algorithm uses an exploration and exploita-
tion policy to choose actions given the current state. In
particular, an η-greedy policy is used, which explores a random
action with probability η and exploits a greedy action with
probability 1 − η. At each time t, given the current state st,
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it chooses the greedy action u∗ which minimizes the current
action value Q(st, u) most of the time, but with probability η,
it instead selects an action randomly. Thus, the policy π(st, u),
∀u ∈ U(st) can be given as [44, p. 122]

π(st, u) =

{
1− η + η

|U(st)| , if u = u∗

η
|U(st)| , if u ̸= u∗.

(20)

After taking action ut, the system incurs an instantaneous
cost c(st, ut) and the system state transits to st+1. The update
rule can be given by [44, p. 148]

Q(st, ut)←Q(st, ut) + α(c(st, ut) +

minu ∈ U(st+1)Q(st+1, u)−Q(st, ut)),
(21)

where α ∈ [0, 1] is the learning rate. It allows us to interpolate
between the old information (current Q value of the state-
action pair (st, ut)) and the new information (the observed
state st+1 and the one-step cost c(st, ut)). The true expected
value of the Q function will eventually be learned as long
as this process continues, as we will observe the possible
succeeding states that could have occurred and aggregate
over their outcomes, even though we never directly learn the
transition probabilities. Thus, the learnt Q function directly ap-
proximates the optimal action-value function Q∗ independent
of the policy being followed thereafter.

A description of the Q-learning algorithm is presented
in Algorithm 1. It is executed by the LCU to learn the
optimal policy based on historical household consumption data
until the Q function converges. To start learning, the LCU
initializes the Q function and sets the learning and weighting
parameter (step 1). During the learning phase, it follows the
η-greedy policy and keeps updating the Q function over all
the decision epochs of multiple episodes. At the beginning
of each episode, the LCU receives the pricing information
of the entire scheduling period from the utility company
and sets the desired constant load (step 3). It sets all the
parameters for the energy storage units (step 4) and the initial
state (step 5). For each decision epoch, the LCU observes
the current state (step 8) and determines the control action
(step 10). It then updates the Q function (step 13) after taking
the action (step 11) and observing the outcome state (step 12).
Steps 8 - 14 are repeated until the end of the episode. Once
the LCU has finished learning, it determines the optimal action
u∗ ∈ U(s) based on the optimal policy π∗ by observing the
current system state s ∈ S for all decision epochs t ∈ T over
the entire scheduling period.
B. Benchmark Problem Formulation

We now formulate a deterministic problem for which we
assume future household demand and customer behavior are
known, using the same privacy and cost measures defined in
(16) – (18). This idealized formulation serves as a bench-
mark for the practical scenario considered in the previous
subsection. Since the future household demand and customer
behavior are assumed to be known, the privacy leakage index
and the electricity cost can be expressed as

fT =
T∑

t=1

f(st, ut) and gT =
T∑

t=1

g(st, ut),

Algorithm 1 Q-learning algorithm
1: Initialize Q function value, learning parameters α, η and weight-

ing parameter λ.
2: Repeat (for each episode):
3: Obtain electricity pricing information hc

t and hd
t , t ∈ T .

Set desired household constant load output lc.
4: Initialize energy storage units parameters.
5: Set the initial state: initialize energy storage units status, and

observe the initial household base load.
6: t := 1.
7: Repeat (for each decision epoch of episode):
8: Observe the current state st.
9: u∗ = argmin

u ∈ U(st)
Q(st, u).

10: Determine the action ut from (20).
11: Take the action ut and calculate the cost from (18).
12: Observe the next state st+1: observe the energy storage

units status update φt+1 and the household base load lt+1.
13: Update the Q function from (21).
14: t := t+ 1.
15: Until the end of the episode.
16: Until the end of the learning phase.

respectively. Thus, the privacy-cost minimization problem is
given by

minimize
qi,t, i∈Ψ∪{B,EV}, t∈T

(1− λ)fT + λgT (22a)

subject to constraints (1) – (10). (22b)

Problem (22) is non-convex due to the definition of g(st, ut),
which is the difference between two convex functions. Howev-
er, we can transform the original problem into its equivalent
convex form as follows. We assume that hc

t ≥ hd
t , as the

utility companies will sell electricity to the customers at a
higher price than purchasing back in order to make profit. By
introducing two non-negative auxiliary variables κ+

t and κ−
t ,

we can rewrite g(st, ut) as

g(st, ut) = hc
tκ

+
t − hd

t κ
−
t . (23)

Substituting (23) into problem (22), the equivalent convex
form can be given by

minimize
qi,t,κ

+
t ,κ−

t , i∈Ψ∪{B,EV}, t∈T
(1− λ)fT + λgT (24a)

subject to κ+
t − κ−

t =
W∑

i=1

qi,t∆t+ lt, t ∈ T ,

(24b)
κ+
t ,κ

−
t ≥ 0, t ∈ T , (24c)

constraints (1) – (10). (24d)

Problem (24) can be solved using solvers such as CVX [45].

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
household load hiding method. We consider a 24 hour schedul-
ing period in our simulation. The AMI currently deployed
in, for example, Ontario, Canada supports smart meter data
transmission periodically every 5 to 60 minutes [46]. The
next generation of smart meters can provide AMI with up
to one minute interval measurement data [47]. In our sim-
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ulation, we set the smart meter sampling interval ∆t to be
2 minutes. Therefore, we have T = 720 decision epochs in
total for each scheduling period. The EV related parameters
are set according to the specification for Chevy Volt model
[48]. The maximum EV charging and discharging rate is
qmax
EV = −qmin

EV = 1.44 kW, with a capacity CEV = 8 kWh.
For simplicity, we assume that the EV arrives and departs only
once during each scheduling period. Following the National
Household Travel Survey 2009 [49], the EV is simulated to
arrive within [5 pm, 7 pm], and depart within [6 am, 8 am]
the next day with uniform probability. The rationale is that the
customers will generally park the EV during the night to fully
charge it to their desired SOC level SOCreq

EV for use during the
next day. Moreover, we assume that the customer will inform
the LCU about SOCreq

EV and the parking duration dEV,t upon
the EV arrival to ensure that constraint (10) on EV departure
SOC level is satisfied. The initial SOC of the EV, SOC init

EV ,
when plugged-in is a random variable uniformly distributed in
[0.1, 0.9]. The desired SOC of the EV at departure, SOCreq

EV ,
is set to 0.9. The initial SOC of the battery, SOC init

B , is
also selected uniformly at random from [0.1, 0.9]. We set
qmax
B = −qmin

B = CB/4 in our experiments, which means it
takes 4 hours to charge or discharge the battery. By using this
definition, batteries with large-capacity indicate that they have
fast-charging-cycle. Similarly, batteries with small capacity
indicate that they have slow-charging-cycle. The lower and
upper SOC limits of the EV and the battery are set as
SOCmin

EV = SOCmin
B = 0.1 and SOCmax

EV = SOCmax
B = 0.9,

respectively, and the charging efficiencies of the battery and
the EV are eB = eEV = 1.

We consider two commonly used HVAC models, with
their thermal characteristics set according to [41] and [50],
respectively. Note that the HVAC system in [41] is more
energy efficient compared to that in [50], which means it
consumes less energy to achieve the same heating or cooling
performance. We calculate the temperature settings when the
HVAC system is not used for load hiding, and apply these
settings with a four degree temperature band (plus or minus
two degrees deviation) as the customer desired comfort zone
that must be satisfied when the HVAC system is used as a
controllable load. The household base load is simulated from
[51], where the energy demand from either a weekday or
weekend can be specified. In our simulation, the learning
process is carried out separately for weekday and weekend
profiles to tackle their differences in terms of consumption
patterns. The electricity pricing information is obtained from
[52]. The parameters used in the learning algorithm are set as
α = 0.05 and η = 0.02. Unless otherwise stated, the trade-off
parameter is set as λ = 0. The learning process is repeated
for 20000 episodes.

A. Hiding Effect with Different Energy Storage Combinations

We first illustrate how our method can disguise the house-
hold load by combining different energy storage units. The
original load and the masked load profiles of a weekday using
different combinations are shown in Fig. 3, with respect to
both the Q-learning algorithm and the benchmark solution.
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Fig. 3. The observed household electricity consumption using combinations
of (a) Battery-HVAC 1, (b) Battery-HVAC 2, (c) a local rechargeable battery
and an EV (Battery-EV), (d) EV-HVAC 1, and (e) EV-HVAC 2 for load hiding.
The size of the local rechargeable battery is 10 kWh for all cases.
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To differentiate between different HVAC systems, we refer
to the combination of a local rechargeable battery and the
HVAC system with its thermal settings from [41] and [50] as
Battery-HVAC 1 and Battery-HVAC 2, respectively. Similarly,
the combination of the EV and the HVAC system with its
thermal settings from [41] and [50] are referred to as EV-
HVAC 1 and EV-HVAC 2, respectively.

In Fig. 3(a), we can observe an almost flattened load curve
using Battery-HVAC 1 for load hiding. Since the HVAC
system contributes to a large portion of the household load
peaks, shifting its demand effectively eliminates load varia-
tions. Fig. 3(b) shows the hiding results of Battery-HVAC 2.
We still observe a similar trend in the flattened load curve,
but to a lesser extent as the HVAC system in this setting is
less efficient in terms of converting electricity to heat. Overall,
the results validate our approach of using HVAC systems to
assist a local rechargeable battery for load hiding, which can
be generalized to other existing energy-intensive household
thermal appliances (e.g., electric water tanks). Fig. 3(c) shows
that using Battery-EV for load hiding produces a similarly
flattened load curve, except for the period after 7 am when
the EV has departed. This means that the desired output
cannot always be maintained due to the EV availability and the
physical constraints for the battery. We observe from Fig. 3(d)
that using an EV and an HVAC system (without the extra
battery) produces a piecewise flattened load curve. However,
if an EV and a less efficient HVAC system are used for hiding,
notable load variations remain, as shown in Fig. 3(e). In this
case, the flexibility of using the HVAC system for load hiding
is limited by the need to first accommodate the customer’s
comfort requirements.

The results in Fig. 3 support the idea of using EV and HVAC
as opportunistic energy storage units for load hiding. However,
their hiding performance is limited by the EV availability,
requirements on the EV SOC level at departure, the thermal ef-
ficiency of the HVAC system, and restrictions on the flexibility
of the HVAC use. We further observe from the figures that the
load curves of the Q-learning method exhibit small fluctuations
around the flat lines obtained with the idealized benchmark
optimization. However, these fluctuations do not allow energy
usage information to be inferred about the customer. Hence,
we conclude that the learning-based method can successfully
schedule the energy storage units to disguise the household
load, using only the available system state information.

B. Cost and Privacy Performance Evaluation
We now quantitatively evaluate the privacy preserving and

cost reduction performance of our Q-learning method and of
the benchmark solution. We adopt the mutual information
between the original household load and the masked load
as the privacy protection measure [25]. For both the masked
load time series as well as the original load time series, we
compute the mutual information based on [25, Eq. (1)] using
the load differences at each consecutive time slot pair (i.e.,
t, t + 1 ∈ T ) during one scheduling period, applying the
quantization interval m = 100 (see [25] for more details).

Fig. 4 shows the electricity cost of the customer per schedul-
ing period as a function of mutual information when different
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Fig. 4. Cost versus mutual information for Q-learning method using Battery-
HVAC 1, EV-HVAC 1, Battery-EV, and Battery-only combinations for hiding.
Also included are the results for the deterministic benchmark formulation for
Battery-HVAC 1 case.

energy storage unit combinations are used for hiding. As more
and more households are equipped with high energy efficient
HVAC systems, we choose the HVAC system from [41] for
performance evaluation here. The dedicated battery has a
storage capacity of 10 kWh. The results are obtained using
different parameters λ ∈ [0, 1], enabling a trade-off between
the cost of energy consumption and privacy leakage (smaller
mutual information corresponds to better privacy protection).

We observe that the Battery-HVAC 1 combination for load
hiding achieves the best cost-privacy performance, followed
by the Battery-EV, Battery-only, and the EV-HVAC 1 combi-
nation. The results substantiate that EV and HVAC can both
be exploited as an alternative or an assistive energy storage
solution to a dedicated battery for load hiding. The battery-
assisted use case is more effective in terms of electricity cost
though, mainly due to the comfort and EV charging require-
ments of the customer. We further note that the proposed Q-
learning method provides a cost-effective trade-off close to
that obtained for the idealized benchmark case, which assumes
perfect knowledge of future household consumption and EV
arrival and departure times. We show the Battery-HVAC 1 case
in Fig. 4, but the same trend has been observed for the other
storage unit combinations.

We next compare the performance of the Q-learning ap-
proach with that of the online control algorithm from [29].
Since this method is only applicable to a dedicated battery
case, Fig. 5 shows the cost-privacy trade-off when both
methods make use of a 10 kWh battery for load hiding.
We observe that both methods achieve fairly similar cost-
privacy performances for this scenario. This corroborates the
effectiveness of our learning framework, as it does not incur
a performance penalty for the battery-only case, while its
actual utility lies in the applicability to load hiding with a
combination of dedicated and opportunistic storage units.

Finally, we evaluate the possible reduction of required
capacity for the dedicated battery when assisted by EV and H-
VAC units. For this, we consider the cost-privacy performance
for different combinations of storage units with batteries of
different sizes in Fig. 6. For concreteness, we focus on the
case of maximal privacy (i.e., λ = 0). We observe that using
a single assistive storage unit can reduce the battery size by
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50%. Furthermore, the joint use of EV and HVAC achieves a
better privacy protection at about the same energy consumption
cost but with a battery of only one quarter the capacity of the
battery-only case.

VI. CONCLUSION

In this paper, we have investigated the potential of existing
household energy storage units to tackle the potential privacy
leakage from smart meter readings. We have proposed a
cost-effective privacy preserving solution from the customers’
perspective by leveraging the combined use of existing thermal
appliances and energy storage units for household load hiding.
To accomplish this, we have formulated an MDP problem
that captures the uncertainties in both the household power
demand and customer usage behavior. A model-free learning
framework has been designed to solve the MDP problem
without prior information on that state transition probabilities.
We have also provided a deterministic optimization problem,
whose solution can be considered as a benchmark for solution
obtained with the proposed method. Simulation results vali-
dated our approach and showed its effectiveness in achieving
a favorable privacy-cost trade-off with a relatively small-size
storage battery. The idea of designing alternative solutions that

can be deployed at customer premise has merits in addressing
the new privacy challenges raised by the use of IoT devices.
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