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Abstract— The application of trellis shaping was recently
proposed to reduce the peak-to-average power ratio (PAR) of
orthogonal frequency division multiplexing (OFDM) signals. In
this letter, we review the trellis shaping schemes presented in the
literature and we introduce modifications such as a new decoding
metric and the use of sequential decoding. We conduct a compre-
hensive complexity and performance comparison for the different
schemes, and one interesting result of this work is that, in terms
of PAR-reduction capability, trellis shaping with time-domain
metrics is generally superior to trellis shaping with frequency-
domain metrics. Furthermore, the proposed modifications enable
trellis shaping for PAR reduction with a flexible performance-
complexity tradeoff.

Index Terms— Orthogonal frequency division multiplexing
(OFDM), peak-to-average power ratio (PAR) reduction, trellis
shaping.

I. I NTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
popular technique for transmission over frequency-selective
channels. A major drawback of OFDM, however, is the large
peak-to-average power ratio (PAR) of the transmit signal.
Therefore, PAR reduction techniques have been intensely
studied in the literature, cf. e.g. [1] for an overview. Recently,
Henkel and Wagner introduced a new PAR reduction method
in [2], which is based on trellis shaping. The idea is that a
decoder selects a sequence of a (convolutional) code such
that, when “added” to the data signal, the PAR of the transmit
signal is minimized. Trellis shaping can thus be classified as
PAR reduction through multiple signal representation (MSR).
Since the receiver does not need to be informed which code
sequence was chosen, trellis shaping does not require explicit
transmission of side information, which is a distinct advantage
over other popular MSR schemes, cf. e.g. [3]. It was observed
in [2] that trellis shaping using the Viterbi algorithm (VA) and
a time-domain metric to select the code sequence achieves
considerable PAR reductions. Recently, Ochiai [4] further
elaborated on trellis shaping for PAR reduction and proposed
a frequency-domain metric for the VA.

In this letter, we investigate trellis shaping for PAR re-
duction and our objectives are twofold. First, we extend the
schemes from [2], [4] in that we propose (i) an additional

Manuscript received April 21, 2006; revised October 25, 2006. This work
was supported in part by Bell Canada’s support through its Bell University
Laboratories R&D program and the National Sciences and Engineering
Research Council (NSERC) of Canada (Grant CRDPJ 320552). The material
in this paper was presented in part at the 2006 IEEE International Conference
on Communications (ICC), Istanbul, June 2006.

The authors are with the Deptartment of Electrical and Computer En-
gineering, University of British Columbia, Vancouver, Canada (e-mail:
trungn@ece.ubc.ca,Lampe@ece.ubc.ca).

metric and (ii) the application of the stack sequential decoding
algorithm (ST-SDA) [5] to select the code sequence. The new
metric facilitates low-complexity “adaptive” trellis shaping and
the ST-SDA is considered as an alternative to the VA for a
more flexible performance-complexity tradeoff. In this context,
we also clarify that the VA and ST-SDA are generally subop-
timum algorithms for the PAR reduction decoding problem.
Second, we provide a performance and complexity comparison
of the different metrics and selection algorithms considered for
trellis shaping for PAR reduction. Such a comparison has not
been presented in the literature yet.

As it is customary in the literature (e.g. [1], [4]), in the
following we approximate the PAR of the OFDM transmit
signal x(t) by the PAR of the oversampled signalxn

∆
=

x(nT/L), whereT is the modulation interval andL = 4 is
chosen for a good approximation [6]. Considering OFDM with
N subcarriers and defining the vectorX

∆
= [X0 . . . XN−1]

of N quadrature-amplitude modulation (QAM) data symbols
Xi, x

∆
= [x0 . . . xLN−1] = IDFT(X) is the corresponding

oversampled time-domain vector.1 The PAR forx is then given
by (E{·}: expectation,|| · ||∞: max norm)

γ(x) = max
0≤n<LN

{|xn|
2} / E{|xn|

2}

= ||x||2∞ / E{|xn|
2} .

(1)

II. PAR REDUCTION USING TRELLIS SHAPING

For a detailed description of trellis shaping for PAR reduc-
tion we refer to [2], [4]. We apply the “Type-I” constellation
mapping from [4] where twoM -ary signal pointsXi with the
same(log2(M)−1) less significant bits (LSBs) are symmetric
about the origin of the complex plane.2 This means that
flipping the most significant bit (MSB) will change the sign
of the signal pointXi and thus strongly influence the PAR
but not change the average power of the time-domain signal
x. The MSBs for theN symbolsXi in X are “shaped” by a
binary sequencey of N bits, which is a code word of a rate-
1/ns convolutional code. Due to the application of an inverse
syndrome former at the transmitter and syndrome former at the
receiver, shaping is transparent for data transmission (see [4,
Fig. 1]). This means that no shaping side information needs to
be transmitted to the receiver. The problem of trellis shaping

1IDFT(X) returns theLN -dimensional inverse discrete Fourier transform
(IDFT) of the appropriately zero-paddedN -dimensional vectorX.

2It is interesting to note that also another mapping, referred to as “Type-II”
mapping, is considered in [4], which, while inferior to Type-I mapping in
PAR reduction, enables additional reduction of the average transmit power.
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for PAR reduction is to selecty from the set of code words
C such thatγ(x) is minimized, i.e.

ŷopt = argmin
y∈C

{γ(x)} . (2)

We note that the total redundancy inserted into one OFDM
symbol by trellis shaping isN/ns bits. Since the total number
of transmitted bits isN log2(M), the relative redundancy is

r = 1/(log2(M)ns) . (3)

A. PAR Metrics

In this section, we introduce three metrics for PAR reduction
using trellis shaping. It is convenient to define a partial code
sequence of lengthkns as y(k) ∆

= [y0 . . . ykns−1], 1 ≤ k ≤
N/ns. y(k) can be considered as the result of encoding the

sequencem(k) ∆
= [m0 . . . mk−1] by the shaping encoder. The

partial shaped data sequence corresponding toy(k) is denoted
by X

(k) ∆
= [X0 . . . Xkns−1], 1 ≤ k ≤ N/ns.

a) Metric 1: The first metric was suggested in [2] and applies
the PAR criterion (2) directly to partial code sequencesy(k).
Defining the zero-padded shaped data sequenceX(k)

z
∆
=

[X(k)
0N−kns

] (0K : all-zero vector of lengthK) and the
corresponding partial transmit sequencex

(k)
z = IDFT(X(k)

z ),
the metric fory(k) is given by

Λ1(y
(k)) = ||x(k)

z ||2∞ . (4)

b) Metric 2: We propose a modification of Metric 1 where we
always considerall subcarriers at each decoding step. Lety

(k)
d

be the full-length (N -dimensional) code sequence obtained
from encoding[m(k)

0N/ns−k] by the shaping encoder, i.e.,

the encoder is driven into the zero-state. We note thaty
(k)
d can

be presented as[y(k) ykns
. . . ykns+q−1 0N−kns−q], whereq

is the number of possible non-zero output bits, i.e.,q =
log2(Ns)ns if kns < N − log2(Ns)ns and q = N − kns

otherwise, andNs is the number of decoder states. LetX
(k)
d

be the resulting shaped data sequence, i.e.,X
(k)
d follows

from shaping thefull-length data vectorX with y
(k)
d , and

x
(k)
d = IDFT(X

(k)
d ). The metric fory(k) is obtained as

Λ2(y
(k)) = ||x

(k)
d ||2∞ . (5)

Since, different from Metric 1, the whole data sequence,
including the unshaped portion resulting from the all-zero
tail of y

(k)
d , is considered when forming the transmit signal

and sincey
(k)
d is a valid code sequence for allk, 1 ≤

k ≤ N/ns, we can terminate the selection algorithm as soon
as the achieved PAR is below a predefined threshold value.
Thus, Metric 2 facilitates adaptive PAR reduction [7], which
considerably reduces the complexity of shaping.
c) Metric 3: Based on a relation between the PAR ofx(t) and
the autocorrelation function of the frequency-domain dataXi

derived in [8], Ochiai proposed in [4] to use the frequency-
domain metric

Λ3(y
(k)) =

kns−1
∑

m=1

∣

∣

∣

∣

kns−m−1
∑

i=0

Xi+mX∗
i

∣

∣

∣

∣

2

. (6)

B. Selection Algorithms

We consider the application of the VA and the ST-SDA to
select code sequences for PAR reduction.
a) Viterbi Algorithm (VA): Henkel and Wagner [2] and Ochiai
[4] considered the VA employing, respectively, Metric 1 and
Metric 3 for trellis shaping. If the two partial code sequences
y

(k)
1 and y

(k)
2 enter the same trellis state, sequencey

(k)
1 is

selected ifΛl(y
(k)
1 ) < Λl(y

(k)
2 ), l ∈ {1, 3} and vice versa.

However, the VA does not necessarily find the optimum vector
ŷopt since (i) Metric 1 is not additive and (ii) due to the
unlimited memory of the metric increment for Metric 3 (see (6)
and also [4, Eq. (28)]). It is worth noting that the suboptimality
of the VA for Metric 3 is not mentioned in [4]. Since Metric 2
is not additive, the VA is also suboptimum in this case.
b) Stack Sequential Decoding Algorithm (ST-SDA):The ap-
plication of sequential decoding algorithms (SDAs) to trellis
shaping for PAR reduction was not considered in [2], [4].
In this letter, we consider the ST-SDA as one of the most
commonly used SDAs [5]. The ST-SDA searches through the
code tree rather than the code trellis with the advantage that the
complexity is almost independent of the code memory. Since
Metrics 1 and 2 are not additive, the ST-SDA does not find
the code sequencêyopt. However, different from the VA, the
ST-SDA finds the optimum solution̂yopt for Metric 3, which
is additive and enables a tree search. A closer look at the
application of the ST-SDA with Metric 2 reveals that the stack
algorithm always expands the longest path. This fact leads to
two consequences: (i) the algorithm stops afterN/ns steps and
in total only N/ns + 1 searches are needed; and (ii) a stack
of size two is sufficient. This renders ST-SDA with Metric 2
very similar to an iterative bit-flipping algorithm proposed for
PAR with partial transmit sequences (PTS) in [9].

C. Complexity

Assuming that the computational complexity is dominated
by the number of multiplications required to find the code
sequence for shaping, in this section we quantify the com-
plexities for the different trellis shaping metrics and selection
algorithms.
a) Metrics 1 and 2:Trellis shaping with Metrics 1 and 2
involves computation of the partial time-domain vectorsx

(k)
l ,

l ∈ {z, d}, and a subsequent peak-amplitude search (see Eqs.
(4) and (5)). In an efficient implementation, the vector update
can be formulated as (yi ∈ {0, 1} is the ith bit of y

(k)
l )

x
(k)
l = x

(k−1)
l + v

(k)
l , l ∈ {z, d} , (7)

with

v(k)
z =

kns−1
∑

i=(k−1)ns

(1 − 2yi)vi , v
(k)
d = −2

kns+q−1
∑

i=(k−1)ns

yivi , (8)

and
vi = IDFT([0i Xi 0N−i−1]) (9)

respectively. It should be noted that this update relies on the
symmetric QAM labeling (cf. Section II) and multiplications
are only required in (9). In particular,2LN real multiplications
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(RMs) are needed for eachvi. If these vectors are saved for
reuse (with Metric 1 we only need to savens such vectors
at any time, and with Metric 2, at most(log2(Ns) + 1)ns

vectors), a total of2LN2 RMs are required to generate time-
domain vectorsx(k)

l , l ∈ {z, d}, (the computations for an
initial fast IDFT for Metric 2 are neglected). Each peak-
amplitude search requires2LN RMs. In VA, since in total
2Ns(N/ns− log2(Ns)) partial sequences are considered, the
overall complexity is about4(Ns/ns)LN2. The ST-SDA has a
very similar complexity per considered partial code sequence,
or equivalently per peak-amplitude search, and therefore we
consider the number searches when comparing the VA and
ST-SDA in Section III.
b) Metric 3: A computationally efficient implementation of
trellis-shaping with Metric 3 is described for the VA in [4].
It requires about2(Ns/ns)N

2 RMs, i.e. by about a factor
2L less multiplications than with Metrics 1 and 2. For this
implementation each state at timek has to store all partial
autocorrelationsρ(k)

m
∆
=

∑kns−m−1
i=0 Xi+mX∗

i for 1 ≤ m ≤
kns − 1 associated with the chosen path and all possible
entries forXi+mX∗

i need to be tabulated to save computations.
Further complexity reduction could be achieved by application
of the trellis-window truncation proposed in [4], which in
turn leads to a somewhat degraded PAR-reduction and is not
further considered here. Similar conclusions apply if the ST-
SDA is used and a comparable number of partial sequences
are considered for the different metrics.

III. PERFORMANCEEVALUATION AND DISCUSSION

In this section, we discuss the performances for PAR reduc-
tion with trellis shaping and the different metrics and selection
algorithms introduced in Section II. As it is customary (cf.
e.g. [3], [7], [4]), we consider the complementary cumulative
distribution function (CCDF) of the PAR (Pr{·}: probability):

Qγ(γ0) = Pr{γ(x) > γ0} . (10)

As an illustrative example, we assume OFDM transmission
with N = 128 subcarriers and 16-QAM constellation. The
shaping codes are maximum free distance convolutional codes.
However, we found that the actual construction of the shaping
code has only a small impact on performance, cf. also [2], [4].
a) Comparison of Metrics:Fig. 1 depicts the CCDFQγ(γ0) as
a function ofγ0 for trellis shaping with the VA and Metrics 1-
3. A 4-state rate-1/2 code is used (Case 1 from Table I). As
a reference, the CCDF for OFDM without shaping is also
plotted. We observe that Metrics 1 and 2 show a very similar
PAR reduction capability with the 0.1% PAR (10 log10(γ0)
at Qγ(γ0) = 10−3) reduced by 4.5 dB compared to OFDM
without shaping. This was expected as both metrics represent
the same optimization criterion. Furthermore, it can be seen
that Metric 3 compares unfavourably with Metrics 1 and 2 in
terms of PAR reduction. For example, a gap of about 1 dB is
observed for the 0.1% PAR.

This trend is confirmed by the figures in Table I for the
0.1% PAR and different convolutional codes. We consider only
the VA for the moment. It can be seen that Metrics 1 and 2
consistently offer an improved PAR reduction over Metric 3.

4 5 6 7 8 9 10 11
10

−3

10
−2

10
−1

10
0

shaping
OFDM without

Metric 1

Q
γ
(γ

0
)

−
→

10 log10(γ0) [dB] −→

Metric 3

Metric 2

Fig. 1. Performance of trellis shaping with VA and Metrics 1-3. Case 1 from
Table I.

We also observe that increasing the number of statesNs is
beneficial for PAR reduction. In particular, a 0.1% PAR of
about 6.5 dB is achieved for different redundancy ratios from
r = 1/8 to r = 1/32, if the number of states are increased
from Ns = 4 to Ns = 64.

In summary, we conclude that trellis shaping accomplishes
significant PAR reduction and that Metrics 1 and 2 offer a
superior PAR-reduction performance compared to Metric 3.
b) Comparison of Selection Algorithms:Although the ST-
SDA finds the optimum code sequence for Metric 3, the
average complexity for the tree search with the ST-SDA
was found to be much larger than that for the trellis search
with the VA. This is because longer paths accumulate larger
metric values, and thus shorter paths are more likely to be
extended than longer paths. We therefore applied a bias termto
adjust the metrics when comparing paths of different lengths.
Application of such a bias is well known from sequential
decoding of convolutional codes. The achieved PAR reduction,
however, is not comparable to that accomplished with the VA.
We therefore concentrate on Metrics 1 and 2 in the following.

For the ST-SDA with Metric 1, a stack with a maximum
of 100 entries was used and the expected metric value for
a certain length was applied as a bias. The ST-SDA with
Metric 2 requires a stack of size two and runs without bias
(cf. Section II-B).

Table I shows the 0.1% PAR for the ST-SDA and Met-
rics 1 and 2 together with the average number of peak-power
searches, which is the appropriate complexity measure when
comparing with the VA. The respective complexity figures for
the VA are also included. The figures show that (i) the ST-
SDA performs considerably fewer searches than the VA, which
results in a corresponding gap in PAR reduction capability,
(ii) Metric 2 achieve a slightly better performance-complexity
tradeoff than Metric 1, and (iii) the ST-SDA with Metrics 1
and 2 attains a better 0.1% PAR than the VA with Metric 3
(proposed in [4]), while computational complexity savingsare
likely due to the small number of searches. Hence, the ST-SDA
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TABLE I

PERFORMANCE OF TRELLIS SHAPING WITHVA AND ST-SDA. “0.1% PAR [DB]” IS THE 10 log10(γ0) SUCH THAT Qγ(γ0) = 10−3 . “# OF SEARCHES”

IS THE AVERAGE NUMBER OF PEAK-AMPLITUDE SEARCHES.

VA ST-SDA

Case ns Ns r

0.1% PAR [dB] # of searches 0.1% PAR [dB] # of searches

Metric Metrics Metric Metric

1 2 3 1 and 2 1 2 1 2

1 2 4 1/8 6.55 6.55 7.35 496 6.80 7.10 174 65

2 4 4 1/16 6.95 6.85 7.90 240 7.20 7.40 83 33

3 4 16 1/16 6.45 6.55 7.60 896 7.25 7.45 83 33

4 8 8 1/32 7.15 7.05 8.25 208 7.70 7.85 40 17

5 8 64 1/32 6.50 6.55 7.90 1280 7.70 7.70 40 17

6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
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VA, Metric 2
ST−SDA, Metric 1
ST−SDA, Metric 2
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0
)
=

10
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3
−
→

Case 5, r = 1/64

Case 5, r = 1/64

Case 3, r = 1/16

Case 3, r = 1/16

Random Selection of Code Sequences

Case 1, r = 1/8

(Cases 1, 3, 5)

Fig. 2. Performance of trellis shaping. VA and ST-SDA with Metrics 1 and
2, respectively. Cases 1, 3, and 5 from Table I. Also shown: Random selection
of code sequences (SLM-like PAR reduction).

is an interesting alternative for low-complexity trellis shaping.
The complexity-performance tradeoff is more clearly illus-

trated in Fig. 2, which shows the number of searches required
for the 0.1% PAR and the Cases 1, 3, and 5 corresponding
to relative redundancies ofr = 1/8, 1/16, and1/32, respec-
tively (see Table I). It is interesting to observe that the VA
achieves about the same PAR reduction also for lower shaping
redundancies at the cost of higher complexity. The ST-SDA,
on the other hand, performs fewer searches with decreasing
redundancy, but also PAR reduction degrades. Also included
in Fig. 2 is the curve for a random selection of code sequences,
whose performance was found to be rather independent of
the applied code and practically identical for Cases 1 and
5. Trellis shaping with random selection could be interpreted
as a form of selected mapping (SLM) [3] with implicit side
information embedding. It is an interesting benchmark case,
but its implementation would require a full IDFT for each
tested code sequence. It can be seen that the two trellis-shaping
selection algorithms perform quite similar to SLM-like random
selection while facilitating a more efficient implementation.
c) Adaptive Shaping:Finally, Fig. 3 shows the results for

5.5 6 6.5 7 7.5
10

−4

10
−3

10
−2

10
−1

10
0

Case 3, 138 searches

{

Case 5, 195 searches

Case 1, 92 searches

10 log10(γ0) [dB] −→

Case 3, 896 searches

Case 5, 1280 searches

Case 1, 496 searches

non-adaptive
trellis shaping

adaptive
trellis shaping

Q
γ
(γ

0
)

−
→

Case 3, 250 searches

{

Case 5, 298 searches

Case 1, 140 searches

(a)

(b)

Fig. 3. Performance of non-adaptive and adaptive trellis shaping and the
number of searches required. (a) Threshold chosen as the 1% PAR. (b)
Threshold chosen as the 0.1% PAR. VA with Metric 2. Cases 1, 3,and 5
from Table I.

adaptive trellis shaping using the VA with Metric 2 (similar
results are obtained with the ST-SDA). The threshold for each
case is chosen as the (a) 1% PAR and (b) 0.1% PAR for
the conventional VA (cf. Table I). A consistent complexity
reduction in terms of number of searches by more than (a)
70% and (b) 80% can be observed, while the same (a) 1%
PAR and (b) 0.1% PAR is achieved. Clearly, the complexity
savings increase with larger thresholds, i.e., lower clipping
rate. This renders adaptive shaping, which is only feasible
with Metric 2, quite an attractive feature for trellis shaping
and practical scenarios, where power amplifiers are operated
with a certain power backoff.

IV. CONCLUSION

In this letter, we have studied the application of trellis
shaping for PAR reduction in OFDM systems. To this end, we
have compared different metrics and selection algorithms.It
is found that the time-domain Metrics 1 and 2 achieve a better
PAR-reduction than the frequency-domain Metric 3 at the price
of increased computational complexity if the VA algorithm is
used for selection of the code sequence. The application of
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the VA and the ST-SDA and codes with different redundancies
are shown to enable trellis shaping for PAR reduction with a
flexible complexity-performance tradeoff comparable to that
of SLM-like PAR reduction. The new Metric 2 furthermore
facilitates adaptive shaping with favorably low complexity.

REFERENCES

[1] S. Han and J. Lee, “An overview of peak-to-average power ratio reduction
techniques for multicarrier transmission,”IEEE Trans. Wireless Commun.,
vol. 12, no. 2, pp. 56–65, Apr. 2005.

[2] W. Henkel and B. Wagner, “Another application for trellis shaping: PAR
reduction for DMT (OFDM),”IEEE Trans. Commun., vol. 48, no. 9, pp.
1471–1476, Sept. 2000.
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