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Abstract—Power line communications (PLC) has attracted
considerable attention for supporting smart grid applications.
Since it reuses the existing grid infrastructure, it offers cost
advantages over alternative communications methods and gives
electric utilities control over the communications medium. Fur-
thermore, the “through-the-grid” property of PLC extends its
possible use beyond mere communications. Since the PLC signals
are bound to travel through the power grid, they can also be
used for inference tasks, such as online diagnostics of power
line integrity. In this paper, we consider such an inference
application of PLC, enabled by modern signal processing. We
assume a power grid at whose edges PLC devices are deployed
to form a PLC network for purposes such as advanced meter
reading. We are interested in retrieving the physical power-grid
topology, i.e., the connections and lengths of power lines reaching
to the locations of the PLC devices. To this end, we propose
the combination of PLC-based ranging with inference based
on end-to-end measurements. In the context of communication
networks, the latter is known as tomography and hence, we refer
to the developed method as power grid tomography. For the
purpose of ranging we formulate a new super-resolution ranging
algorithm specifically tailored for signal propagation through
power lines. Numerical results for low-voltage distribution grid
examples demonstrate the successful reconstruction of the grid
topology by the proposed power grid tomography method.

Index Terms—Power line communications, smart grid, diag-
nostics, inference, ranging, network tomography.

I. INTRODUCTION

THE reuse of power lines for telephony and data com-
munications, which is collectively referred to as power

line communications (PLC), has a long history in supporting
the operation of electric power companies, e.g. [1]–[5]. While
early PLC has mainly employed narrowband communica-
tion formats, broadband PLC solutions have emerged in the
late 1990ies [6], [7]. Moreover, the modern communication
methods developed for high-speed PLC for Internet access
and multimedia applications have recently migrated back to
PLC systems considered by electric utilities for enabling the
smart grid. This particularly applies to the use of orthogonal
frequency-division multiplexing (OFDM) transmission, which
has been adopted in broadband and narrowband PLC standards
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such as IEEE 19011, ITU-T G.9960, and ITU-T G.9902-
04 and the forthcoming IEEE 1901.2 standard, respectively.
The main advantage of PLC over other wired and wireless
communication solutions is that its communications medium
is in place and under the control of the electric utilities. This
and the abilities of modern PLC technology have made it an
attractive choice for communications for smart grids [5], [9],
[10].

But PLC can be more than a means of communications
in the context of smart grids. Since PLC is a “through the
grid” [5] technology, it can provide status information about
lines, loads, switches, etc. For example, joint sensing-and-
communication devices use PLC to transfer data for online
diagnostics, e.g. [5], [11]. Furthermore, features of the PLC
signal itself can be used for grid monitoring. This includes
fault localization, which can be done by measuring traveling
waves from faults at different ends of power lines [12, Ch. 7]
or by sending a stimulating signal which propagates along
the line and reflects at the fault location. Examples of the
latter are the time-domain reflectometry and impulse-response
based methods using narrowband PLC signals to locate faults
and impedance mismatches presented in [13] and [14], re-
spectively. Another method, suggested in [15], considers the
strength of the PLC signals received from smart meters as an
indicator for predicting line failures.

In this paper, we consider the dual use of PLC for data
communications and diagnostics. In particular, we apply the
through-the-grid paradigm for inferring the physical topology
of distribution power grids. The main premise is that PLC-
enabled devices are in place at various loads (smart meters,
energy storage modules, transformers, etc.) of a smart grid,
and that their communications ability can be leveraged for
grid monitoring tasks. Our work is related to reflectometry-
based inference introduced in [16] and [17], which attempts
to reconstruct the grid topology based on single-ended PLC
signal measurements. However, this approach has strict lim-
itations for the physical extension and/or complexity of the
topology to be inferred. For example, [16] considers networks
with very short cables and uses a signal bandwidth of about
500 MHz, which is not applicable for distribution power grids.
The reflectometry approach in [17] targets the low-voltage
(LV) distribution domain, but reconstruction of topologies
with more than two or three branches is hardly possible
due to strong attenuation of reflected signals traveling large
distances. Another recent and related work is [18], [19], which
investigates the use of PLC for distance measurement between

1IEEE 1901 includes two different PHY layers, one referred to as windowed
OFDM modulation and the other as Wavelet-OFDM [8].
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distributed energy sources (DESs) in smart micro grids, so
as to optimize the use of DESs with minimal energy losses.
This has been extended to topology estimation in [20], which
however assumes that, different from our work here, all branch
points of the grid are equipped with PLC modems.

The new method we propose for topology inference in
power distribution grids builds on two main ingredients, which
are combined here for the first time: PLC-based ranging
and network tomography. The former, similar to [18], uses
PLC for the measurement of distances in the power grid.
Different from [18], we do not apply a phenomenological but
a deterministic, bottom-up PLC channel modeling approach,
cf. e.g. [21], [22] and [3, Ch. 2]. This allows us (i) to capture
the dependencies between transfer functions of different links
in a PLC network and (ii) to devise a new parametric ranging
method. Since the parametric method relies on the description
of signal propagation through power lines by transmission
line theory, its accuracy is not bounded by the bandwidth
of the PLC signal used for ranging. Hence, it is a super-
resolution technique [23, Ch. 4]. On the other hand, it requires
that certain modeling assumptions hold true. Having collected
ranging measurements from pairs of nodes in the grid, we use
network tomography to infer the grid structure. Tomography is
a methodology that tries to reconstruct the internal properties
of an object based on observations from sensors surrounding it.
It has been used in communication networks for inferring link
performance, traffic matrices, and routing topologies based
on end-to-end measurements, cf. e.g. [24]. By formulating
power-grid-topology inference using distance measurements
as a tree estimation problem, it becomes analogous to those
considered in the communication network applications. Hence,
we refer to the proposed method as PLC-based power grid
tomography. Using typical LV grid structures and power cable
examples, we present extensive numerical simulation results
that demonstrate the performance of the proposed ranging
method and the abilities of PLC-based power grid tomography

In this paper we provide a method for topology inference
without elaborating on a specific application. However, we
would like to point out three possible application areas.
The first is the development and testing of PLC technology
for smart grid, which, since the PLC network follows the
physical topology of the power grid, requires accurate grid
models. Since such information is generally not available and
sometimes, in the LV domain, not even known to electric
utility companies, our method is a valuable tool to obtain
topology information through in-situ measurement. In fact,
the lack of deterministic and statistical models for distribution
grids needed to study PLC networking protocols for smart
grids (e.g., [25], [26]) was our original motivation behind this
work. The second use is to support PLC routing. Recently,
the use of location information by way of geographic routing
has been introduced to PLC in [27]. The proposed power grid
tomography would provide the required location information,
which is alike the role of grid location services in geographic
routing for wireless communication networks [28]. A third
application area, of perhaps the most immediate commercial
potential and broader interest, is the support of the smart
grid operation through online monitoring and diagnostics. This
includes distance measurement and neighborhood inference as

considered in [18], [19], and more generally online monitoring
of grid elements including loads and lines, similar to the
application examples considered in [13]–[15]. Furthermore,
smart fault location systems using intelligent electronic de-
vices (IEDs) as discussed in [29] would also benefit from
updated grid-topology information. For example, power losses
or PLC signal attenuation could be related to the line length
obtained from power grid tomography to infer about the
integrity of a power line.

The remainder of this paper is organized as follows. In
Section II, we introduce the abstract model of the power grid
used throughout the paper and define the objective of this
work. We then describe PLC-based ranging, including the
new parametric ranging algorithm, and network tomography
applied to ranging measurements in Section III and IV,
respectively. Together, these represent the new PLC-based
power grid tomography method. Extensive numerical results
are presented and discussed in Section V. Final remarks in
Section VI conclude this paper.

II. SYSTEM MODEL AND OBJECTIVE

We consider a part of the electricity grid in which a
number of grid elements are PLC enabled. We refer to these
elements as nodes, which emphasizes their participation in a
PLC network and also the representation in a graphical grid
model. We assume that these elements are connected through
power lines forming a tree structure. This is often the case
in the LV distribution domain of the grid, but it would also
fit the wiring practices applied in many buildings. Examples
for tree topologies considered in the literature include LV
power distribution networks in residential areas for access [3,
Figure 2.16], [30], [31] and smart meter reading [32] via PLC,
random tree models for distribution networks [25], models
for smart micro grids [18], and indoor power distribution
installations [3, Figure 2.47], [30]. In the case of ring or mesh
grids, tree topologies may still be realized for large periods of
time, since loops are often open due to opened switches.

Figure 1(a) shows an example for a topology, in which
power lines branching off a main supply line connect a number
of loads, which could be, for example, houses in a residential
area [31] or distributed energy sources and consumers in a mi-
cro grid [18]. PLC modems are deployed at the load locations,
e.g., through the use of smart meters in the residential-area
scenario. The PLC modems may be part of an existing PLC
network that, with the PLC tomography proposed in this paper,
can be used for topology inference and online grid monitoring,
or may be put in place for the express purpose of doing these
tasks. As also indicated in Figure 1(a), there may be open-
ended branches or loads without PLC modems. Furthermore,
branch points would not be easily accessible and thus not
naturally be equipped with a PLC modem.

Figure 1(b) shows the sub-graph of the topology in Fig-
ure 1(a) at whose leaf nodes PLC modems are deployed.
We observe that branches without PLC modems have been
removed. The tree topology as shown in Figure 1(b) is what
can be reconstructed by use of PLC technology, in particular
the proposed PLC tomography method. The tree is described
by a set of vertices or nodes V , which includes leaf nodes
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Fig. 1. (a) Example of a power line network topology. (b) Sub-graph with
PLC modems at leaf nodes. Dashed-lines indicate node-to-node distances for
three sample node pairs.

(outer vertices, grid elements equipped with PLC modems)
and branch nodes (internal vertices, grid branch points), and
a set of edges E (the power line segments). In Figure 1(b) we
have enumerated the vertices and labeled a number of edges.
The label dij represents the path length between nodes i and
j, which is the distance a PLC signal travels when transmitted
from i to j.

The main objective of this work is to recover the graph (as
in Figure 1(b)) and thus the grid topology (as in Figure 1(a))
based on distance information between the leaf nodes in the
tree. Inference of a grid topology is deemed successful if the
connection of leaf nodes through branch nodes as well as the
distances between all node pairs (leaf and branch nodes) are
faithfully reconstructed. For measuring the distances between
outer vertices, the nodes transmit and receive PLC signals as
described in the next section. These measurements are then
processed as discussed in Section IV.

III. PLC-BASED RANGING

In this section, we address the problem of distance mea-
surement using PLC signaling, i.e., PLC-based ranging. We
first briefly review the two-way ranging methodology, which
is required to compensate for the clock offset between different
modems. Two-way ranging is based on time-of-arrival (ToA)
estimation. We discuss a traditional ToA estimation method
using signal-energy detection, before introducing a new ToA
estimation method which makes use of the PLC signal propa-
gation model. We finally also summarize assumptions for and
limitations of the discussed ranging methods.

A. Two-Way Ranging

The local clock time of a modem can be modelled as C(t) =
(1 + δ)t + μ, where t denotes the true time and δ and μ
are the clock drift and offset, respectively. Two-way ranging
allows us to determine the distance between two modems i

dij

time at i

time at j
Cj(t2)

Modem i

Modem j

Ci(t1) Ci(t4)

Cj(t3)

Fig. 2. Two-way ranging between modems i and j with distance dij and
local clock times Ci(t) and Cj(t).

and j regardless of the offset μ, cf. e.g. [33]. Denoting the
local clock times by Ci(t) and Cj(t), the two-way ranging
signal exchange between modems i and j with distance dij
is illustrated in Figure 2. At time t1, i sends a message to
j, which it receives at time t2. Modem j returns a message
to i at time t3, after a pre-defined response delay τd, which
modem i receives at time t4. We can write the relationships
between the transmission and reception times as

Cj(t3)− Cj(t2) = τd (1)

t2 − t1 = dij/vp + εToA,1 (2)

t3 − t2 = (Cj(t3)− Cj(t2))/(1 + δj) (3)

t4 − t3 = dij/vp + εToA,2 , (4)

where vp is the speed of signal propagation and εToA,1 and
εToA,2 are the errors in estimating the ToA at modem j and
i, respectively (measured with respect to the true time t). The
estimate d̂ij of the actual distance dij is then obtained from

d̂ij = vp
Ci(t4)− Ci(t1)− τd

2

= (1 + δi)

(
dij + vp

εToA,1 + εToA,2

2

)

+vp
(δi − δj)τd
2(1 + δj)

.

(5)

In Section V-A, we present a numerical evaluation of the
effect of the clock drift δ on ranging accuracy based on (5),
which shows that for typical PLC modems clock drift is not
the limiting factor for ranging accuracy down to the meter
level. Hence, we neglect the clock drift in the following and
turn to the methods of ToA estimation, which will lead to
different ToA errors εToA and thus ranging errors d̂ij − dij .

B. Energy-detection ToA Estimation

One of the most common and well researched ToA esti-
mation techniques is based on measuring the energy of the
received signal. In essence, the short-term energy measure-
ment is compared to a threshold to determine the ToA, cf.
e.g. [33], [34]. Energy-based detection has the advantage of
simplicity and robustness to nuisance effects such as multipath
propagation. It has recently also been adopted in [18] for ToA
estimation in PLC systems.

The main steps of this method are as follows. The trans-
mitter sends a sensing signal s(t), which after convolution
with the channel impulse response h(t) is filtered with a zonal
bandpass filter for noise limitation at the receiver. This filter
could be a matched filter for the transmitted signal [18] or
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an approximation of it. The filtered received signal r(t) is
then integrated over an interval Tint. Based on the sampled
integrator output

qk =

(k+1)Tint∫
kTint

|r(t)|2dt , k = 0, 1, . . . ,K − 1 , (6)

where KTint is the observation interval, the ToA can be
estimated using a number of maximization or thresholding
criteria [33]. Following [18], we use the test

t̂ToA = Tint argmin
k=0,...,K−1

{
qk − qmin

qmax − qmin
> λ

}
(7)

to determine the estimated ToA, where qmin = mink qk and
qmax = maxk qk.

C. Model-based ToA Estimation

We now propose a new ToA estimation method for PLC
which makes use of the two-conductor transmission line
modelling of propagation over power lines [3, Ch. 2].

1) Propagation Model: Signal propagation over a power
line is determined by (i) the propagation constant

γ(f) = α(f) + jβ(f) , (8)

where α(f) and β(f) are the frequency (f ) dependent at-
tenuation and propagation constant, respectively, and (ii) the
reflections and transmissions at discontinuities, such as branch
points. These are represented through transmission and reflec-
tion coefficient Γ(f) and T (f), respectively, defined as

Γ(f) =
Z(f)− Z0(f)

Z(f) + Z0(f)
(9)

and T (f) = 1 + Γ(f), where Z0(f) is the characteristic
impedance of the line and Z(f) is the impedance at the point
of discontinuity.

In the following, we use m as path index for a PLC signal,
where m = 1 corresponds to the direct propagation path, and
m > 1 corresponds to a signal path including reflections. dm
represents the distance of the m-th path. The sequence of
reflection and transmission coefficients along the m-th path
can be expressed as Γm

n (f), n = 1, . . . , NΓ(m), and Tm
n (f),

n = 1 . . . , NT (m), respectively, where NΓ(m) and NT (m)
represent the number of reflections and transmissions along
the m-th path, respectively. Then, we can write the transfer
function of a power line channel as (cf. [35], [3, Ch. 2])

H(f) =

∞∑
m=1

⎛
⎝NΓ(m)∏

n=1

Γm
n (f)

⎞
⎠

⎛
⎝NT (m)∏

n=1

Tm
n (f)

⎞
⎠ e−dmγ(f)

�
=

∞∑
m=1

Am(f)e−dmγ(f) . (10)

For compactness, in (10), we aggregated the products of the
reflection and transmission coefficients for the m-th reflection
in the term Am(f).

To formulate the parametric ToA estimation method, we
need to invoke the following assumptions for the propagation

model. First, we assume that α(f) and β(f) are well approx-
imated as linear functions of the frequency:2

α(f) = a · f , β(f) =
2π

vp
f . (11)

These approximations are a good match for weakly lossy
lines and naturally tighter for smaller frequency range fmin ≤
f ≤ fmax. Second, we approximate the coefficients Am(f) as
constants over the frequency band used for ranging. Again, this
approximation becomes tighter for smaller signal bandwidth
fmax − fmin. Third, we truncate the number of paths to Np.
This is not a severe approximation, as the contributions from
paths with larger distances dm passing more discontinuities
usually undergo significantly stronger attenuation. Applying
the approximations to (10), we obtain

H(f) =

Np∑
m=1

Ame−admfe
−j 2πvp dmf

. (12)

2) ToA Measurements and Algorithm: Given (12), we
are ready to present the new model-based ToA estimation
method. Assuming OFDM transmission as widely used and
standardized for PLC, e.g. [8], we can measure samples
Hk = H(fk)e

j2π(tW−tT)fk of the “time-shifted” transfer
function H(f)ej2π(tW−tT)f at frequencies fk = fmin + kΔf ,
k = 0, 1, . . . , Nf − 1, where Nf = (fmax − fmin)/Δf + 1.
The rotation term results from the difference between the time
tT when the OFDM symbol is transmitted and the time tW
when the receiver observation window for the OFDM symbol
starts. Introducing the signal propagation time for the m-th
path tm = dm/vp, the samples can be written as

Hk =

Np∑
m=1

Ame
−(a+j 2πvp )dmfmine−(adm+j2π(tm+tT−tW))Δfk

�
=

Np∑
m=1

Bmzkm , (13)

where we defined Bm = Ame
−(a+j 2πvp )dmfmin and the complex

exponential zm = e−(adm+j2π(tm+tT−tW))Δf .

The ToA of the transmitted signal is t1+tT. Hence, based on
(13) the problem of estimating the ToA can be considered as
a parameter-estimation problem of superimposed exponential
signals. Numerous methods for solving this problem have
been proposed in the literature, including maximum likelihood
[36], linear-prediction based [37], [38], matrix-pencil [39],
and subspace [40] methods. We have found that the subspace
method produces very accurate results, and its main steps
are described in the following algorithm (see [40] for further
details).

2Frequency-independent offsets can be assigned to Am(f).
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Algorithm: Subspace method for ToA estimation
1: Construct an M × (Nf −M) matrix

H =

⎡
⎢⎢⎢⎣

H0 H1 · · · HNf−M−1

H1 H2 · · · HNf−M

...
...

HM−1 HM · · · HNf−1

⎤
⎥⎥⎥⎦ (14)

where M,Nf −M > Np.
2: Compute the singular value decomposition H =

USV H

3: Find the largest S singular values and the corre-
sponding left and right singular vectors U s and V s,
respectively.

4: Compute estimates ẑm for zm in (13) as the eigen-
values of the matrix Z = U+

s U s, where (.)+

represents the pseudo-inverse, and (.) and (.) denote
the operation of deleting the first and the last row,
respectively.

The value of S used in the subspace-method algorithm
ideally coincides with the number Np of significant echoes,
which however is unknown. Different methods have been
devised to determine Np, including the use of information-
theoretic criteria [41], [42]. However, since we are eventually
only interested in an estimate for t1 and thus z1, the used
value for Np is not particularly critical. Using the number
of singular values of H defined in (14) that are significantly
above the variance of the measurement noise when estimating
Hk in (13) turned out to deliver a suitable choice for S.

Given ẑ1 from the subspace-method algorithm, we can
compute the ToA estimate as

t̂ToA =
arg{z1}
2πΔf

+ tW . (15)

D. Remarks on Assumptions and Limitations

Before using the presented ranging methodology for topol-
ogy estimation via tomography, we would like to summarize
the assumptions we made in the previous derivations, some of
which were made tacitly.

1) We estimate distance based on signal delay, relating
these two quantities via the speed of propagation vp, cf.
(5). Hence, we require that there is only one value for
vp. Since however the power grid may include different
cable types, different values for vp may occur along the
PLC signal path. For example, for the weakly lossy two-
conductor line model with homogeneous dielectric, we
have

vp = 1/
√
μ0ε0εr , (16)

where the parameters μ0, ε0, and εr are the vacuum per-
meability and permittivity, and the relative permittivity
of the insulation between the conductors, respectively.
Hence, cables with different insulation material will
result in different speeds of signal propagation, which
would affect the ranging accuracy.

2) While our derivations start with a time-invariant channel
model, e.g. (10), the PLC channel has been shown

to be time varying in many cases. In particular, time
variations periodic with the mains frequency (i.e., 50 Hz
or 60 Hz) have been observed, e.g. [3, Section 2.5.3],
[43]. However, the channel changes only very slowly
during the transmission of a ranging message, which
would typically be shorter than those used for broadband
PLC data transmission. For example, [3, Section 2.5.3],
[43] mention that the channel coherence time is no
smaller than 600 μs, while the OFDM-symbol length for
broadband PLC according to IEEE 1901 is about 50 μs.
Furthermore, [44] shows that signal-to-distortion power
ratios due to temporal changes of the channel are in
excess of 55 dB for typical broadband PLC parameters.
Hence, the effect of time variations for ranging should
be negligible.

3) In the case of model-based ranging, deviations from the
model approximation (12) will deteriorate accuracy. This
includes the above-mentioned variation in propagation
speed, the variations of load impedances over frequency,
and the approximation in (11).

IV. PLC NETWORK TOMOGRAPHY

Applying the tree model from Section II, we are now putting
the ranging algorithms from the previous section to use for the
purpose of topology inference.

The first step of inference is to perform ranging between all
PLC modems, which are located at the leaves of the network
tree. The measured distances are communicated to a central-
ized node, e.g., the master node in a PLC network, which then
runs a tree-estimation algorithm with these distances as the
input. At this point, we make use of the fact that end-to-end
distance measurements between leaf nodes uniquely define
the tree connecting them. In particular, our topology-inference
problem is alike the phylogenetic-tree inference problem in
evolutionary biology, for which the neighbor-joining algorithm
(NJA) from [46] is widely used. We apply a variant of the
NJA, the rooted neighbor-joining algorithm (RNJA), that was
recently developed in [45].

Table I shows the pseudo-code of the RNJA that we use.
First, the RNJA defines a root node. Considering the remaining
set of leaf nodes, based on the measured distances it finds
two leaf nodes which are likely connected to the same internal
node. These leaf nodes and the edges to the new internal node
are stored as part of the tree structure, and the new internal
node replaces the original leaf nodes in the next iteration. The
process is reiterated until only one leaf node is left.

We note that the key for the applicability of the RNJA (or
the original NJA) is the additivity of the distances dij , i.e.,
dik = dij + djk , if node j is on the path from node i to
node k. For the inference problem at hand, additivity follows
naturally as the dij are indeed physical distances. Furthermore,
the RNJA inherits a remarkable convergence property from
the NJA. It returns the correct tree topology if the measured
distances d̂ij deviate from the true distances dij , ∀i, j ∈ V ,
by less than half the minimum edge length in the tree, cf.
[45]. That is, if dmin is the shortest link between two nodes,
then measurement errors up to dmin/2 can be tolerated while
still retrieving a result consistent with the true tree topology.
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TABLE I
PSEUDO-CODE FOR THE ROOTED NEIGHBOR-JOINING ALGORITHM (FOLLOWING [45]).

Input: Measured distances d̂ij , number of leaf nodes K
Initialize: root node s = 1,

set of leaf nodes of inspected tree D = {2, . . . ,K}
set of nodes of output tree V = {s}
set of edges of output tree E = ∅
Enumerator for new nodes f = K

Start: While (|D| > 1) % Go through all leaf nodes
For i, j ∈ D % Compute distance between root node and nearest

q̂ij = 1
2
(d̂si + d̂sj − d̂ij) % common ancestor node of i and j

end
(i∗, j∗) = argmax(i,j){q̂ij} % Nodes that maximize distance are neighbors
f := f + 1 % Add a new node f , the ancestor of i∗ and j∗
D := D \ {i∗, j∗} % Prune tree (remove i∗ and j∗ from the list of leaf nodes)
V := V ∪ {i∗, j∗} % Add i∗ and j∗ to the list of tree nodes
E := E ∪ {(f, i∗), (f, j∗)} % Add (i∗, j∗) to the list of tree edges
d̂sf = q̂i∗j∗ , d̂fi∗ = d̂si∗ − q̂i∗j∗ , d̂fj∗ = d̂sj∗ − q̂i∗j∗ % Compute distances from s, i∗, j∗ to new node f
For k ∈ D % Compute distance from leaf nodes to new node f

d̂kf = 1
2
(d̂ki∗ − d̂fi∗ ) +

1
2
(d̂kj∗ − d̂fj∗ ), q̂kf = 1

2
(q̂ki∗ + q̂fj∗)

end
D := D ∪ f % New node becomes leaf node of pruned inspected tree

end % End while
End: V := V ∪ D, E := E ∪ (s,D) % Complete output tree
Output: Reconstructed tree: nodes V and edges E

Finally, we note that the RNJA in Table I is applicable to
binary trees. As shown in [45], it can be extended to general
trees with only a slight modification to the pseudo-code in
Table I. The price for this extension is some loss in robustness
to measurement errors. Therefore, the RNJA in Table I is
preferable if the underlying PLC topology is a-priori known
to fit the binary-tree model.

We observe that RNJA in Table I is a batch algorithm.
Ranging measurements between all pairs of nodes need to be
provided before the algorithm can start. An interesting alter-
native is the sequential version of the RNJA presented in [47,
Section VI], which constructs the topology tree incrementally.
This reduces the number of ranging measurements and can
facilitate topology reconstruction for dynamic networks, where
nodes (PLC modems) join. A variation of the method may
also be applicable to larger PLC networks with no direct link
between all pairs of nodes (cf. also [48] for this problem).

V. PERFORMANCE EVALUATION

In this section, we assess the performance of the proposed
PLC-based power grid tomography method. We first consider
the accuracy of PLC-based ranging. To this end, in Sec-
tion V-A, we establish the effect of clock drift between PLC
modems on ranging accuracy. This is followed by a detailed
quantitative performance comparison of energy-detection and
model-based ranging in Section V-B. Finally, Section V-C
presents the numerical analysis of tomography with the RNJA.

A. Effect of Clock Drift for PLC Systems

To highlight the effect of clock drift on two-way ranging, let
us evaluate expression (5) under the assumption of perfect ToA
estimation. To this end, Figure 3 shows the distance estimation
error Δdij = d̂ij−dij as a function of δi−δj for δi = 25 ppm
and processing delays τd = [0.1, 1, 10] ms. We observe that
for processing delays of τd = 0.1 ms and τd = 1 ms, the
estimation error is less than 0.2 m and 2 m, respectively, even
for a relative clock drift of 25 ppm. For a fairly long delay

5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2

δ i − δ j in ppm −→

Δ
d

i
j
in

m
et

er
−→

 

 
τd = 100 μs
τd = 1 ms
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Fig. 3. Estimation error Δdij = d̂ij − dij as function of δi − δj for
δi = 25 ppm, processing delays τd = [0.1, 1, 10] ms, and dij = 100 m.

of τd = 10 ms, a relative clock drift of less than 5 ppm is
desirable to keep the estimation error low. We note that the
results in Figure 3 are rather independent of dij as the second
term in (5) dominates for εToA,1 = εToA,2 = 0. Since for
broadband PLC modems clock tolerances of ±25 ppm and
relative clock drifts within ±1 ppm after frequency correction
are considered [8], we conclude from the analysis in this
section that clock drift is not the limiting factor for ranging
accuracy down to the meter level. Hence, for the following
discussion, we neglect the clock drift.

B. Ranging Accuracy

We now apply the ranging algorithms introduced in Sec-
tion III to specific PLC network examples.

1) Topologies and Channel Parameters: We consider the
power line topologies shown in Figures 4 and 5. Both represent
parts of an LV distribution grid served by a transformer,
modeled by the impedance Zs, and supplying loads, which
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Fig. 4. Topology 1. Power line network with 11 nodes, located at
transformer with impedance Zs and at loads (e.g., house connection points)
with impedances Zi, mimicking part of a low-voltage distribution grid as in
[3, Figure 2.16].
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Fig. 5. Topology 2 from Figure 8 in [32]. PLC nodes are located at the
loads with impedances Zi and the transformer with impedance Zs. Shown
are 9 loads of the entire topology, which includes 20 loads.

could for example be houses, modeled by impedances Zi.
The topology in Figure 4 closely resembles the example of
a European power distribution network in a residential area
introduced in [3, Figure 2.16]. The topology in Figure 5 is
taken from [32, Figure 8]. It includes a total of 20 loads,
of which nine are shown in Figure 5. The PLC network
is composed of nodes located at the transformer and at
the loads. This could be a PLC network for an advanced
metering infrastructure, enabling communication between the
meters at the consumers and the data concentrator point at the
transformer station.

To compute the transfer functions H(f) (10) based on the
propagation constants γ(f) (8) and reflection and transmission
coefficients Γ(f) at branch points according to (9), we need
to make specific assumptions about power cables and signal
injections. To this end, we consider popular 4-conductor cables
NAYY150SE and NAYY50SE with signal coupling between
two phases and the neutral conductor as described in [3, Sec-
tion 2.3.3.1]. For this case, making a two-conductor equivalent
approximation (see [3, Section 2.3.3.1]), the transmission line
parameters can be approximated as

R′ =
√
ρπfμ0/r2, G

′ = 2πfC′ tan(δC),
L′ = μ0ϑ/(2r), C

′ = 2ε0εrr/ϑ ,
(17)

from which we can compute the characteristic impedance and
propagation constant as

Z0(f) =

√
R′ + j2πfL′

G′ + j2πfC′ (18)

γ(f) =
√
(R′ + j2πfL′)(G′ + j2πfC′) . (19)

In (17), the parameters tan(δC), ρ, r and ϑ are the dielectric

loss angle of the insulation, the specific resistance of the
conductor, the radius of the cable and the thickness of the
insulation, respectively, cf. [3, Fig. 2.26 and Section 2.3.3.1].
Consulting [49], we have r = 15.6 mm, ϑ = 3.6 mm and
r = 9.4 mm, ϑ = 2.8 mm for NAYY150SE and NAYY50SE,
respectively. Furthermore, ρ = 2.8 · 10−8Ωm (for aluminum),
and we assume that εr = 4 and tan(δC) = 0.01 [3, Section
2.3.3.1].

While the cable type NAYY150SE is used for all lines of
Topology 2 shown in Figure 5, for Topology 1 we assume that
the main power line is an NAYY150SE cable and the cables
branching off (e.g., to connect houses) are of type NAYY50SE,
as indicated in Figure 4. NAYY50SE has a smaller gauge than
NAYY150SE, and using both types for Topology 1 includes
the effects of impedance mismatch of cables. However, the
phase velocity (16) is vp = 1.5 · 108 m/s and the same for
both cable types, as we assume the same type of insulation.

We further need to specify the values of the impedances Zs

and Zi of the transformer and loads shown in Figures 4 and 5.
For the former, we apply the three-element circuit model from
[4]. For the latter and Topology 2, we use the values given
in [32, Figure 8]. For Topology 1, we consider two cases. In
the first case, Zi = 5 Ω, i = 1, . . . , 10. In the second case,
the impedance values are generated randomly according to
a uniform distribution in ([0, 5] + j[−5, 5]) Ω. This is done
to specifically investigate the effect of low impedance values,
which affect the channel gain for PLC. The impedance of PLC
modems is set to 50 Ω, which is typical when in receiving
mode and applied in parallel to Zs and Zi.

Finally, we assume that PLC modems transmit with a power
spectral density of −55 dBm/Hz [8] and that the receiver-
side noise power spectral density (PSD) is −110 dBm/Hz,
which is a relatively high background noise PSD. Of course,
impulse noise is a major impairment in PLC channels. We
do not include it here, for simplicity, but also because it will
likely completely distort the transmitted PLC ranging signal,
causing a retransmission of the same.

2) Energy-detection (ED) and Model-based (MB) Ranging
Parameters: In the following, we refer to two-way ranging us-
ing energy-detection (ED) ToA estimation from Section III-B
and model-based (MB) ToA estimation from Section III-C
as ED and MB ranging, respectively. We assume that a
broadband PLC signal in the frequency band from 2 MHz
to 28 MHz (cf. [8]) is transmitted for ED ranging. This leads
to a temporal resolution on the order of 40 ns, corresponding
to a spatial resolution of about 5 m using vp given above. We
set the integration interval Tintused in (6) and (7) equal to the
sampling interval 1/26 μs. For the threshold λ we use 0.1 and
0.8, respectively. We found empirically that these values lead
to favorable ED accuracy, cf. also [18].

For the new MB ranging we use fmin = 2 MHz and fmax =
8 MHz. This, compared to ED ranging, reduced bandwidth
(i) is used to demonstrate the super-resolution capabilities of
MB ranging, (ii) achieves an increased signal-to-noise ratio
(SNR) since cable attenuation increases with frequency, and
(iii) makes the assumption of frequency-independent load
impedances more realistic. Furthermore, while fmax = 8 MHz
is the default value, we also show one set of results for
fmax ∈ {3, 4, . . . , 8} MHz.
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MB ranging

d  =930 ms9

d  =130 m

s5d  =530 m
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d  =930 m
s9

(a)

(b)

s5d  =530 m
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s1

Fig. 6. Empirical CCDF of absolute ranging error for different links
from node s (transformer) to nodes i at loads Zi with distances dsi from
Topology 1. Solid lines: Energy detection (ED) ranging with λ = 0.1. Dash-
dotted lines: ED ranging with λ = 0.8. Dashed lines: Model-based (MB)
ranging. (a): Zi = 5 Ω, i = 1, . . . , 10. (b): Zi sampled uniformly random
from ([0, 5] + j[−5, 5]) Ω.

3) Results: Denoting the distance between two nodes as
dij and the estimated distance as d̂ij , the following results
consider the absolute ranging error

eij = |dij − d̂ij | . (20)

We first consider Topology 1. Figure 6 shows the empirical
complementary cumulative density function (CCDF) of the
absolute ranging error from (20) for four different links and
thus distances (‘s’ refers to the node at the transformer with
impedance Zs). The subfigures (a) and (b) assume fixed and
randomly generated load impedances, respectively. A total of
1000 ranging measurements with different channel and noise
realizations were performed for the results. Considering the
case of fixed load impedances, we observe that MB ranging
achieves good ranging accuracy. The ranging errors are less
than 6 m for all channel realization. For the shorter links of
lengths 130 m and 530 m, accuracy is in the submeter range.
In the case of ED ranging (using λ = 0.1), the error exceeds
10 m in a few cases for the longest link of length 1030 m.
Clearly, ranging accuracy generally decreases with increasing
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s1

=130 m

MB ranging, d
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=1030 m

Fig. 7. Scatter plot of absolute ranging error as function of average channel
SNR for the frequency range from 2 MHz to 8 MHz. Links from node s
(transformer) to node 1 and node s to node 10 with distances ds1 and ds10,
respectively, from Topology 1, and randomly generated loads from ([0, 5] +
j[−5, 5]) Ω.

link distances due to stronger signal attenuation and thus lower
SNR at the receiver side. When replacing the fixed impedances
of 5 Ω (Figure 6(a)) with random impedances in the range
of ([0, 5] + j[−5, 5]) Ω (Figure 6(b)), we note a degradation
in accuracy. This is due to the larger signal losses at low
impedances, which manifests in a smaller transmission gain
|H(f)| and thus SNR. As can be seen from Figure 6(b), 10%
of the errors exceed 10 m (930 m link) and 20 m (1030 m link),
respectively, also for MB ranging. However, it still remains
the preferable ranging mode compared to ED ranging. For
the latter, we show the results for both the threshold values
λ = 0.1 and λ = 0.8. Using the larger threshold leads to a
degradation in ranging accuracy but avoids the large outliers.

The correlation of ranging accuracy with SNR is highlighted
in Figure 7. We show a scatter plot of the absolute ranging
error eij for (i, j) ∈ {(s, 1), (s, 10)} and the average SNR
at the receiver side in the frequency band from 2 MHz to
8 MHz, which is used for MB ranging. The shortest and
longest link from Topology 1, which are from transformer
node s to nodes 1 and 10 with distances ds1 = 130 m and
ds10 = 1030 m, respectively, the scenario with randomly
generated loads (Figure 6(b)), and ED ranging with λ = 0.1
are considered. For the short link of ds1 = 130 we observe
consistently high SNRs of above 20 dB, which enables ac-
curate ranging with about 2 m and submeter accuracy for
ED and MB ranging, respectively. We note that the ranging
error eij for ED ranging is identical for all test runs. This
is because the error is dominated by the resolution limit of
ED, which follows from the 26 MHz signal bandwidth. In
contrast to this, MB ranging is a super-resolution technique,
whose performance is dominated by noise. Hence, a cloud of
markers can be seen for MB ranging in Figure 7. Considering
the long link of ds10 = 1030 m, SNRs as low as −11 dB occur.
We observe that ranging accuracy deteriorates with decreasing
SNR. The outliers with es10 > 1000 m for ED ranging could
be suppressed with adapting the threshold λ, see Figure 6(b).
MB ranging proves to be relatively robust to low SNRs.
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TABLE II
AVERAGE ABSOLUTE ESTIMATION ERROR FOR ED AND MB RANGING

AND LINKS IN TOPOLOGY 1. FIXED LOAD IMPEDANCES OF Zi = 5 Ω,
i = 1, . . . , 10. ’S’ REFERS TO NODE AT TRANSFORMER.

ED ranging, average error eij from (20) in meter

Tx Rx node
node s 1 2 3 4 5 6 7 8 9 10

s - 2.6 6.4 1.4 3.4 0.4 1.6 2.2 5.5 4.5 15.3
1 2.6 - 1.4 5.2 2.6 2.6 1.8 2.8 1.3 2.4 3.8
2 6.4 1.4 - 1.4 5.2 2.6 3.6 2.8 2.9 1.3 4.6
3 1.4 5.2 1.4 - 1.4 5.2 2.6 3.7 3.2 3.0 1.0
4 3.4 2.6 5.2 1.4 - 1.4 5.2 2.6 3.8 4.1 2.8
5 0.4 2.6 2.6 5.2 1.4 - 1.4 5.2 2.6 4.3 0.8
6 1.6 2.0 3.7 2.6 5.2 1.4 - 1.4 5.2 2.6 1.4
7 2.2 2.8 2.9 3.8 2.6 5.2 1.4 - 1.4 5.2 2.6
8 4.5 1.3 2.9 3.2 3.9 2.6 5.2 1.4 - 1.4 5.2
9 4.0 2.5 1.3 2.9 4.1 4.3 2.6 5.2 1.4 - 1.4
10 9.6 4.5 4.8 1.0 2.8 0.8 1.3 2.6 5.2 1.4 -

MB ranging, average error eij from (20) in meter

Tx Rx node
node s 1 2 3 4 5 6 7 8 9 10

s - 0.1 0.0 0.0 0.1 0.1 0.5 0.8 1.1 1.9 4.1
1 0.0 - 0.1 0.1 0.1 0.1 0.2 0.2 1.6 2.8 0.9
2 0.0 0.1 - 0.1 0.1 0.1 0.1 0.1 0.3 1.3 3.2
3 0.0 0.1 0.1 - 0.1 0.1 0.1 0.1 0.1 0.4 0.6
4 0.0 0.1 0.2 0.1 - 0.1 0.1 0.1 0.3 0.1 0.5
5 0.1 0.1 0.1 0.1 0.1 - 0.1 0.2 0.1 0.1 0.1
6 0.2 0.2 0.1 0.1 0.1 0.1 - 0.1 0.1 0.1 0.0
7 0.5 0.2 0.1 0.1 0.1 0.2 0.1 - 0.1 0.1 0.1
8 1.6 1.6 0.4 0.1 0.3 0.1 0.1 0.1 - 0.0 0.0
9 1.4 2.8 1.3 0.3 0.1 0.1 0.1 0.1 0.0 - 0.1
10 3.0 0.7 2.7 0.9 0.3 0.1 0.1 0.1 0.0 0.0 -

Table II summarizes the accuracy of ED (λ = 0.1) and
MB ranging in terms of the average absolute ranging error eij
for the 1000 ranging measurements and the different links of
Topology 1 in the fixed-impedance case. We show the error
corresponding to one-way ToA estimation. The error for two-
way ranging between modems i and j is the mean of the errors
for i → j and j → i ToA estimation (see (5)). We observe
the following trends. (i) MB ranging is more accurate than
ED ranging, often achieving submeter precision. (ii) Ranging
accuracy decreases with distance. (iii) Overall accuracy is high
enough to support tomography using the RNJA from Table I,
which requires that the error is less than half the minimal
node-to-node distance. (iv) One-way ranging errors are not
symmetric. This is due to the non-symmetry of the transfer
function (10) of the power line channel that we consider,
which represents the voltage transfer from the coupling point
at the input to the decoupling point at the output, mimicking
a transmitting modem with a voltage level control.3 Other
factors that could lead to non-symmetric errors are different
noise realizations at the two nodes i and j and different clock

3In PLC, two different transfer functions are often considered (see Figure 1
and Eqs. (2) and (3) in [26]): H1(f) = VL(f)/VN (f) between the voltage
VL(f) at the load and the voltage VN (f) at the power line coupling
point and H2(f) = VL(f)/VS (f) between the voltage VL(f) at the
load and the voltage VS(f) of the source. These two are related through
the source impedance ZS(f) and network input impedance ZN (f) via
H2(f) = H1(f)

ZN (f)
ZN (f)+ZS(f)

. Transfer function H2(f) is relevant for
modems with fixed VS(f), while H1(f) is relevant for modems with an
automatic level control that imposes a preferably fixed voltage VN (f) on
the line, e.g. [50]. While the symmetry of H2(f) has been shown (assuming
ZS(f) = ZL(f)) in [51], H1(f) is generally not symmetric.
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Fig. 8. Average absolute ranging error as function of the bandwidth used
for model-based (MB) ranging. Links from node s to nodes 1, 5, 9, and 10
with from Topology 1. Fixed load impedances of Zi = 5 Ω, i = 1, . . . , 10.

drifts δi and δj at the two modems.
Next, we illustrate the effect of signal bandwidth on the

performance of MB ranging. To this end, Figure 8 shows
the average absolute ranging error eij for the links from
node s to nodes [1, 5, 9, 10] for Topology 1 and fixed load
impedances. While MB ranging is a super-resolution method
whose accuracy is not bounded by the bandwidth of the
ranging signal, we observe from the curves in Figure 8 that
average accuracy improves with increasing bandwidth. Larger
bandwidth helps to improve the condition of matrix H (14)
of the sub-space method. This can be seen from the improved
accuracy with larger bandwidth also for the short link with
distance ds1. Hence, when selecting bandwidth one needs to
consider the trade-off between accuracy and validity of the
assumption of frequency-independent loads.

Finally, we report ranging results for Topology 2 from
Figure 5. Figure 9 shows the empirical CCDF of the absolute
ranging error using ED and MB ranging for 1000 experiments,
i.e., different noise realizations. For ED ranging, λ = 0.8 is
used as it provided better results than λ = 0.1. The subfigures
(a) and (b) show the results for links from node i = 1 and
i = 9, respectively. Similar to the results for Topology 1 in
Figure 6, we observe that ranging accuracy is higher for short
links and that MB ranging outperforms ED ranging in terms of
accuracy for these links. Different from Figure 6, we note that
in some cases the error is larger than 100 m or even 1000 m
for MB ranging and that ED with λ = 0.8 is more robust to
these outliers than MB ranging. This occurs for long links like
1 → 9 with a distance of 2891 m. Hence, the link distance is
much longer than those experienced in Topology 1. However,
MB ranging still provides accuracies of eij < 10 m for 90 %
and 80 % of the long links (1 → 8, 9 → 3) and (1 → 9,
9 → 1), respectively. In particular, the shape of the CCDF
curve for example for the link 1 → 9 indicates that either
high accuracy is achieved or, if not, a very large error of about
1000 m occurs. The latter can be relatively easily identified
as an outlier through a repeated ranging measurement. Hence,
successful tomography is possible even for such an extended
topology.
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Fig. 9. Empirical CCDF of absolute ranging error for different links from
node i to j (’i → j’) from Topology 2. Solid lines: Energy detection (ED)
ranging. Dashed lines: Model-based (MB) ranging. (a): From node i = 1.
(b): From node i = 9.

C. Tomography Results

We now apply the ranging measurements discussed in
the previous section as input to the RNJA introduced in
Section IV. To illustrate the capability and performance of
the proposed tomography method, we first consider samples
of reconstructed topologies using MB ranging measurements.

Figure 10 shows two reconstructed topologies for MB
ranging measurements of Topology 1 with fixed 5 Ω load
impedances. The edges are labeled with the distances as
returned by the RNJA (see Table I), and also the internal nodes
are created and enumerated by the algorithm. The difference
between subfigures (a) and (b) is that the former does not in-
clude ranging measurements to and from the node at Z10 (see
Figure 4). Focusing on Figure 10(a) first, we observe an almost
perfect reconstruction of the actual topology. In addition to
the correct tree structure, also the distances between leaf and
internal nodes have been inferred accurately. Quantizing the
distances to meter precision, only the estimated distance for
the link between internal nodes 11 and 12 is different from the
actual distance by 1 m. Figure 10(b) shows the reconstructed
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Fig. 10. Example of a reconstructed topology, including distances shown at
edges, using the RNJA for Topology 1 with fixed load impedances (Zi = 5 Ω,
i = 1, . . . , 10). MB ranging measurements are used. (a): Using node-to-node
measurements from nodes at transformer and nine loads. Nodes 10 to 17
are created by the RNJA. (b): Using node-to-node measurements from nodes
transformer and ten loads. Nodes 11 to 19 are created by the RNJA.
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Fig. 11. Example of a reconstructed topology, including distances shown
at edges, using the RNJA for Topology 1 with randomly generated load
impedances (Zi ∈ ([0, 5] + j[−5,5]) Ω, i = 1, . . . , 10). MB ranging
measurements are used. (a): Using node-to-node measurements from nodes
at transformer and nine loads. Nodes 10 to 17 are created by the RNJA. (b):
Using node-to-node measurements from nodes at transformer and ten loads.
Nodes 11 to 19 are created by the RNJA.

tree for the full Topology 1. Since node 10 increases the size of
the topology, which makes ranging less accurate (see Figures 6
and 7), tomography is more challenging compared to the case
in Figure 10(a). Still, edge distances are recovered almost per-
fectly, with errors of at most 1 m. What is interesting to note is
that the somewhat less accurate ranging to and from node 10
also affects estimated distances for links not connected to this
node. Hence, this indicates that it is better to discard unreliable
ranging measurements and limit tomography to a subtree if
high accuracy is desired.

These findings are further emphasized by the results in
Figure 11 considering Topology 1 with a randomly generated
set of load impedances. As we have seen in Figure 6, ranging
accuracy is often lower than for fixed load impedances due
to larger signal attenuation by low impedance values. Due to
this, the distance errors in the recovered trees in Figure 11
are somewhat larger than for the trees in Figure 10. This is
particularly true for the full topology in Figure 11(b), with a
maximal deviation of 9 m for links connecting nodes 9 and
10. If node 10 is excluded from the tomography, the maximal
deviation for the link to node 9 is only 1 m, as can be seen
in Figure 11(a).

An example for a reconstructed topology for the Topology 2
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Fig. 12. Example of a reconstructed topology, including distances shown at
edges, using the RNJA for Topology 2. MB ranging measurements are used.
The numbers in parentheses are the actual distances according to Figure 5.
(a): Using node-to-node measurements from seven nodes. Nodes 8 to 12 are
created by the RNJA. (b): Using node-to-node measurements from nine nodes.
Nodes 10 to 16 are created by the RNJA.

network from Figure 5 is shown in Figure 12. The subfigures
(a) and (b) correspond to tomography using node-to-node
measurements from seven and nine nodes, respectively. For
convenience, we have included the actual distances next to the
estimated distances in the edge labels. We observe that also
the topology with more branch levels is recovered accurately
with distance errors of at most 1 m (Figure 12(a)) and 2 m
(Figure 12(b)), respectively. The latter occurs for nodes 8 and
9, likely due their long distances to other nodes and thus
less accurate ranging. Comparing the reconstructed trees in
Figures 12(a) and (b), we note that the former is a subtree
of the latter, and that degree-two nodes (i.e., two edges are
connected to a node) cannot be identified.

Finally, Table III summarizes the topology-recovery perfor-
mance of the proposed method using ED and MB ranging.
In particular, the number of instances out of 1000 ranging
experiments for which the reconstruction of the correct tree
topology can be guaranteed are shown. According to [45,
Proposition 4], the RNJA returns the correct tree topology
if the maximal ranging error is less than half of the minimal
link distance, which is 15 m for Topology 1 and 61 m for

TABLE III
NUMBER OF INSTANCES FROM 1000 EXPERIMENTS FOR WHICH CORRECT

TOPOLOGY RECONSTRUCTION IS guaranteed. RESULTS ARE SHOWN AS A
FUNCTION OF NUMBER NODES N . FOR TOPOLOGY 1: NODES

S∪{i : 1 ≤ i < N}. FOR TOPOLOGY 2: NODES {i : 1 ≤ i ≤ N}.

Topology 1, fixed loads

Ranging Number of nodes
mode 3 4 5 6 7 8 9 10 11

ED (λ = 0.1) 1000 1000 1000 1000 1000 1000 1000 1000 772
MB 1000 1000 1000 1000 1000 1000 1000 1000 1000

Topology 1, varying loads

Ranging Number of nodes
mode 3 4 5 6 7 8 9 10 11

ED (λ = 0.1) 1000 1000 1000 998 994 985 960 827 22
MB 1000 1000 1000 1000 997 983 945 828 655

Topology 2

Ranging Number of nodes
mode 3 4 5 6 7 8 9 - -

ED (λ = 0.8) 1000 1000 1000 1000 1000 1000 936 - -
MB 1000 1000 1000 1000 998 849 459 - -

Topology 2. However, this is a sufficient but not a necessary
condition, and we have obtained correct tree topologies with
the RNJA also for larger ranging errors. The results in Table III
confirm the effectiveness of the proposed grid tomography and
the detrimental effect of signal attenuation due to low load
impedances and large distances. The latter can be mitigated by
multiple ranging measurements to improve ranging accuracy
(for both MB and ED ranging) and adaptively adjusting the
decision threshold λ for ED ranging. Furthermore, smaller
partial grid sections can first be reconstructed accurately, and,
in a second step, they can be combined into the tree model of
the total grid, cf. [48].

VI. CONCLUSIONS

In this paper, we have considered the ability of PLC to
retrieve information about the underlying power grid. This is
a unique ability of PLC, the only “through-the-grid” com-
munication technology, that has recently received growing
attention in the context of smart grid. We have focused on the
problem of grid-topology inference using PLC transmission
between nodes deployed at the edges of the grid. We have
proposed a power grid tomography method that consists of two
phases: PLC-based ranging and tree-reconstruction based on
distance measurements. To our knowledge, this is the first time
that network tomography has been applied to the power grid.
Our numerical results have demonstrated the good accuracy
of PLC-based ranging, for which we have also proposed a
new parametric method. Furthermore, the developed power-
grid tomography has shown to be effective. A verification
of our simulation results in field trials is still outstanding
though. While our original motivation for this work is the use
of the proposed power-grid tomography for optimizing PLC
networking for smart grids, a broader realm of applications
lies in its use for grid monitoring and online diagnostics.
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[21] F. Cañete, J. Cortés, L. Dı́ez, and J. Entrambasaguas, “Modeling
and evaluation of the indoor power line transmission medium,” IEEE
Commun. Mag., vol. 41, no. 4, pp. 41–47, Apr. 2003.

[22] A. Tonello and F. Versolatto, “Bottom-up statistical PLC channel
modeling—part I: random topology model and efficient transfer function
computation,” IEEE Trans. Power Delivery, vol. 26, no. 2, pp. 891–898,
Apr. 2011.

[23] P. Stoica and R. L. Moses, Introduction to Spectral Analysis. Prentice-
Hall, 1997.

[24] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Network
tomography: recent developments,” Statistical Science, vol. 19, no. 3,
pp. 499–517, 2004.

[25] G. Bumiller, L. Lampe, and H. Hrasnica, “Power line communication
networks for large-scale control and automation systems,” IEEE Com-
mun. Mag., vol. 48, no. 4, pp. 106–113, Apr. 2010.

[26] L. Lampe and A. Vinck, “On cooperative coding for narrowband PLC
networks,” International J. Electron. and Commun., vol. 65, no. 8, pp.
681–687, Aug. 2011.

[27] M. Biagi and L. Lampe, “Location assisted routing techniques for
power line communication in smart grids,” in 2010 IEEE International
Conference on Smart Grid Communications.

[28] M. Mauve, A. Widmer, and H. Hartenstein, “A survey on position-based
routing in mobile ad hoc networks,” IEEE Network, vol. 15, no. 6, pp.
30–39, Nov./Dec. 2001.

[29] M. Kezunovic, “Smart fault location for smart grids,” IEEE Trans. Smart
Grid, vol. 2, no. 1, pp. 11–22, Mar. 2011.

[30] S. Goldfisher and S. Tanabe, “IEEE 1901 access system: an overview of
its uniqueness and motivation,” IEEE Commmun. Mag., vol. 48, no. 10,
pp. 150–157, Oct. 2010.

[31] L. Dho and R. Lehnert, “Dynamic resource allocation protocol for large
PLC networks,” in Proc. 2012 IEEE Intl. Symp. Power Line Commun.,
pp. 41–46.

[32] G. Prasanna, A. Lakshmi, S. Sumanth, V. Simba, J. Bapat, and
G. Koomullil, “Data communication over the smart grid,” in Proc. 2009
IEEE Intl. Symp. Power Line Commun., pp. 273–278.

[33] D. Dardari, A. Conti, U. Ferner, A. Giorgetti, and M. Win, “Ranging
with ultrawide bandwidth signals in multipath environments,” Proc.
IEEE, vol. 97, no. 2, pp. 404–426, Feb. 2009.

[34] A. A. D’Amico, U. Mengali, and L. Taponecco, “Energy-based TOA
estimation,” IEEE Trans. Wireless Commun., vol. 7, pp. 838–847, Mar.
2008.

[35] M. Zimmermann and K. Dostert, “A multipath model for the powerline
channel,” IEEE Trans. Commun., vol. 50, no. 4, pp. 553–559, Apr. 2002.

[36] Y. Bresler and A. Macovski, “Exact maximum likelihood parameter
estimation of superimposed exponential signals in noise,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 34, no. 5, pp. 1081–1089, 1986.

[37] R. Kumaresan and D. Tufts, “Estimating the parameters of exponentially
damped sinusoids and pole-zero modeling in noise,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 30, no. 6, pp. 833–840, Dec. 1982.

[38] M. Rahman and K.-B. Yu, “Total least squares approach for frequency
estimation using linear prediction,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 35, no. 10, pp. 1440–1454, Oct. 1987.

[39] Y. Hua and T. Sarkar, “Matrix pencil method for estimating parameters
of exponentially damped/undamped sinusoids in noise,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. 38, no. 5, pp. 814–824, 1990.

[40] I. Maravic and M. Vetterli, “Sampling and reconstruction of signals with
finite rate of innovation in the presence of noise,” IEEE Trans. Signal
Process., vol. 53, no. 8, pp. 2788 – 2805, Aug. 2005.

[41] M. Wax and T. Kailath, “Detection of signals by information theoretic
criteria,” IEEE Trans. Acoust., Speech, Signal Process., vol. 33, no. 2,
pp. 387 – 392, apr 1985.

[42] V. Reddy and L. Biradar, “SVD-based information theoretic criteria
for detection of the number of damped/undamped sinusoids and their
performance analysis,” IEEE Trans. Signal Process., vol. 41, no. 9, pp.
2872–2881, sep 1993.
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