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Abstract

The thesis applies the Model Based Predictive Control (MBPC) technique, a relatively
well known technique in the process industry, within the aerospace environment. Such an
approach was taken because of some appealing attributes of MBPC such as simplicity,
richness and practicality. Moreover, the built in constrained optimisation gives to the ight
control architecture more power in terms of monitoring actuator states or ight envelopes.

After an introduction, the second chapter contains a comprehensive overview of the
methodology in an uni�ed manner covering the state space and the input-output formu-
lations of model based predictive control.

The third chapter deals with theoretical issues, such as stability feasibility and robust-
ness, taking the reader into both unconstrained and constrained problem formulations.

The fourth chapter addresses some implementation issues of predictive controllers. The
problems addressed range from tuning procedures and guidelines to a CAD development
space used to tune and implement MBPC controllers.

The �fth chapter contains a novel application of MBPC, as a Stability Augmentation
System, to a Research Civil Aircraft Model (RCAM) under the auspices of the Group for
Aeronautical Research and Technology in Europe (GARTEUR).

The next chapter presents an application of the MBPC technique to Flight Manage-
ment in a combined framework with an H1 controller used for the Guidance and Stability
Augmentation System.

The seventh chapter describes advances towards recon�guration and scheduling in
ight control systems using high �delity models expressed in a quasi-LPV form, Fault
Detection and Isolation (FDI), model approximation/simpli�cation and constrained Model
Based Predictive Control. The strategy is applied to a well known missile example. This
represents a new Recon�gurable Flight Control System. As well, this chapter explores
the method developed by employing it to a High angle of Attack Research Model (HIRM)
obtained by the courtesy of the Defence and Evaluation Research Agency (DERA).
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Chapter 1

Introduction

1.1 Motivation

In this work we aim to improve the understanding of the Model Based Predictive Control
(MBPC) technique and its potential in aerospace applications. This subject was gen-
erated by an attempt to apply a control technique mainly used in process industry in a
completely new environment | the design and commissioning of ight controllers.

The idea of posing ight control problems as constrained optimisation problems was
started by the needs developed by the military aerospace industry in the sixties when it
addressed launching, guiding and landing space vehicles. The main feature of predictive
controllers is their ability to handle constraints. In such a case the resulting control law is
nonlinear but copes with panic kinds of situations when if a hard constraint is exceeded,
catastrophic failures can occur. So a standard predictive controller will behave linearly
when operating safely away from constraints but in a nonlinear manner when these are
approached too closely.

Predictive control involves solving optimisation problems on-line which will yield com-
putation time problems when addressing general aerospace applications. Of course this
problem will gradually disappear as computer speeds increase but even now, as described
in the thesis, there are applications such as ight management whereMBPC can provide
real time solutions or, as another example, large space structures with solar panel arrays
which have slow dynamics that do not require a fast update.

The reason for studying the theory of the Model Based Predictive Control algorithm
was to enable us to gain necessary insight into the technique, to enable a full exploitation
of its features and to generate proofs regarding the properties of our controllers. This
study gave us the possibility to make some theoretical contributions. The main goal of
our research was to push the application ofMBPC to its limits in terms of implementation
possibilities and real time solution, with the aim of discovering the most realistic aerospace
applications for it.

This thesis o�ers the necessary hints and guidelines for a time domain based tuning
of the MBPC in the case of customised applications such as aircrafts or missiles. The
connection with the frequency domain can be observed when trying to design the MBPC
for robust performance or when various automatic tuning procedures required in recon�g-

2
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urable control were employed.

1.2 A bit of history

Most of the surveys available in the �eld of Model Based Predictive Control (MBPC)
include at their beginning a brief history of the �eld but none of them order the references
using the year as a basis.

Therefore, before giving an outline of the thesis we consider a tabular, and therefore
condensed format, historical presentation of the development of the predictive control �eld
will be useful in order to locate our contribution and evaluate the state of the art in this
particular research area. Of course this brief presentation is a�ected by the subjectivity
of the author.

Table 1.1 o�ers the reader the possibility to see at a glance how this particular domain
developed and when the major contributions were made, see Table 1.1. In the presentation
few comments will be made with respect to the papers mentioned, but we invite the reader
to familiarise her/himself with the author's view of this �eld as presented in the following
chapters. This view was inuenced by the work of the researchers enumerated.

Author and Year Comments

[KP75] Initial stability results in the receding horizon case including
terminal constraints upon a number of states were presented.

[RRTP78] It represents an early contribution to the IDenti�cation and
COMmand (IDCOM) algorithm.

[PGC82] Dynamic Matrix Control (DMC) { an input output ap-
proach based on step/impulse response models.

[RM82] Impulse response models are used to produce the control law
based on the Model Algorithmic Control (MAC) approach.

[BV84] A step response model, easy to obtain via experiments and
on-line identi�cation, was used in a DMC fashion.

[Pet84] Transfer functions were intoduced in predictive control for
the �rst time.

[MZM84] The MUltiStep Adaptive Regulator (MUSMAR is sug-
gested to the control community as a �rst adaptive approach
involving predictive control.

[DCT87] The Generalised Predictive Control (GPC) algorithm is in-
troduced together with an analysis of its properties.

[PG88] In this book the authors for the �rst time have mentioned
several application where predictive control was successful
providing the reader with an accurate description of the
DMC algorithm.
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Author and Year Comments

[CM89a] The Long Range Predictive Control (LRPC) is introduced
and analysed.

[BGW90] The stability of the receding horizon scheme is analysed us-
ing Fake Algebraic Equations.

[Zaf90] The issue of robust model predictive control is addressed
for the �rst time together with the introduction of the new
concept of hard and soft constraints.

[LM91b] The robustness of the predictive control scheme is addressed
based on an internal model obtained via identi�cation.

[RC91] Robustness e�ects of a pre-�lter in Generalised Predictive
Control are considered and analysed.

[CS91] Constrained Receding-Horizon Predictive Control
(CRHPC) is introduced and optimisation feasibility
issues considered.

[MZ92] Stabilising Input-Output Receding Horizon Control
(SIORHC) is described as a control law obtained by
optimising a quadratic function subject to condition that
the output matches a reference value over a future constant
range.

[BKC92] Stable Generalised Predictive Control (SGPC) as an algo-
rithm with guaranteed stability is formulated.

[AP92] The connection between linear programming and robust
model predictive control is made using impulse-response
models.

[LGM92] For the �rst time predictive control, as discrete time tech-
nique, is treated in a multi-rate sample-data framework

[Soe92] One of the �rst contributions made at the level of unifying
various formulations of predictive control existing up to date.

[KR93] The multivariable SGPC was derived as an extension of
the original algorithm, more insight into the problem being
added.

[RK93] The original SGPC formulation is extended to account for
constraints, feasibility issues being addressed as well.

[DC93] The stability of the GPC scheme is guaranteed using end-
point weighting of the cost function which gives the required
monotonicity to the cost function's associated Di�erence
Riccati Equation.

[YC93] Exponential weighting is employed for the �rst time in the
context of predictive control cost function to achieve a pre-
scribed degree of stability.
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Author and Year Comments

[MH93] A heuristic robustness analysis to a predictive control
scheme is provided.

[All94] A robust predictive controller is designed on-line based on
a min-max optimisation that accounts for the worse case |
an operation extremely expensive from the computational
point of view.

[HM94] Based on an internal model structure the stability of the
constrained MBPC is analysed.

[LY94] Guidelines for tuning the predictive controller for robust per-
formance are provided based on a �xed tuning of the cost
function weights and a manipulation of the observer covari-
ance matrices.

[Mor94] One of the leading authors in the �eld is surveying the area
promoting at both industrial and academic level predictive
control as a choice in the 1990's.

[YC95] The robustness issue of the predictive control schemes is
addressed in a similar manner like in Lee et al. but from the
perspective of GPC, the authors' favourite algorithm.

[RKG95b] The authors of the SGPC formulate the optimisation in
a new manner involving a mixed objective, to account for
feasibility in the constrained case, and a modi�ed version of
the Lawson's least square algorithm to provide the solution.

[CKC96] Various issues in multiple model predictive control are ad-
dressed emphasising the importance of how models are em-
ployed in prediction in order to maintain the optimisation
convexity.

[RG96] A two-degree of freedom GPC algorithm with better track-
ing is suggested, quite similar with the scheme used in H1

control.

[KBM96] An original and neat formulation of predictive control in
Linear Matrix Inequalities (LMI) is given, algorithm which
accounts for stability, robustness and constraints by enlarg-
ing the LMI optimisation according with the number of ex-
tra features included. This leads to an expensive solution
computationally wise.

[Sco97] The scheme developed in 1993 by Rawlings et al. is improved
leading to an in�nite horizon Generalised Predictive Control
formulation that enforces input and output constraints.

Table 1.1: Historical review of contributors to MBPC
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1.3 The thesis overview

This thesis contains eight chapters grouped in two main parts. The �rst part (Chapters 2,
3, 4) gives the state of the art in MBPC theory containing various formulation of predic-
tive controllers, robust stability and feasibility issues together with a original contribution
at the level of implementation guidelines and software. The second part (Chapters 5, 6,
7) describe the development of various aerospace applications for MBPC. These range
from stability augmentation to ight management and recon�gurable control. In order
to emphasise the connection between the two parts we have decided to present some of
the theoretical achievements within the practical chapters. This decision is motivated by
the fact that all our theoretical contributions were generated as a result of the practical
investigations pursued.

The presentation made in the �rst chapters of the thesis, which have a theoretical con-
tent, represents a personal view of the author upon the predictive control �eld addressing
general issues such as stability, performance and feasibility of the on-line optimisation.

The existing MBPC software, unable to give a complete answer to our requirements
developed during the research carried out, led us to produce a Development Space software
package for Matlab which includes speci�c features that can have a more general impact
upon the community designing and implementing predictive controllers.

Naturally before involving theMBPC technique in various ight control systems struc-
tures we have passed through a learning stage followed by the development of various
theoretical issues necessary for using the MBPC method in three di�erent aerospace
applications: stability augmentation, ight management and recon�gurable control.

As a result, the design chapters contain not only the design procedure but the analysis
and evaluation which had to be carried out in order to have a complete image about how
our controllers behaved and to show their stability and performance. Several assumptions
were made when performing the design, each of them being addressed and motivated
within the corresponding context. The impact upon the MBPC by these assumptions
was analysed in the �rst two theoretical chapters.

A brief overview of the contents of each chapter is as follows:

Chapter 1: Introduction In this chapter after motivating the research developed and
presented in the thesis we have o�ered a brief history of the predictive control �eld
together with the present thesis outline.

Chapter 2: Predictive control formulations We gather the relevant model based pre-
dictive formulations including the state space and input-output such as: MBPC,
DMC, GPC, SGPC and in�nite horizon GPC. Further understanding of these
acronyms can be found using the list presented at the beginning of the thesis.

Chapter 3: Stability, feasibility and robustness The mathematical background ad-
dressing the stability of MBPC schemes is developed. This involves both uncon-
strained and constrained controllers together with the discussion of various methods
to ensure stability. The feasibility issue is developed in the case of constrained con-
trollers based on the mixed weights least square algorithm. Towards the end of the
chapter the design for robust performance is presented and several guidelines are
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given with the aim to o�er a better understanding of the advantages as well as the
limitations of predictive control.

Chapter 4: Implementation of MBPC schemes In this chapter tuning guidelines
for the MBPC parameters were given relying on the theoretical information of-
fered in Chapters 2 and 3. Another aim was to provide the reader with more insight
to the problem of �ltering within MBPC schemes. The issue of ensuring robust
tracking and/or disturbance rejection for a wide class of signals is treated in an uni-
�ed manner. As a result a novel MBPC approach is considered. An answer to the
question \Why we should have an MBPC development space?" is also addressed
in this chapter followed by a presentation of a predictive control Development Space
(DS). This included a description of the graphic user interface and the a presenta-
tion of the DS at work with a MIMO aircraft model. This work has been published
in [HM97b, HM97a]

Chapter 5: Stability augmentation using predictive control This chapter applies
Model Based Predictive Control (MBPC) to the Garteur Research Civil Aircraft
Model (RCAM) Design Challenge. Separate controllers are proposed for the longi-
tudinal and lateral channels, each of these having MBPC in the inner loop and a
conventional controller in the outer loop. Emphasis is placed on describing the de-
sign process. As a main conclusion we can say that MBPC is not recommended for
routine use in ight control, but has good potential for higher level control functions
such as: on-board ight management and recon�guration of controllers in event of
damage and to the aircraft structure or equipment. This work has been published
in [HM96b]

Chapter 6: Flight management using predictive control The aim of this chapter
is to investigate the role of the constrained Model Based Predictive Control strategy
for ight management. As a conclusion we believe that MBPC represents a tech-
nology which should be considered in the transition from stability augmentation to
ight management systems. This work has been published in [PHGM97, HM97c].

Chapter 7: The model based predictive recon�gurable ight control The seventh
chapter describes advances towards recon�guration and scheduling in ight con-
trol systems using high �delity models expressed in a quasi-LPV form, Fault De-
tection and Isolation (FDI), model approximation/simpli�cation and constrained
Model Based Predictive Control. The strategy is applied to a well known missile
example. This represents a new Recon�gurable Flight Control System (RFCS). The
chapter continues with the exploration of the recon�guration strategy by employ-
ing it to a High Incidence Research Model (HIRM) obtained by the courtesy of
the Defence and Evaluation Research Agency (DERA). This work will be published
in [HM98a, HM98b, HM98c].

Chapter 8: Concluding remarks In the last chapter of the thesis we summarise the
main contributions and make several suggestions for the future research to be carried
in connection with the new developments presented here.



Chapter 2

Predictive Control Formulations

2.1 The fundamentals of MBPC schemes

The de�ning feature of model based predictive control (MBPC) is the repeated optimisa-
tion of a performance objective over a �nite horizon extending from a future time (N1) up
to a prediction horizon (N2) [CM89a, Cla93]. Figure 2.1 characterises the way prediction
is used within the MBPC control strategy. Given a set-point s(k+ l), a reference r(k+ l)
is produced by pre-�ltering and used within the optimisation of the cost function (2.1).
Manipulating the control variable u(k + l), over the control horizon (Nu), the algorithm
drives the predicted output ~y(k + l), over the prediction horizon, towards the reference.

k+Nu k+N1 k+N2k-n k k+1 k+l

y(k)=r(k)

SET POINT

REFERENCE

r(k+l)
PREDICTED OUTPUT

CONTROL HORIZON - Nu

MINIMUM OUTPUT HORIZON - N1

MAXIMUM OUTPUT HORIZON - N2

PAST FUTURE

u(k+l)
MANIPULATED

INPUT
CONSTANT INPUT

k-2 k-1

Figure 2.1: The MBPC prediction strategy
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The future control movement is determined by minimising the cost function:

J(k) =

N2X
l=N1

k(~y(k + l)� s(k + l)k2Q(l) +

Nu�1X
l=0

k�u(k + l)k2R(l) (2.1)

subject to constraints on:

� the inputs levels ul(l)�u(l)�uu(l) where k�l�k +Nu � 1

� the input rates of change �ul(l)��u(l)��uu(l) where k�l�k +Nu � 1

� the output (and state) levels yl(l)�~y(l)�yu(l) where k +N1�l�k +N2

In the cost function (2.1) �ui(k) = ui(k+1)�ui(k), Q(l) and R(l) are weights independent
of time k and the norm k:k2Q within the cost function is de�ned as k�k2Q = �TQ�. It is
assumed that �u(l) = 0 for l�k + Nu and s(k) = r(k). As in [CM89a, HM94] the
optimisation is carried out using a quadratic program (QP) or other algorithms such as
mixed weights least square (MWLS) and/or interior point optimisations.

OUTPUTCOMMANDREFERENCE

using
STATE ESTIMATE

PLANT

OBSERVER

OPTIMISER
&

PREDICTOR

INTERNAL
MODEL

Figure 2.2: The structure of MBPC schemes

The general structure of MBPC schemes, given in Figure 2.2, is the following:

Optimiser contains the constrained cost function. The main task of the optimiser is to
compute the present and future manipulated variable moves such that the predicted
output follows the reference in a desirable manner.

Predictor employing the internal model and the measurement or estimate of the current
state provides the optimiser with future predicted values of states and outputs.

Internal model represents the plant. State-space linear time invariant, impulse/step
response or CARIMA models are used for the plant.

Observer provides current state estimates, which can be used in the predictor.

TheMBPC scheme has some very appealing attributes which are going to be exploited
in this presentation:

� Simplicity | the basic idea of MBPC is fairly intuitive, and can be understood
without advanced mathematics;
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� Richness | the common elements of MBPC schemes, such as models, objective
functions, prediction horizons, etc, can be tailored to speci�c problems;

� Practicality | the combination of linear dynamics and inequality constraints allows
realistic nonlinearities to be handled.

For a plant model which is Linear Time Invariant (LTI), discrete time, with known
parameters there are multiple predictive control formulations available such as: state space,
preferred for most cases, and input-output, using transfer functions or matrices or �nite
impulse or step response models. For each process identi�cation used and corresponding
model there is a suitable MBPC formulation. Even though di�erent models are used
for prediction, there is a possibility to convert them in such a way that a state space
formulation can be employed. More insight into this kind of conversion will be given in
the appropriate sections.

Regarding the control and prediction horizons there are small di�erences between al-
gorithms. Various authors relate the values for such horizons to simulation and theoretical
results.

Weighting matrices in the cost function are used in a similar way for all methods
although there are some di�erences regarding the values included. Their o�-line tuning is
compulsory for most of the algorithms in order to ensure real-time implementation. The
exponential weighting formulation of the cost function can be regarded as an exception.

Constraints are handled in a similar manner by most of theMBPC algorithms. Stack-
ing them with the purpose of using standard QP routines is the usual technique. For the
GPC method the algorithm did not initial address this issue but now it is possible to
include it within the optimisation. Input constraints, as we will be able to see in the next
chapter, are manageable from the feasibility and stability point of view but as it was shown
in the literature the existence of output constraints can result in instability for processes
with model error or discrete models with unstable zeros.

2.2 Model Based Predictive Control (MBPC)

This section addresses a multi-model state space formulation [HM96a] of model based
predictive control (MBPC), a derivation inspired by the work of [LY94, Hei94, RM93].
The reason for such an approach is that in the alternative input/output formulation such
as DMC or classical GPC states are not directly involved in the control algorithm so con-
straining them is di�cult. The multi-model formulation opens the path for recon�gurable
control in the case of failures.

In fact this is the formulation used within the MBPC Development Space (DS), as
described in Chapter 4 which was used for in the aerospace applications developed in the
second part of this work.
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2.2.1 Plant model requirements

Considering a possible multi-model context, let index i represent the plant in use:

xi(k + 1) = Aixi(k) +Buiui(k) +Bdidi(k) +Bwiwi(k) (2.2)

yi(k) = Cixi(k) + �(k)

where xi(k)2R
n is the system state vector, ui(k)2R

m is the system control input vector
and yi(k)2R

p is the vector of outputs, all variables being measured at time k. The vector
of outputs free from measurement noise is yxi(k) = Cixi(k) + wi(k). It is important to
note that in the event of a complete actuator failure, the system and respective model
state dimension may change such that xi(k)2R

ni .

The input, state, and output (measurement) vectors are indexed using the variable i in
order to indicate the model in use. Here di(k) is considered to describe unmeasured state
disturbance, wi(k) represents the input disturbance and �(k) is an unmeasured output
disturbance vector. It is assumed that each pair (Ai; (Bui ; Bdi)), with controllable modes
of (Ai; Bdi) being stable, is stabilizable and the pair (Ai; Ci) detectable. There is no other
particular requirement for the plant model.

2.2.2 State space formulation

We express the state vector in terms of the change in the manipulated variable (at time k):
�ui(k) = ui(k+1)�ui(k), the state disturbance (at same time k): �di(k) = di(k+1)�di(k)
and the output disturbance (at sampling time k): �wi(k) = wi(k + 1)� wi(k). In such a
case, the state space model becomes:�

�xi(k + 1)
yxi(k + 1)

�
=

�
Ai 0
CiAi I

��
�xi(k)
yxi(k)

�
+

�
Bui

CiBui

�
�ui(k) +

�
Bdi Bwi

CiBdi I

��
�di(k)
�wi(k)

�

yi(k) =
�
0 I

���xi(k)
yxi(k)

�
+ �(k)

where yxi(k + 1) corresponds to a vector of outputs free from measurement noise. The
augmented system will be referred to by the realization Â, B̂, Ĉ:�

�xi(k + 1)
yxi(k + 1)

�
= Âi

�
�xi(k)
yxi(k)

�
+ B̂ui�ui(k) +

�
B̂di B̂wi

���di(k)
�wi(k)

�

yi(k) = Ĉi

�
�xi(k)
yxi(k)

�
+ �(k)

Certain elements of the state vector may not be available for measurement at time k so
an observer will be employed.

2.2.3 State prediction

As mentioned, since certain elements of the state vector may not be available for mea-
surement at time k we will determine a set of state estimates for each model of the plant
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in use. The estimated states will be either the states of the main system or states of that
system augmented by the disturbance variables, as shown in the previous section.

The vector of augmented state and output estimates
�
�xi(k)

T yxi(k)
T
�T

will be

denoted as x̂i(k)2R
(n+p̂) (where p̂ represents the number of outputs uncorrupted by mea-

surement noise) and they will rely upon selecting a particular observer. So, in general,
state estimation will take the following form at time k + j (j = 0: : :N2 � 1) from the
prediction horizon N2:

x̂(k + j + 1) = Fi(j)x̂(k + j) +Gi(j)�ui(k + j) +Hi(j)yi(k + j) (2.3)

where �ui(k + j) is a vector of future control changes.

We should emphasise that Fi(j), Gi(j), Hi(j) matrices are derived, from the open-
loop model itself, in a way that depends on the estimation/prediction scheme employed.
Therefore, this depends on the type of observer chosen as well as on the disturbances
which a�ect the plant and on noise upon measurements. We assume that Fi(j), Gi(j),
Hi(j) depend only on i (the model set) and j (time in the future) but not on k (current
time). This assumption was made to exclude certain possibilities such as non-stationary
observers.

A typical simpli�cation such as: Hi(j) = 0, Fi(0)6=Fi(1) and Fi(j) = Fi(j + 1) for
j > 0 may occur. In this case the state estimator is constructed in the following way:

x̂i(k + 1) = Fi(0)x̂i(k) +Gi(0)�ui(k) +Hi(0)yi(k) (2.4)

in which Hi(0) = K, Fi(0) = Âi � Hi(0)Ĉi, Fi(1) = Fi(2) = : : : = Fi(N2 � 1) = Â
and Gi(0) = B̂. For the future computation it is not necessary to assume the last two
simpli�cations.

From the earlier de�nition of the state space description (2.2) and using (2.3) the
vector of future state estimates may be written as:

X̂i(k) =

2
64
x̂i(k + 1)

...
x̂i(k +N2)

3
75 = Fi(k)x̂i(k) + Gi�Ui(k) +Hi(k)yi(k) (2.5)

In the above equations �Ui(k) =
�
�ui(k)

T ; : : :;�ui(k +Nu � 1)T
�T

denotes the vector

of future manipulated variable increments and X̂i(k) =
�
x̂i(k + 1)T ; : : :; x̂i(k +N2)

T
�T

denotes the vector of the change of state estimates which is dependent only upon x̂i(k) the
state estimate at time k. Therefore it is necessary to have a state estimator to determine
current state estimate x̂i(k).

Now we are able to de�ne the matrices involved in equation (2.5), these identities being
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the result of stacking the equation (2.3) for x̂i(k+1) up to x̂i(k+N2), see [Hei94] as well:

Fi(k) =

2
6664

Fi(0)
Fi(1)Fi(0)

...Q0
j=N2�1

Fi(j)

3
7775

Gi =

2
66666666664

Gi 0 : : : 0
Fi(1)Gi Gi : : : 0

...
...

. . .
...hQ1

j=Nu�1
Fi(j)

i
Gi

hQ2
j=Nu�1

Fi(j)
i
Gi : : : Gi

...
...

. . .
...hQ1

j=N2�1
Fi(j)

i
Gi

hQ2
j=N2�1

Fi(j)
i
Gi : : :

hQNu

j=N2�1
Fi(j)

i
Gi

3
77777777775

Hi(k) =

2
6664

Hi(0)
Fi(1)Hi(0)

...Q1
j=N2�1

Hi(0)

3
7775

where
Q�

�=�R(�) denotes the product: R(�)R(�� 1)R(�� 2): : :R(�) for � > �, Nu and
N2 with Nu�N2 are the control and prediction horizon, respectively. The optimisation
assumes that �ui(k + j) = 0 for j�Nu.

Regarding the prediction equations a warning has to be made. The computations made
can lead to wrong answers if some of the elements in Ai may become very large or small
relative to others. This can lead to problems since the arithmetic employed by the current
computers is �nite-precision. In such cases iterative methods or \Horner's method" has
to be employed.

2.2.4 The model associated constraints

For each model set i we have an associated constraint set expressed as linear inequalities.
All the inequalities are de�ned by stacking together the corresponding scalar inequalities:

� Control signals (actuator limits)

Stacking over the control horizon the inputs Ui(k) =
�
u(k + 1)T ; : : :; u(k +Nu)

T
�T

we are able to write the linear inequalities that express the lower and the upper limit
values in the following form:

mmini(k)�Ui(k)�mmaxi(k) (2.6)

wheremmini(k) and mmaxi(k) contain all minimum and maximum rate values across
the control horizon. An even more compact form of writing 2.6 is:

MiUi(k) � mi(k);

mi(k) =

�
�mmini(k)
mmaxi(k)

�
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� Control signals increments(actuator rates)
Proceeding with a similar stacking procedure over the control horizon we write the
linear inequalities that express the minimum and the maximum limit values in the
form:

lmini(k)��Ui(k)�lmaxi(k) (2.7)

where lmini(k) and lmaxi(k) contain all the limit values across the control horizon.
Following the same path as for the control signals we write the inequality (2.7) in
the form of:

Li�Ui(k) � li(k);

li(k) =

�
�lmini(k)
lmaxi(k)

�

� State constraints for the augmented system (variation of the states and the outputs
of the model)
Over the prediction horizon the vector: X̂i(k) and the minimum and maximum
values admissible for the system states across the N2 horizon are de�ned by the
following linear inequality:

nmini(k)�X̂i(k)�nmaxi(k): (2.8)

The compact form of the inequality 2.8 is:

NiX̂i(k) � ni(k)

ni(k) =

�
�nmini(k)
nmaxi(k)

�
:

If we would like to have more general inequalities concerning the states we might
need to allow changes in the expression of Ni, in other words the present formulation
might have to be slightly altered.

In order to pose the problem as a standard quadratic programming optimisation we
need to have all the inequalities stacked one upon another as a single linear inequality con-
straint on the vector of future input changes �Ui. The �nal result of stacking constraints
is:

Di�Ui(k) � Ei

2
664
ui(k � 1)
x̂i(k)
yi(k)
ci(k)

3
775 (2.9)

Di =

2
4 Li
Mi�
NiGi

3
5

Ei =

2
4 0 0 0 I� 0 0
�MiIi 0 0 0 I� 0

0 �NiFi �NiHi 0 0 I�

3
5
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where � and I are de�ned as follows:

� =

2
6664
Im 0 : : : 0
Im Im : : : 0
...

...
...

...
Im Im Im Im

3
7775

I = [Im; : : :;Im]
T :

where Im is a unit matrix, Im 2 R
m�m .

The vector ci(k) is de�ned as: ci(k) = [li(k)
T ;mi(k)

T ; ni(k)
T ]T where li(k) 2 R

� ,
mi(k) 2 R

� and ni(k) 2 R
� . We should note that in general � 6= � 6= �. Note that control

ui(k + 1) is still to be determined at time k.

2.2.5 Design objectives

The purpose of stacking inequalities in the form of (2.9) was to minimise the following
cost functional:

Ji(k) =

N2X
j=1

k(Cix̂i(k + j) � si(k + j))k2Qi(j)
+

Nu�1X
j=0

k�ui(k + j)k2Ri(j)
(2.10)

using a constrained optimisation algorithm. In the cost function (2.10) si(k) represent the
reference vector for outputs (at time k). The weights Qi(j) and Ri(j) are assumed to be
independent of k, although they depend on i and may depend on j. The cost function can
be written as in [Hei94]:

Ji(k) = �Ui(k)
T
�
GTi C

T
i QiCiGi +Ri

�
�Ui(k) +

+ 2
h
[Fix̂i(k) +Hiyi(k)]

T CTi � Si(k)
T
i
QiCiGi�Ui(k) +Ki(k)

where

Qi = diag [Qi(1); : : :; Qi(N2)]

Ri = diag [Ri(1); : : :; Ri(Nu)]

Ci = diag
h
Ĉi; : : :; Ĉi

i
Si(k) =

�
si(k + 1)T ; : : :; si(k +N2)

T
�T
:

The term Ki(k) contains all the other terms independent of �Ui(k) and therefore can be
omitted from Ji(k) without a�ecting the optimisation.

In the cost function there are several types of variables:

� constants of the process model, connected with estimation and prediction: Gi, Ci,
Qi, Ri, Fi and Hi.

� parameters varying with k and the model set i such as x̂i(k), yi(k) and Si(k), being
updated at each new optimisation.
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� parameters constant during the optimisation algorithm like N2, and Nu that de�ne
the various horizons.

� the real optimisation variable vector �Ui(k).

Now it is possible to obtain the solution of the optimisation problem as a result of the
following QP problem:

min
�Ui(k)

n
�Ui(k)

TAi�Ui(k) +
�
x̂i(k)

T ; yi(k)
T ;S(k)T

�
Bi�Ui(k)

o
(2.11)

subject to the constraints:

Di�Ui(k)�Ei

2
664
ui(k � 1)
x̂i(k)
yi(k)
ci(k)

3
775

where the matrices Di and Ei and the vector ci(k) are de�ned as shown in Section 2.2.4,
equation (2.9). The other matrices involved in the optimisation problem (2.11 are de�ned
as:

Ai = GTi C
T
i QiCiGi +Ri

Bi = 2
�
CiFi CiHi �IN2p

�T
QiCiGi

where N2p is the dimension of the vector of set point trajectories at time k.

2.2.6 Further details on the unconstrained MBPC

The gain feedback case

The unconstrained state feedback case is considered in Figure 2.3 which shows a block
diagram of MBPC when states are available for feedback, and when there are no con-
straints.

For the computation of the matrices KMBPC and LMBPC , characterising the uncon-
strained MBPC, see [LY94] and Section 2.2.7.

From the Figure 2.3:

�u(k) = KMBPC

�
S(k)� LMBPC

�
�x(k)
y(k)

��

where:

KMBPC =
�
I 0 : : : 0

� �
(Cu)TQTQCu +RTR

��1
RTQTQ;

LMBPC =
�
Cx Cy

�
;

x̂(k) =

�
�x(k)
y(k)

�
, matrices Cu, Cx and Cy are de�ned using a linear internal model of the

plant and R, Q are the cost-function weighting matrices over the prediction (Ny) and
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control (Nu) horizon, respectively. S(k) is the set-point and R(k) the reference vectors
across the Ny horizon at time k. In this case, for simplicity, we assume F (z) = I (i.e.
R(k) = S(k)).

KMBPC PLANT

MBPCL

F(z)
y(z)

-

R(z)S(z) �U(z)

Figure 2.3: Filtering problem formulation

The parameter dependent MBPC closed loop realisation

As we have seen in Section 2.2 the optimisation problem in the unconstrained case can be
re-cast in the following form:

min
�Ui(k)

�Ui(k)
TAi�Ui(k) +

�
x̂i(k)

T ; yi(k)
T ;S(k)T

�
Bi�Ui(k) (2.12)

The augmented system matrices will be referred to by the realization

"
Âi B̂i

Ĉi 0

#

where it is assumed that the plant models are de�ned by

�
Ai Bi

Ci Di

�
where the index i

represents the model in use.
Using results from [Fle91] and assuming the availability of the state for measurement

the optimal solution is given by the �rst control move �ui(k) = �1�U
�
i (k) where:

�U�i (k) = �
1

2
A�1i BTi �2

�
�xi(k)

T ; yi(k)
T ; si(k)

T
�T

for �1 =
�
Im�m 0m�m : : : 0m�m

�
and, assuming a step type of set-point, �2 is de�ned

as:

�2 =

2
6666664

In�n 0n�p 0n�p
0p�n Ip�p 0p�p
0p�n Ip�p 0p�p
0p�n 0p�p Ip�p
: : : : : : : : :
0p�n 0p�p Ip�p

3
7777775

Hence, the open loop is closed, as shown in Figure 2.4, with the following feedback:

�ui(k) = Ki

��
Ai Bi

Ci Di

�
;�

�24�xi(k)yi(k)
si(k)

3
5 (2.13)
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where � is a vector de�ned by stacking together the diagonal entries of the weighting
matrices Q and R. Ecuation (2.13) and the following development will be used throughout
the automatic tuning procedure described in Section 7.2.4.

ui(k)
xi(k)

yi(k)

s(k)
�ui(k)

�xi(k)

z�1

1�z�1

1� z�1
2
4Ai Bi
I 0
Ci Di

3
5

Ki

��
Ai Bi
Ci Di

�
;�

�

Figure 2.4: The unconstrained MBPC closed loop

This loop can be restructured in the manner depicted in Figure 2.5 where the aug-

mented plant, based on the model realisation

�
Ai Bi

Ci Di

�
, is:

�
�Ai

�Bi

�Ci �Di

�
=

2
4 Ai 0 Bi

CiAi I CiBi +Di

I I 0

3
5.

s(k)

w1(k) w2(k)

z1(k)

z2(k)

�ui(k)

Ki

��
Ai Bi
Ci Di

�
;�

�

�
�xi(k)
yi(k)

�
2
4 Ai 0 Bi
CiAi I CiBi +Di

I I 0

3
5

Figure 2.5: The unconstrained MBPC restructured closed loop

For a zero reference vector the feedback law is:

�ui(k) = Ki

�
�xi(k)
yi(k)

�
= Kix̂i(k)

where Ki has the following form:

Ki = �1A
�1
i GTi C

T
i Q

T
i

�
Ci Fi

�
Considering the transfer matrix from the input and output disturbance signals (w1(k),

w2(k)), respectively, to the controller and plant output signals (z1(k), z2(k)), respectively,
we can picture the following structure, see Figure 2.6:
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w1(k)

w2(k)

z1(k)

z2(k)

�
~A ~B
~C ~D

�

Figure 2.6: The four-block transfer matrix

Where matrices ~A, ~B, ~C, ~D are de�ned as follows:

~A = �A+ �B(I � �K �D)�1 �K �C

~B =
�
�B
�
I + (I � �K �D)�1 �K �D

�
�B(I � �K �D)�1 �K

�
~C =

�
(I � �K �D)�1 �K �C

�C
�
I + �D(I � �K �D)�1 �K

��

~D =

�
(I � �K �D)�1 �K �D (I � �K �D)�1 �K

�D
�
I + (I � �K �D)�1 �K �D

� �
I + (I � �K �D)�1 �K

��

2.2.7 Comments on the state space formulation

In order to enable a comparison of the various formulations presented, a few characteristics
that will summarise theMBPC strategy are given. Regarding the type of model employed
we acknowledge the following features:

� The state space formulation can be obtained in straightforward manner from most
modelling techniques.

� Numerical algorithms based on state space representation used for prediction and
estimation allow reliable computations.

� The state space models give the opportunity to model disturbances in a convenient
way in either a deterministic or a stochastic sense.

Compared with some other approaches, to be presented, we remark that the assumption
of a stable process is not necessary for computations to be done. The matrices involved
in prediction are derived from the open loop model depending on the model set, the time
in the future but not the current time, so a few simpli�cations can be made.

The MIMO state space predictive control algorithm is characterised by the following
features:

� The least squares method produces a nice analytical solution using the state space
models in the unconstrained case.

� Constraints upon states can be handled with this approach in a convenient manner

because of x̂i(k) =
�
�xi(k)

T yxi(k)
T
�T

which is part of the cost function.

� Packing constraints in a compact vector is a straightforward procedure.
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Of course we can argue that none of foregoing features depend on using a state-space
model but these models allow an exact and compact way to store the information about the
plant, an easy manipulation of the closed loop for analysis purposes, more design freedom
and last but not least an easier plant parameter estimation in the adaptive MBPC case.

ConstrainedMBPC algorithms with linear models result in piecewise LTI laws. If the
plant is associated with a particular set of constraints:

Di��Ui(k) � Ei�

2
664
ui(k � 1)
x̂i(k)
yi(k)
ci(k)

3
775 (2.14)

and using information from Fletcher's book [Fle91] when there is equality in the above
linear inequality (i.e. for the active constraints), the optimal solution to the minimisation
problem (2.11) is given by :

�
2�Ai �DT

i

�Di 0

�
�

�
�U�i (k)
��

�
= �

"
�BTi �

�
x̂i(k)

T ; yi(k)
T ;Si(k)

T
�T

Ei�
�
ui(k � 1T ); x̂i(k)

T ; yi(k)
T ; ci(k)

�T
#

(2.15)

where �U�i (k) is the optimal control sequence over the output horizon and �� is a set of
Lagrange multipliers, corresponding to the optimisation of the Ji(k) cost function.

If the solution of the optimisation problem is unique and the optimisation is feasible
then the inverse of the matrix:�

2�Ai �DT
i

�Di 0

��1
=

�
L1i L2i

L3i L4i

�
(2.16)

exists and the optimal solution becomes:

�U�i (k) = �L1i�B
T
i �
�
x̂i(k)

T ; yi(k)
T ;Si(k)

T
�T

+

+L2i�Ei�
�
ui(k � 1); x̂i(k)

T ; yi(k)
T ; ci(k)

T
�T (2.17)

As long as the plant model, the cost function and the constraints are independent of
time then time invariance of the control law occurs. If the optimisation is repeated each
step under the stated assumptions the feedback law is linear time invariant. A particular
situation is when active constraints, which are associated with a particular model, remain
unchanged as long as that model is employed. As a result, the control law is LTI as the set
of of active constraints remains unchanged. In conclusion, the control law has a variable
structure by switching between a �nite number of control laws. This idea can be used for
tuning the MBPC parameters to guarantee robust stability by designing of a set of linear
feedback controllers, each corresponding to a constraint combination.

It has been noted, see [MH93], that a system will be stable if each of its constituent
LTI laws gives closed loop stability and the switching between laws occurs rarely enough.

If our controller is likely to operate a lot at the constraints, analysis has to be carried
out in order to ensure the stability of the closed loop with that set of constraints considered
active. In fact this can be regarded as the only situation when we can provide a tuning
straightaway in the constrained case.
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2.3 Dynamic Matrix Control (DMC)

One of the �rst formulations of predictive control was DMC [PGC82, PG88], commercial
products still using this type of controllers which are based on impulse or step response
models. As a result these type of models were the types that attracted the academic
community until the development of the GPC formulation [CMT87] which popularised
transfer function models.

Therefore the main reason for addressing here the DMC formulation is its historical
value together with the aim of showing the equivalence between this formulation using
step or impulse response models and the foregoing one employing state space models.

The equivalence between impulse and step response models which will be shown in a
later section of this chapter allows us to discuss them together. Despite their property of
being an intuitive concept the multivariable step or impulse response models come together
with few drawbacks that point us towards the direction of using state space models and
the corresponding formulation.

Among these drawbacks we can mention the fact that they can be used only with
asymptotically stable plants for which it is sometimes impractical to excite them with
step kind of inputs in normal operation. Despite a good estimation of the steady state
gains, the identi�cation of models via this method emphasises low frequencies which is
sometimes insu�cient for feedback control. Moreover these type of models are adequate
only when all the controlled variables are outputs otherwise an auxiliary mechanism is
necessary to deal with the unmeasured outputs. As mentioned in [Mac98], the necessity of
impulse or step response models for capturing complicated patterns and for representing
the plant delays are in fact false myths.

The DMC algorithm as an input/output formulation of predictive control works
equally well with and without constraints. For the unconstrained case DMC has a simple
least square solution, a feature shared by all predictive control algorithms. This is not
the case when there are constraints. Then it requires constrained optimisation such as
linear or quadratic programming. In practice it seems that DMC is usually implemented
including a linear programming (LP) algorithm rather than a quadratic (QP).

During operation, the process constraints limit can be changed in response to instru-
ment or plant failure. After performing the controller synthesis using DMC its properties
such as stability is checked via simulation of the closed loop.

2.3.1 Equivalence of state space, impulse and step response models

Using the following state space representation for the plant model:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
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and supposing that x(0) = 0, we apply a impulse input vector (i.e. u(0) 6= 0 and u(k) = 0,
8k > 0, k 2 N) to get the following sequence of states and outputs:

x(0) = 0
x(1) = Bu(0)

...
x(k) = Ak�1Bu(0)

...

y(0) = Du(0)
y(1) = CBu(0)

...
y(2) = CABu(0)
y(k) = CAk�1Bu(0)

...

From the above equations it is clear that the impulse response matrix sequence is given
by:

h(0) = D

h(1) = CB

h(2) = CAB

...

h(k) = CAk�1B

...

where CAk�1B is often called the k'th Markov parameter of the state space model.

Using the de�nition of the step response matrix expressed using the impulse response
matrix sequence we are able to write the step response sequence g(t) =

Pt
k=0 h(k) as:

g(0) = D

g(1) = CB +D

g(2) = CAB + CB +D

...

g(k) =

k�1X
i=0

CAiB +D

= C

 
k�1X
i=0

Ai

!
B +D

...

The reverse transformations from impulse response models to state space can be ob-
tained by building up the block Hankel matrix from the impulse response matrices and by
recalling that:

h(k) =

�
D (k = 0)

CAk�1B (k > 0)
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Hence we have the following identity:2
64
h(1) h(2) : : :
h(2) h(3) : : :
...

...
. . .

3
75 =

2
64
CB CAB : : :
CAB CA2B : : :
...

...
. . .

3
75

=

2
6664
C
CA
CA2

...

3
7775�B AB A2B : : :

�

In order to perform this conversion a �nite impulse response has to be used. As well the
foregoing equations assume that the data is generated exactly by a linear system with
�nite-dimensional state space.

2.3.2 From the plant dynamic matrix to the optimisation set-up

The representation given in this section is based on the information from [PG88]. The
DMC controller for a system is based on a step response model of the process, given by:

y(k) =
1X
i=1

gi�u(k � i) + n(k)

where y(k) is the process output, �u(k) the increment of input variable (the manipulated
variable), gi = g(i) are coe�cients that correspond to the values of the step response
model and n(k) is the output disturbance acting at time instant k. The use of �u(k) =
u(k)� u(k � 1) is required by the step response model and its corresponding coe�cients.

In order to facilitate the computations of the control signals and to make things clear
it is convenient to group those components of the prediction of the output that depend on
�u(k + j) for j � 0 as:

y(k + j) =

jX
i=1

gi�u(k + j � i) +

1X
i=j+1

gi�u(k + j � i) + n(k + j)

A common assumption is that the estimate of future values of the disturbance n(k + j)
is the current value n(k) (i.e. n(k + j) = n(k) = y(k) �

P1
i=1 gi�u(k � i)). This is just

a simple way to see disturbance problem and more sophisticated estimates are possible.
Such an approach assumes that all disturbances are steps.

Hence the prediction of the output can be written as:

ŷ(k + j) =

jX
i=1

gi�u(k + j � i) +
1X

i=j+1

gi�u(k + j � i) + y(k)�
1X
i=1

gi�u(k � i) (2.18)

Using the backward shift operator z�1 in the discrete case equation (2.18) may be
written in a more compact form:

ŷ(k + j) = Gj(z
�1)�u(k + j) + pj (2.19)
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where Gj(z
�1)is a polynomial in the backward shift operator z�1 (Gj(z

�1) = g1z
�1 +

: : :+ giz
�i) and pj represent the free response of the system, given by:

pj = y(k) +
1X

i=j+1

gi�u(k + j � i)�
1X
i=1

gi�u(k � i) = y(k) +
1X
i=1

(gj+i � gi)�u(k � i)

(2.20)

The reason for calling pj the free response of the process is that if we consider �u(k+
j) = 0 for j = 0: : :N2 in the DMC case then the equation (2.19) becomes ŷ(k + j) = pj
where N2 is called maximum output horizon. As in Section 2.2 we de�ne N1 to be
the minimum output horizon. With the assumption of an asymptotically stable process,
as discussed above, the coe�cients gi tend to a constant value, so equation 2.20 can be
simpli�ed to:

pj = y(k) +

NX
i=1

(gj+i � gi)�u(k � i) (2.21)

where N is the number for which (gj+i � gi)�0 i > N j = N1: : :N .

An important note is that if the process is not asymptotically stable, then N does
not exist and as result the simpli�cation cannot be made (i.e. pj cannot be computed
using the formulation based on step or impulse response models). We should remark here
that with a state-space model or the transfer matrix formulation the computations can be
made.

In the Dynamic Matrix Control (DMC) method the control signal is obtained by
minimising the cost function:

J =

N1X
j=1

[ŷ(k + j)� s(k + j)]2 +

Nu�1X
j=0

[��u(k + j)]2 (2.22)

with respect to �u(k + j). In this expression s(k) is a given reference at time instant t,
� a weighting factor for the increment of the manipulated variable u(k) and ŷ(k + j) are
the output prediction values at time instants (k + j). These predictions depend strictly
upon the manipulated variables �u(k + j) and can be obtained from the process model.
It is assumed that �u(k + j) = 0 for j�Nu.

With the predictions as in equation (2.19) the cost function (2.22) can be written after
a bit of algebra in the matrix form:

J = �UT (k)[GTG+ �I]�U(k) � 2e0
TG�U(k) + e0

T e0 (2.23)

where �U(k)T = [�u(k);�u(k + 1); : : :] is the vector of future controls to be computed,
e0

T = [s(k+N1)� pN1 ; s(k+N1+1)� pN1+1; : : :; s(k+N2)� pN2 ] is the vector of known
future errors between the set point s(k+ j) and the free response of the system pj and G,
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having real terms, is a matrix given by:

G =

2
66664
gN1 : : : g1 0 : : : 0
gN1+1 : : : g2 g1 0 : : : 0
: : : : : : : : : : : : : : : : : : 0
: : : : : : : : : : : : : : : : : : : : :
gN2 : : : : : : : : : : : : : : : gN2�Nu+1

3
77775

The meaning of most of the variables involved in the DMC algorithm as well as
the signi�cance of the various horizons can be seen in Figure 2.1. In the next section
the unconstrained as well as constrained case of DMC will be considered in relation to
implementation issues. This section was included with the solely aim of giving the parallel
with the development presented in Section 2.2 and Section 2.4.

2.3.3 The algorithm

The DMC algorithm has some special features in the unconstrained case. The cost function
J , see equation (2.22), can be minimised using standard techniques like the \least square
method" that provides a nice analytical solution in the unconstrained case:

�U(k) = [GTG+ �I]
�1
GT eo

This solution will provide Nu values for the manipulated variable �u(k), but from those
only the �rst one is applied to the process at time t. The next sampling period will be
used to compute the next set of values for �u(k).

We intend to present here some special aspects regarding the implementation of the
unconstrained case. Using the following form to express the model:

y(k) =

NX
i=1

gi�u(k � i) + gNu(k �N � 1) + n(k) (2.24)

we could use as well the relation between the coe�cient of the step and impulse response
models hi = gi � gi�1 = �gi in order to reduce the impulse response model:

y(k)�
NX
i=1

hiu(k � i) + n(k) (2.25)

Equation (2.25) provides a valid approximation for asymptotically stable processes for
N big enough. Using equation (2.24) and following the procedure described in Section 2.3.2
for computing the predictions pj we obtain a similar result:

ŷ(k + j) =

jX
i=1

gi�u(k + j � i) +

N�1X
i=j+1

�u(k + j � i) +

+gNu(k + j �N) + y(k)�

N�1X
i=1

gi�u(k � i)� gNu(k �N)

(2.26)
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This equation can be transformed using the G(z�1) polynomial into:

ŷ(k + j) = Gj(z
�1)�u(k + j) + pj

where the expression of the free response is:

pj = y(k) +

N�jX
i=1

(gj+i � gi)�u(k � i)�
N�1X

i=N�j+1

gi�u(k � i) + gN (1� z�j)u(k + j �N)

In the constrained input/output formulation the quadratic cost function to be min-
imised is subject to constraints on: the inputs levels: ul(j)�u(j)�uu(j) where t�j�t +
Nu � 1, the input rates of change �ul(j)��u(j)��uu(j) where t�j�t + Nu � 1, the
outputs levels yl(j)�~y(j)�yu(j) where t+N1�j�t+N2.

The future estimated values of output levels (~yi) are unknown until the control inputs
have been calculated. The usual procedure in this case is to replace those values by their
predictions (i.e.yl(j)�ŷ(j)�yu(j) where t+N1�j�t+N2). When we solve the minimisation
problem subject to constraints, it is assumed that after Nu steps the manipulated variable
is set to its previous value so �u(j) = 0 for j�t+Nu. In order to take advantage of the
quadratic programming methods, mainly in the constrained case, it is better to have all
constraints in a compact form such as A�x�b, required by most of QP algorithms.

Denoting a lower triangular matrix LNum:

LNum =

2
6664
Im 0 : : : 0
Im Im : : : 0
...

...
...

...
Im Im : : : Im

3
7775 (2.27)

where m is the number of plant inputs, we are able to pack the constraints in the following
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form by stacking inequalities on top of each other:

2
66666664

�LNum

+LNum

�INum

+INum

�SNu

N2�N1

+SNu

N2�N1

3
77777775
��u(k + j)�

2
66666666666666666666666666666666666664

u(k � 1)� uu(k)
...

u(k � 1)� uu(k +Nu � 1)
ul(k)� u(k � 1)

...
ul(k +Nu � 1)� u(k � 1)

��uu(k)
...

��uu(k +Nu � 1)+�ul(k)
...

��ul(k +Nu � 1)
...

pN1 + s(k +N1)� yu(k +N1)
...

pN2 + s(k +N2)� yu(k +N2)
yl(k +N1)� pN1 � s(k +N1)

...
yl(k +N2)� pN2 � s(k +N2)

3
77777777777777777777777777777777777775

(2.28)

Here N2 denotes the maximum output horizon, N1 the minimum output horizon,
SNu

N2�N1
represent a matrix that helps us to de�ne additional weighting matrices from the

cost function and pN1 or pN2 are variables that contain all the terms in the cost function
which are known before and �xed at the time of computation.

It is easy to prove that the constraints can be expressed in the above form (2.28) using
certain separations. For example consider the constraints upon inputs ul(k+ j)�u(k+ j)
where 1�j�Nu we are able to express this linear inequality in the following form:

ul(k + j)�u(k � 1) +

jX
i=1

�u(k + i� 1) (2.29)

which at its turn can be described using the product between two vectors:

ul(k + j)�u(k � 1) +
�
Im Im : : : Im

�
�

2
6664

�u(k)
�u(k + 1)

...
�u(t+ j � 1)

3
7775 (2.30)

Stacking the Nu inequalities, one on top of each other, gives the second column de�ned
in relation 2.28. For the right inequality u(k+ j)�uu(k+ j) we apply a similar algorithm.
In such a way the �rst Nu�m rows from the right column of relation (2.28) are de�ned.
The input rate constraints as well as output constraints are treated in a similar manner.
An interesting fact to be noted is that the total number of constraints is 4�Nu+2�N2 �N1.
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2.3.4 A short summary

Using the formulation in the backward shift operator (z�1) the model can be written
in a more compact form, emphasising the free response of the system. On the other
hand, the transparency of the algorithm was improved by using matrix computation. The
assumption of an asymptotically stable process is necessary to use step response models.

The future values of the disturbance are approximated with the current value. This
represents a strong assumption which despite of its simplicity has proved satisfactory in
various applications. The constant output disturbance assumption can lead to various
problems when used with unstable plants because of the state prediction which will get
worse and worse as the horizon increases due to the fact that in the observer state matrix
we retain the modes of the unstable plant model. Of course in the general case is possible
to have such a type of disturbance assumption, but to make the observer stable in spite
of the plant instability. But DMC does not do this, therefore although the algorithm
scheme for estimating disturbances is simple and intuitive it has its own limitations.

Unfortunately constraints upon states are impossible to handle using the DMC stan-
dard formulation. Writing the cost function in a matrix form, the vector of future controls
(including increments, rates and outputs) can be incorporated directly into the optimi-
sation. When a QP algorithm is used to produce the solution, several assumptions for
positivity of the matrices involved have to be made.

2.4 Generalised Predictive Control (GPC)

Papers [CM89a], [Cla93] presented by Clarke describe GPC as a new robust algorithm
suitable for challenging adaptive control applications. The authors of GPC state also that
the method is simple to derive and to implement. Simulation results show that GPC can
cope with control of complex processes under realistic conditions.

In fact for us the main purpose of having included this section is not to present the
GPC algorithm but to give the reader enough elements necessary to evaluate the perfect
equivalence between this approach and the foregoing ones and to o�er the basis in terms
of structure which will be used in the next chapter when approaching issues like stability,
feasibility and robustness. It can be argued that besides its historical importance the main
feature of GPC is that it deals with models expressed in transfer functions which mainly
for the SISO case make some of the observations and proofs more obvious than in the case
of the state space formulation.

In the Section 2.3.1 we have shown the equivalence between state space, step, and
impulse response models. Moving between state space and the transfer function descrip-
tions is equally simple by writing P (z) = C(zI �A)�1B+D, an equation which holds for
both SISO and multivariable systems. Algorithms were developed and implemented for
the more complicated excursion from transfer function to state space models.

In this section and the following we will use information from [CM89a] and [DCT87].
We will start by presenting the CARIMA model (Controlled Auto-Regressive and Inte-
grated Moving Average) and considering a locally-linearised model:
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A(z�1)y(k) = B(z�1)u(k � 1) + �(k) (2.31)

where A and B are polynomials in the backward shift operator (z�1):

A(z�1) = 1 + a1z
�1 + : : : + anaz

�na

B(z�1) = 1 + b1z
�1 + : : : + bnbz

�nb

and u(k) is the control variable (input), y(k) is the measured variable (output), �(k) is
the disturbance term. The disturbance �(k) is considered to be of moving average form:

�(k) = T (z�1)�(k) =
C(z�1)

D(z�1)
�(k) (2.32)

where

T (z�1) = 1 + t1z
�1 + : : :+ tntz

�nt (2.33)

and �(k) is an uncorrelated random sequence.
In the theory of predictions with a disturbance model the disturbance is modelled as

a signal passed through a �lter with monic numerator and denominator polynomials and
a magnitude adjusted via �(k). The signal �(k) is assumed to be unpredictable because
otherwise any additional knowledge should have been built into the choice of C(z�1) and
D(z�1).

This model is general enough to allow both stochastic and deterministic disturbances
to be modelled. The case of deterministic disturbances is modelled by taking C(z�1) = 1
and making the �rst few values of �(k) non-zero. In the case of a stochastic disturbance
one can consider predicting �(k) in such a way to optimise the predictions of y(k + j) in
some sense. The usual approach taken is the one of a minimum variance prediction (i.e.
the error between the predicted and actual values is as small as possible).

The GPC algorithm assumes in the wide majority of cases stochastic disturbances for
which the denominator of T (z�1), the polynomialD(z�1), appears as D(z�1) = �A(z�1).
This implies that the disturbances enter inside the plant, appearing at the output, as
they would have been �ltered through a transfer function involving the plant polynomials.
Moreover such an expression for the disturbance when �(k) is a sequence of pulses occurring
at random times leads to piecewise disturbance that jumps at random times which can
model accurately load kind of disturbances acting upon the plant. Including the factor
� = 1 � z�1 leads to a controller that provides integral action. As a �nal note we need
to mention that di�culties might arise when stochastic interpretation is adopted and the
plant is unstable.

Coming back to our model, we combine equations (2.31) and (2.32) in order to obtain
the CARMA model which is:

A(z�1)y(k) = B(z�1)u(k � 1) + T (z�1)�(k)
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For non-stationary disturbances such as random steps occurring at random time a
more appropriate model is:

�(k) =
T (z�1)�(k)

�
(2.34)

where � is the di�erencing operator � = 1 � z�1 and �(k) is now an integrated moving
average sequence.

Combining equations (2.31) and (2.34) we obtain the CARIMA model:

A(z�1)y(k) = B(z�1)u(k � 1) +
T (z�1)�(k)

�

The following interpretations of the disturbance term �(k) and polynomial T (z�1) in
the CARIMA model can be given:

� With T = 1 and �(k) a pulse sequence, the disturbance can be considered as random
steps acting essentially on the plant input.

� When �(k) is a sequence of independent random variables and T is considered to be
known or estimated.

� T (z�1) can be a �xed polynomial chosen to provide properties such as robustness to
unmodelled dynamics [CM89a].

2.4.1 The prediction equations

As in the original GPC derivation an approach is to start with the previous CARIMA
model written in the form:

A(z�1)�y(k) = B(z�1)�u(k � 1) + T (z�1)�(k) (2.35)

Consider now the Diophantine identity:

T (z�1) = Ej(z
�1)A(z�1)� + z�jF 0j(z

�1) (2.36)

from which unique solutions Ej and F
0
j can be obtained for given A(z�1), T (z�1) and j

(� is the di�erencing operator � = 1� z�1).
Multiplying (2.35) by z�jEj(z

�1) we obtain:

EjA�y(k + j) = EjB�u(k + j � 1) +EjT�(k + j)

Hence using equation (2.36):

Ty(k + j) = G0j(z
�1)�u(k + j � 1) + F 0j(z

�1)y(k) +Ej(z
�1)T�(k + j) (2.37)

where G0j(z
�1) = Ej(z

�1)B(z�1) and z�jy(k + j) = y(k).
By substituting z = 1 into equation (2.36) we have F 0j(1) = T (1) and then we can

write the following two equations:

F 0j(z
�1) = T (z�1) + Fj(z

�1)�
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and:

G0j(z
�1) = T (z�1)Gj(z

�1) + z�j ~Gj(z
�1)

which can be proved by induction, see [CM89a].
Therefore equation (2.37) can be written as:

Ty(k + j) = TGj�u(k + j � 1) + ~Gj�u(k � 1) + Ty(k) + Fj�y(k) +EjT�(k + j)

and

y(k + j) = Gj�u(k + j � 1) + ~Gju
f (k) + Fjy

f (k) +Ej�(k + j)

with the �nal form for y(k + j):

y(k + j) =

jX
i=1

gi;j�u(k + j � i) + pj +Ej�(k + j) (2.38)

where pj, being the quadratic j-step ahead predictor, has the form:

pj = y(k) +

nfX
i=0

fi;jy
f (k � i) +

n~gX
i=0

~gi;ju
f (k � i)

and the uf (k� i), yf (k� i) represent �ltered signals by a bandpass transfer function from
the plant I/O data (so the high frequency noise and disturbance are removed):

yf (k) =
�y(k)

T (z�1)

uf (k) =
�u(k)

T (z�1)

Even though it seems that the previous equations included into an algorithm will
involve much prior computations to evaluate the coe�cients fij and ~gij , calculation will
be simpli�ed by using the recursive relation between pairs (Ej; Fj) and (Ej+1; Fj+1).

Moreover because:

TGj + z�j ~Gj = G0j = BEj = B(T � z�jF 0j)=A�

we have:

Gj =
B

A

1

�
� z�j

"
F 0j
A�T

+
~Gj

T

#

Therefore we are able to simplify equation (2.38) as follows:

ŷ(k + j) =

jX
i=1

gi;j�u(k + j � i) + pj
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because the �rst j terms of Gj are points on the plant step response model. Instead of
using this theoretical approach to compute pj we will use a recursion algorithm. The main
reason for this iterative computation is that pj is simply the response of plant assuming
that future controls are equal to the previous control u(k � 1) and the disturbance term
is constant which means that �(k + j) = 0.

Set-point

P
re

se
n
t

FuturePast

The output

Forced output

Command

Reference

Free output

Predicted
errors

Figure 2.7: Variables involved in GPC schemes and other MBPC algorithms

To have an overall view about the prediction output equation we will combine all out-
puts, for j = 1; : : :; N2, into a vector y = G~u+p+� where y = [y(k+1)T ; y(k+2)T ; : : :; y(k+
N2)

T ]T is the vector of future plant outputs, ~u = [�u(k)T ;�u(k + 1)T ; : : :;�u(k +Nu �
1)T ]T is the vector of potential future control increments, p = [p1

T ; p2
T ; : : :; pN2

T ]T is the
vector of free response of the plant and � = [�(k+1); �(k+2); : : :; �(k+N2)]

T is the vector
of future disturbances.

The matrix G is signi�cant in determining all properties of the long range predictive
control algorithm:

G =

2
6664
g1 0 : : : 0
g2 g1 : : : 0
...

...
. . .

...
gN2 gN2�1 : : : g1

3
7775

The increments of control moves after the control horizon Nu are taken to be zero:
�u(k + j) = u(k + j) � u(k + j � 1) = 0 for j > Nu
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2.4.2 The control algorithm

The future control sequence u(k + j) is chosen by GPC algorithm to minimise the same
cost-function as in the previously addressed approaches:

J(N1; N2; Nu; �) =

N2X
j=N1

e2(k + j) + �

NuX
j=1

�u2(k + j � 1) (2.39)

where N1 is the minimum prediction horizon, N2 is the maximum prediction horizon, Nu

is the control horizon, � is the control weighting and e(k + j) = s(k+ j)� ŷ(k+ j) where
s(k + j) is the vector of the true set point. The optimisation is subject to the constraint
that control increments �u(k + j) = 0 for j > Nu.

Quadratic programming for minimising J subject to constraints can be used here in
order to improve the classic GPC algorithm and to open up new areas of use.

Here another approach that uses a pseudo set-point to make smooth transitions from
the current output y(k) to the true set point w(k + j) can also be mentioned. For a �rst
order approximation this can be achieved by using s�(k+j+1) = (1��)s�(k+j)+�s(k+j)
with j > 0 and s�(k) = y(k).

It is well to note that the prediction equation can be written as ŷ = G~u + p where
~u = [�u(k)T ;�u(k + 1)T ; : : :;�u(k +Nu � 1)T ]T is the vector of potential future control
increments and G 2 R

(N2�N1+1)�Nu a matrix with gi;j = 0 for j � i > N1:

G =

2
6664
gN1 gN1�1 : : : : : : 0
gN1+1 gN1 gN1�1 : : : 0
...

...
...

. . .
...

gN2 gN2�1 : : : : : : gN2�Nu+1

3
7775

Substituting the equation ŷ = G~u+p in the equation (2.39) that de�nes the quadratic
cost functional we obtain:

J = (s�G~u� p)T (s�G~u� p) + �~uT ~u

In the unconstrained case due to the least square approach we obtain the optimal
control as ~uopt = (GTG+ �I)�1GT (s� p) where GTG 2 <Nu�Nu.

The invertibility of matrix GTG + �I is crucial for a feasible control optimisation.
Control weighting � is hard to determine apriori but a good choice would be to make the
previous matrix invertible.

The computation of GPC according to the author of paper [CM89a] is as follows:

1. computation of the step response model

2. computation of the free response of the system based on initial conditions of the
plant

3. computation of the j step ahead predictor

4. computation of the command �u(k + j)
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2.4.3 A few concluding remarks

GPC as a control algorithm depends on integration of several ideas: the assumption of
CARIMA rather than CARMA plant model, the use of long range prediction over a �nite
horizon (greater than the dead time of plant and at least equal with the model order),
the recursion to the Diophantine equation, the consideration of weighting the control
increments in the cost function and the choice of control horizon after which control
increments are taken to zero.

Many of these ideas have arisen in the literature in one form or another but the authors
of GPC try to consider these approaches as subsets of the GPC approach in such a way
that theoretical results can be extended to this new method.

Regarding the type of model employed we have to note that: the CARIMA model
was developed from the CARMA model, the disturbance is considered to be of a moving
average form, the di�erence from the step response model based algorithms like DMC is
given by the particular form required for the use of Diophantine equation when producing
the prediction.

The Diophantine identity is used to predict several steps ahead the system response
allowing the existence of a recursive relation that simpli�es computation. The iterative
computation of the solution is not only an important time saver but a key factor in the
direction of adaptive applications.

The disturbances are either approximated as random steps occurring at random time
or considered to be of moving average form. The classic GPC algorithms do not address
the constraint handling but inequality constraints can be written in a similar form as in
the input/output or the state space formulation and then augmented to the optimisation
problem.

As mentioned in the interpretations developed in [Mac98, CM89a] sometimes we do
not have to believe that there is a real stochastic disturbance. In fact we can regard the
polynomial C(z�1) or the observed gain as an additional tuning parameter which can be
determined to give the predictive controller additional performance characteristics. As well
in [Mac98] it was shown how with the state space formulation the observer parameters can
be chosen with more design freedom than in the case of a traditional GPC formulation.
Whether this additional freedom is actually useful is still debatable.

In the next chapter all these issues will be addressed in the framework of robust stability
of the GPC, and in fact by the equivalence property, of other predictive control schemes
as DMC or the state space MBPC.

2.5 Stable Generalised Predictive Control (SGPC)

One of the paths taken in proving stability of predictive control schemes involves the
existence of a particular setup which will be described in this section. This is just a
theoretical derivation from the GPC algorithm used in producing a good framework for
the stability proofs which will follow in the next chapter. We have decided to include this
presentation here due to the immediate connections with the foregoing material.

Kouvaritakis [BKC92, KR93] applies a GPC based control strategy once the system
has been stabilised by means of an inner stabilising feedback loop. Such an idea is not in
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fact suitable for the algorithm implementation but is useful in proving the stability of the
closed loop. The reason for introducing this stabilising feedback loop is the replacement
of certain loop transfer functions by �nite impulse response �lters (FIRs).

The stabilising feedback loop, given in Figure 2.8, has a form based on the Bezout
identity written in the following form:�

~Y ~X

� ~N ~M

� �
M �X
N Y

�
= I (2.40)

where X, Y , ~X, ~Y , N , M , ~N , ~M 2 RH1 (the space of all real rational stable transfer
matrices) and G(z) = N(z)M(z)�1 = ~M(z)�1 ~N(z) = 1

�Gp(z) with � = 1� z�1. Here by
Gp(z) we denote the original plant.

Y-QN
~ -1~ M N

-1

X+Q M
~~

�u(k)c(k) y(k)

Figure 2.8: The SGPC stabilising feedback loop

The parametrisation of all stabilising controllers is given by:

K = �( ~Y �Q ~N)�1( ~X +Q ~M)

for any Q 2 RH1.
The choice of Q does not a�ect the closed loop transfer functions from reference (c(z))

to input (�u(z) =M(z)c(z)) or output (y(z) = N(z)c(z)):

�u(z) = ( ~Y �Q ~N)�1[c(z) � ( ~X +Q ~M)NM�1�u(z)] (2.41)

�u(z) = [( ~Y �Q ~N) + ( ~X +Q ~M)NM�1]�1c(z)

�u(z) = M [( ~Y �Q ~N)M + ( ~X +Q ~M)N ]�1c(z)

�u(z) = Mc(z)

y(z) = N(z)M�1(z)u(z) = N(z)c(z)

As stated in [ZDG96] the above equations hold for any choice of coprime factors M(z)
and N(z). Therefore we can choose them as FIR operators:

M(z) = T 0
u + T 1

uz
�1 + � � �+ T�+1

u z�(�+1) (2.42)

N(z) = T 0
y + T 1

y z
�1 + � � �+ T�+1

y z�(�+1)

where T �
y 2 R

p�m is a matrix with the ijth element being n�ij, elements of N(z), and

T �
u 2 R

m�m a matrix with the ijth element of the form m�
ij �m

(��1)
ij , elements of M(z);

� is the highest degree of any nij;mij ; Tu
0
ij = m0

ij and Tu
m+1
ij = �m+ij

�.
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We express the future system behaviour in terms of the following di�erence equations:

y(k + l) =
�X

�=0

T �
y c(k + l � � � 1); l = 1 : : : Ny

�u(k + l) =
�+1X
�=0

T �
u c(k + l � �); l = 0 : : : Nu � 1

The vector of future outputs Y (k) = [y(k + 1)T ; : : : ; y(k + Ny)
T ]T and the vector of

future inputs �U(k) = [�u(k)T ; : : : ;�u(k+q�1)T ]T are obtained by stacking the system
inputs and outputs over the corresponding horizons.

Denoting by Nc the length of the reference horizon for c(k + l) (note that in general
Nc � Nu � Ny, see Figure 2.9) we denote the following vectors:

� the past values of the reference signal (known at time k):

Cpast(k) = [c(k � 1)T ; : : : ; c(k � �� 1)T ]T (2.43)

� the future values of the reference signal:

Cfuture(k) = [c(k)T ; : : : ; c(k +Nc � 1)T ]T (2.44)

� the far future values of the reference signal (to be chosen)

Cfarfuture(k) = [c(k +Nc)
T ; : : : ; c(k +Ny � 1)T ]T (2.45)

Nu
Ny

Nc

s(k)=y(k)

u(k)

c(k)

Nc<Nu<Ny

Figure 2.9: SGPC horizon de�nition

As stated in [KR93] a convenient choice for the vector Cfarfuture(k) is to have a con-
stant component c(k+ l) = c1 for l = Nc : : : Ny � 1 (i.e. Cfarfuture(k) = [c1T ; : : : ; c1T ]T
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where c1 is the solution of the system of equations N(1)c1 = s1 where s1 is the steady
state value of the output set-points which will be assumed constant while proving the
stability of the SGPC scheme. The c1 solution is unique only if G(z) is a square system.

The choice c1 for the far future signals is an implicit terminal constraint on the output
of the system requiring that the output should meet the set-point in a �nite number of
input moves Nu.

With the above de�nitions made now we are able to rewrite the predicted behaviour
of the system as in [BKC92, Hei94]:

Y (k) = �yC
future(k) + �yC

past(k) +XyC
farfuture(k) (2.46)

�U(k) = �uC
future(k) + �uC

past(k) +XuC
farfuture(k)

where �y 2 R
Ny p�Ncm, �y 2 R

Ny p�(�+1)m and Xy 2 R
Ny p�(Ny�Nc)m are Hankel matrices

depending on T �
y and the horizons Nc, Nu and Ny:

�y =

2
66666666664

T 0
y 0 : : : : : : : : : 0

T 1
y T 0

y 0 : : : : : : 0

: : : : : : : : : : : : : : : : : :
T�
y T��1

y : : : T 0
y : : : 0

: : : : : : : : : : : : : : : : : :
0 0 : : : : : : T 1

y T 0
y
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The corresponding matrices for �u(k) are de�ned in a similar manner, see [Hei94].
With these new de�nitions the SGPC cost function becomes:

J(k) =k Y (k)� S(k) k2Q + k �U(k) k2R

or

J(k) = [Cfuture(k)� C0(k)]TS2[Cfuture(k)� C0(k)] + (k) (2.47)

where S2 = �TyQ�y + �TuR�u and

(k) =k S(k)� �yC
past(k)XyC

farfuture(k) k2Q +

+ k �uC
past(k) +XuC

farfuture(k) k2R � k C0(k) k22

C0(k) = S�2�TyQ
h
S(k)� �yC

past(k)�XyC
farfuture(k)

i
�

�S�2R�Tu

h
�uC

past(k) +XuC
farfuture(k)

i
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Since (k) is constant then the cost function to be minimised is:

J(k) =k S(Cfuture(k)� C0(k)) k22

As discussed in [BKC92, KR93] Nu is in general su�ciently large to include the
transient terms and Nc < Nu � Ny such that y(k + l) and �u(k + l) are functions of
Cfarfuture(k) = [c1T ; : : : ; c1T ]T , Nc will depend on � { the truncation order of the FIR
model.

2.6 In�nite Horizon Generalised Predictive Control (IHGPC)

The in�nite horizon GPC is a natural extension of the classic GPC algorithm which
bridges the gap between in�nite and receding horizon methods. The main contribution
of [Sco97] is the fact that for an in�nite horizon, which is the central piece of the formu-
lation, a �nite number of decision variables is kept such that a quadratic program can be
employed to solve the optimisation problem. This is not essentially di�erent from the �rst
contribution in this area which we owe to [RM93].

An in�nite horizon MBPC controller solves at each time step the following optimisa-
tion problem:

min
�u(k)

J(k) = min
�u(k)

1X
j=1

k e(k + j) k22 + k �u(k + j) k2R (2.48)

where e(k + j) = y(k + j) � r(k + j), k �u(k + j) k2R= �u(k + j)TR�u(k + j). The
optimisation is carried out subject to linear inequality constraints A�u(k) � b(k).

Based on the fact that �u(k + j) = 0, 8j � N we rewrite the cost function as:

J(k) =

NX
j=1

�
k e(k + j) k22 + k �u(k + l � 1) k2R

�
+

1X
j=1

k e(k +N + j) k22 (2.49)

Considering in the SISO case the CARIMA model:

y(k) =
B(z�1)

A(z�1)
u(k) +

T (z�1)

A(z�1)
�(k)

we perform a factorisation of A(z�1) = �A(z�1) ~A(z�1) where ~A(z�1) of order ~na contains
all the unstable roots of A(z�1).

In the SISO case after (k + N) steps where N = max[Nu + nb � 1; ~na; nt], nb is the
order of B(z�1), nt is the order of T (z

�1), the tracking error of the process evolves freely
according with the stable modes of the process de�ned by the roots of �A(z�1), assuming
that the unstable modes were stabilised �rst.

As stated in [RM93] the in�nite sum of tracking errors can be calculated via a Lyapunov
equation. We rewrite the cost function (2.49) in a matrix form:

J(k) = E(k)TQE(k) +�U(k)TR�U(k) +
1X
j=0

k e(k +N + j) k22
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where Q =

�
IN�1 0
0 0

�
, R = diag([R; : : : ; R]T ), E(k) = [e(k + 1)T ; : : : ; e(k + N)T ]T and

�U(k) = [�u(k)T ; : : : ;�u(k +Nu � 1)T ]T .
Forming the vector of future errors Z(k) = [e(k +N � ~na + 1)T ; : : : ; e(k +N)T ]T and

de�ning the matrix � =

�
0~na�1;1 I~na�1
��a~na : : : ��a1

�
it follows that Z(k + j) = �Z(k + j � 1)

which is equivalent to Z(k + j) = �jZ(k).
The error e(k +N + j) can be expressed as e(k +N + j) = CZ(k + j) where

Z(k+ j) = [e(k+N � ~na+ j +1); : : : ; e(k+N + j)]T is the shifted vector of future errors
and C =

�
0 : : : 0 1

�
.

Hence the in�nite sum of tracking errors is:

1X
j=1

k e(k +N + j) k22 =
1X
j=1

Z(k)T�jTCTC�jZ(k) =

Z(k)T

2
4 1X
j=0

�jTCTC�j

3
5Z(k) = Z(k)T �QZ(k)

where �Q =
P1

j=0�
jTCTC�j.

The following Lyapunov equation �Q = CTC+�jT �Q�j is satis�ed by �Q. This equation
has standard solution methods available. In the explicit form the equation is:

1X
j=0

�JTCTC�j = CTC +

1X
j=0

�j+1TCTC�j+1

The �nal form taken by the in�nite sum of tracking errors is:

1X
j=0

k e(k +N + j) k22= Z(k)T �QZ(k) = E(k +N)T ~QE(k +N)

where ~Q =

�
QN�~na 0

0 �Q

�
. This leads to the following form of the in�nite horizon cost

function involving a �nite number of decision variables:

J(k) = E(k)T Q̂E(k) + �U(k)TR�U(k)

where Q̂ = Q+ ~Q. Actually the only crucial role of the input terminal equality constraint
�u(k + j) = 0, 8j � N is that it allows us to calculate the optimal in�nite horizon law
based on a �nite number of decision variables.

In conclusion the in�nite horizon constrained optimisation is formulated as:

min
�U(k)

J(k) = min
�U(k)

E(k)T Q̂E(k) + �U(k)TR�U(k) (2.50)

subject to the following constraints:

1. ~Y (k) = ~S(k)
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2. A�U(k) � B(k)

where ~Y (k) = [~y(k + N); : : : ; ~y(k + N + ~na)]
T describes the set of predictions after N

steps ahead considering that the behaviour of the system is due to only the unstable
part of A(z�1), namely ~A(z�1) (i.e. ~y(k) = �A(z�1)y(k)). The vector ~S(k) = [~s(k +
N); : : : ; ~s(k + N + ~na)]

T ( ~S(k) = �A(z�1)S(k)) represents the ~Y (k) set point. Without
the constraint ~Y (k) = ~S(k) the optimisation is not equivalent the one de�ned in equation
(2.48). A quadratic programming can be employed to compute the solution, the end point
constraint requirement not a�ecting the optimal control obtained.



Chapter 3

Stability, feasibility and robustness

MBPC solves on-line a constrained optimisation which is carried out over the prediction
horizon assuming that no feedback is used during this future period. Applying only the
�rst sequence of optimal future inputs results in closed loop behaviour which is quite
di�erent from the one predicted by the optimal solution which assumed uninterrupted
open-loop implementation.

As a result one of the main issues raised by theMBPC technique is the one of stability.
This is because predictive control is a feedback control strategy which brings up the risk
of an unstable closed loop. Therefore using �nite horizons the controller can put the
system in such a state that it will eventually be impossible to stabilise it especially when
constraints will be imposed by actuator limitations. In the case of the predictive control
method the stability proofs, especially a priori guarantees, were required mainly by the
academic community, people working in industry were fairly happy with this issue as long
as all the MBPC schemes implemented were working well.

There is a discussion in theMBPC control community regarding the in�nite and �nite
horizon approaches. Each one of them has its own advantages and drawbacks depending
on the various applications tackled.

The initial approaches to MBPC schemes considered �nite horizons because at that
time no methods were known of providing e�cient on-line computation of the in�nite hori-
zon control law. Together with the �nite horizon approach came the bene�t of including
linear constraints upon various variables involved in the controller cost function. In the
�nite horizon case using small prediction and control horizons leads to a reduced compu-
tational load, which is important since the requirements for the solution speed might be
critical.

The unconstrained MBPC control law, which is the result of a least square approx-
imation, lack the ability to handle constraints. In order to account for them, a repeated
optimisation is required which has as a solution the optimal feedback law together with
the active set of constraints. As a result, the controller is nonlinear even for a linear plant
and a linear set of inequality constraints.

In the absence of active constraints, it is known how to enforce stability. Essentially,
either the prediction horizon N2 must be made large enough, or `terminal' equality con-
straints, which bind at time k+N2, must be added to the problem formulation. It has been
shown that, from the point of view of stability enforcement, terminal equality constraints

41
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can be exchanged for an in�nite prediction horizon [RM93]. For instance this is one of the
issues upon which we concentrate in the following sections of this chapter.

Later approaches managed to cast in�nite horizon MBPC in a formulation involving
a �nite number of free variables. This resulted in the possibility of computing the solution
using conventional quadratic programming.

Several methods are known of ensuring stability even in the presence of constraints,
but under the assumption that the problem posed always remains feasible. This is a
very strong and almost not veri�able assumption, and some current research is aimed at
removing it.

Various assumptions were made in order to provide robust stability and feasibility
for various cases. Most stability proofs are based on proving the monotonicity of the
cost function J(k) with increasing k, and hence using the cost function as a Lyapunov
function. There have also been some attempts at exploiting the piecewise-linear nature of
the controller to prove stability. Whereas obtaining stability is not di�cult in practice for
predictive control schemes, there are not yet standard procedures for obtaining speci�ed
stability margins.

In the following sections of this chapter we survey some of the essential techniques em-
ployed to guarantee stability in both unconstrained and constrained cases. The feasibility
issues are addressed in the section corresponding to the constrained MBPC. The last
section deals with two main methods used to provide robustness to MBPC closed loops.

3.1 Achieving stability in the unconstrained case

Before presenting several approaches used in achieving the MBPC stability in the uncon-
strained case we would like to point out that the inclusion of these methods in our work
was generated by the necessity to use some of these results when designing the controller
for the aerospace applications presented in the next chapters.

It is hard to say that we had a favourite method to check stability but it is true that we
have used the information provided by these approaches in order to build up our tuning
guide-lines and to check several of the assumptions made.

For instance the theoretical study made by Kouvaritakis et al. [BKC92] regarding an
inclusion of a stabilising feed-back loop initiated somehow the investigations regarding the
ight-management solution presented in Chapter 6.

On the other hand, even the technique of using a terminal constraint to ensure stability
was not used in either the practical developments or in the Development Space | the in
house software used to produce the simulation results shown in this work | we have
included its presentation for two main reasons. One is concerned with the fact that
historically speaking it is one of the initial approaches used to prove stability of the receding
horizons scheme. The second reason is the parallelism drawn between other techniques
and this one (e.g the use of an exponential weighting of the cost function).

A lot of insight in connecting the Di�erence Riccati Equation (DRE) and predictive
control is provided in the work conducted by Bitmead et al. [BGW90]. For us this was
not only a way to approach in systematic manner the issue of proving stability but as
well represented a neat solution relying on tools with which we were familiar from robust
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control theory.

In the class of in�nite horizon approaches we situate the already classic contribution of
Rawlings et al. [RM93] which in fact opened a new path in the theory and implementation
of predictive control schemes. The results included in their early work together with
the ones that can be found in Scokaert et al. [Sco97] o�ered a clear view upon how by
manipulating the plant input for a �nite number of steps can lead to a stable controller,
the solution of which is computed as usual via a quadratic programme. This approach
allowed the inclusion of linear constraints upon the variables of the cost function.

The approach to solving the stability of the predictive control scheme in an original and
modern manner is the formulation in Linear Matrix Inequalities (LMI). The only problem
with this approach is again connected with the real-time implementation because solving
on-line LMI problems is still a challenge for present computers. Otherwise the problem
is formulated in a clear manner and moreover there is a strong connection between the
formulation, which allows a neat proof of stability, and the implementation which actually
solves the corresponding LMI problem.

Note as well that in the presentation of the following techniques we tried to o�er our
view but at the same time to stick to the original formulation given by the authors.

3.1.1 The inclusion of a stabilising feedback loop

One of the possible approaches to stability for the MBPC controller is the one developed
in the work of Kouvaritakis et al. [BKC92, KR93].

The stability in the unconstrained case is proved under the assumption of a feasible
optimisation problem that will have su�ciently large horizons to include all transient
terms. We consider that for a given reference c1, which is a step, the predicted output
will reach it in Ny steps. We consider that the reference is a step because the stability is
not a�ected by the choice of the set-point.

In this section we state for the Stable Generalised Predictive Control (SGPC) the
theorem which gives the su�cient stability condition. The proof of the theorem is based
on the monotonicity of the cost function and is given with the aim of clarifying this
way of tackling stability issues. For all the variables involved the reader should refer to
Section 2.5:

Theorem 3.1.1 [Hei94] The nominal SGPC controller is stable for all values of the
reference horizon Nc such that Nc < min(Ny � �;Nu � �).

Proof The feasibility of the SGPC optimisation ensures that y(k + l) will reach c1

within Ny steps as long as Ny > Nc+�, more precisely: y(k+ l) = c1 for l � Ny (Recall
that � is the order of the FIR operators (2.42)). In addition �u(k) will reach zero after
Nu steps given that Nu > Nc + �.

Considering the cost function 2.47 the optimal value of Cfuture(k) (see 2.44 for its def-
inition) at time k (Cfuture�(k)) represents a feasible solution of the optimisation problem.
The same Cfuture�(k) at time k + 1 will be a feasible solution but at this time instant is
not necessarily optimal.
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Implementing this solution at time k+1 will result in a value of the cost function 2.47
not smaller than the optimal one:

J(k + 1)� � J(k + 1) � J(k)� (3.1)

where J(k+1)� is the optimal value of the cost function at time k = 1 and J(k+1) is the
value of the cost function obtained by plugging the optimal solution Cfuture�(k) obtained
at time k.

The fact that J(1) is �nite, together with relation (3.1), prove the monotonically
decreasing nature of the cost function. Then following a Lyapunov type of argument we
can conclude that the closed loop system with the SGPC controller is asymptotically
stable.

2

As stated in Section 2.5, the inclusion of the feedback loop is used just to prove the
stability of the SGPC scheme. The existence of the inner loop, the design of which is based
on the nominal model, cannot form the basis of a practical implementation because the
output predictions will be a�ected by the model mismatches and disturbances. In other
words the predictive control internal model de�ned by the plant and the inner stabilising
feedback loop \hides" the real plant model from the outer MBPC. Therefore, the outer
predictive controller, running at the same sampling rate as the inner one, will not be able
to account for disturbances and model mismatches.

As a result the key to the implementation, given in [KR93], is the idea of rewriting
the closed loop terms using relations that describe the system future behaviour using the
FIR transfer functions, when the feedback inner loop is closed around the plant. The
implementable feedback con�guration is based on a pre-�lter which produces a reference
signal c(k) as a function of the past inputs, outputs and future references. This represents
actually the feedback mechanism required to respond to mismatch and disturbances.

3.1.2 The inclusion of terminal constraints

The essence of predictive control is to determine the control pro�le that optimises an
open-loop performance objective in such a way that stability guarantees for the closed loop
are provided. One method of overcoming the major drawback of the predictive control
technique, which is the poor stability guarantees of the classic scheme, is to augment the
cost function with terminal constraints that will bring the states to a steady state value
at the end of the prediction horizon.

The �rst attempts to include terminal constraints were made by Kwon and Pear-
son [KP75, KP78, KP89] and then by Clarke et al. [CS91]. The idea mentioned in [KP78]
is to bring all the closed loop eigenvalues of the system within the unit circle, which can
be achieved by minimising the following �nite horizon cost function:

J(k) =
NX
j=1

k y(k + j)� s(k + j) k2Q(k+j) +
NX
j=0

k �u(k + j) k2R(k+l) (3.2)
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subject to the equality constraints for l = 1 : : : m:

y(k +N + l) = s(k + l)

�u(k +N + l) = 0

where y(k + l), �u(k + l) and s(k + l) are the system output, input and future reference,
respectively. The stability proof of this method assumes constant reference.

In the case of stable systems employing the end point constraint it can be shown [Sco97]
that the cost function is �nite. In the in�nite horizon case a violation of this condition
clearly results in an unbounded cost since violation of y(k + N + l) = s(k + l) implies a
nonzero steady state o�set.

For unstable systems the end-point constraint speci�es that the unstable modes of the
system have to be at equilibrium values, in the linear case, or brought to a steady state, in
the nonlinear case, at the end of the control horizon. Hence, the value of the unstable part
of the free response is brought at the time k+Nu to the value that will make y(k+N) to
converge to s(k +N). If this condition is not met then the cost function, for the in�nite
horizon case, will be unbounded and instability might result.

The following theorem given by Clarke et al. [CS91] characterises the stability of the
closed loop giving su�cient conditions in terms of the horizon lengths. We denote by n the
degree of the internal plant model and by m the number of steps beyond the prediction
horizon N for which the equality constraints are imposed.

Theorem 3.1.2 [CS91] If the system matrix augmented to account for integral action 2.3
is nonsingular, the weights in the cost function are time invariant and the conditions
N � n+ 2;m = n+ 1 is satis�ed then the closed loop is asymptotically stable.

The proof of this theorem is based on the observation that the output constraint can
be transfered into a terminal state constraint, based on the observability assumption for
the pair (A;C), and then the result given in Kwon et. al. [KP89] can be used. Recall
equation (2.3) for the state matrix of the system augmented for integral action.

The state space solution of the above problem, suggested in [KP78], transforms the
end-point constraint into an in�nite end-point weighting matrix. If there is no weighting
upon the state, the non-singularity of the system matrix is required.

3.1.3 The use of fake algebraic Ricatti equations (FARE)

Looking backwards in the history of Linear Quadratic (LQ) control, it is interesting to
remember that only ten years ago, due to the work conducted by R.R. Bitmead [BGW90,
NBG97] stability proofs were provided for LQ strategies based on �nite horizon optimisa-
tion. As presented in Section 3.1.2 Kwon et al. [KP89, KP78] made some initial successful
attempts that provided a special type of a receding horizon controller with zero-state
terminal constraints.

The main di�erence between the receding horizon technique and the in�nite horizon
controller is the association of the optimisation solution with a Di�erence Riccati Equation
(DRE) rather than a Algebraic Riccati Equation (ARE).
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The inability to provide a neat stability result for the scheme involving �nite horizons
made several researchers suggest abandoning this strategy in favour of in�nite horizon LQ
optimisation, despite the wide application of �nite horizons MBPC in so many practical
control problems. On the other hand such issues pushed several researchers to intensify
their search. For them the requirement for adaptation together with the di�culty of
solving the ARE on-line represented a serious argument in favour of the �nite horizon
approach.

Now that we know how the in�nite horizon problem can be transformed in a problem
that keeps a �nite number of decision variables without losing the ability to include con-
straints, we are not going to argue that the necessity to include constraints was the reason
to go for the �nite horizon strategy.

One of the �rst paths taken to solve the receding horizon control problem was by
means of a Fake Algebraic Riccati Equation (FARE), see [BGW90, NBG97]. This Section
aims to provide an overall view of this approach, enabling also the understanding of the
material contained in the Section 3.1.4. The following results represent a review of the
main theorems regarding stability of receding horizon schemes, and is based on the work
developed by [BGW90, NBG97].

In this case the problem statement is not much di�erent from the state space approach
presented in Section 2.2 but refers to the receding horizon case for which the state is
included in the cost function. Considering an LTI system x(k+1) = Ax(k) +Bu(k) with
(A;B) stabilizable we associate the �nite horizon cost function:

J(x(k); N) = x(k +N)TP0x(k +N) +

N�1X
j=0

x(k + j)TQx(k + j) + u(k + j)TRu(k + j)

(3.3)

where P0, Q � 0 (semi-positive de�nite) andR > 0 (positive de�nite). In the case of an LTI
system used as a plant model, the unconstrained predictive control scheme is equivalent
to a constant control law. The main drawback of the scheme is that for a given value of
the horizons the closed loop might not be stable. It is known from the Linear Optimal
control theory that for (A,Q) detectable the solution of the Discrete Riccati Equation
(DRE) converges to the stabilising solution of the Algebraic Riccati Equation (ARE). As
well from the LQ theory it is known that the solution of the problem:

min
u(k+j);j�0

J(x(k); N) (3.4)

is solved by the state feedback control law u(k + j) = K(N + 1 � j)x(k + j) where
K(j) = �[BTP (j)B + R]�1BTP (j)A, j = 0 : : : N � 1 and P (k) is the solution of the
following DRE:

P (k + 1) = ATP (k)A+Q�ATP (k)B[BTP (k)B +R]�1BTP (k)A (3.5)

with the initial condition P (0) = P0.
The in�nite horizon case (N ! 1) is characterised by the stabilising feedback K1

which is the gain corresponding to P (1). For the additional assumption (A;Q) detectable
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or weaker (A;Q) with no unobservable modes on the unit circle we can state that the
unique semi-positive de�nite solution of ARE:

P = ATPA+Q�ATPB[BTPB +R]�1BTPA (3.6)

is de�ned by the feedback gain K1 = �[BTP1B + R]�1BTP1A which asymptotically
stabilises the closed loop (i.e. A+BK1 is stable), see [BGW90].

One way to stabilise the closed loop with the MBPC controller is to exploit the
stability result reported above. The tool used in this approach is FARE which is obtained
by de�ning Q(N � 1) = Q+P (N � 1)�P (N) which represent an adjustment to the state
weighting matrix and by rewriting the equation (3.5) as:

P (N � 1) = ATP (N � 1)A+Q(N � 1)�ATP (N � 1)B[BTP (N � 1)B +R]�1BTP (N � 1)A
(3.7)

Hence comparing equation (3.7) with equation (3.6) we can regard the solution P (N � 1)
as the solution used to produce the associated gain K(N � 1).

Extrapolating the result stated in the ARE case [BGW90] then for (A;B) stabilizable,
Q(N � 1) � 0 and the pair (A;Q(N � 1)) detectable then the closed loop matrix A +
BK(N�1) is asymptotically stable. The initial assumption (A;B) stabilizable is necessary
in order to perform control actions on the system, case in which is interesting to derive
conditions for detectability of the pair (A,Q(N-1)).

Having a proper choice for P0 and using the theorem [NBG97] which states that if P (�)
is a solution of (3.5) and if P (k + 1) � P (k) for some k then P (k + j + 1) � P (k + j),
8j > 0 then we can guarantee Q(N � 1) � 0. In fact if P0 is such that P (1) � P0 then
P (k+1) � P (k), 8k � 0 and as a result Q(N � 1) = Q+P (N � 1)�P (N) � 0, 8N > 0.

Basically the choice of P0 and N a�ects the detectability of the pair (A;Q(N � 1)).
For instance a lemma in [NBG97] proves that if P (1) � P (0) then P (N) � P (N � 1) and
Q(N�1) = Q+P (N�1)�P (N). In such a case (A;Q(N�1)) is detectable 8N > 0. This
means that a good choice for P0 guarantees non increasing monotonicity. In particular
cases such as an open loop stable plant or when Q = CTC and (A;C) observable then the
pair (A;Q(N � 1)) is detectable. We conclude all the above statements with the following
theorem:

Theorem 3.1.3 [BGW90] Let P (�) be the solution of DRE (3.5) and assume that

1. P (1) � P (0)

2. (A;Q) detectable

Then A+BK(N � 1) is asymptotically stable.

Remark 3.1.4 As can be observed, if we have an initial solution P (0) = P0 which guar-
antee the non increasing monotonicity of the cost function (P (0) � P (1)), then we can
apply the above theorem for �nite N > 0.
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3.1.4 The exponential weighting of the cost function

This section represents almost an independent approach to the problem of stability. The
main idea, emphasised in the work of Yoon et al. [YC93], is to use exponentially increas-
ing weightings in the cost function, with the aim of enhancing the stability margin, by
placing more weighting on future tracking errors and control increments. All this was
done in the context of ensuring the monotonicity of the cost function. One of the main
advantages of exponential weighting, apart from ensuring stability, is the relatively easy
way of implementing it in the existing MBPC algorithms.

For the �rst time, Anderson et al. [AM71] introduced the idea of obtaining a prescribed
degree of stability by using exponential weighting. This was done in continuous time
in�nite horizon optimal control. The approach developed by Yoon et al. [YC93] parallels
the idea of Anderson et al. The motivation for using a monotonic weighting for theMBPC
cost function is the necessity of a monotonic solution of the associated Riccati equation
as a su�cient stability condition. Moreover, according to Kwon et al. [KP89], increasing
weighting improves the dynamic responses of the closed loop system.

The present formulation is concerned with SISO case. We concentrate on the following
form of the cost function which, as we know already from Chapter 2, is minimised under
the assumption �u(k + j) = 0 for j � Nu:

J(k) =

NX
j=1

Q(j)[y(k + j)� s(k + j)]2 +R(j)�u(k + j)2 (3.8)

The weighting Q(j) and R(j) have the following exponentially increasing forms Q(j) =
Q��2j and R(j) = R��2j where � 2 (0; 1] and Q � 0, R > 0. Without loss of generality
we can assume Q = 1.

Recalling the GPC formulation from Section 2.4, when minimising the cost function
(3.8) in the unconstrained case we can write for the SISO case [YC95] the optimal solution
as �u(k) =

�
1 0 : : : 0

�
~Gg

~GT
gMg(F (k)� S(k)) where:

~Gg = [GT
gMgGg +�g]

�1

Mg = diag(
�
��2 ��4 : : : ��2Nu

�T
)

�g = R � diag(
�
1 ��2 ��4 : : : ��2(Nu�1)

�T
)

F (k) =
�
f(k + 1) f(k + 2) : : : f(k +N2)

�T
S(k) =

�
s(k + 1) s(k + 2) : : : s(k +N2)

�T

Gg =

2
6666664

g1 0 : : : 0
g2 g1 : : : 0
: : : : : : : : : : : :
gNu gNu�1 : : : g1
: : : : : : : : : : : :
gN gN�1 : : : gN�Nu+1

3
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Here F (k) contains the free response of the system for j � 0, S(k) represent the future
reference vector and Gg contains the step response coe�cients of the system. In such a
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way the burden of producing a solution on-line can be reduced due to a large amount of
computation carried out o�-line.

The main argument used in providing stability properties for the predictive control
scheme with exponential weighting relies on the monotonicity of the DRE equation asso-
ciated with the unconstrained case, as shown in Section 3.1.3.

Using a minimal state space representation of the plant model we are able to rewrite
the cost function (3.8) in the following form:

J(k) = ��2Nux(k +Nu)
TP0x(k +Nu) + (3.9)

+
Nu�1X
j=0

��2j[x(k + j)TCTCx(k + j) + �u(k + j)TR�u(k + j)]

where we have used P0 =
PN�Nu

j=0 AjTCTCAj to represent the system's free response.

Denoting x�(k) = ��kx(k) and �u�(k) = ��k�u�(k) we can rewrite the cost function
(3.9) as:

J(k) = x�(k +Nu)
TP0x�(k +Nu) +

+

Nu�1X
j=0

[x�(k + j)TCTCx�(k + j) + �u�(k + j)TR�u(k + j)]

for which the corresponding model is x�(k+1) = A�x�(k)+B���u(k+j) with A� = ��1A
and B� = ��1B.

The predictive control problem de�ned by the cost function (3.9) has the following
solution:

�u�(k) = �K(Nu � 1)x�(k)

where

K(l) =
BT
� P (l)A�

R+BT
� P (l)B�

The matrix P (l) is produced via successive iterations using the following DRE:

P (l + 1) = CTC + [A� �B�K(l)]TP (l)[A� �B�K(l)] +K(l)TRK(l)

Returning to the original form written in � we have:

�u(k) = �K(Nu � 1)x(k)

where

K(l) =
BTP (l)A

�2R+BTP (l)B
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and

P (l + 1) = CTC + ��2[A�BK(l)]TP (l)[A�BK(l)] +RK(l)TK(l)

Using the following theorem [YC95] we can state the monotonicity of the DRE solution.
(We have decided to include the proof due to the insight given into the problem and the
connections with the material presented in the previous section.)

Theorem 3.1.5 If P (l) � �2P (l + 1) for some l 2 N and � 2 (0; 1] then P (l + q) �
�2P (l + q + 1) 8q 2 N

Proof

Rewriting the DRE including the expression for the feedback matrix we have:

P (l + 1) = CTC +AT
�P (l)A� �

AT
�P (l)B�B

T
� P (l)A�

R+BT
� P (l)B�

We de�ne P 0(l + 2) based on the following DRE:

�2P 0(l + 2) = CTC +AT
��

2P (l + 1)A� �
AT
��

2P (l + 1)B�B
T
� �

2P (l + 1)A�

R+BT
� �

2P (l + 1)B�

(3.10)

Knowing that P (l) � �2P (l + 1) and comparing the previous two equations then we can
state that P (l + 1) � �2P 0(l + 2).

Now rewriting the �rst equation for P (l + 2) and comparing them:

P 0(l + 2) = ��2CTC +AT
�P (l + 1)A� �

AT
�P (l + 1)B�B

T
� P (l + 1)A�

��2R+BT
� P (l + 1)B�

� CTC +AT
�P (l + 1)A� �

AT
�P (l + 1)B�B

T
� P (l + 1)A�

R+BT
� P (l + 1)B�

= P (l + 2)

we can conclude that P 0(l+ 2) � P (l+ 2). Hence P (l+ 1) � �2P (l+ 2) and therefore by
induction P (l + q) � �2P (l + q + 1) 8q � 0.

2

Usually the condition P (l) � P (l+1) is quite restrictive. The inclusion of �2 makes it
achievable even when the system will be unstable for other horizons using the conventional
cost function.

We conclude this section with a theorem [YC95] that provides the stability condition
for the receding horizon scheme with exponential weighting:

Theorem 3.1.6 Considering the system:

x(k + 1) = Ax(k) +Bx(k)

y(k) = Cx(k)
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controlled using the state feedback

�u(k) = �K(Nu � 1)x(k)

where

K(l) =
BTP (l)A

�2R+BTP (l)B

and P (l) obtained using the following DRE equation:

P (l + 1) = CTC + ��2[A�BK(l)]TP (l)[A�BK(l)] +RK(l)TK(l)

then the closed loop system is asymptotically stable if P (l) � �2P (l+1) for some l � Nu�1.

Proof
The proof is based on �nding a Lyapunov function V (k) having the form V (k) =

x(k)TP (Nu � 1)x(k).

�V (k) = x(k + 1)TP (Nu � 1)x(k + 1)� x(k)TP (Nu � 1)x(k) =

= x(k)T
�
[A�BK(Nu � 1)]TP (Nu � 1)[A�BK(Nu � 1)]� P (Nu � 1)

�
x(k) =

= �x(k)TQx(k)

where Q is de�ned as:

Q = P (Nu � 1)� [A�BK(Nu � 1)]TP (Nu � 1)[A�BK(Nu � 1)] =

= P (Nu � 1)� �2P (Nu) + �2[CTC +RK(Nu � 1)TK(Nu � 1)]

Using the Theorem 3.1.5 results P (Nu � 1) � �2P (Nu) and hence

Q � �2[CTC +RK(Nu � 1)TK(Nu � 1)] � 0

Due to the initial assumption (C;A) observable then we can claim that x(K)T [CTC +
RK(Nu � 1)TK(Nu � 1)]x(k) is not identically zero along any trajectory of the closed
loop system. Hence using the Lyapunov theorem it follows that x(k) converges to zero as
l!1

2

It is well known that MBPC with constant weighting is also stabilising if the pre-
diction and control horizons are su�ciently long. The problem in such a case, compared
with the much shorter horizons required by the exponential weighting approach, is the
computational load when the solution is computed on-line. In addition to the MBPC
with constant weighting for the exponential weighting approach a stability margin can be
obtained.

The main inuence of this strategy is in terms of the closed loop dynamic response
which is speeded up and the overshoot reduced. Having the guarantee that the moduli
of the closed loop poles are within a circle of a radius determined by � we have a direct
adjustment of the settling time. Hence once horizons are �xed, the radius � becomes the
only tuning parameter. Of course forcing the poles within a tight region will magnify the
control e�ort required to change the dynamics of the original system.

Compared with the work done by Kwon et al. [KP75] which refers to the inclusion of
a terminal state constraint, this approach removed that requirement completely.
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3.1.5 Making the cost function horizons in�nite

The basic idea for the in�nite horizon assumption is that, for a problem which assumes
no noise or disturbance and measurable states, it is possible to guarantee a stable solution
of the system controller. A description of the in�nite horizon problem involving a �nite
number of decision variables is given in Section 2.6. There is actually another approach
which deals with stability issues by achieving monotonicity for the in�nite cost functional
written in the following form:

J(k) =

1X
j=1

�
(y(k + j)� s(k + j))2 +R�u(k + j)

�
=

1X
j=1

�
e(k + j)2 +R�u(k + j)

�
(3.11)

subject to the input constraint �u(k + j) = 0 for j � L+ 1.

A su�cient condition for solving the above minimisation problem, providing that the
pair (A;B) is stabilizable, is that L � r where r is the number of the unstable modes of
the system state matrix (A). In fact we can state, see [NBG97] and Theorem 3.1.3, that
assuming the pairs (A;B) stabilizable and (A;Q) detectable and having P0 = �L (de�ned
below) with L � r then A+BK(N � 1) is stabilising 8N > 0.

As a result two di�erent cases are encountered:

1. A stable | this means r = 0 leading to a choice of L = 0 and hence �L =P1
j=0A(j)

TQA(j) which can be e�ciently computed [Sco97] as a solution of a Lya-

punov equation �L = AT�LA+Q.

2. A unstable | a condition for which the controllers suggested by the teams Kwon
and Pearson [KP89] and Muske and Rawlings [RM93] are equivalent.

Hence stability properties can be derived relatively easily due to the in�nite horizon
employed in the cost function. In [Sco97] a proof of stability is outlined based, on the
argument of monotonicity of the cost function. Therefore, considering in the unconstrained
case �U(k) as the optimal control vector at time k which gives the optimal prediction
errors E(k) and the value J(k)� for the optimum cost function, we are able to express the
cost function at time k + 1:

J(k + 1)+ = J(k)�� k e(k + 1)� k22 � k �u(k) k2R

The optimal cost at time k + 1 has the property:

J(k + 1)� � J(k + 1)+

J(k + 1)� � J(k)�� k e(k + 1)� k22 � k �u(k) k2R

which means that J(k)� is non increasing and bounded by 0.

Hence k e(k + 1)� k22 � k �u(k) k2R� J(k)� � J(k + 1)� which means that as [J(k)� �
J(k + 1)�]! 0 the term [k e(k + 1)� k22 + k �u(k) k2R] ! 0. For positive values of R the
stability follows. In [Sco97] details for the case R = 0 are given.
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3.1.6 A formulation in linear matrix inequalities (LMIs)

A �nal step in our presentation of existing approaches used to address stability issues in the
unconstrained case is the contribution of Kothare et al. [KBM96]. From the perspective
of a practical implementation this method, which involves solving several LMIs on line, is
very demanding from the computational point of view, but the current research in interior
point algorithms might provide improvements in the quality and speed of the solution
provided [BGFB94]. For a basic knowledge of the linear matrix inequalities (LMIs) concept
we encourage the reader to consult the work of Boyd et al. [BGFB94].

In the nominal case the stability proof is based on the derivation of an upper bound
for the cost function followed by a Lyapunov argument. In the nominal case the LQR
regulator is obtained for which the feedback matrix F , where u(k+j) = Fx(k+j);8j � 0, is
constant. The main di�erence from the LQ regulator is that in the presence of uncertainty
for the unconstrained case the feedback matrix F (x(k)) exhibits a strong dependence on
the current system state. Therefore using the predictive control approach which computes
the feedback matrix at each sampling time the performance is substantially improved,
compared with static feedback control [KBM96]. An important property of this approach
is that if feasibility is achieved at time k, then it is maintained over the whole in�nite
prediction horizon.

In the case of the LMI formulation the in�nite horizon objective has the following form:

J(k) =
1X
j=0

k x(k + j) k2Q + k u(k + j) k2R (3.12)

where k � kQ= �TQ�. Driving the state to zero (a zero set-point) is a common procedure
when proving stability of a controller based on a quadratic cost function involving the
model states.

A quadratic function V (x) =k x(k) k2P with P > 0 is derived as an upper bound on the
performance index. With V (0) = 0 we suppose that V (x) satis�es the following inequality
at sampling time k:

V (x(k + j + 1))� V (x(k + j)) � �x(k + j)TQx(k + j) + u(k + j)TRu(k + j) (3.13)

for x(k + j), u(k + j) 8j � 0. In order to have a �nite J(k) then x(1) = 0 is a condition
and hence V (x(1)) = 0.

We sum (3.13) for j = 0; : : : ;1 and as a result we have �V (x(k)) � J(k) which
represents an upper bound on the performance index. E�ectively the LMI approach to
MBPC designs a state feedback law F at each time step k which minimises the upper
bound V (x(k)). Conditions on the existence of a P > 0 and the corresponding state
feedback matrix F are given in the following theorem:

Theorem 3.1.7 [KBM96] Let x(k) be the state of the nominal system. Then the state
feedback matrix that minimises the upper bound V (x(k)) on the performance objective J(k)
( 3.12) is given by F = Y Z�1 where Z > 0 and Y are obtained from the solution, if it
exists, of the following LMI problem:

min
;Z;Y
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subject to �
1 x(k)T

x(k) Z

�
� 0

and 2
6664

Z ZAT + Y TBT ZQ
1
2 Y TR

1
2

AZ +BY Z 0 0

Q
1
2Z 0 I 0

R
1
2Y 0 0 I

3
7775 � 0

where Z = P�1.

The matrices Z, F , Y are computed at each time k. The parameter  is introduced in
order to inuence the speed of the closed loop response. In the unconstrained case several
other LMIs can be augmented to the above optimisation which will force the closed loop
poles into a predetermined stability region (e.g a sector in the LHP).

As a potential problem of this formulation we can observe the fact that the LMI
optimisation always minimises an upper bound of the cost function, the quantity which is
really of interest. Despite the fact that the authors of the strategy [KBM96] claim that
the bounds are not too conservative we express our concern for some cases.

In the sections dedicated to the constrained case and robust performance we are going
to address how the present LMI problem can be augmented with one that gives robust
stability and two others in order to enable the algorithm to handle input and output
constraints.

3.2 Ensuring stability and feasibility in the constrained case

One of the major reasons for using predictive control is its ability to handle constraints.
This ability of course is conditioned by the feasibility of the optimisation problem over
the future horizon. Therefore in the constrained case we cannot separate this two aspects:
stability and feasibility.

First of all the problem has to be feasible at the time when the �rst on-line optimisation
was solved. In other words the initial plant state has to be such that a control movement
can be found in order to stabilise the plant in the presence of constraints. In normal
operation (i.e. when none of the constraints are active) the above condition translates
into a condition of plant stabilisability. Assuming such a condition being satis�ed we
can think about a second issue which refers the consistency between the set-point that
the controlled system is requested to track and the system input and output constraints
enforced.

In this section three di�erent approaches used to tackle the issues of stability and
feasibility in the constrained case are given.

The reason of including the �rst one is the potential that this algorithm has in dealing
with the feasibility of the optimisation in the constrained case | problem that represents
the bottleneck of the vast majority of MBPC schemes.
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The second approach was included because, relying on the new achievements in the
�eld, we strongly believe that in the future we can think about implementations that will
involve a constraint optimisation based on an in�nite horizon cost function.

In connection with the constrained in�nite horizon formulations, last but not least, we
have decided to include in our presentation the predictive control scheme based on an LMI
formulation which accounts for input and output constraints. This approach translates
the usual problem of feasibility of the quadratic programme employed in obtaining the
solution into a feasibility problem of the LMI problem solved at each time step.

3.2.1 A modi�ed optimisation algorithm for the SGPC scheme

In 1995 Rossiter et al. [RKG95b] augmented the SGPC so as to include a penalty on
constraint violation as well as on the predicted output error. Instead of producing the
solution of the optimisation problem using the well known QP algorithm the authors have
suggested a modi�cation of the Lawson's weighted least square algorithm in a manner
that considers as well the requirement for �u(k) to lie inside the feasible region as the
one to minimise a quadratic cost de�ned by the SGPC strategy. The authors proved that
this modi�ed algorithm together with the SGPC strategy lead to a Constrained Stable
Generalised Predictive Control (CSGPC) strategy which provides a systematic way of
handling infeasibility.

As mentioned in Section 3.1.1, the arguments of the monotonicity of the cost function
carry through when trying to prove the stability of the CSGPC scheme, but in this case
the proof requires the feasibility of the �nite horizon optimisation problem. This fact
cannot always be guaranteed. The requirement, similar to that in SGPC schemes, is that
the predicted output reaches its target value within a �nite number of steps, within the
prediction horizon Ny. The target value c1 is given by the set-point, which is assumed
constant during the prediction horizon and the dynamics of the system: N(1)c1 = s1

(where the plant G(z) is factorised as G(z) = N(z)M(z)�1).
During infeasibility it becomes necessary to relax this requirement, by allowing c1 to

vary for as long as is necessary to recover from the infeasibility. This relaxation is obtained
by:

� replacing the predicted part of the cost by a penalty on the deviation from c1.

� adding an additional constraint which de�nes how the relaxed c1 will move mono-
tonically towards its target value.

The foregoing changes from the CSGPC algorithm generated the Modi�ed CSGPC
(MCSGPC) which has guaranteed stability and asymptotic tracking whereas CSGPC
represent a predictive control scheme that preserves optimality and stability in face of
constraints.

The CSGPC algorithm

In most of their papers [RKG95b, RKG95a] the authors consider time invariant constraints
upon absolute input constraints (ju(k + l) � ucentrej � uradius), input rate constraints
(j�u(k + l)j � r) and output constraints (jy(k + l) � ycentrej � yradius). Considering
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Cpast(k), Cfuture(k) and Cfarfuture(k) de�ned in (2.43, 2.44, 2.45) and normalising them
to 1 then:

jm(k)TCfuture(k)� v(k)j < 1; k = 1; : : : ; Ny

where m(k) and v(k) are de�ned as follows:

� for absolute input constraints:

m(k)T =
E(k)T�u
uradius

;

v(k) = �
E(k)T + (�uC

past(k) +XuC
farfuture(k)) + u(k � 1)� ucentre
uradius

where E(k) denotes the sum of the �rst k column vectors of the identity I matrix.

� for input rates:

m(k)T =
e(k)T�u

�
;

v(k) =
e(k)T (�uC

past(k)�XuC
farfuture(k))

�

� output absolute constraints

m(k)T =
e(k)T�u
yradius

;

v(k) = �
e(k)T (�yC

past(k) +XyC
farfuture(k))� ycentre

yradius

where e(k) is the kth column vector of the identity matrix of conformal dimensions.

The above constraints can be stacked together in the following linear matrix inequality:
kMCfuture(k)� v(k) k1� 1 with v(k) varying irrespective of whether the constraints are
time independent, M 2 R

3Ny�Nu , v(k) 2 R
3Ny .

The above linear inequality implies that Cfuture(k) must lie within a pair of hyper-
planes each perpendicular to the corresponding vector from the M matrix. The convex
region de�ned by the pairs of hyper-planes is referred as the feasible region. This region
is non empty if the inequality holds for some future Cfuture(k).

In contrast with this the expression \short term" infeasibility is used when the region
is empty for a particular value of the Nc horizon. Here Lawson's weighted least square
algorithm [LH74, KR93] comes into play. This algorithm deals with the situation when
inequality constraints cannot be satis�ed and when a Cfuture is chosen so as to minimise the
worst case constraint violation. This is considered an important feature of the algorithm.

In the case of such short term infeasibility the strategy of choosing Cfuture(k) is dom-
inated by the minimisation of J(k) =k S(Cfuture(k) � C0(k)) k2. In order to account
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for the infeasibility we augment the original SGPC cost function forming the following
optimisation index:

J(k + 1) =

wwwwww(k + 1)
1
2

�
S(Cfuture(k + 1)� C0(k + 1))

�
W (k + 1)

1
2

�
M(Cfuture(k + 1)� v(k + 1))

�
wwwww
2

The weights involved in the augmented cost function are updated in the following way:

w(k + 1) =
w(k)

kW (k)(MCfuture(k)� v(k))k1

Wjj(k + 1) =
Wjj(k)j(MCfuture(k)� v(k))j j

kW (k)(MCfuture(k)� v(k))k1

kW (k)(MCfuture(k)� v(k))k1 =
mX
j=1

Wjj(k)j(MCfuture(k)� v(k))j j

The weights can be initiated as w(0) = 1 and W (0) = Im where m is the number of rows
in M. When k increases the algorithm converges to Cfuture(k) which minimises the cost
function under constraints [RK93].

The following theorem gives a characterisation of the CSGPC scheme:

Theorem 3.2.1 [RK93] If the feasible region is nonempty for all k then the CSGPC
scheme will cause the output y to follow asymptotically any set-point change to a new
constant value.

The feasibility condition is essential to prove the stability of CSGPC schemes. Under
\short term" feasibility the Cfuture(k) converges to the constrained optimum compared
with the case when infeasibility is encountered when it converges to the solution that
minimises the maximum constraint violation. This fact enables the Mixed Weight Least
Squares (MWLS) scheme to provide the feasibility of the optimisation problem [Hei94].

The weights' behaviour is such that these will converge to 0 if the corresponding
elements of the constraint part of the cost function are less than one and some �nite non-
zero value otherwise [RK93]. During the optimisation some of the diagonal elements of
W(k) do not tend to zero [Hei94]. These are the ones corresponding to the active set of
constraints at that moment, providing an e�ective way of identifying them. In such a way
the optimisation time is shortened if a suboptimal solution is accepted.

The MCSGPC algorithm

As a natural extension to the CSGPC another modi�ed algorithm MCSGPC was devel-
oped. A slack variable end-point constraint is introduced in order to deal with the \short
term" infeasibility. The cost function is identical to the one provided by CSGPC at all
times except when this kind of infeasibility is encountered. The only di�erence from the
CSGPC is that c1 is a degree of freedom, and an extra constraint has been introduced
to ensure that the current optimal value of c1 is closer to the one desired and obtained
by solving the equation N(1)c1 = s1 denoted by c1old.
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Therefore we rede�ne C?(k) =
�
cfuture(k)T c1T

�T
and we write:

Y (k) = �myC
? + �yC

past(k)

�U(k) = �muC
? + �uC

past(k)

Then the problem kMC(k)� v(k)k1 < 1 becomes kM?C?(k)� v?(k)k < 1 where:

M?(k) =

"
M m
0 1

c1
old
� s1

N(1)

#

v?(k) =

"
v(k) +mc1

1
N(1)c1

old
s1

�1

#

As a consequence the cost function is:
J(k) = kS?(k)� C0(k)k2 where S? = (Q�Tmy

�my +R�Tmu
�mu)

�2.
The main assumption made in theMCSGPC case is that the set-point has been chosen

sensibly otherwise the algorithm will cause c1 to settle at the boundary of the constraint
interval. The strategy guarantees the \short term" feasibility by assuming feasibility at
the start of the optimisation. Note that no other assumptions are required.

3.2.2 A constrained in�nite horizon formulation

In the setting of an in�nite horizon MBPC formulation with constraints a separation
between stable and unstable plants is required. The two cases are fairly di�erent from the
perspective of the stability proof mechanism and the feasibility of the solution.

Constraints that normally impose a pair of bounds on future values of control inputs,
increments and outputs can be expressed for linear models as pairs of inequalities which are
linear in the future control increments. Therefore constraints of the type Du(k + j) � d,
8j � 0 corresponding for inputs and Hx(k) � h, 8j � 1 corresponding for outputs
can be de�ned and then stacked together in a similar way using the procedure shown in
Section 2.2.3. Before stacking them we can employ a simple method to convert the input
and output constraints into a �nite set by assuming as usual u(k + j) = 0 for j � Nu.

For stable systems the input constraints are always feasible independent of the pair
(A;B). In the same case things are a bit di�erent for state and/or output constraints due
to the possible infeasibility that may occur. Of course there are methods to convert them
into a feasible set by removing them for small j. In [RM93] it was shown that there exists
such a j1 providing feasibility. The argument is based on the fact that for a large enough
j the states become arbitrarily small and the constraints are satis�ed. It was possible
to determine the value of j1 for the nominal model and no disturbances acting on the
plant. In fact Rawlings et al. [RM93] show that in order to guarantee satisfaction of the
constraints on an in�nite horizon it is enough to have them satis�ed on a horizon [j1; j2]
where both j1 and j2 are �nite.

In the unstable plant case neither input nor state and/or output constraints feasibility
can be checked independently of the pair (A;B), the initial state and the horizon Nu.
Rawlings et al. in [RM93] de�ne what an admissible x0 means by denoting a set XNu of
x0 for which there exists, a command u(k + j) 2 U for j 2 [0; Nu] and u(k + j) = 0 for
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j � Nu such that limk!1 x(k) = 0. The claim made was that the system can be stabilised
by controllers based on the in�nite horizon cost function if and only if x0 2 XNu . In such
a case the state constraints can be handled as in the previous case of the stable plant.

Theorem 3.2.2 [RM93] For a stabilizable pair (A;B) with A unstable having r unstable
modes x(k + j) = 0 is an asymptotically stable solution of the closed loop closed with an
MBPC controller if Nu � r and the QP program is feasible for every x0 2 XNu .

It is obvious that if the x0 =2 XNu then XNu has to be enlarged by increasing Nu.
A more di�cult case is when x0 =2 X1 which means that the plant cannot be stabilised
matching the present constraint. The enlargement of Nu is just one alternative that has
to be applied with care because of the increase in the computational load. Another choice
that can work is to make j1 big, which is equivalent to the removal of the constraints
for the initial part of the optimisation. For instance, in the case of a nonminimum phase
system constraints can be violated during the initial behaviour. Increasing j1 will make the
constraints feasible therefore giving the controller the opportunity to assess the situation.

3.2.3 Augmenting the linear matrix inequalities (LMIs) with constraints

In the constrained case the LMIs stated in Theorem 3.1.7 have to be augmented with
several others which account for the input and output constraints. The basic idea of such
an inclusion can be found in [BGFB94] but Kothare in his work [KBM96] presented for
the �rst time the extension to discrete time systems.

The input constraints are imposed over the whole horizon of the future manipulated
variable in two speci�c ways for the in�nite horizonMBPC problems. The average bounds
such as k u(k + j) k22� umax, 8j � 0 are translated into LMI inequalities in the following
form:

max
j�0

k u(k + j) k22= max
j�0

k Y Z�1x(k + j) k22 Z
� 1

2 � max
z2C

k Y Z�1z k22= �max(Z
� 1

2Y TY Z�
1

2 )

(3.14)

where C represent the state invariant ellipsoid, see [KBM96].
Using Schur complements we translate the above inequality into an LMI:�

u2maxI Y
Y T Z

�
� 0

The peak bounds on each component of u(k+ j) at sampling time j can be formulated
as jul(k + j)j � ulmax, 8j � 0, l = 1; : : : ; Nu. The translation of the above inequality in
an LMI follows the next few steps which involves the Cauchy-Schwartz inequality and the
Schur complement lemma:

max
j�0

jul(k + j)j2 = max
j�0

j(Y Z�1x(k + j))lj
2 � max

z2C
j(Y Z�1z)lj

2 �k (Y Z�
1

2 )l k
2
2= (Y Z�1Y T )ll

Therefore the existence of a matrix X such that:�
X Y
Y T Z

�
� 0; (3.15)
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with Xll � ul
2
max, l = 1; : : : ; Nu, guarantees that jul(k + j)j � ulmax.

Along the same lines as in [KBM96] it can be proved that the output constraint
k y(k + j) k2� ymax, 8j � 1 can be represented in the following LMI form:

�
Z (AZ +BY )TCT

C(AZ +BY ) y2maxI

�
� 0 (3.16)

This is achieved as follows:

max
j�1

k y(k + j) k2= max k C(A+BF )x(k + j) k2

max k C(A+BF )x(k + j) k2� max
z2C

k C(A+BF )z k2

max
z2C

k C(A+BF )z k2= ��[C(A+BF )Z
1
2 ]

Thus k y(k + j) k2� ymax if ��[C(A + BF ))Z
1
2 ] � ymax or Z

1
2 [A + BF ]TCTC[A +

BF ]Z
1
2 � y2maxI which via Schur complements is equivalent to the LMI (3.16).

As a result, the theorem proved by Kothare et al. [KBM96], which refers to the con-
strained case, states that for an LMI problem as in Theorem 3.1.7 augmented with the
corresponding LMIs for the input (3.14, 3.15) and output constraints having a feasible
solution Y and Z the MBPC in�nite horizon constrained solution is F = Y Z�1. The
feasibility problem is addressed in [KBM96] by a lemma stating that any feasible solution
F at time k is also feasible at all times k+ j, 8j � 1. In this way a feasible asymptotically
stable MBPC state feedback control law is obtained by solving an LMI problem.

3.3 Designing for robust performance in MBPC control

Robust performance of MBPC schemes is a key issue. By de�nition a robust control
design ensures a particular performance speci�cation in closed loop to the controlled plant
which is assumed to lie in a set that can be characterised in a quantitative manner.

The next natural step after solving the nominal stability/performance problem using
the approaches described in Section 3.1 and Section 3.2 is to address the robust stabil-
ity/performance. In industrial application this issue is tackled at the moment via extensive
closed loop simulations prior to implementation, an expensive method due to the large
number of possible combinations of plant dynamics and active constraints.

In order to achieve robust stability/performance in MBPC schemes two main paths
were taken by various authors:

1. The conventional way { which involves speci�c tuning of the controller either via the
observer included in the output feedback schemes or by formulating the problem as
min-max optimisation that can be solved in a classic manner or as an LMI.

2. The multi-model adaptive approach { which assumes an existence of a plant model
obtained either via identi�cation or via on-line linearisation of a high �delity model
associated with the plant [HM98a, HM98c, Mac97]
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In our work we went for the second one due to its possibilities to encompass the problem
of recon�gurable control. Nevertheless the �rst one, as seen in the literature, can provide
good means for achieving robust performance.

Apart from the observer tuning method any other alternative is extremely demanding
from the computational point of view. All of them worked fairly well in simulation but,
when coming down to a real-time implementation, apart from the observer tuning method,
all other approaches were somehow di�cult to apply.

3.3.1 The conventional approach

Robustness achieved via tuning the observer

Many researchers regarded the design of the observer as a way to achieve robustness in
MBPC schemes. Lee et al. [LM91b] have initial tried to provide robustness to theMBPC
scheme via additional tuning parameters (i.e. parameters of the �lter gain and disturbance
time constraints) which together with the conventional ones (i.e. cost function horizons
and weights) can provide a large amount of possible tuning combinations. Unfortunately
these parameters o�er unnecessary exibility in the controller, complicating tuning since
many of them have overlapping e�ects.

As a result the authors of [LY94] suggest the tuning for robustness via the parameters
of the observer employed to estimate the plant states. This idea is based on the fact that
some of these parameters have more direct connections to the closed loop robust stability
and performance than others which cannot be tuned in a straightforward manner. For
these it is best to set them at a certain pre-speci�ed value due to their indirect e�ect.

In [LY94] guidelines for tuning these parameters, which have independent and well
understood e�ects on the closed loop were given. The unconstrained controller is designed
�rst for the best nominal performance and then detuned to achieve robust performance.
The closed loop stability is checked a posteriori once all the tuning parameters have been
determined, based on the results given in Section 3.1. Lee et al. provided such guide lines
by looking at systems with a �rst order disturbance model. By writing the closed loop
transfer function from output disturbance and reference to the output, the dependence on
the observer parameters [LY94] is revealed. Once nominal stability and performance for
the observer and the MBPC controller were achieved, in SISO or MIMO cases, rules are
provided to shape the frequency response of the sensitivity function and its complement
via the observer parameters.

Another perspective upon robustness is given by the work of Bitmead et al. [BGW90,
NBG97] where Loop Transfer Recovery (LTR) is advocated in order to design theMBPC
controller.

As explained in [Mac89] a state feedback controller, obtained as a solution of an LQ
problem, is known to have excellent robustness properties in continuous time and, provid-
ing the use of a very small sampling time, in discrete time as well. But, these properties
hold only in the case of full state measurements and not when an observer is used to
estimate the plant state. The solution for this problem { called Loop Transfer Recovery
(LTR) { is to design an observer after a state feedback was designed using LQ. The idea,
�rst time mentioned by [Mac89], is such that by using arti�cial covariance matrices in the
optimisation cost function, which has as a solution the observer gain matrix, the overall
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A systematic design strategy for the GPC observer T (z�1) has not been produced yet.
Even if it is commonly assumed that �ltering results in good robust properties of the closed
loop, this is contradicted by several simple examples [YC95]. Therefore designs based on
such ideas may fail to achieve robustness. Here we will try to emphasise, based on the
work done by [YC95], the role of T (z�1) as a key element in designing for robustness
within the GPC formulation, presented in Section 2.4.

The GPC control structure referred to in this section is shown in Figure 3.2

s(t) y(t)
T
R�

z�1B
A

S

Figure 3.2: The structure of GPC schemes

for which we have:

R(z�1)�u(t) = T (z�1)s(t)� S(z�1)y(t) (3.19)

The theorem summarising Yoon et al.'s work addresses the robustness issue in a small
gain theorem fashion. The condition stated in the theorem is then used in the T (z�1)
�lter design.

Theorem 3.3.1 [YC95] Considering a controller ( e.g the GPC controller) given by
R(z�1)�u(t) = T (z�1)w(t)�S(z�1)y(t) and designed based on the plant model A(z�1)y(t) =
B(z�1)u(t� 1) then the characteristic polynomial of the closed loop given by

A0(z
�1)R�+ z�1B0(z

�1)S(z�1) = Pc(z
�1)

remains stable if A(z�1) and A0(z
�1) have the same number of unstable roots and if

8! 2 [0; �]: ????B(e�j!)A(e�j!)
�
B0(e

�j!)

A0(e�j!)

???? �
????Pc(e�j!)A(e�j!)

????
????T (e�j!)S(e�j!)

???? (3.20)

where the pair (A0(z
�1); B0(z

�1)) represents the real plant and
A(z�1)R(z�1)� + z�1B(z�1)S(z�1) = Pc(z

�1)T (z�1) is the closed loop characteristic
equation in the case of perfect modelling.

The design objective is to ensure a prescribed high frequency roll-o� for the transfer

function T (z�1)
S(z�1) in order to achieve a larger value of the upper bound, at high frequencies,

in (3.20). Methods to address this issue were given by Clarke at al. [RC91, YC95].
From the perspective of the relation between T (z�1) and the Q(z�1) parametrisation

used in the SGPC case we can compare them in terms of block diagrams. By observ-

ing that Q(z�1) = M(z�1)
T (z�1) where T (z�1) and M(z�1) satisfy the following Diophantine
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equations:

R(z�1) = R0(z�1)T (z�1)� z�1B(z�1)M(z�1)

S(z�1) = S0(z�1)T (z�1)��A(z�1)M(z�1)

we can claim that the T (z�1) based tuning, pictured in Figure 3.3, is similar with the
scheme suggested by [BKC92] illustrated in Figure 3.1.

-
+

-
s(t)

y(t)

M
T

z�1B
A

S0

�A

z�1B

1
R0�

Figure 3.3: The block diagram showing the equivalence between T (z�1) and the Q(z)
parametrisation when tuning for robustness

The min-max approach

In [Lee96, All94] the \min-max" algorithm for solving the robust stability problem is
developed. The main idea of the algorithm consists of a minimisation of the maximum
cost function for all possible plants in the uncertainty ball. The drawback of this method
is that the procedure accounts only for the optimisation of the worst case performance
which sometimes results in conservative control actions. Moreover, the complexity of the
algorithm is quite involved since it requires a multilevel optimisation.

In [All94] the \min-max" algorithm is considered for FIR models. The minimisation
is carried out with respect to the time invariant impulse response, as it ranges over a pre-
speci�ed polytope of plants, of the tracking error. According to Allwright et al. [All94]
the 1-norm min-max problem has a solution independent of whether the uncertainty in
the impulse response is time variant or invariant.

The minimisation problem based on FIR models is formulated in the following way:

min
u 2 R

m�Nu

U � U � �U
Y � y(�; U; V ) � �Y

max
�2�

ky(�; U; V )� sk1

where U = [u(k)T ; : : : ; u(k+Nu)
T ]T and V = [u(k�1)T ; : : : ; u(k�N)T ]T . Here the input

(U , �U) and output (Y , �Y ) constraints are time invariant but the uncertainty (� 2 �) is
time variant.
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This optimisation involves only the maximum deviation of the worst case tracking
error, which is therefore a�ected by even one output point far from the set-point. As an
alternative we can use, as in [All94], a minimisation problem that makes the problem still
solvable via an LP program paying less attention to outlier points.

The polytopic approach using LMIs

In Kothare et al. [KBM96], two models for uncertain systems were used to address the
robust constrained predictive control using linear matrix inequalities (LMIs).

The polytopic approach to robust constrained MBPC makes use of the linear time
varying system (LTV) expressed in discrete time:

x(k + 1) = A(k)X(k) +B(k)u(k)

y(k) = Cx(k)

where u 2 R
m , x 2 R

n , y 2 R
p and 
 = Cof[A1; B1]; : : : ; [AL; BL]g is a polytope, where

C0 denotes a convex hull (i.e. if [A;B] 2 
, then [A;B] =
PL

i=1 �i[Ai; Bi]). Methods to
develop such models can be found in [SA90, Woo95].

In the polytopic case the robust performance optimisation problem is formulated as:

min
u(k + j) j = 0; : : : ; Nu � 1

[Ai; Bi] 2 
 i � 0

J1(k)

where the performance index is de�ned as:

J1(k) =

1X
j=0

x(k + j)TQx(k + j) +

Nu�1X
j=0

u(k + j)TRu(k + j)

The min-max optimisation problem is performed over the set 
 and corresponds to
choosing the time varying plant [Ai; Bi] 2 
, 8i � 0 in such a way that if it is used as a
model for prediction then it will lead to the largest (worst case) value of J1(k), the value
of which minimised with respect to the control moves u(k + j), j = 0; : : : ; Nu � 1.

As stated in [KBM96] this min-max problem,convex for �nite Nu, was not addressed
in the literature up to now in this set-up. The only exception is the work of Allwright
et al. [All94] that simpli�es the problem using FIR models. In [KBM96] as described in
Section 3.1.6 the problem is addressed by �nding an upper bound on the performance
objective.

The robust performance constrained minimisation written in terms of LMIs is described
in the following theorem:

Theorem 3.3.2 [KBM96] Let x(k) be the state of the uncertain system. Then the state
feedback matrix that minimises the upper bound V (x(k)) on the performance objective
J1(k) is given by F = Y Z�1 where Z > 0 and Y are obtained from the solution, is exists,
of the following LMI problem:

min
;Z;Y
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subject to �
1 x(k)T

x(k) Z

�
� 0

and 2
6664

Z ZAT
i + Y TBT

i ZQ
1
2 Y TR

1
2

AiZ +BiY Z 0 0

Q
1
2Z 0 I 0

R
1
2Y 0 0 I

3
7775 � 0

where Z = P�1 and i = 1; : : : ; L. The minimisation problem is subject to either�
u2maxI Y
Y T Z

�
� 0

or �
X Y
Y T Z

�
� 0;

depending on the input constraint to be imposed and�
Z (AiZ +BiY )

TCT

C(AiZ +BiY ) y2maxI

�
� 0

reecting the output constraint to be enforced.

The proof of this theorem can be found in the Appendix of [KBM96].

Other approaches

Other ideas regarding a solution for the robust design of MBPC for stable plants involve
the suppression of the input movement on the basis of a Lyapunov function, as in [VGN95].

In [Bad97] an extension of the in�nite horizon algorithm suggested by Rawlings et
al. [RM93] is given. The model uncertainty is parametrised by a list of possible plants.
Constraints are added to prevent the cost function from increasing for the true plant.
The authors claim the robust stabilisation in the presence of constraints for the whole
range of the tuning parameter. In fact, the cost function minimisation is augmented in
the unconstrained case by an inequality constraint which requires the cost function values,
computed for each member of the plant family living in the uncertainty ball, to remain
constant or decrease at each time step relative to the cost values computed using the
current measured state and the input restriction. The restriction for the input is obtained
by shifting from the optimal input vector computed at previous time.

This approach, similar to [Zaf90] can be thought as a generalised state contraction,
de�ned on an in�nite horizon including the contributions from the inputs and states with-
out any additional tuning factors. The feasibility of the optimisation is ensured due to the
restricted output. The theorems stated in [Bad97] give the necessary conditions for the
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robust stability of the above strategy in the unconstrained case. For the constrained case
the necessary conditions stated in the case of stable systems are required. This result was
extended by Badgwell along the lines from [RM93, Sco97, RK93] by relaxing the hard
constraints using a slack variable. As a result theMBPC controller �nds both the control
increment and the value of the slack variable, an idea �rst introduced by [Zaf90].

3.3.2 The multi-model adaptive approach

As discussed in the initial presentation of the state space MBPC approach there are
means of involving a di�erent model at each time step in the optimisation. We are aware
that systems are highly nonlinear with dynamics that change from one set-point to an-
other. Although there are methods of dealing with such type of systems they require a
good knowledge of the plant. The usual approach to such problems is to design robust
controllers (a conventional approach) as in Section 3.3.1 but these controllers su�er from
poor performance.

The alternative to achieve robustness of the MBPC design, suggested in this section,
is that of an adaptive controller using a multi-model approach. This means that the
internal model of the MBPC controller will reect at each time instant the system in
use. Of course such a controller has got its own drawbacks when the nonlinearity is hard
to characterise, the parameter variations are fast with respect to the process dynamics or
the input excitation is insu�cient if an identi�cation method is employed to produce the
internal model.

Before tackling the problem with an MBPC multi-model regulator, which is more
complicated than a �xed gain controller, we need to check if the problem can be solved
by a simple linear controller. Note that it is not possible to judge the requirement for an
adaptive controller just by looking at the variations of the process open loop.

The design stages for the MBPC multi-model regulator are the following:

1. The whole range of the plant operating envelope is covered with a grid su�ciently
�ne to capture the nonlinearities of the model. The grid depends on the controller
design method and speci�cation.

2. Point-wise linearisations are produced in the vertices of this grid.

3. MBPC controllers are designed for each of these models.

4. A global compensator is obtained by switching between these LTI laws.

5. Analysis has to be carried out as described in the work of Shamma et al. [SA90].

In the case of MBPC the approach taken by Chow et al. [CKC96] is an interpolation
of the linear designs for intermediate values of the scheduling variable done at the level of
controller parameters. Additional problems connected with this approach arise when the
scheduling variable is the system output. In this case it is di�cult to choose which model
from the several that cover the set-point change should be used. A multiple model design
using switching should typically round the scheduling variable to the nearest vertex of the
parameter grid and use the corresponding controller.
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More details about the path taken in our work are to be found in Chapter 7 where we
approach robust control as a multi-model adaptive control problem, namely one in which
adaptation occurs by discrete changes to the control algorithm, rather than continuous
tracking of a gradually-changing model, see as well [HM98a, HM98c].



Chapter 4

The tuning and implementation of

MBPC schemes

This chapter is devoted to the tuning and implementation of MBPC schemes. This
process consists of getting the process model, performing the o� line design and the on
line implementation. Therefore during the design of an MBPC controller the following
steps have to be followed:

1. Determine the requirements for the closed loop behaviour in terms of time and
frequency criteria.

2. Produce the linear internal model of the plant.

3. De�ne the constraints related to inputs, rates of change in the inputs, outputs and
states. Construct matrices that represent these.

4. Choose appropriate dimensions for control and prediction horizons

5. Choose the cost function weighting matrices.

6. Tune the performance of the closed loop system by performing closed loop linear
and nonlinear simulations. This involves iteration of steps 4 and 5.

7. Perform a stability and robustness analysis.

This standard design cycle will be addressed in the next sections of this chapter with
emphasis on the steps related to the MBPC control scheme.

The linear internal model should relate to all manipulated variables as well the states
and/or outputs depending on the formulation adopted (input/output or state space). After
a nominal, unconstrained design is performed stability and performance of the nominal
MBPC controller are veri�ed via theoretical analysis and simulation simultaneously. The
tradeo� between robust stability and performance is explored generally on line by tuning
the controller, so, weights in the cost function can be updated on-line to a�ect the solution.

69
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4.1 From design criteria into method dependent parameters

In general the design criteria, given by the control problem to be tackled, are set up in
method independent terms. This section considers possible requirements and provides
a procedure to approximate them by means of objectives compatible with the MBPC
design methodology.

There are many adjustable tuning parameters in the case of MBPC schemes. This
section examines the e�ects of these upon closed loop performance trying to establish
a systematic way of choosing them. In the case of MBPC designs the design criteria
are used to tune the method parameters which are: control and prediction horizons,
weighting matrices, sampling time and sometimes even constraint boundaries. Therefore
performance criteria de�ned in time domain such as rise time or overshoot are passed
directly to the control method via these tuning parameters. The choice of them is based
on several theoretical results (see previous chapter), but certain rules of thumb as well,
integrated together in a trial-and-error tuning procedure.

Other main design criteria which are passed directly to the method are the constraints
on actuators (rate and position limits) and safety constraints regarding the minimum or
maximum allowable output values. The on-line optimisation will produce a solution with
respect to these requirements. It is the designer's task to ensure the feasibility of the
optimisation in the constrained case, generally by a suitable manipulation of the cost
function and constraints.

Before starting the presentation of the translation of design criteria into method de-
pendent objectives it is well to have de�ned the performance concept. Two types of
performance can be distinguished: servo and regulator performance. Several aspects of
the servo behaviour of a closed loop system can be measured by using a step as the refer-
ence trajectory. The variables de�ning part of the performance, used in the following part
of this section, are:

� tr = mint(t j y(t) � 0:9) [s] { rise time (the time required for the system to reach 90
% of the unit step input value).

� tp = arg (maxt(y(t))) [s] { peak time (the time at which the response reaches its
maximum value).

� ts = mint(t jj y(t) � yss j< 0:02 j yss j) [s] { settling time (time required for the
system to settle within 2 % of its steady state value).

� Mp = (y(tp)� yss)� 100 [%] { the overshoot.

� ess =j (yref � yss) j �100 [%] { the steady state error.

where yss represent the steady state value of y(k).

Figure 4.1 shows the variables involved in the servo performance de�nition:
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Figure 4.1: Servo performance criteria

Another useful relation is between the maximum modulus r of the discrete time closed-
loop eigenvalues and the settling time ts: as r approaches zero the settling time decreases.
This is a useful expression while employing the exponential weights for the MBPC. In
the case of a �rst or second order systems the settling time can be given by the minimum
value of n satisfying rn � 0:01 (i.e. by the value of minn(n : n � logr 0:01)). This kind of
relation becomes more di�cult to �nd as order increases [YC93].

4.1.1 Control and prediction horizons

The major inuence of the control horizon is on stability of the closed loop. Once this
was achieved by an appropriate tuning its main inuence is upon the performance of the
controlled system. Some inuences upon robustness could be seen as well [Soe92]. The
control horizon has to be bigger that the number of unstable plant modes in order to
ensure MBPC nominal stability [RM93, Sco97], see as well Theorem 3.1.2. Therefore,
in case of the control horizon tuning we perform a step response analysis of the system
assuming a prede�ned sampling period followed by a trial-and-error tuning process.

In general the choice of the prediction horizon is made in connection with the knowledge
of the future set point and the dynamics of the system. Therefore this horizon is derived
from the settling time. The solution speed will be decreased to an unacceptable extent for
big values of the prediction horizon. An increase of this horizon should be considered when
the closed loop proved to have long settling time. The prediction horizon must contain at
least the non-minimum phase behaviour of the system to be controlled using MBPC.

To complete the reader's image about tuning we recall some special cases. For instance,
the example of mean-level control (Nu = 1) applied to a stable plant is one of them. In
this case it is possible to �nd one control increment such that the reference will be met by
the plant output in steady state. This will allow the plant to react to set-point changes
while being able to reject disturbances in the shortest time possible.

The case of the perfect controller which sets both the control and prediction horizons
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to 1 is de�nitely a particular one. This because assuming that the plant has unstable zeros
these will lead to an unstable controller which in the case of mismodeling can drive the
plant unstable.

In the other cases discussed in the literature, such as dead-beat control, we need a
control horizon as large as the number of states in the plant model and a prediction
horizon having a value twice the control horizon. In this case the idea is to bring all the
plant modes to zero and then to allow enough time to the output to settle to the value
of the reference making sure that are no delayed modes inside the controller which might
emerge in the future.

4.1.2 The sampling period

The sampling period plays an important role in MBPC controllers. It is important to
be aware that the sampling time has a strong inuence upon all tuning parameters of the
MBPC technique. This parameter also de�nes the discrete time state space representation
of the continuous time linear model used as the internal model within theMBPC scheme.
The smaller the sampling period, the more accurate the discretisation will be. On another
hand, for a small sampling period, a big increase in the computational load can be observed.
This limits the controller bandwidth.

The way we usually set the sampling time in the MIMO case is by looking to all the
transfer functions from inputs to outputs and using the one which exhibits the largest
bandwidth. Then the frequency in rad=s at the crossover is augmented with another
decade { upon which we require accuracy from the discrete time model. This is considered
as being the Nyquist frequency ( �

Ts
) and therefore de�nes the sampling time. In other

words the sampling time corresponds to the smallest time constant which appears in the
continuous time model. Another restriction for Ts is given by the application. For instance,
a civil ight control system operates using a sampling frequency in the range 8 { 20Hz.

There is a tradeo� between decreasing the sampling period and increasing dimensions
of matrices involved in the MBPC algorithm or the number of optimisations performed
in the time unit. To conclude, if the sample period is small in relation with the settling
time this will result in large control and prediction horizons possibly causing numerical
problems. However, the smaller the sampling period, the better can a reference trajectory
be tracked or disturbance rejected assuming no inter-sampling behaviour problems. The
attempts of [LGM92] are the only available ones trying to deal with MBPC tuning in a
sample data system framework.

4.1.3 Weighting matrices

The weighting matrices upon the outputs and control increments are important design
parameters. The matrix that weights the di�erence between the set point and the plant
model output is positive de�nite, as well as the command increment weighting matrix.
Both inuence the performance properties required from the closed loop system.

The control increment weighting matrix a�ects the control increment magnitude. For
instance increasing this will reduce the control activity leading to a \switch o�" of the
feedback action. Therefore, in the case of a stable plant we can expect to obtain a stable
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closed loop by increasing the control weighting su�ciently. The drawback of this is slow
response to disturbances, since the resulting control actions will be small.

The output (error) weighting matrix starts to be used extensively when dealing with
MIMO systems. In the SISO case having just the control weighting matrix is enough.
For complex MIMO plants manipulating both the control and output weighting matrices
allows the designer to decouple input/output channels providing the closed loop system
with the required performance criteria.

At the moment, we have limited theoretical tools to guarantee stability in the case of
the constrained optimisation. As a result the �rst step in the controller design has to be
the tuning of the controller in the absence of constraints. Then, a softening mechanism
can be employed as in [Zaf90], a formulation that covers any mixture of hard and/or soft
constraints. We allow a violation of the hard constraint by an amount � � 0. Next, we
add to the cost function 2.2.5 the term k � k2W , whereW is the weight that determines the
e�ect of softening: for W =1 we get hard constraints; W = 0 corresponds to a complete
removal of the constraints.

Other methods of dealing with infeasibility situations were already described in the
previous chapter. When using receding control with exponential weighting a special mean-
ing is provided to both weighting matrices. In this case they represent the tool to provide
a prescribed degree of stability to the MBPC scheme.

The tuning of weighting matrices is not a one step process. At the beginning we tune
the weights of the MBPC controller using the time simulations involving the linear model
of the plant. This step is followed by �ne tuning done by time simulations employing the
full nonlinear model of the plant and constraints. This tuning is another example of a
trial-and-error procedure involved in choosing the MBPC controller parameters. Such a
procedure is time consuming due to the mixture of discrete and continuous time blocks
which requires the Simulink software to use an integration step upper bounded by the
smaller sampling time.

4.1.4 Set point generation

Traditionally set-point �ltering has been used to reduce actuator saturation. This was
achieved by passing the set-point changes through a �lter and only then forming the error
vector. In such a way we limit its amplitude such as not to have the actuators being
saturated.

Even in the MBPC case, when we can handle actuator saturation via constraints,
there are reasons to employ such pre-�lters such as: the lack of understanding of the
closed loop behaviour when a set of constraints are active, the necessity to keep control
authority at any time to deal with large disturbances and the fact that set-point �ltering
will remove only high frequency changes (low frequency changes can still saturate the
actuators). Therefore, the set point �lter represents an indirect tuning parameter for
MBPC schemes. More theoretical insight into this aspect is o�ered in Section 4.2.

When an MBPC controller was used as inner loop stability augmentation system a
priori knowledge of the set point was not assumed. There are other choices to generate the
set-point from the present command. For example a simple way to generate the reference
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trajectory r(k + l) is via a �rst order �lter:

r(k) = y(k)

r(k + l) = �r(k + l � 1) + (1� �)s(k)

where y(k) is the current output, s(k) is current set-point at time k for l = 0 : : : Ny and
� 2 [0; 1].

In general the reference trajectory generation assumes a certain knowledge of the set-
point to be followed which is embedded in the pre-�lter design. By making an a priori
decision on the pre-�lter structure it is possible to degrade the achievable performance
because the pre-�lter is usually chosen to give the fastest possible response during typical
demands.

In the next section we will show what are the trade-o�s between designing an appro-
priate �lter and choosing a speci�c pattern of cost function weights.

4.2 Filtering and plant shaping

In the literature, see [GPM89], �ltering of the future set-point is often recommended as
shown in Figure 2.2 and is considered as an additional degree of freedom used together
with the traditional ones which are horizons and weighting matrices.

In [RG96] the authors developed an algorithm with better tracking based on min-
imising a cost function which is a measure of the tracking across the whole simulation. A
similar approach developed in [ANA96] enhances the tracking performance by adapting a
pre-�lter on-line with the aim of achieving good tracking and low sensitivity properties for
the closed loop. In other papers, such as [CZ91], the authors have used �ltered set-points,
inputs and measurements in the cost function.

In the following we investigate the cases when the above formulations are equivalent:

Theorem 4.2.1 [HM97b] Consider the MBPC problem:

J(k) =

NyX
l=1

k(~yf (k + l)� r(k + l)k2Q(l) +

NuX
l=1

k�uf (k + l � 1)k2R(l) (4.1)

If ef (z) = Wy(z)e(z) with e(z) = ~y(z) � s(z), r(z) = F (z)s(z), ~yf (z) = Wy(z)~y(z),
�uf (z) = Wu(z)

�1�u(z) and moreover Wy(z) = F (z) with Wy(z) and Wu(z)
�1 being

FIR �lters having a causal and anti-causal part:

Wy(z) = a�Npz
�Np + � � �+ a�1z

�1 + a0z
0 + a1z

1 + � � �+ aNf
zNf

Wu(z)
�1 = b�Nqz

�Nq + � � �+ b�1z
�1 + b0z

0 + b1z
1 + � � �+ bNgz

Ng

where Nf � Ny and Ng � Nu then the MBPC problem can be reformulated as:

J(k) = kE(k)k2
Q̂f

+ k�U(k)k2
R̂f

(4.2)
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where Q̂f = T̂ TQf T̂ and R̂f = X̂TRfX̂ and

�U(k) =
�
�u(k �Nq)

T : : : �u(k +Ng +Nu � 1)T
�T

E(k) =
�
e(k �Np)

T : : : e(k +Nf +Ny)
T
�T

Qf = diag[Q(1); : : : ; Q(Ny)]

Rf = diag[R(1); : : : ; R(Nu)]

and

T̂ =

2
664
a�Np : : : a0 : : : aNf

0 0 : : : 0

0 a�Np : : : a0 : : : aNf
0 : : : 0

: : : : : : : : : : : : : : : : : : : : : : : : : : :
0 : : : : : : 0 a�Np : : : a0 : : : aNf

3
775

X̂ =

2
664
a�Nq : : : a0 : : : aNg 0 0 : : : 0
0 a�Nq : : : a0 : : : aNg 0 : : : 0
: : : : : : : : : : : : : : : : : : : : : : : : : : :
0 : : : : : : 0 a�Nq : : : a0 : : : aNg

3
775

Proof Let Ef (k) =
�
ef (k + 1)T : : : ef (k +Ny)

T
�T

and

�Uf (k) =
�
�uf (k)

T : : : �uf (k +Nu � 1)T
�T
.

Then the cost-function ( 4.1) can be written as:

J(k) = kEf (k)k
2
Qf

+ k�Uf (k)k
2
Rf
: (4.3)

The �ltered error is:

ef (k + 1) = a�Npe(k �Np) + � � � + a�1e(k � 1) + a0e(k + 1) + � � � + 0e(k +Nf +Ny)

: : : : : : : : : : : : : : :

ef (k +Ny) = 0e(k �Np) + a�Npe(k +Ny �Nf �Nq1) + : : :

+a0e(k +Ny �Nf ) + � � �+ aNf
e(k +Nf +Ny)

Thus the expression for the �ltered error is Ef (k) = T̂E(k). For �uf (k), : : : , �uf (k+Nu)

a similar expression can be derived such that �Uf (k) = X̂�U(k). Therefore with Q̂f =

T̂ TQf T̂ and R̂f = X̂TRf X̂ the cost function 4.3 can be written as:

J(k) = kE(k)k2
Q̂f

+ k�U(k)k2
R̂f

2

The conclusions of the above theorem can be summarised in the following four remarks:

Remark 4.2.2 Note that the use of an anti-causal part in the FIR �lters is possible when
there is apriori knowledge of the set-point and of the predicted output over the relevant
horizon.
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Remark 4.2.3 Solving the formulation (4.1) or equivalently (4.3) is computationally less
expensive than formulation (4.2) since the prediction and control horizon are considerably
shorter. Therefore we recommend use of �ltering for actual implementation.

Remark 4.2.4 The positive de�nite weighting matrices Q̂f and R̂f no longer have the
diagonal block structure as in the case of cost function (4.3). This shows the way in which
the �lters ensure extra degree of freedom to the optimisation cost function. Note that with
full structured Q̂f and R̂f the problem can no longer be written in the form:

J(k) =

Nf+NyX
l=�Np

k(~y(k + l)� s(k + l)k2
Q̂(l)

+

Ng+NuX
l=�Nq

k�u(k + l � 1)k2
R̂(l)

Remark 4.2.5 The assumption F (z) = Wy(z), although quite restrictive and unnatural,
was made in order to simplify the formulation and show how one can reformulate the
original problem.

4.3 Ensuring robust tracking and disturbance rejection

During the development of MBPC techniques researchers were concerned with ensuring
integral action with their control schemes. The aim was to have this property built into
the algorithm in order to cope with random steps occurring at random times or, in the
stochastic sense, with integrated white noise. These signals represent a class of distur-
bances encountered in many practical systems, see [CMT87].

Inherent integral action, in conjunction with an appropriate prediction model, writ-
ten in the control increment �u(k), ensures zero o�set in the case of constant distur-
bances [CM89b].

Recall that the conventional setup of the MBPC formulation in the state space form
which include integral action is characterised by:

� The plant model:

x(k + 1) = Ax(k) +Bu(k)

~y(k) = Cx(k) + n(k) = yx(k) + n(k)

where u(k), x(k), ~y(k), n(k) are the input, state, output, output disturbance vectors,
respectively, and yx(k) is the output vector free of disturbance.

� The cost function described in equation (2.1)

� The LTI state space prediction model:�
�x(k + 1)
yx(k + 1)

�
=

�
A 0
CA I

� �
�x(k)
yx(k)

�
+

�
B
0

�
�u(k)

y(k) =
�
0 I

� ��x(k)
~yx(k)

�
+ n(k)
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� The linear inequalities expressing the MBPC constraints:

D�U(k) � E

2
664
u(k � 1)
x̂(k)
y(k)
c(k)

3
775 ;D =

2
4 L
M�
NG

3
5

E =

2
4 0 0 0 I� 0 0
�MI 0 0 0 I� 0
0 �NF �NH 0 0 I�

3
5

All the matrices involved in the above equations are de�ned in Section 2.2.
In this section we develop a scheme to deal with a wider class of disturbance and/or

reference signals within MBPC controlled plants. This scheme will generalise the usual
integral action of MBPC which deals with piecewise constant signals.

The idea behind this development is the well known internal model principle which
states that, in order to have a disturbance which does not decay to zero rejected or a
reference tracked, its corresponding model has to be included in the controller. Our
approach is to augment the plant model with the disturbance model and then use the
augmented model as a prediction model to construct the optimiser cost function.

By assuming that the disturbance and/or reference signal satis�es the di�erence equa-
tion (4.4) this formulation allows a wide variety of signals such as steps, ramps or sinusoids,
to be described:

n(k + 1) + �1n(k) + �2n(k � 1) = 0 (4.4)

This equation can be rewritten in the state space representation:�
n(k)

n(k + 1)

�
=

�
0 I

��2I ��1I

� �
n(k � 1)
n(k)

�

n(k) =
�
0 I

� �n(k � 1)
n(k)

�

For instance, using the above model a step can be obtained when n(0) = 0, n(1) = a,
�1 = �1, �2 = 0, a ramp when n(0) = 0, n(1) = a, �1 = �2, �2 = 1, a 2 R or the
sinusoid when n(0) = b sin(�), n(1) = b sin(aTs + �), �1 = �2 cos(aTs), �2 = 1, a 2 R.

We de�ne the generalised input:

 (k) = u(k) + �1u(k � 1) + �2u(k � 2)

the generalised state:

�(k) = x(k) + �1x(k � 1) + �2x(k � 2)

and the corresponding output:

�(k) = ~y(k) + �1~y(k � 1) + �2~y(k � 2)

= ~yx(k) + �1~yx(k � 1) + �2~yx(k � 2)

�(k) = C�(k)
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Hence, the generalised state space representation of the plant model is:

�(k + 1) = A�(k) +B (k)

�(k) = C�(k)

together with

�(k + 1) = An�(k)

n(k) = Cn�(k)

where �(k) =

�
n(k � 1)
n(k)

�
represent the state of the disturbance model.

This state space representation, augmented with the noise model (4.4) and using the
vector yx(k) of outputs free of disturbance, can be written as:2

664
�(k + 1)
�(k + 1)
yx(k)

yx(k + 1)

3
775 =

2
664
A 0 0 0
0 An 0 0
0 0 0 I
CA 0 ��2I ��1I

3
775
2
664

�(k)
�(k)

yx(k � 1)
yx(k)

3
775+

2
664
B
0
0
CB

3
775 (k)

~y(k) =
�
0 Cn 0 I

�
2
664

�(k)
�(k)

yx(k � 1)
yx(k)

3
775

Actually this is the only way we can connect the output ~y(k) with the generalised state

vector. Let z(k) =
�
�(k)T �(k)T yx(k � 1)T yx(k)

T
�T

then the model written in a
compact form is:

z(k + 1) = Âz(k) + B̂ (k)

~y(k) = Ĉz(k) (4.5)

In fact this is going to be the model used to build the prediction across the Ny horizon
and �nally the cost function to be optimised.

In this process the state corresponding to the compact form will be partly measured
and/or partly estimated depending on the type of formulation employed (e.g. with or
without state measurement available). The di�erence between the measured and the
estimated output will be used to start the predictor which will provide the predicted
values of ~y across the Ny horizon. This is actually how feedback information comes into
play.

The cost function of the generalised formulation is:

J(k) =

N2X
l=1

k(Ĉz(k + l)� r(k + l)k2Q(l) +

NuX
l=1

k (k + l � 1)k2R(l)

Here the reader should note the di�erences compared with the conventional cost function
(2.1). The model used for prediction was de�ned by (4.5).

Associated with the cost function and the prediction model we introduce the following
constraints upon the variables involved in the control process:



4.3 Ensuring robust tracking and disturbance rejection 79

� the inputs levels: ul(l)�u(l)�uu(l) where
k�l�k +Nu � 1

� the generalised input levels:  l(l)� (l)� u(l)
where k�l�k +Nu � 1

� the output (in general other linear combinations of states): yl(l)�~y(l)�yu(l) where
k +N1�l�k +N2

Following the procedure of stacking constraints developed in Section 2.2 we present in
the next part of this section a way to impose constraints directly onto the system state
despite of the use of the generalised state vector in the robust tracking formulation.

We start by considering the state constraints written in the following linear inequal-
ity over the whole prediction horizon PX(k) � o(k). Over the same horizon the aug-
mented generalised state is computed using the equation Z(k) = F(k)z(k) + G	(k) +
H(k)y(k) where F(k), G, H(k) are de�ned in Section 2.2 and z(k) = [�(k)T ; �(k)T ; yx(k�
1)T ; y(k)T ]T .

De�ning the following matrix having compatible dimensions �S =

2
4 I 0 0 0
: : : : : : : : : : : :
I 0 0 0

3
5

we write the generalised state as �(k) = �F(k)z(k)+ �G	(k) �H(k)y(k) where �F(k) = �SF(k),
�G = �SG and �H(k) = �SH(k).

Then we consider the vector of future states de�ned over the prediction horizon with
respect to �(k):

2
6666666666664

x(k + 1)
..
.
.
..
...
...

x(k +N2)

3
7777777777775

=

2
6666666666664

�(k + 1)
..
.
.
..
...
...

�(k +N2)

3
7777777777775

+

2
666664

0 0 : : : 0 0 0
��1 0 : : : 0 0 0
��2 ��1 : : : 0 0 0
0 ��2 : : : 0 0 0
: : : : : : : : : : : : : : : : : :

: : : 0 : : : ��2 ��1 0

3
777775

2
6666666666664

x(k + 1)
..
.
.
..
...
...

x(k +N2)

3
7777777777775

+

2
666664

��2 ��1
0 ��2
0 0
: : : : : :

: : : : : :

0 0

3
777775
�
x(k � 1)
x(k)

�

which boils down to:

X(k) = I�(k) + ��X(k) + �

�
x(k � 1)
x(k)

�

X(k) = (I � ��)�1
�
�(k) + �

�
x(k � 1)
x(k)

��

if matrix (I � ��) is non-singular.
Hence the constraints imposed upon the state over the future prediction horizon

PX(k) � o(k) can be written as:

P (I � ��)�1
�
�(k) + �

�
x(k � 1)
x(k)

��
� o(k)

P (I � ��)�1
�
�F(k)z(k) + �G	(k) + �H(k)y(k) + �

�
x(k � 1)
x(k)

��
� o(k)
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which leads to:

P (I � ��)�1 �G	(k) � o(k)� P (I � ��)�1
�
�F(k)z(k) + �H(k)y(k) + �

�
x(k � 1)
x(k)

��

These constraints can be cast into the following linear inequality by stacking together
scalar inequalities over the control and prediction horizon, respectively :

�D	(k)� �E

2
666666664

�
u(k � 2)
u(k � 1)

�
�
x(k � 1)
x(k)

�
z(k)
y(k)
c(k)

3
777777775

where c(k) = [l(k)T ;m(k)T ; n(k)T ; o(k)]T and the matrices �D and �E embedding elements
de�ned in Section 2.2 have the following form:

�D =

2
664

L

M(I � ��)�1

NG

P (I � ��)�1 �G

3
775

E =

2
664

0 0 0 0 I	(k) 0 0 0
�M(I � ��)�1 �� 0 0 0 0 IU(k) 0 0

0 0 �NF(k) �NH(k) 0 0 IZ(k) 0

0 �P (I � ��)�1
�
�F(k) + ��

�
�P (I � ��)�1 �H(k) 0 0 0 0 IX(k)

3
775

Now the constrained quadratic programming problem to be solved on-line is com-
pletely de�ned. In terms of implementation Figure 4.2 de�nes the structure used and the
corresponding signals.
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G(z)

PLANT

OBSERVER
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STATE ESTIMATE
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PREDICTOR

INTERNAL
MODEL

OUTPUT

Figure 4.2: The structure of the generalised MBPC controller

The �lters G(z) and H(z) have the following form G(z) = 1 + �1z
�1 + �2z

�2 and
H(z) = (1 + �1z

�1 + �2z
�2)�1 where �(k) = G(z)x(k) and u(k) = H(z) (k).

The proposed formulation results in the disturbance being rejected asymptotically if
the MBPC controller stabilises the system (4.5) which means that z(k) tends to zero in
an asymptotic manner. Therefore assuming r(k + l) = 0 for l = 1 : : : Ny then ~y(k) tends
asymptotically to zero which ensures the required property. As a result we require that
the original plant, in its discrete time representation, should have zeros di�erently located
than the poles of the �lter H(z) in order to avoid their cancelling.



4.4 The MBPC Development Space (DS) 81

For example, in the case of ramp rejection/following since the plant operates on
��u(k) rather than u(k) (by \plant" here we mean the model used for prediction), we
require that the original plant should have no zeros located at z = 1 which otherwise will
cancel the ramp model ((1� z�1)2) introduced by this way of operation. For instance, in
Section 6.5, this approach is used in following a landing path reference which has the form
of a ramp.

Note that higher order disturbance models than (4.4) can be handled in an analogous
manner. This gives a way of handling more than one type of disturbance simultaneously.

Robust tracking or disturbance rejection can now be achieved due to a new formulation
which provides rejection and/or tracking for a wider class of reference and/or disturbance
signals via an appropriate prediction model constructed using the internal model prin-
ciple. Therefore, including the disturbance model together with the prediction model
ensures o�set-free control even when there is a signi�cant mismatch between the model
and the actual plant. This algorithm was employed as a basis for the \Development Space"
described in the next section.

4.4 The MBPC Development Space (DS)

Clock

Reference

MBPC PLANT

Plot facilities

Double click block to plot
the variables involved

in MBPC control

Print graphs

Double click block to
print the graph window
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Frequency plots
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Double click block to
edit the model parameters

START UP

Double click block to
load initial parameters

Figure 4.3: The SIMULINK MBPC development space

The section aims to provide the reader with an answer to the question \Why aMBPC
development space?" and to present a particular proposal for such a software. Then a
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description of the Graphical User Interface (GUI) is given followed by a presentation of
the Development Space (DS) at work.

The design environment was intended to be a useful tool for designers involved in
MBPC type of control. The architecture was de�ned in a exible way to give opportunity
to the designer to use this tool as a Development Space which can be customised to his
needs [HM97a]. For example the use of prede�ned blocks and embedded algorithms will
enable him to construct simulation models. Otherwise, a too dedicated user interface
will limit the user to several prede�ned operations which will be too restrictive for an
experienced user. The features of the Development Space were de�ned after a careful
look at the previous attempts such as: the Model Predictive Control Toolbox for use with
Matlab [MR95] and the Predictive Adaptive Control Environment [SCC95].

We call this CAD application a \Development Space" because we would like to em-
phasise the di�erence between this and a standard MATLAB toolbox [HM97a]. Having a
user interface which utilises SIMULINK features, in an open environment for developers,
this application goes beyond a normal toolbox in terms of customisation but, not as far
as an application dedicated to a particularMBPC control problem. The tuning interface
is constructed in such a way as to allow the designer to adjust various design parameters
while the simulation is running.

Convenient general purpose MBPC design software for MIMO systems using state
space internal models is not available. The existing software does not seem to allow
a straightforward access from the MATLAB{SIMULINK environment [MR95] or when
MIMO plants are required to be controlled [SCC95]. In [SCC95] facilities such as an
automatic procedure to de�ne the optimisation horizons may fail in some particular cases.
This limits the usefulness of the on-line identi�cation feature which is provided by the
toolbox.

Our Development Space is constructed using the MATLAB{SIMULINK software and
its associated standard user interface. This environment uses state-space discrete MBPC
internal models, but the simulation plant model can be nonlinear. It handles non square
systems and disturbances. The Development Space assumes that either direct measure-
ments of the plant states are available, or that they are accurately estimated using a
suitable observer, which the user must supply in the form of a Simulink block.

In e�ect the Development Space allows nonlinear simulations with the MBPC con-
troller appearing as a \block" in the conventional way. By contrast the MPC Toolbox
absorbs the whole SIMULINK model inside the function, so that the usual SIMULINK
environment is not available while running a simulation.

Explicit constraints on manipulated input changes, input variables, outputs and states
are handled. Tools allow the user to handle unconstrained problems, characterised by an
analytic solution, and constrained problems solved by means of hill climbing algorithms.

The environment shown in Figure 4.3 provides functions and has features that allow the
user to design and test in simulation MBPC controllers for simple and complex plants.
Such an approach supports once more the idea of a \Development Space" instead of a
toolbox. As the only option, state space based internal models were used because of the
reliability of the numerical algorithms involved and the possibility to interface them with
other state-space based tools such as the subspace method { used in identi�cation. The
use of nonlinear internal models for prediction and therefore, for the computation of the
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optimal control law is not currently possible.

4.4.1 The Graphical User Interface (GUI)

The main functions of the development space (see Figure 4.3) are: Interactive setup of
the MBPC tuning parameters, Plant model setup, Start up, Frequency plot, Plot facilities
and Print graph.

The tuning parameters of the MBPC method are requested by the dialog box shown
in Figure 4.4. It is important to note here that any change in the parameters while the
simulation is running is passed immediately to theMBPC algorithm. This feature can be
used to understand the inuence of the various parameters and the way of tuning them.

The Plant model setup function enables us to setup the internal plant model for the
MBPC control algorithm within a text editor window via a template �le. The �le to
be edited has comments included that are intended to help the user in changing the
parameters according to his particular problem.

Activating the Start up push button places all variables required by theMBPC method
within the MATLAB workspace by running the functions setup.m, see Appendix A.1, and
algorithm.m, see Appendix A.2. SIMULINK uses speci�c variables from the workspace
and passes them to the DS functions as parameters. When a SIMULINK model is created,
a new function, called S-function, becomes available in MATLAB. An S-function behaves
like any other MATLAB function. A full description of the concept is given in [Mat95].
Once all the variables are loaded and computed we can access the Frequency plot facilities
that will provide us with information regarding the closed loop transfer function (comple-
mentary sensitivity) in the unconstrained case (see Figure 4.6). The frequency response
of the controlled plant is saved as well in MVFR format for later use within the MFD
Toolbox [FMB90].

Figure 4.4: The MBPC parameters dialog box

When the simulation is �nished, clicking on the Plot facilities push button brings
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forward a multiple graph (shown in Figure 4.7) showing measurements of the plant together
with the variation of the states (i.e. �x and the command provided by the MBPC
controller.

4.4.2 Development Space's architecture

Functional blocks are: the reference block, the plant block and the MBPC block. The
engine of the design environment is the MBPC controller, having the optimiser as a
central point.

The blocks shown in Figure 4.5 are used to produce the signals required by theMBPC
algorithm. The MATLAB workspace is provided with the signals involved in the control
for analysis and plotting purposes. The optimiser, see Appendix A.3, is written as a
SIMULINK S-function that has no states but runs a quadratic program. Only the �rst
movement of the solution vector is used for control purposes.
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Figure 4.5: The MBPC block

The plant block hosts the linear or nonlinear model of the plant. We note here that
the main requirement of the Development Space is that the state measurements from the
plant model are available as long as estimation of them is not used.

When a reduced model of the plant is employed via truncating the states, as the
MBPC internal model, a state transformation is needed in order to provide the reduced
model, employed for prediction, with the necessary initial measurement. Therefore, in the
SIMULINK plant block we have included the necessary transformation matrix. Within
the reference block the designer has to provide reference signals to the algorithm, reference
signals which can be changed during the run. The reference trajectory is either generated
during the simulation run, or it can be pre-computed and read from a �le. The latter
approach allows the MBPC to anticipate the future set-point movements.

4.4.3 The Development Space at work

In order to give more insight into the use of the Development Space we are going to take a
longitudinal aircraft model (a linear representation of the nonlinear model used in the next
chapter) and pass it through all the stages required for a proper set-up and simulation
using the MBPC environment.

The setting up involves two main steps:
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1. The de�nition of the linearised plant model, used as internal model within the
MBPC algorithm. Therefore, we are using two models, one to represent the plant
(non-linear) and one (linear) for the MBPC internal model.

2. The de�nition of the MBPC tuning parameters (control and prediction horizons,
command and output weighting matrices).

The �rst step can be accomplished once a linear continuous representation of the plant
is produced using standard trim and linearisation procedures. Such a representation is
used in order to de�ne the discretized version of the model at the sampling time required.
This discrete system is produced from the continuous time one by using speci�c commands
from the MATLAB �-tools or Control Toolbox. Model reduction can be applied in order to
reduce the computational burden due to the large dimension of the internal model. This
internal model will assume a simple way to model disturbances as being the di�erence
between the real output and the model output and assumes that the same disturbance
persists across the prediction horizon.

The linear representation of the plant is given in Table 4.1 (see next chapter for the
meaning of inputs, states and outputs). Constraints involved in the optimisation algorithm
are saturation of actuators and actuator rate limits (see Table 4.2).

A =

2
664
�0:9825 0:0000 �0:0007 �0:0161
1:0000 0 0 0
�2:1937 �9:7758 �0:0325 0:0743
77:3570 �0:7675 �0:2264 �0:6684

3
775

B =

2
664
�2:4379 0:2912 0:2912

0 0
0:1837 9:8100
�6:4785 0

3
775

C =

�
0 �79:8667 �0:0283 0:9996
0 0:0000 0:9996 0:0290

�

D =

�
0 0
0 0

�

Table 4.1: The aircraft linear model

Limits Constrained Variable Name Unit
�0:436 � �E � 0:174 elevator deection saturation rad

�0:261 � _�E � 0:261 elevator deection rate limits rad/s
0:009 � �Th � 0:174 engines throttle limits -

�0:028 � _�Th � 0:028 engine throttle slew rates -

Table 4.2: Longitudinal channel actuator constraints

The next step involves the de�nition of the plant within the corresponding block as a
nonlinear model. This assumes that the plant is known and that we are able to implement
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it via SIMULINK standard blocks or a S-function. Both linear and nonlinear models can
be implemented at the designer's choice. In the case of the nonlinear implementation we
have to make sure that the assumption of measurable states is not violated so that, we
are able to provide the MBPC block with these signals.

Before starting a simulation it is as well to check the simulation parameters of the
standard SIMULINK pull-down menu. The maximum step of the integration method
has to be an adequate sub multiple of the sampling time at which the MBPC controller
operates. In our case the Min Step Size = 0:001 � Ts, Max Step Size = 0:25 � Ts and
Tolerance = 1� 10�3.

Sampling time, horizons, type of op-
timisation

[1,4,10,0.5,1]

Input and rate constraints

2
664
�0:436 +0:009 +0:009
+0:174 +0:174 +0:174
�0:261 �0:028 �0:028
+0:261 +0:028 +0:028

3
775

States constraints

�
�1e3 �1e3 �1e3 �1e3 �2 �40 55
1e3 1e3 1e3 1e3 2 40 120

�
Input weighting matrix [3e5 6e5 6e5]'

Output weighting matrix [1 1 1]'

Precision in observing the sample hit 1e-10

O�set 2e-8

Table 4.3: Aircraft model MBPC tuning parameters

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

Maximum/minimum singular values of the MBPC controlled plant (solid)

Figure 4.6: The frequency plot facility output

For the unconstrained case and the linear plant model we can plot the frequency
response of the closed loop transfer function of the minimum and maximum singular
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values (see Figure 4.6).
When running the simulation it is important to make sure that the precision required

in detecting the sampling hit, the time spent in the on-line optimisation procedure and the
o�set time parameter present in most of the discrete time blocks of the MBPC controller
are consistent. The sample time variable sets the sample time at which the discrete block
is updated. It possible to specify an o�set time that will give information about which
blocks should be updated sooner or later then others (see [Mat95]). For our example
Ts = 0:1 s and the o�set is 1� 10�8. The amount of computation time for the quadratic
programming solver block is varying from one internal model to another depending on
the horizons used. Therefore, selecting the o�set is a task that cannot be provided as an
automatic feature of the Development Space due to the rules of thumb involved.
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Figure 4.7: The plotted simulation results

Once we have decided the initial tuning parameters we can proceed to time simulations.
For the �rst stages of the tuning procedure it is recommended to have a short simulation
time (six times the maximum time constant of the plant) and at the beginning to start
in the unconstrained case and then to include the constraints. At this stage a trial and
error process complemented by the designer's knowledge has to be performed in order to
achieve the required performance for the controlled plant. For our example, the values
within the dialog window for tuning parameters chosen �nally are given in Table 4.3.

With these values the responses to step changes in vertical and air speed, shown
in Figure 4.7, were obtained in the absence of disturbances. Any change of the design
parameters will reect instantaneously within the simulation being carried out.



Chapter 5

Stability Augmentation Using

Predictive Control

5.1 Introduction

The world experience in y-by-wire is now more than 20 years old but the complex prob-
lems encountered in designing and implementation of automatic pilots for civil or military
aircraft makes the research in this area concentrated on providing alternatives for replacing
controllers designed in a classical manner with new ones based on modern design tech-
niques. The general objective of ight controllers is to improve the natural ying qualities
of the aircraft, in particular stability and ight envelope protections. The stability aug-
mentation system (SAS) improves the ying qualities, contributes to safety and provides
stability in face of perturbations such as gust and engine failures. All these features are
provided together with the advantage of a reduced crew workload.

In principle one control surface is su�cient to control as many modes as independent
measurements are available. Of course increased stability characteristics can be obtained
while degrees of freedom are available. Moreover the existence of protections for the sys-
tem excursions out of the normal ight envelope can provide the pilot with the exibility
to react without hesitation in various situations. These reasons lead us to consider the con-
strained predictive control method as a potential tool in addressing SAS type of functions.
We have decided to investigate this because constrainedMBPC is radically di�erent from
other control approaches currently employed for ight control. This di�erence is not only
at the level of the design method used but the implementation as well because it involves
an on line computation of the controller. Several studies of using predictive control in such
applications have been reported, though only a minority of these have really addressed
the on line computation problem [GE91, SPVvL91, BS93, SSD95, WB95].

This chapter investigates the dimension of the problems encountered during a straight
replacement of aircraft SAS conventionally used controllers. A principal reason for devel-
oping this design was to demonstrate that MBPC can be applied to a realistic complex
benchmark problem and to demonstrate the limitations of this technique. Even further
advances in computing hardware will bring the solution time down to acceptable levels for
high-bandwidth systems. TheMBPC will give ight certi�cation di�culties especially in

88
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the constrained case.

The design method is illustrated by designing an autopilot for the Research Civil Air-
craft Model (RCAM) used in the Group for Aeronautical Research and Technology in
Europe (GARTEUR) design challenge [MBT97]. To enable comparisons with other GAR-
TEUR designs a standard evaluation over a Frankfurt descent procedure was performed
which tested the controller in conditions of mismodelling, gust disturbances and an en-
gine failure. The main challenge was to retain the MBPC bene�ts: its very nonlinear
behaviour when the constraints are approached, its ability to anticipate pilot commands
while providing low complexity for the overall controller.

5.2 The controller architecture for the RCAM problem

In this section the control system architecture for the overall system will be described. The
controller structure we have adopted was a MBPC controller (inner loop) in combination
with a conventional controller (outer loop). The design consisted of separate design of the
inner and outer loops for each of the channels. We have adopted this hybrid structure
for several reasons part of them technical and part strategic. Previous design examples
from the literature tackle the issue ofMBPC control by using such a controller as a single
controller but not in conjunction with others. Therefore this design challenge was regarded
as a good opportunity to check a di�erent scheme and check its strong and weak points.
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Figure 5.1: The aircraft overall controller structure

Two more problems should be mentioned here. Proceeding to a design that has a
conventional inner loop controller and including actuator models the number of states that
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should be measured or estimated in order to useMBPC technique is increased. Moreover
the challenge imposes restrictions about the available measurements (no actuator states or
outputs are assumed to be measurable). Therefore, the inner MBPC controller does not
include the actuator models as part of its internal model. The second problem concerns
the available linear model. The linearisation tool uses a 9 state aircraft nonlinear model
that makes impossible the choice of the altitude as an output of the resulting linear system.
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Figure 5.2: The aircraft longitudinal and lateral controller structure

Figure 5.1 shows the overall framework making use of separate controllers for each
channel. Figure 5.2 shows more details of the solution adopted. The approach taken in
this design is to split the aircraft controller into two parts: longitudinal and lateral. Each
controller is divided into two loops, inner and outer. This approach was used to give the
pilot the ability to intervene manually throughout the landing manoeuvre. The behaviour
of both inner loop MBPC controllers is that of Stability Augmentation System (SAS).

5.2.1 Models

The RCAM plant model, as described in the GARTEUR book[MBT97], is a full six degree
of freedom nonlinear model generated as a Matlab MEX �le by Dymola from an accurate
mathematical model of an experimental transport aircraft.

The model used within theMBPC algorithm to generate the control law is a linearised
representation of the full six degrees of freedom nonlinear model. This model approximates
the behaviour of the nonlinear model (see Figures 5.3, 5.4). The nonlinear model having
the inputs, states and outputs presented in Table 5.2 was linearised around an operating
point situated in the middle of the ight envelope, see Table 5.1.
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Variable Name Trim Value Unit

mass 120000 Kg

centre of gravity [0.23 0.0 0.0] -

airspeed 80 m/s

ight path angle 0 rad

heading angle 0 rad

initial position [0 0 -1000] m

delay 0 sec

gust scale length 150 m

deviation gust 1.5 m/s

constant wind speed [-10 0 0] m/s

Table 5.1: The operating point trim parameters

The design uses only this linearisation in order to demonstrate the robustness of the
controller for the whole ight envelope. Moreover the lack of actuator models within
the internal model of MBPC will show the ability of the control technique to cope with
mismodelling problems.

The decoupling into longitudinal and lateral channels of the aircraft model was based
on the author's experience regarding ight control systems for civil aircraft. The level of
coupling between channels, analysed using the full nonlinear model, was observed to be
small. The analysis was carried out by providing steps in the commands and checking the
cross coupling between channels. The small level of coupling is a general characteristic
for a commercial aircraft supporting the decision of splitting the aircraft dynamics in two
distinct loops.

The linear internal models for the MBPC control were obtained in two stages: �rst
using the full nonlinear model a linear model was produced, then a selection of the cor-
responding model was employed for each channel based on the decoupling in between
channels.

For the longitudinal channel the model is:

A_lon = -0.9825 0.0000 -0.0007 -0.0161

1.0000 0 0 0

-2.1937 -9.7758 -0.0325 0.0743

77.3570 -0.7675 -0.2264 -0.6684

B_lon = -2.4379 0.2912 0.2912

0 0 0

0.1837 9.8100 9.8100

-6.4785 0 0

C_lon = 1.0000 0 0 0

0 -79.8667 -0.0283 0.9996

0 0.0000 0.9996 0.0290

D_lon = 0 0 0

0 0 0

0 0 0
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The eigen values of the Alon matrix:

real imaginary frequency damping

(1) -0.01139 -0.1264 0.126 0.0897

(2) -0.01139 0.1264 0.126 0.0897

(3) -0.83029 -1.1069 1.383 0.6000

(4) -0.83029 1.1069 1.383 0.6000

In addition we provide a brief analysis of the dynamics of this model in terms of ight
dynamics. Hence, the two modes that characterise the longitudinal channel are phugoid
(1,2) and short period (3,4) (time responses are shown in Figure 5.3).
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Figure 5.3: Time responses of the longitudinal channel linear model

Developing a similar analysis for the lateral channel we end up with the model:

A_lat = -1.2667 0.5498 0.0000 -0.0242

0.0522 -0.5207 -0.0000 0.0045

1.0000 0.0283 -0.0000 0

2.2667 -79.9679 9.7897 -0.1699

BS_lat = -0.8402 0.2904

-0.0176 -0.3325

0 0

0 2.0384

CS_lat = 0 0 -0.0000 0.0125

0 0 1.0000 0

DS_lat = 0 0

0 0
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The eigen values of the Alat matrix:

real imaginary frequency damping

(1) -0.183 0.0000 0.1836 1.0000

(2) -0.235 -0.5954 0.6404 0.3684

(3) -0.235 0.5954 0.6404 0.3684

(4) -1.301 0.0000 1.3017 1.0000

characterised by the following modes: lateral (4), spiral (1) and Dutch roll (2,3) having
the corresponding time responses shown in Figure 5.4.
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Figure 5.4: Time responses of the lateral channel linear model

As stated, in order to prove some of the features of the MBPC algorithm, such as
constraint handling and adaptability, we are not going to use an augmented model con-
taining actuator or delay models. Therefore, instead of using the actuator models we
prefer to specify their characteristics and bandwidth via constraints. This will keep low
the dimension of the optimisation problem to be solved at each time step.

5.2.2 Actuator signals

Control e�ectors, well described in the RCAM design challenge [MBT97], are the following:

� Actuators used to control the longitudinal aircraft channel are the tail-plane (�T )
and the engine commands (�Th1 and �Th2). Constraints involved in the optimisation
algorithm are saturation of actuators and actuator rate limits (see table 5.3):
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Symbol Input Variable Name Unit
�A aileron deection rad
�E elevator deection rad
�R rudder deection rad
�Th1 engine 1 throttle position -
�Th2 engine 2 throttle position -

Symbol State Variable Name Unit
p roll rate rad/s
q pitch rate rad/s
r yaw rate rad/s
� roll angle rad
� pitch angle rad
 yaw angle rad
uB velocity in body axis x direction m/s
vB velocity in body axis y direction m/s
wB velocity in body axis z direction m/s

Symbol Output Variable Name Unit
q pitch rate rad/s
nx horizontal load factor -
nz vertical load factor -
wV velocity in vehicle carried system along z direction m/s
z height m
Va calibrated air speed m/s
V total velocity m/s
� side-slip angle rad
p roll rate rad/s
r yaw rate rad/s
� roll angle rad
uV velocity in vehicle carried system along x direction m/s
vV velocity in vehicle carried system along y direction m/s
y position in earth �xed frame m
� ight path heading angle rad

Symbol Simulation Variable Name Unit
 yaw angle rad
� pitch angle rad
� angle of attack rad
 ight path angle rad
x position in earth �xed frame m
ny lateral load factor -

Table 5.2: Inputs, States and Outputs of the linear model
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Limits Constrained Variable Name Unit

�0:436 � �T � 0:174 saturation of tail-plane deection rad

�0:261 � _�T � 0:261 rate limits of tail-plane deection rad/s

0:009 � �Th � 0:174 engines throttle limits rad

�0:028 � _�Th � 0:028 engine throttle slew rates rad/s

Table 5.3: Longitudinal channel actuator constraints

� The lateral channel is controlled by means of the rudder (�R) and ailerons (�A).
Within the lateral channel controller constraints correspond to saturation of actua-
tors and actuator rate limits (see table 5.4):

Limits Constrained Variable Name Unit

�0:436 � �A � 0:436 saturation of aileron deection rad

�0:436 � _�A � 0:436 rate limits of aileron deection rad/s

�0:523 � �R � 0:523 saturation of rudder deection rad

�0:436 � _�R � 0:436 rate limits of rudder deection rad/s

Table 5.4: Lateral channel actuator constraints

We have assumed an independent control of these channels by means of the respec-
tive actuators (see Figure 5.2). This is justi�ed by the model analysis performed in the
preceding Section 5.2.1 which provided us with information regarding the coupling level
between the lateral and longitudinal channels.

5.2.3 Measurement signals

The choice of measurement signals depends on the quality of available signals. Sensor
models are not provided because they are assumed to be perfect, which makes the usual
choice of measurement signals di�cult. Like other control techniques MBPC works best
when state measurements are available. Therefore the approach to RCAM design chal-
lenge assumed a state computation from the output measurements of the nonlinear model
instead of state estimation. Such a computation is possible under the assumption that
the model is perfect. This assumption will be reconsidered at the implementation stage.
In our future research an estimation of states will be employed to provide a more realistic
design.

The inner loop will stabilise and augment ying qualities. The outer loop controller in
both longitudinal and lateral case is designed taking advantage of classic design techniques.
This is a simple controller that ensures tracking of the altitude in the longitudinal channel
and the heading rate in the lateral channel case. This was a reliable method to obtain a
good outer controller in terms of performance and robustness.
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In this chapter our aim is to present extensively the design of the MBPC controller.
The choice of measurement signals for this controller was made in accordance with the
author's ight control design experience in the case of civil aircraft. The longitudinal inner
controller uses pitch rate (q), air speed (Va), vertical rate ( _z) as feedback signals in the
inner loop. Corresponding internal states of the model are pitch rate (q), pitch angle (�),
velocity in the Ox direction of body axes (uB) and velocity in the Oz direction of body
frame (wB). The outer loop provides altitude tracking, and uses altitude as an output
feedback signal.

The lateral inner controller employs side slip (�) and roll angle (�). States used in
feedback are: roll rate (p), yaw rate (r), roll angle (�), and velocity along y axis in body
frame (vB). The outer lateral loop provides tracking for the heading angle rate ( _ ) and
the horizontal ight path using its measured lateral deviation (ylat).

5.2.4 Reference signals

During automatic ight control references for the controller are generated primarily based
on time rather than on geometrical information. Therefore time is used as an independent
variable for parameterising the trajectory. E�ectively, this implies the possibility of a
smooth transition from 3D to 4D scenarios. In the actual trajectory generator the time
exists as an internal state. At each integration step the aircraft position is compared with
the desired one, resulting in an \along the track error", a parameter of importance in 4D
navigation. Once the aircraft moves away from the desired trajectory due to disturbances
or poor controller performance the time error, simulation base time minus the aircraft
time along the track computed will act as an extra reference signal.

The trajectory generator provides following outputs, mostly given in earth frame: xE,
yE, zE - desired position vector, uE , vE , wE - desired velocity vector, VE - modulus of total
velocity, ylat - lateral deviation from the horizontal ight path and _ - heading angle rate.
Other outputs refer to delay time resulting from deviations from the desired trajectory
including engine failure or wind disturbances. All signals used as references are consistent
despite a certain redundancy. In our design we use all these signals in order to ensure the
y by wire facilities as well to provide a possible command to the pilot by conventional
means { commands given to the MBPC controlled aircraft. For the longitudinal channel
the MBPC controller is provided with the following reference signals: pitch rate (q), air
speed (Va), vertical rate ( _z). The lateral controller has following references provided: side
slip (�) and roll angle (�).

Most MBPC schemes assume knowledge of the future set point. In this report we
have employed MBPC as a SAS for which no knowledge of the future set point sequence
is assumed. The reference trajectory is generated assuming that current set-point (at
time k) will be maintained over the whole prediction horizon (ri(k) = : : : ri(N2)). In
our particular case the plant is a transport aircraft therefore such an assumption can be
maintained because of the slow set-point variation from one discrete time step to another.
The set-point is provided either by the pilot or by the outer loop controller. It is important
to note that no terminal constraints are used during the optimisation.



5.3 Designing the MBPC controllers 97

5.3 Designing the MBPC controllers

This section considers the requirements set up in method independent terms in the Garteur
book [MBT97] and provide a procedure to approximate them by means of objectives
compatible with the MBPC design methodology.

In this section, following the procedure presented in Chapter 4, a description of the
necessary actions that were taken for each iteration within the design cycle will be given. In
order to produce the model required withinMBPC algorithm we linearised the nonlinear
aircraft model excluding sensors, actuators and time delays around an operating point
at the middle of the ight envelope. This model was linearised using equilibrium inputs
outputs and states de�ned in Section 5.2.1. Then the problem was split in two separate
channels: longitudinal and lateral. For each channel the inner loop was analysed and a
controller designed. Various responses mentioned in the design challenge [MBT97] were
checked using linear model as an intermediate analysis. The design for the outer loops was
achieved using a linear time invariant representation of theMBPC controller, namely the
unconstrained case. The aircraft linear model was augmented with the LTI controller in
order to produce the model required in the outer controller design. The next step was to
perform a more extended analysis of the inner and outer loops using simulations involving
the full nonlinear aircraft model. This helped us to get a �ne tuning of the MBPC
controller, process that was done in few iterations. The �rst design was achieved for the
longitudinal channel, this gave useful experience for designing the lateral one. Therefore
the time involved in the inner lateral channel MBPC controller design was shortened
by a considerable amount. The �ne tuning of this controller when full nonlinear model
simulations were done took the same amount of time as in the longitudinal case.

5.3.1 Longitudinal channel

Using the strategy presented in the Section 4.1.1 we have to take into consideration re-
quirements regarding: the ight path angle response (vertical rate response), the altitude
response and the cross coupling between altitude and airspeed in order to tune theMBPC
parameters.

The choice of the control horizon was made by increasing it from a value of 1 (which
correspond to stable internal models) to a value of 4 (the model order). This trades o�
reduction in control surface activity against computational complexity.

The tuning of the prediction horizon was made with respect to the settling time in the
airspeed response for a step of 13 m/s in airspeed command. Disturbances can lead to
constraint violations which can in turn lead to instability. We started with a prediction
horizon N2 = 15 and found that this value gave a certain degree of instability in the pres-
ence of vertical wind shear. Trading o� the computational complexity against performance
we have increased N2 and �nally set it to a length N2 = 18.

At the beginning of the design procedure the sampling time for the MBPC controller
was set to 0:1s ( a sampling frequency of 10Hz). This was made because of the dramatic
increase in the simulation time owing to the small time step in the integration method and
due to the fact that a sampling frequency of 10Hz was observed to be at the bottom of
the range used in civil aircraft industry (in this case the aircraft is assumed to be a rigid
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body all the higher modes being treated as uncertainties).

The choice of the weighting matrices was made in order to track in a good manner
the commands provided by the outer loop and to minimise the control e�ort. In ac-
cordance with the internal model dimensions R = diag(

�
1� 105 7� 105 7� 105

�
) and

Q = diag(
�
1 1 1

�
).

The reference to be followed by the output was constructed from the set-point under
the assumption of a priori unknown commands, a realistic expectation for the MBPC
used as a Stability Augmentation System (SAS).

5.3.2 Lateral channel

The lateral channel MBPC controller was tuned mainly by translating RCAM design
challenge requirements such as roll angle response, side-slip angle response, heading rate
response and lateral deviation response into the tuning parameters speci�c for the method.

As in the longitudinal case we have �xed from the beginning a few of the parameters
such as: Ts = 0:1, Nu = 4 and Q = diag(

�
1 1

�
). The tuning involved the other parame-

ters in a trial-and-error process. The prediction horizon was tuned �rst with respect to the
settling time requirements for the side-slip response. The �nal choice was N2 = 18. When
tuning N2, in parallel, the input weighting matrix was adjusted up to the �nal values of
R = diag(

�
20 60

�
). This choice provides the performance speci�cations of the roll and

side-slip response to be consistent with the RCAM design requirements and reduces the
lateral deviation error to zero quickly enough. We found that in order to meet the spec-
i�cation during the engine failure we had to increase the prediction horizon up to values
of N2 = 22. The reference to be followed by the predicted output was constructed in a
similar way as in the longitudinal channel case.

5.4 Linear analysis

In order to perform the �ne tuning of the MBPC controller various responses were cal-
culated and compared to the requirements in the RCAM design challenge manual.

5.4.1 Longitudinal channel

Flight path angle response

We subject the system to a step of 3� in commanded ight path angle. The response is
shown in Figure 5.7. The tracking ensured is good (rise time of 5s, settling time 15s),
the overshoot is small (less than 1 %), and the cross coupling to velocity is negligible (less
than 0:4m=s).

Velocity response

The system response to a step of 13m=s in commanded velocity is shown in Figure 5.5.
Most of the requirements were satis�ed. The rise time in air speed is near the speci�ed
12s and the settling time is at about 45s. The overshoot is 15 %, higher the the speci�ed
5 %. The cross coupling to ight path angle is also a bit higher than the speci�ed 0:5�.
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As the second performance parameter the system response to a step change in airspeed
of 13m=s, caused by a wind shear, was calculated and plotted in Figure 5.6. The ight
path angle was perturbed by approximately 4�, which is higher than the speci�ed value
on cross coupling from air speed to path angle.
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Figure 5.5: Linear system - Velocity response
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Figure 5.6: Linear system - Air speed response
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Figure 5.7: Linear system - Flight path angle response
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5.4.2 Lateral channel

Roll angle response

The response of the system to 0:34rad (20�) step in the roll angle command is shown in
Figure 5.8. The cross coupling from roll to side slip is speci�ed to be less than 1�. The
tradeo� between a short rise time and a low overshoot or limit upon the aileron rate was
solved by employing adequate values for horizons and weighting matrices. The procedure
of choosing the values for horizons and weights is described in Section 5.3.2.
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Figure 5.8: Linear system - Roll angle response

Side slip angle response

The response in side-slip command of 0:034rad (2�) is shown in Figure 5.9. Associated
commands for ailerons and rudder are presented. The system response is not delayed
signi�cantly by introducing the MBPC controller and the rise time is 4s.
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Figure 5.9: Linear system - Side-slip response

A summary of how the RCAM design requirements were met is given in the following
Table 5.5:



5.5 Nonlinear analysis of the resulting MBPC controller 101

Channel Responses Performance requested Performance achieved Decision
Longitudinal ight path an-

gle
tr < 5s, ts < 20s Mp < 5% tr = 3s, ts = 12s, Mp = 0% +,+,+

velocity tr < 12s, ts < 45s, Mp < 5% tr = 12s, ts = 35s, Mp = 15% +,+,{
Lateral roll angle (not

speci�ed)
cross� coupling < 1� cross� coupling = 0:8� +

side-slip angle tr < 5s, ts < 20s, Mp < 5% tr = 3s, ts = 12s, Mp = 0% +,+,+

Table 5.5: MBPC controlling the linear plant { analysis results

5.5 Nonlinear analysis of the resulting MBPC controller

The principal analysis method used in the case of MBPC algorithms is time domain
simulation. In this section all simulations have been performed using the nonlinear model.
The purpose of this analysis is to make clear to what extent the controller satis�es the
design objectives formulated in [MBT97].
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Figure 5.10: The Simulation Framework for the linear aircraft system

In order to perform synthesis and analysis in the MBPC case, a particular test bed
has been developed. The test framework involved is presented in Figure 5.10. This test
bed is based on Development Space described in Chapter 4 providing, in the user interface,
all facilities required for ight control design.

5.5.1 Longitudinal channel

Inner loop { Flight path angle response

Altitude tracking ensured by the longitudinal outer loop relies on performance charac-
teristics of the ight path angle response (vertical rate response). Therefore, in the �rst
graph of Figure 5.11 we show the behaviour of the nonlinear aircraft (longitudinal chan-
nel) when we subject the system to a step demand of 3�. The step occurred 10s after
the simulation was started in order to avoid inuence of simulation transients. The rise
and settling time met the speci�cations (tr < 5s and ts < 20s). A small overshoot can
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be observed as a way to improve the rise time in order to ensure better altitude tracking
performance. The altitude, as shown in the the second graph of Figure 5.11, is inuenced
by this constant rate of descent. Both engines are reduced by the MBPC controller to
the minimum thrust. Still this is not enough to maintain the airspeed steady state error
at zero.
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Figure 5.11: Nonlinear system - Vertical rate response

Inner loop { Airspeed response

The velocity response of the nonlinear aircraft model controlled by MBPC is shown in
Figure 5.12. The controlled system's speed was subject to a step of 13m=s (occurring at
5s after the start of the simulation). The rise time of 10 s and the settling time of 25s
are within the RCAM manual speci�cations. The overshoot is less than 5 %. The control
movement, shown in the second graph of Figure 5.12 has a satisfactory behaviour across
the whole manoeuvre. From the �rst graph of Figure 5.12 it can be seen that no signi�cant
cross coupling to vertical rate was shown.
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Figure 5.12: Nonlinear system - Speed response to a step demand of 13m=s

The system response of the nonlinear system to a step change in airspeed of 13m=s,
caused by wind shear, is shown in Figure 5.13 (the step occurred at 5s). The resulting
response shows that the e�ect of such a constant disturbance, the wind shear, can be re-
duced in 15s with a small coupling to vertical rate. The settling time, which is within the
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speci�cation, is 35s. During the wind shear rejection the control movement has a satisfac-
tory behaviour. In the second graph of Figure 5.13 the law provided by the constrained
MBPC is presented in comparison with the actuator output.
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Figure 5.13: Nonlinear system - Step in airspeed

Outer loop { Altitude response

In this section, we present the results obtained in the case of altitude tracking employing
theMBPC controller as an inner loop controller and a conventional controller as an outer
controller for a step of 30m in altitude demand. In this case the closed inner loop will
be considered as a block with ight path angle and velocity commands as inputs. The
outer loop used for tracking purposes provides us with the responses shown in Figure 5.14.
Altitude response is shown in the �rst graph while the command movement in the second.
The tracking ensured by the outer loop in conjunction with the MBPC controlled inner
loop is within the speci�cations (the rise time smaller than 12s and the settling time
smaller than 45s). The overshoot is bigger than the prescribed one of 5 % at altitudes
above 305m.
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Figure 5.14: Nonlinear system - Altitude step response
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Outer loop { Cross coupling between airspeed and altitude

When the velocity step response was simulated the altitude behaviour, shown in the second
graph of Figure 5.15 met the design challenge speci�cations [MBT97]. These stated that
the peak value of the transient of the absolute error between the aircraft altitude and its
reference should be smaller than 10m (see second graph of the Figure 5.15). Conversely
for an altitude step of 30m the peak value of the transient of the absolute error between
the aircraft and the commanded airspeed is smaller than 1kt (see Figure 5.15, �rst graph).
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Figure 5.15: Nonlinear system - Cross coupling between airspeed and altitude

5.5.2 Lateral channel

Inner loop { Roll angle response
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Figure 5.16: Nonlinear system - Step in roll

The roll angle response was analysed by providing the nonlinear system with a step
of 0:34rad (20�)(see Figure 5.16). The rise time of 7s has proved to be a bit slow when
performing a coordinated turn in the horizontal plane. Even though no overshoot can be
seen and the settling time is 10s the response time of the inner loop has to be improved.
During the step in roll angle the side slip angle � is small, having peak values below
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0:05rad (1�). In the case of engine failure all speci�cations were met, as can be seen in
Figure 5.23. The speci�ed turbulence conditions still keep the roll angle within bounds
(less than 5�). The maximum roll angle is limited using the constrainedMBPC algorithm
to 30� in order to comply with safety criteria.

Inner loop { Side slip angle response
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Figure 5.17: Nonlinear system - Step in side-slip

The nonlinear aircraft side slip angle control implemented by MBPC is shown in
Figure 5.17 when a step of 0:034rad (2�) was applied. The rise time of 4s and the settling
time of 25s comply with the specs. The drawback is in terms of an overshoot that is bigger
than 5%. Fortunately the side slip angle control involves small angles, so the overshoot
does not cause any problems. Unfortunately there is no overshoot speci�ed in the RCAM
manual [MBT97]. The cross coupling to roll angle is less than 0:5�, well below the speci�ed
value of 1�.

Outer loop { Lateral deviation
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Figure 5.18: Nonlinear system { Response to a lateral deviation of 20m
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We subject the aircraft to a disturbance step of 20m in lateral deviation after 5s.
The response (see Figure 5.18, �rst graph) shows that the error from the desired track is
reduced to 10 % in 30s. The overshoot in the response to the step in lateral command
signal at altitudes above 305m is bigger than the speci�cation, which causes considerable
errors when following a reference trajectory that has coordinated turns. There is no steady
state error due to constant wind disturbances (Figure 5.24) and the lateral controller copes
well with the speci�ed turbulence conditions.

Outer loop { Heading rate
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Figure 5.19: Nonlinear system { Response to a step in heading rate of 0:1rad=s

As part of the RCAM design challenge requirements we minimise the heading rate in
case of engine failure. The results are shown in the second graph of Figure 5.19. The
heading rate error during lateral Dryden gust is minimised as well. The commanded
heading rate is tracked well by the aircraft heading rate, as shown in Figure 5.19.

5.5.3 Other criteria
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Figure 5.20: Ride quality criteria: lateral and vertical accelerations
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As regards robustness analysis, the most signi�cant model uncertainties are: centre of
gravity variations, mass variations and time delays. As shown in Section 5.6.1, controller
behaviour is generally satisfactory when the plant involves uncertainties.
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Figure 5.21: Actuators and engines control activity

Ride quality criteria such as maximum vertical acceleration, maximum lateral accel-
eration and damping were computed after the evaluation mission was completed, and are
presented in table 6.5. Corresponding values across the evaluation procedure (the landing
manoeuvre in the absence of gust) are shown in Figure 5.20.

All safety criteria speci�ed in the manual [MBT97] were met either because of con-
straints imposed by MBPC or because of saturation blocks included in the controller
outer loops.

The use of MBPC as an inner loop controller keeps the control activity small both
for actuators and engines, as seen in Figure 5.21 where all units are common (i.e.rad).

5.6 Results of the automated evaluation procedure

This section presents the methodology-independent results of the controller designed in
the previous sections. It is mostly based on the evaluation mission and scenario de�ned
in [MBT97]: both `overall tracking performance' and `inner-loop behaviour' of the con-
trolled system will be evaluated by means of bounds on key variables. The evaluation
procedure is fully automated. No changes were made to any of the automatically gener-
ated �gures or the table with numerical results.

First a general view of the results will be given in Section 5.6.1. Next, a more detailed
discussion of the behaviour of the controlled aircraft will be based on the four separate
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ight segments de�ned in [MBT97]. Finally, a summary of the numerical results of the
evaluation will be given in Section 5.6.6.

5.6.1 A general view of the results

Before we go into detail on the speci�c properties of the controller with respect to air-
craft behaviour, we will consider a view of the entire trajectory in the 3D plot given in
Figure 5.22.
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Figure 5.22: The trajectory response of the controlled RCAM model

In this plot, results are combined with respect to reference trajectory following, dis-
turbance rejection and robustness. However, the scale is such that deviations from the
trajectory should be hardly noticeable. A major robustness demand is taken into account
by plotting the four trajectories resulting with nominal, most forward and most aft posi-
tions for the centre of gravity. The four trajectories can be seen and evaluated better in
the following �gures.

5.6.2 Segment I: the e�ect of engine failure

As the RCAM aircraft model is twin-engined, a single engine failure (between points a
and b) will mainly result in lateral deviation. Hence Figure 5.23 provides a top view of
the �rst trajectory segment. During the engine failure the dynamic response is acceptable
(the roll angle does not exceed 5deg) but the steady state deviation does not return to
zero su�ciently quickly (less than 25s after the engine failure) as a result of our omitting
a disturbance model. The overshoot after the engine reactivation is within bounds. Fur-
thermore, the airspeed does not drop below 1:2 � Vstall, which is ensured by the MBPC
constrained control.
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Figure 5.23: Segment I: the e�ect of engine failure

5.6.3 Segment II: the 3deg=s turn

At the moment the turn starts, the perfect following of the required trajectory and the
desire to perform a coordinated turn would imply a sudden change in the aircraft's bank
angle, which is only possible with an in�nitely high roll rate. Obviously this is impossible,
so that deviations from the desired trajectory at the start (and the �nish) of the turn
are unavoidable. To demonstrate this, Figure 5.24 { �rst plot gives a top view of the
trajectory for all three centre of gravity locations plus bounds within which an acceptable
performance should lie. Figure 5.24 { second plot provides a closer look at the actual
lateral deviations: the bounds are equivalent with those in Figure 5.24 { �rst plot.
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Figure 5.24: Segment II: the 3deg=s turn

5.6.4 Segment III: the capture of the �6� and �3� glide-slope

We start with a glide-slope of �6�; again it is unavoidable that the aircraft leaves the
desired trajectory. It should return to the trajectory without overshoot and well within
a period of 30s. After that we go to a glide-slope of �3� such that we get an inverse
behaviour with respect to the desired trajectory, that should be about half the size of the
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�rst response (if the system has a more or less linear behaviour). In the �rst plot of the
Figure 5.25 the longitudinal response of the aircraft is plotted for three centre of gravity
locations and with bounds that specify acceptable behaviour. The vertical deviations from
the desired glide-slope are plotted in the second plot of the Figure 5.25.
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Figure 5.25: Segment III: the capture of the �6� and �3� glide-slope

5.6.5 Segment IV: the �nal approach with wind-shear

While on �nal approach with a glide-slope of �3� the e�ect of a wind-shear model is
considered. Figure 5.26 { �rst plot shows the longitudinal response of the aircraft for
three centre of gravity locations and with bounds that specify acceptable behaviour. The
vertical deviations from the desired glide-slope are plotted in Figure 5.26 { second plot.
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Figure 5.26: Segment IV: the �nal approach with wind-shear

5.6.6 Numerical results

Table 6.5 gives numerical results based on the discussed simulation results. For the mo-
tivation and calculation principle of the various results see [MBT97]. Each segment of
the evaluation procedure it is considered via the design criteria: performance, robustness,
comfort, safety and power. Because the evaluation criteria are independent of the type of
controller used the table contains calculable indicators that enable us to obtain an objec-
tive comparison between completely di�erent controllers. For each of the above items and
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for each of the four trajectory segments a single number was calculated.
This number is an important indicator for several aspects of controller performance.

In most cases a value smaller than one is acceptable. When saying most cases we would
like to point out that in segment II a high roll rate, that is required to meet the given
trajectory requirements, will decrease the comfort during this segment, which can be seen
as a value greater than one of the corresponding indicator. Also, in segment IV, in order
to comply with the vertical wind-shear disturbances, the passengers comfort is decreased
(indicator > 1). Apart from these values greater than one of the comfort indicator, all
other indicators show a good achievement of the design challenge requirements.

Segment I Segment II Segment III Segment IV Total

Performance 0.5153 0.2792 0.1943 0.1138 0.2756

Robustness 0.0797 0.0675 0.0882 0.0601 0.0739

Comfort 0.6027 1.7584 0.6723 1.2348 1.0671

Safety 0.0081 0.0228 0.0100 0.0250 0.0165

Power 0.0055 0.0077 0.0151 0.0295 0.0145

Table 5.6: Numerical results of the evaluation procedure

5.7 Conclusions and lessons learned

The design of the automatic pilot, done for the �nal approach of an experimental �ctitious
aircraft (RCAM) is robust with respect to variation of several model parameters, time
delays, nonlinearities and engine failures. As regards robustness analysis, in Section 5.6.1
we have shown that the controller behaviour is generally satisfactory with signi�cant model
uncertainties. This exercise also had the goal of evaluating and presenting the method's
limitations. Ride quality criteria such as maximum vertical acceleration, maximum lateral
acceleration and damping were computed after the evaluation mission was completed,
and are presented in table 6.5. Apart from two values greater than one of the comfort
indicator, all other indicators from table 6.5 show good achievement of the design challenge
requirements.

We want to stress again the issue of robustness addressed during the design. The main
achievement is that we use a MBPC controller based on a single linear internal model
{ a state space realisation that does not contain actuators models. The behaviour of the
controlled aircraft was proved to be good across the whole ight envelope. Moreover,
the implementation of the MBPC controller as a Stability Augmentation System (SAS)
proved to be satisfactory in terms of performance achieved during various manoeuvres.
Disturbance rejection of wind-shear and gust is good as well as tracking during engine
failure or constant wind shear. Despite the non-conventional structure of MBPC, the
resulting controller has standard interfaces to the evaluation software, and at a high level
is \plug-compatible" with a conventional controller.

Another problem is that a constrained optimisation problem must be solved on-line,
and therefore the computational complexity of implementing the controller is high. The
main implementation di�culty is in reducing the computation time su�ciently to allow
real-time operation. The latter problem is probably not insuperable, because progress can



5.7 Conclusions and lessons learned 112

be expected both in the e�ciency of solution algorithms for MBPC [CZ91], and in the
power of the hardware on which they run.

It was possible to obtain a satisfactory controller despite a very simple model used
as an internal model for the MBPC. But, some aspects of its performance, particularly
robustness, were achieved in a trial-and-error manner, by post-design testing. In order to
move towards more systematic design, from the robustness point of view, it is necessary to
use a multi-model approach to ensure robustness against large perturbations (eg. engine
failures).

Constrained Model Based Predictive Control MBPC may not o�er any advantages
over more conventional control algorithms for routine ight control applications, apart
from the constraint handling. As mentioned at the beginning of this chapter, however,
we believe that it has good potential for higher-level control functions, such as on-board
ight management, or recon�guration of controllers in the event of damage to the aircraft
structure or equipment.

In the next chapter we extend our research to the combined use of H1 loop-shaping
and MBPC as a method of designing automatic pilots for civil aircraft. An H1 loop-
shaping controller in the inner loop will provide the stability augmentation and guidance
functions; an MBPC controller in the outer loop controller will act as a ight manager
and overall supervisor [PHGM97].



Chapter 6

Flight Management Using

Predictive Control

6.1 An introduction on ight management systems

The state of the art in ight management systems is represented by a set of computers
that allow the pilot to program an entire ight from takeo� to landing and allows the
aircraft to navigate directly between two points.

Among several approaches to ight management systems the one based on the to-
tal energy concept employed for a simpli�cation of the aircraft to a point mass can be
distinguished. In recent years this concept has been widely applied in ight performance
optimisation and integrated control problems [WG94, Lam83b, Lam83a]. As a result verti-
cal ight pro�les for a speci�c range are optimised with a direct operating cost as an index
function [WG94] or coordinated elevator and thrust commands are developed providing
decoupled ight path and speed control for all the conventional features of the autopilot
and autothrottle.

The development of modern control techniques allows aircraft control systems to be
increasingly integrated. The ight management (FM) system is just a typical example for
which integrating ight performance optimisation, thrust control together with guidance
computation as well as navigation management will result in having the aircraft ying
at its optimum performance with minimum cost ful�lling ight missions in an automatic
manner.

As a result of the research, presented in the previous chapter, we have considered a
ight management system as an alternative application for the MBPC technique going
beyond the stability augmentation system. We consider that at a high level the structure
of the MBPC controller, as well as the idea, are simple, but the transparency of the
controller is reduced by the use of an on-line optimiser. Although the elements of the
controller, namely the predictor and the optimiser, correlate clearly with the functionality
of the control strategy the constrained optimisation makes a precise task allocation harder.

The next table summarises all the functions of the three system involved in our con-
tribution: SAS, GS and FM.
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Figure 6.1: The autopilot architecture

Constrained MBPC can remedy some of the drawbacks associated with �xed gain
controllers:

� Disturbances of large amplitude on the plant output might saturate the actuators.
This could lead to poor output decoupling and potential loss of stabilisability in the
case of an unstable open loop plant.

� Complying with ight envelope constraints is not straightforward and requires a
priori decisions.

� Pre-�lters are usually chosen to give the fastest possible response without saturating
the actuators during a typical pilot demand. This implies that small demands are
achieved in the same time as large demands.

Here a novel architecture is presented and tested in the same framework as that of
the RCAM model. This structure provides a robust controller, from the point of view
of performance and stability, maintaining relatively low complexity and overcoming the
negative aspects in the role considered so far. The next sections summarise our experiences
and give some discussion of the potential of MBPC for ight management.

6.2 A combined MBPC/H1 autopilot for
ight management guidance and stabilisation

A ight management system must optimise long term objectives such as passenger comfort
and fuel consumption over a priori known \way-points" provided by air tra�c control.
Moreover, current requirements in ight management are increasingly concerned with 4D
navigation { the ight path is time stamped and corrected with the along-track error as
de�ned in Section 6.5. The use of MBPC as a method to design a ight management
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system seems desirable, as all the above goals can be expressed by the standard MBPC
problem formulation.

MBPC AIRCRAFT

INNER CLOSED LOOP

ATC Information

Terrain Map H_inf

Figure 6.2: The autopilot architecture

Stability augmentation and guidance systems must be designed by a method that
provides: disturbance rejection at both the input and output of the plant, noise rejection,
robust stability, exibility in specifying the bandwidth of the controller, tracking and a
rich variety of analysis tools that will aid certi�cation. For these reasons H1 loop-shaping
was used to design the stability augmentation and guidance system. The structure of the
H1 loop-shaping controller is shown in Figure 6.3.
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Figure 6.3: The inner H1 controller

The reader should consult the [PGS+97] for the design procedure employed. We do not
claim that an H1 loop-shaping controller is the only suitable choice, but in the aerospace
�eld, where it is appropriate to address the worst case signals, the goals concerning guid-
ance and stability augmentation are well expressed by the standard H1 loop shaping
formulation.

By monitoring the actuators and plant outputs and imposing constraints on their
behaviour [Mor94, KRC92, RM93] MBPC can help deal with the drawbacks associated
with the �xed gain controllers. For example, the actuators can be used to their limits.
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MBPC will adjust the reference to the inner closed loop (H1 controller and RCAM
aircraft) so as to avoid violation of the ight envelope and ensure good time response
characteristics. All the above motivate the following structure shown in Figure 6.4, few
explanations being necessary for a better understanding.
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Figure 6.4: The combined MBPC/H1 controller

The observer implementation of the H1 loop shaping controller, see Figure 6.3, has
the well recognised advantages described in [PGS+97]. Among them we can mention that
this implementation is equivalent to the stabilising feedback loop con�guration shown in
Figure 2.8. For this structure, as described in [Vin93], the disturbance rejection design
problem is \decoupled" from the problem of achieving tracking of the reference signal with
a nominal plant model.

The key result that we are going to use in our presentation is: y(z) = N(z)c(z), see
equation (2.41). Having a robust controller accomplishing the functions of the SAS and
GS we can consider that we operate with the closed inner loop in the region where model
uncertainty was accounted and as a result the robust performance limits o�ered by this
controller are su�ciently good.

Hence the internal model of the MBPC controller is going to be N(z). The property
mentioned in the foregoing paragraph represents a special advantage which enable us to
produce the internal model without applying model reduction techniques as in [PHGM97].
Moreover, the transfer matrix N(z) is stable and as a result well developed and understood
MBPC design procedures can be applied. An added feature is that for a certain class
of aircrafts once the inner controller was designed the transfer matrices from reference
to outputs will be similar for all the set members, complying with the MIL regulations.
Therefore we can employ the same MBPC controller, designed initial for one aircraft, to
the whole class.

Between the states of N(z) we �nd explicitly all the actuator states. In this case
the actuator constraints are enforced using the method described in Section 4.3. The
disadvantage of enforcing such constraints as state and not input constraints is that the
enforcement is subject to the accuracy of the system modelling. This disadvantage is
minimised by the existence of good actuator models.

The ight management system must not destabilise or cancel the e�ect of the inner-
loop and must be robust to modelling uncertainty. When employing this novel architecture
the MBPC controller, see Figure 6.5, has to be robust to uncertainty within the inner
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closed loop bandwidth. Hence the MBPC controller can be less robust than the H1

controller as the uncertainty within the bandwidth is much smaller because it has been
reduced by the H1 controller. It is our intention that the MBPC controller, shown in
Figure 6.5, provides an optimised reference to the inner closed loop without interfering
with the stabilisation and guidance. Note that the MBPC decision variable {  (k + l),
denoted by command in Figure 6.5 { depends on the inner loop design due to the choice
of the MBPC internal model. The outputs of theMBPC controller (inputs to the inner-
loop) are the blended altitude and vertical speed (kpz + ki _z) and the airspeed (Va). The
references are assumed to be provided from a data base provided by the air tra�c control
(ATC), possibly via Data Link. The estimated or measured states used within theMBPC
belong to the aircraft, actuators, H1 controller and the output mixer.
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Figure 6.5: The outer MBPC controller

The combined controller structure, shown in Figure 6.4, operates as a multi-rate system
having a high sampling rate (Ts = 0:01s) for the H1 controller and a low one, Ts = 1s,
for the MBPC controller.

A single inner-loop controller, shown in Figure 6.3, was designed for the longitudinal
channel covering both stability augmentation and guidance functions. Even though it is
conventional to design an inner loop to provide stability and outer loop for tracking we
consider that such an architecture has a number of advantages.

One of them is that the designer obtains insight in how robustness is traded o� for
good performance in altitude following. In the design actuator states and loop delays to
simulate computational delays were also used. For further details of the H1 controller
consult the design example in [PGS+97].

The single controller for both SAS and GS reduces the number of states of the H1

controller. This becomes very important when employing an MBPC outer loop as the
MBPC uses an internal model of the closed loop for prediction. The higher the complexity
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of the closed loop the longer the optimisation problem will take to solve. Note that the
H1 loop-shaping controller K1 is placed in the forward loop with no pre-�lters.

The ight management role of theMBPC controller leads us to a way of generating the
trajectory for theMBPC o�-line based on the generator provided within the conventional
RCAM environment. This generator is not a part of our management system, because we
have assumed that the trajectory information is coming from a data base given via Data
Link by the air tra�c control (ATC). Then theMBPC controller will use this information
on-line in order to produce the optimised references for the inner loop.
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Figure 6.6: The ight manager MBPC trajectory generator

The scheme shown in �gure 6.6 was employed to produce the 4D reference trajectory,
using the dynamical model of the aircraft sampled using the same sampling rate of the
MBPC controller. In practice this will be replaced by a system which interpolates the
ATC way-points using the same aircraft dynamic model.

6.3 The ight management controller design procedure

6.3.1 The design cycle

1. Determine the requirements for the ight management, guidance and stabilisation
systems behaviour

2. Design an H1 loop-shaping controller that will ensure disturbance rejection, noise
rejection and robust stability as described in [PGS+97] by translating the pertinent
requirements into dynamic pre and post compensators.

3. Choose the implementation and location of the H1 loop-shaping controller in the
inner-loop. Produce a low order state-space model of the inner-loop that will serve
as the MBPC internal model.

4. De�ne the constraints related to inputs, rates of change of the inputs, outputs (ight
envelope limits) and states (actuator limits). Construct matrices that represent these
over the control and prediction horizons. Choose appropriate values for the MBPC
tuning parameters: control and prediction horizons and the cost function weighting
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matrices in order to meet safety, comfort and overall ight management system
performance requirements.

5. Tune the closed loop cost function parameters via closed loop linear and nonlinear
simulations. This involves iteration of step 4.

6. Perform a stability and robustness analysis using the analytic expressions in the
unconstrained case or time simulations in the constrained one.

6.3.2 From design criteria to MBPC method dependent objectives

The design criteria for the outerMBPC controller involve safety, comfort, control activity
and performance of the overall system. These have to be translated into the choice of
severalMBPC tuning parameters | control and prediction horizons, weighting matrices,
sampling time and sometimes even constraint boundaries. The choice of these parameters
is based on several theoretical results, as well as some rules of thumb, integrated together
in a trial-and-error tuning procedure.

The safety criteria, reecting the envelope safeguards, will provide the constraint lim-
its upon the variables involved in the on-line optimisation. Table 6.1 gives the output
constraints used and their physical interpretation.

Flight envelope constraints Minimum value Maximum value

Airspeed (m/s) 51:8 � 1:05 51:8� 2:5

Vertical speed (m/s) �30 +30

Altitude (m) 0 15000

Table 6.1: Flight envelope constraints as MBPC constraints

We are able to impose constraints { as stated in Table 6.2 { on actuator rates and
positions which are available as states of the aircraft model augmented with models of the
actuators and the H1 controller.

Constrained Variable Name Limits Unit

Tail-plane Deection �0:436 � �T � +0:174 rad

Tail Plane Deection Rate �0:261 � _�T � +0:261 rad/s

Engines Throttle Limits +0:009 � �Th � +0:174 rad

Engine Throttle Slew Rates �0:028 � _�Th � +0:028 rad/s

Table 6.2: Actuator constraints as MBPC constraints

The way to translate requirements upon comfort within MBPC is by employing cost
function weights that will give a suitable trade-o� between tight following of a given
trajectory and large loads on the aircraft structure.
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The robustness of the combined MBPC/H1 autopilot is obtained by appropriate
design of the inner H1 loop shaping controller taking advantage of its main feature.

Now we clarify how the performance criteria of the MBPC ight manager are trans-
lated into the available tuning parameters. In the following , where we use the same
notation for the tuning parameters as in Chapter 4, we give all the technicalities of the
design cycle step involving tuning of the MBPC parameters.

The control Nu and prediction N2 horizons

The inuence of the control and prediction horizons is primarily on the performance of the
controlled system, however they also have some inuence upon robustness. As discussed,
a smaller control horizon makes the controlled system more robust to uncertainties such
as parameter variations. The choice of these horizons takes into account knowledge of the
dynamics of the inner-loop. In case of the control horizon we perform a step response anal-
ysis of the system assuming a prede�ned sampling period. Our �nal choice for the control
horizon was Nu=4 obtained after increasing it from the minimum value of 1 characteristic
for stable systems.

The prediction horizon is derived from the settling time having in general a length
greater than the system order. A small horizon will reduce the computational complexity,
but in the case of non-minimum phase systems to be controlled using MBPC it must
contain at least the non-minimum phase behaviour. The robust performance and stability
impose extra boundaries on the horizons.

For our cost function trading o� computational complexity against robust stability we
have increased the prediction horizon from 7 (theMBPC internal model order) to N2=20.
The small control and prediction horizons ensured that the optimisation can be solved in
real time (0:9s on a Sun SPARCstation 20).

The sampling period Ts

The sampling period plays an important role in MBPC controllers. A possible choice for
this parameter is ten times smaller than the fastest settling time in the closed loop system
(the value of Ts is obtained using linear time response analysis assuming constraints are
inactive).

In order not to interface with the inner controller, the MBPC control loop should
have a lower bandwidth than the inner loop. This allows a big value for the sampling time
Ts=1s, but does not require it. This makes possible a real time implementation of the
controller. The simulation results with this value proved satisfactory.

The weighting matrices R and Q

The weighting matrices upon the outputs and control increments are important design
parameters. Both give a measure of the tracking properties required from the closed loop
system.

Since the references for the inner-loop have already been scaled, as part of the inner
loop design, such that a unit change of each reference is equally signi�cant, it is possible to
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set R=diag(
�
1 1

�
), and avoid tuning this weight altogether. This leads to considerable

simpli�cation of the tuning procedure.

The tuning is an iterative process typically starting with Q=diag(
�
1 1

�
). The �rst

step in the Q controller parameter design was to tune it in the absence of constraints. At
�rst we tune using the time simulations involving the linear model of the plant. This step
is followed by �ne tuning, done by time simulations employing the full nonlinear model of
the plant.

In order to improve the passenger comfort, which means that the control is less tight,
we have to reduceQ. TheH1 loop-shaping controller reduces the amount of uncertainty in
the inner-loop, therefore we do not require so much robustness from theMBPC controller.
Hence this allows small values for Q. The �nal value of the output weighting matrix was
Q=diag(

�
0:007 0:02

�
).

Once we have decided the initial tuning parameters we can proceed to time simulations.
For the �rst stages of the tuning procedure it is recommended to have a short simulation
time (six up to ten times the maximum time constant of the plant) and at the beginning
to start in the unconstrained case and then to move towards the constraint one.

6.4 Analysis of the interaction between the inner and outer
controllers

One of the main questions raised when a controller contains an inner and an outer loop
is how they interact when ensuring disturbance rejection and if they destabilise or cancel
their e�ects.
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Loop Shaping
Controller

Aircraft
and

w1

w2

z1

z2

Figure 6.7: The generalised plant including theMBPC introduced using sample and hold
operators

The method chosen to analyse this type of behaviour is based on the computation of
the norm kTw!zk1, see Figure 6.7 which is the so called four block transfer matrix from
input and output disturbances to the output of the plant and the controller, respectively.
The value of this norm provides a level of robust stability to coprime factor uncertainty
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which is a general type of uncertainty possible to use in aerospace applications due to
similarities with conventional gain and phase margins.

As described in Section 6.3.2 there are two parameters that have a signi�cant inuence
on the interaction of the inner and outer controllers. These are the weighting matrix R
of the reference to the inner loop (the MBPC output) and the sampling time Ts of the
outer MBPC controller. Moreover knowing the meaning of the MBPC controller output
(the reference to the inner loop) it is clear that imposing rate constraints will provide as
well a way to decide the separation of the FM and GS+SAS controllers.
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Figure 6.8: Responses when the inner and outer loop controllers are running at the same
sampling time

Care was taken when computing this norm by regarding the system as hybrid and
employing a sample data procedure developed and coded by the authors of [CG97]. The
generalised plant necessary in this procedure was obtained by augmenting the inherent
continuous time aircraft with the H1 loop-shaping controller which was designed in con-
tinuous time. All these operations were performed with the help of speci�c functions from
the MATLAB Control Toolbox used for sub-systems interconnection. Then the discrete
time MBPC controller was wrapped around the plant and the norm kTw!zk1 computed
for various combinations of R and Ts. Results of this computation are shown in the
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Table 6.3.

R n Ts 0.5s 1s 1.5s

0.50 4.85 4.49 4.43

1 4.18 4.10 4.05

2 3.85 3.80 3.77

Table 6.3: Analysis results showing the interaction between the inner and outer controllers

The main conclusion is that by increasing the sampling time and enforcing small vari-
ations of the reference signal to the inner loop via a large R weight we can obtain a
complete decoupling between the inner and outer controller, with a small deterioration
of the kTw!zk1 norm at the expense of an outer loop which will be less sensitive to the
set-point changes.

In fact the combined autopilot has to be tuned in such a way to ensure the design
criteria from the GARTEUR design challenge which made us to use the tuning R =
diag(

�
1 1

�
), Q = diag(

�
0:007 0:02

�
) and Ts = 1s for which Tw!z = 4:10 comparative

with the case without the MBPC controller when Tw!z = 3:39. This ensured a good
ratio between the robust stability and performance for the closed loop plant.

Operating both inner and outer controllers at the same sampling rate while trying to
reject a wind type of disturbance started in simulations at time t = 10s we can observe
how by having their functions overlapped the outer controller is driven into instability. As
a result the reference to the inner loop exceeds by far the nominal values having as a result
an unstable controller. This shows once more that having an inner stabilising loop and an
outer MBPC controller running at the same sampling rate might lead to instability.

6.5 Analysis of the longitudinal channel autopilot

At this stage a trial and error process complemented by the designer's knowledge have
been performed in order to achieve the required performance for the controlled plant. The
performance was tested with the full nonlinear model by providing steps in the reference
signal of the commanded altitude and velocity.

The environment shown in Figure 6.9 provides functions and has features that give
the user possibility to design and simulate the RCAM aircraft controllers. The main
requirement is that the state measurements from the plant model are available if estimation
of them is not used. The simulation framework, based on the Development Space presented
in Chapter 4, was constructed using the MATLAB{SIMULINK in order to enable us to
perform analysis and simulations with various MBPC con�gurations.
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Figure 6.9: The simulation framework for the non-linear aircraft

In the altitude case the controlled aircraft was subjected to a step of 30m for various
gravity centre positions, mass variations and time delays (as described in [MBT97]. The
altitude response for various combinations of these, together with the cross couplings in
air speed and corresponding actuators (the engine throttle and tail-plane) movements are
shown in Figure 6.10. The step tracking is within the speci�cations. The biggest variation
from the nominal case being 4m. The cross coupling between altitude and airspeed is
within bounds (eg. smaller than 1kt). The control activity is limited within the constraints
imposed for the MBPC design.

Conversely, checking the airspeed response subject to a step of 13m=s we can conclude
that the response is satisfactory in the face of the same uncertainties as in the previous
case, see Figure 6.12. The trajectory following of the nonlinear aircraft was studied using
time simulations for various con�gurations of the plant.

Channel Responses Performance achieved Decision

Longitudinal altitude tr = 30s, ts = 50s, Mp = 0% +,{,+
velocity tr = 4s, ts = 30s, Mp = 5% +,+,+

Table 6.4: Analysis results achieved with the nonlinear longitudinal plant

As shown in Figures 6.10, 6.12 and Table 6.4 results were satisfactory. The use of the a
priori information on the reference trajectory can be observed when the receding horizon
mechanism brings it into the prediction horizon of the MBPC controller.

In Figure 6.11 we depict time responses of the RCAM longitudinal channel full non-
linear model. MBPC was implemented with constraints placed upon the actuator deec-
tions and rates and on the outputs as ight envelope restrictions.
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Figure 6.10: Results of the longitudinal analysis in the case of MBPC as a Flight Man-
agement System (altitude 30m step response)
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Figure 6.12: Results of the longitudinal analysis in the case of MBPC as a Flight Man-
agement System (airspeed 13m=s step response)

We have subjected the controlled aircraft to di�erent scenarios, relevant for the lon-
gitudinal case (Figure 6.11). At 20s the RCAM goes into a descent at a rate of 10m=s.
At 10s there is a wind-shear of 10m=s for a 10s duration. The prediction horizon of the
MBPC is N2 = 10s. The H1 controller by itself tries to recover from the disturbance as
fast as possible and return to the original altitude of 1000m. The combined MBPC/H1

structure, though, takes into account that the aircraft is going to start descending at 20s
and does not try to reach the original set-point hence improving passenger comfort. In
e�ect the MBPC controller is modifying the reference to the inner closed loop. At the
bottom of the descent there is no overshoot for similar reasons.

The transients in the �rst 5s (Figure 6.11) are due to the non-linear model not being
perfectly trimmed. The combined controller minimises the overshoot and follows the
reference well within the design specs from [HM97c]. At 75s there is a head wind of 3m=s
that lasts for 17s. As the prediction horizon is 10s it can be deduced that the disturbance
rejection capability of both controllers is the same in these circumstances.

In the case of tracking of a simulated landing path, in Figure 6.13 and Figure 6.15
we show the responses of the combined controller for two tuning choices of the MBPC
controller in terms of the R matrix and the constraint enforcement. In both cases we
consider a priori knowledge about the RCAM model landing trajectory.
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Figure 6.13: The tracking of a landing path using anMBPC controller as a ight manager
with mild tuning and no constraints upon the rate of change of the reference to the inner
loop

The main purpose of showing these simulations is to demonstrate in the absence of wind
disturbances and when the system is subjected to steps and ramps in the reference, which
reect the shape of the landing path, the behaviour of the closed loop. Here the ramp
reference to be tracked is the blended variable kp _z+ kiz obtained using the vertical speed
and altitude. Such a choice was required by the architecture of the combined guidance and
stability ight controller. This feature was ensured using the approach from Section 4.3
which was coded within the Development Space software, see the Appendix.

In these simulations the prediction horizon was set to a value of N2 = 20 steps ahead.
Note that the inner H1 controller was not designed to account for ramp type of follow-
ing and therefore this task was transfered to the outer controller. The MBPC control
algorithm used was the same as the one developed in the Section 4.3 providing robust
tracking.

In Figure 6.14, for the same tuning of the controller as in the Figure 6.13, we show the
responses when we have subjected the nonlinear aircraft to a wind disturbance of +10m=s
between times t = 30s and t = 40s. The dash-dotted line represents the reference provided
by the MBPC controller to the inner closed loop. It can be observed a good separation
between the tasks of the two controllers (the outer is used primarily for tracking and the
inner for disturbance rejection).

The improvement in comfort, done at the expense of tracking, led us to consider
the tuning of the second controller as appropriate from the perspective of overall design
criteria. This controller provided small errors and minimised the control e�ort. The
responses achieved are shown in Figure 6.15.
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Figure 6.14: The tracking of a landing path in the presence of disturbance using anMBPC
controller as a ight manager having mild tuning (R = 5500) and no constraints on the
reference to the inner loop
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Figure 6.15: The tracking of a landing path using anMBPC controller as a ight manager
with tide tuning (R = 7500) and constraints upon the rate of change of the reference to
the inner loop
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Figure 6.16: The evaluation of the disturbance rejection properties of the combined au-
topilot with anMBPC having mild tuning (R = 5500) and no constraints on the reference
to the inner loop but constraints on actuators
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Figure 6.17: The evaluation of the disturbance rejection properties of the combined au-
topilot with an MBPC having strong tuning (R = 7500) and constraints on the reference
rate to the inner loop and actuators
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Figure 6.18: The evaluation of large disturbance rejection properties of the combined au-
topilot with an MBPC having strong tuning (R = 7500) and constraints on the reference
rate to the inner loop and actuators

The previous three Figures 6.16, 6.17 and 6.18 show in simulation the disturbance
rejection properties of the combined controller (FM+(GS+SAS)). Di�erent choices for
the tuning of the MBPC controller with and without constraints on rate of change of the
reference to the inner loop were tested.

In Figures 6.16 and 6.17 the disturbance starting at time t = 10s and ending at time
t = 20s had a magnitude of 10m=s. The main purpose of the simulation was to test the
passenger comfort in these two cases and check how by monitoring the actuators we can
avoid their saturation despite of the large magnitude of the disturbance.

In Figure 6.18 the severity of the disturbance was increased up to 20m=s which drove
the controller to operate with the actuators at their limits. In spite of this large disturbance
the error in ight level tracking was acceptable from the design criteria point of view, not
exceeding 20m.

6.6 Results of the automated evaluation procedure

The RCAM design challenge involves designing a control law that is able to perform an
approach to landing in the presence of turbulence and wind-shear, whilst remaining robust
to mismodeling [MBT97].

This section presents the methodology-independent results of the designed controller.
It is mostly based on the evaluation mission and scenario de�ned. Both `overall tracking
performance' and `inner-loop behaviour' of the controlled system will be evaluated by
means of bounds on key variables.
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A discussion of the behaviour of the controlled aircraft will be based on the relevant
ight segments for the longitudinal channel. A comparison between the guidance and
stabilisation functions and the overall autopilot is provided. Finally, a summary of the
comparative numerical results of the evaluation will be presented.

To prove the idea of the combined controller structure the most relevant segment of
the approach manoeuvre is extracted. This segment, that represents the �nal descend to
land, requires the capture of �6� and �3� glide-slopes.

We start with a glide-slope of �6� ; again it is unavoidable that the aircraft leaves the
desired trajectory. It should return to the trajectory without overshoot and well within
a period of 30s. After that we go to a glide-slope �3� of such that we get an \inverse"
behaviour with respect to the desired trajectory, that should be about half the size of
the �rst response (if the system has a more or less linear behaviour). In Figure 6.19 the
longitudinal response of the aircraft is plotted for three centre of gravity locations and
with bounds that specify acceptable behaviour.
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Figure 6.19: Segment III: vertical deviations from the desired glide-slope and Segment IV:
vertical deviations from the desired glide-slope and corresponding actuators movements
(The MBPC/H1 combined autopilot (dotted) and the H-inf controller (dash-dotted)

Both controllers, MBPC/H1 (dotted) and H1 on its own (dash-dot), behave in an
acceptable manner. The di�erence arises when considering the vertical deviation from
the desired glide slope. While the H1 controller tries to follow the descent reference
trajectory as closely as possible resulting in overshoots, the MBPC/H1 controller takes
advantage of the a priori known trajectory, optimising and improving comfort and safety.
The vertical deviations from the desired glide-slope are plotted in Figure 6.19.

While on �nal approach with a glide-slope of�3� the e�ect of a wind-shear is considered
(see segment IV g{h in Figure 6.19, second graph). The vertical deviations from the desired
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glide-slope are plotted.

Criteria MBPC/H1 H1

Comfort 0.5137 1.3316

Safety 0.0075 0.0084

Power 0.0155 0.0150

Table 6.5: Comparative numerical results

Table 6.5 gives comparative numerical results based on the two simulations with the
two distinct controllers, the combined autopilot MBPC/H1 and the H1 loop shaping
controller on its own. Each segment of the evaluation procedure is considered via the
design criteria: comfort, safety and power. For each of the trajectory segments a single
number was calculated. The smaller the numbers the better the design. The motivation
and calculation principles of these �gures can be found in [MBT97]. The performance
and robustness criteria addressed by the inner controller are not included. Because the
evaluation criteria are independent of the type of controller used the table contains cal-
culable indicators that enable us to obtain an objective comparison between this one and
completely di�erent controllers from other design chapters.

6.7 Conclusions and lessons learned

The main di�culty in designingMBPC is in the tuning of the many parameters available
in the algorithm. But we found that, with experience, partly systematic tuning procedures
were developed, also see [LY94].

It was possible to obtain a satisfactory controller despite a very simple model used
as an internal model by the MBPC. In order to move towards more systematic design,
from the robustness point of view, it was necessary to use an inner robust stabilising H1

loop-shaping controller to ensure robustness against large perturbations (eg. delays, mass
and gravity centre variations).

The absence of well de�ned rules for choosing the tuning parameters requires serious
experience of the designer in order to reach acceptable results. But assuming a good
analysis tool set and adequate rules of thumb, the problems can be overcome. It may be
noted that this problem is not speci�c for MBPC; for example the learning curve that
will bring a classical control engineer to the stage when a complex MIMO design can be
succesfull, designed using H1 will take up to several months, as discussed in [PGS+97].
The di�erence is that for the H1 loop-shaping controller synthesis more systematic pro-
cedures have been developed. Once the above mentioned obstacles are overcome, a fairly
systematic redesign process can be developed, if the designer who inherits the redesign
has experience of the technique and of the procedures used at the �rst stage of design.

The constrained optimisation, which has to be solved on-line, increases the compu-
tational complexity of implementing the controller. The di�culty to be overcome was
reducing the computation time su�ciently to allow real-time operation. This was ensured
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by the low sampling rate employed for the outer MBPC controller. Moreover, progress
can be expected both in the e�ciency of solution algorithms for MBPC and in the power
of the hardware on which they run.

Constrained MBPC may not o�er any advantages over more conventional control al-
gorithms apart from straightforward constraint handling. As a result we have presented in
Section 6.6 an automatic pilot based on a combined use of an H1 loop-shaping controller
that will provide the stability augmentation and guidance functions and an MBPC con-
troller that will act as a ight manager and overall supervisor. As expected, the MBPC
proved to be an e�ective technique for ight control, once this higher-level objective of
ight management was included.

From the perspective of a supervisory loop based on a predictive controller, the closest
approach to the one presented in this chapter is in [PG88]. There an architecture based on
PID local controllers operating in continuous time and receiving the steady-state settings
for each unit from an outer MBPC is outlined.

Current quali�cation and certi�cation procedures are not appropriate for MBPC or
some other modern control solutions. As long as constraints are not active our solution,
having an analytical form, can be certi�ed just as well as any other linear control law.
But that provides only a partial analysis of the controller, when it is operating in its
linear mode. Moreover, it could be argued that if the autopilot goes unstable the MBPC
controller could be switched o�.



Chapter 7

The Model Based Predictive

Recon�gurable Flight Control

\Control recon�guration" has a broad meaning. This kind of technique is applied mainly
in three situations:

1. the establishment of the system operating regime

2. performance improvement during operation

3. as part of fault accommodation.

Control recon�guration is a critical technology in terms of safety. All methods of re-
con�guration presume a certain initial knowledge of the system. In time, this may change
gradually due to environmental e�ects or rapidly on account of faults. Hence, various im-
pairments may signi�cantly degrade the performance of the aircraft as well as the decou-
pling of the aircraft longitudinal and lateral axes. A recon�gurable controller possesses the
capability to redistribute and coordinate the control e�ort during a system failure among
the aircraft's remaining e�ective control surfaces, such that satisfactory ight performance
is retained if possible. As the system changes the necessity for updating the control strat-
egy increases. The ight control system is designed not only to cope with failures but to
be robust with respect to variations in aerodynamic stability derivatives, high frequency
unmodelled dynamics, time delays, sensor noise and atmospheric turbulence. If the air-
craft dynamics is altered due to uncontrollable changes such as failed sensors, actuators
or damaged structural elements the recon�gurable control should ensure a response still
close to the nominal performance, if possible.

Recon�gurable control tries to avoid excessive hardware replication. Of course, the set
of redundant components allows the ight control system to perform some of its functions
in spite of the failures some of its components might have. Increased survivability and
reduced support requirements involve redundant aerodynamic control surfaces and spare
power during manoeuvres. The trade o� in terms of replication is between the weight, size,
complexity and power consumption of such redundant sets of equipment. Instead of relying
on hardware redundancy a recon�gurable control system has to exploit inherent control
redundancies in order to restructure in real time and preserve stability and performance.

135
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Owing to time constraints, in many failure scenarios the automated control law redesign
process has to make use of the fastest algorithm possible. When an impairment occurs
the most urgent task is to stabilise the system so as to avoid catastrophic situations. Once
the stabilisation has been carried out, there is more time for the control recon�guration
mechanism to manipulate the control in order to obtain better system performance.

In this chapter after surveying the literature for available solutions we suggest a new
approach to fault tolerant control based onMBPC. This choice is motivated and then the
controller architecture and tuning presented for two di�erent cases: a missile and a �ghter
aircraft. Next, an automatic tuning procedure for the MBPC controller is developed.
The chapter ends with evaluation results in both cases and some conclusive remarks.

7.1 Literature review

7.1.1 General issues

There are authors focusing on these various aspects of recon�gurable system design, among
them relevant studies were generated by [Bla95, Pat96].

According to [Bla95] several steps must be taken prior to designing a recon�gurable
control system:

1. Essential properties of the system must be designed with respect to previous and
likely fault conditions.

2. All potential failures and their e�ects have to be systematically determined, if possi-
ble. Techniques such as failure mode e�ect analysis (FMEA) can be used and their
results eventually used in a supervisor type of algorithm.

3. System reliability analysis should provide information on various component failure
rates. Additionally a reliability distribution chart must be produced.

Considerable e�ort has to be put into all stages of the system design in order to enable
it to cope with the various requirements of recon�gurable control. Before carrying out
the e�ective design process, an integrated and systematic understanding of the system
structure, reliability and types of redundancy in sensors and actuators is required.

Practical control problems often involve more actuators and sensors than are needed for
designing a control system in an economic way, as a result an appropriate set of actuators
and sensors must be selected from the available candidates. In general establishing a
control structure refers to both actuator/sensor selection and the process of partitioning
and pairing.

The choice of partitioning/pairing problem in the case of decentralised control was
studied by [SP96] and many practical tools such as relative gain array and other interaction
measures have been developed. The RGA is used as a measure of the sensitivity of a control
structure to diagonal input uncertainty.

The complementary problem of actuator/sensor selection was addressed in [LBMP95].
Its authors try to answer the question \What makes a control structure more desirable than
others?". Screening tools that select the desirable candidate from a set of control structures
were developed relying on measuring the potential performance of the candidates.
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Most of the research in the area of partitioning/pairing was carried out in the stochas-
tic setting and in general the criteria developed were based on nominal performance,
as in [HMW80]. More advanced and systematic developments were provided by [BT78]
relying on the \Condition Number Criterion" which is valid for some types of model re-
dundancy.

Other advances were made by [LM91a] suggesting a criterion based on the structured
singular value, a criterion that can deal with structured type of uncertainty. It is possible
to see now, after having browsed through several techniques, that most of the criteria rely
on a particular uncertainty description or a speci�c design approach.

On the other hand, during operation we encounter similar problems in the sense that
plant inputs and/or outputs can be lost or appear at any moment, as an e�ect of diverse
hardware failures. This will lead to a dynamic change of degrees of freedom available to
the controller.

With respect to the two distinctive notions: controlled and manipulated variables we
are able to provide a system classi�cation, used by [ZDG96], into square (rare), \fat"
(more manipulated than control variables, a type common in the real world) and \slim"
plants (the reverse case to the \fat" one). The case of a \fat" plant is desired due to
the extra degrees of freedom that can be used for control. In the case of recon�gurable
control the regulator has to be designed in such a way that even if signals are lost it
will stay awake trying to make the best of the sub-plant in control in terms of stability
and performance. Unfortunately a well conditioned plant might contain a number of
un-conditioned sub-plants.

We consider that another problem raised by the existence of such diverse sub-plants is
that the controller has to provide them with a relatively similar behaviour in closed loop,
which might cause completely di�erent weights to be used in the process of translating
the control requirements into method speci�c parameters and might require sophisticated
automatic tuning procedures.

It is impossible to ensure control recon�guration in the case of actuator or sensor
failure without redundancy in the initial plant. As an inherent part of the design process
for control recon�guration, the nature and location of the available redundancy has to be
analysed. If the level of safety for the closed loop does not match the level required then
additional redundancy has to be provided at this stage in either direct or indirect form.
Aerospace applications usually take advantage of both types of redundancies so as to cut
the costs of ight control systems without a�ecting their safety.

The extent of redundancy therefore has a direct connection with the system reliability
and the complexity of the FDI system in use. The type and level of redundancy provided
determines the way in which control recon�guration is provided. Hence the failed sensors
or actuators in systems with redundancy will sometimes imply dramatic changes in the
controller structure (i.e. at the algorithm level).

Direct redundancy

By de�nition direct redundancy means that a number of independent hardware channels
are used. Generally a voting system is used in order to decide in between the good and
impaired channels. A discussion of such voting systems is provided in [Wes77].
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As long as several hardware devices automatically provide redundant signals the anal-
ysis being carried out in the design process will detect them and use them to keep the
number of physical devices low. Often, di�erent channels are supplied with di�erent types
of sensors, actuators or even software that have the same input-output features. Actu-
ally what is referred to by parallel redundancy is equivalent to direct redundancy with
dissimilar pieces of hardware and/or software.

Analytical redundancy

In most control systems that rely on dynamic models there is an amount of built in
analytical redundancy. For example [LP93] in a ight control system the roll rate p can
be estimated/computed analytically by assuming measurements of yaw (	) and roll (�)
angle derivatives obtained via a �lter having the Laplace transform 1

1+0:1s . This way to
compute p can be applied for all aircraft.

Other researchers [Wil76] provide analytical redundancy using the mathematical model.
Kalman �ltering can be considered as another mean of providing redundancy. The accu-
racy of all these techniques used to provide redundancy in an analytical manner su�ers
from the system nonlinearity and estimation errors.

7.1.2 Recon�gurable/fault tolerant control methods

Recon�gurable control can be tackled by various methods described in a succinct manner
by the tree chart depicted in Figure 7.1. As we are able to see from this �gure the precise
nature of recon�gurable control depends upon whether the approach is passive or active.

Reconfigurable Control

Projection MethodsSchedulingRobust Control Adaptive Methods

Passive Active

Model Following
Laws

Pre-computed
Linearisation

Pseudo-Inverse

Direct Indirect

Feedback

Figure 7.1: The tree diagram of recon�gurable control methods

As it can be seen from the Figure 7.1 one of the approaches to fault tolerant control
is passive. This method use the robust control theory and techniques [ZDG96, GL95] to
ensure robust stability of the closed loop in face of certain faults that can be regarded
as various types of model uncertainties: additive, multiplicative or more general coprime
factors which are well suited for aerospace applications [PGS+97].

The impaired system will provide an acceptable performance with the same controller
designed for the nominal case, providing that it is situated within the robust performance
radius ensured by the robust controller. Therefore, the performance of the closed loop
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system is going to be a�ected to an extent depending on the robust performance provided
by the same controller. Hence, it is considered that passive approaches are suitable in
restricted cases when a fault has an relatively small e�ect on the controlled system. Of
course with one single controller we have small such regions and therefore the requirement
arises for active approaches.

Among various active approaches to recon�gurable control suggested in the literature
we see a possible organisation in terms of following methods: model following, model
reference adaptive control, multi-model adaptive identi�cation and recon�gurable con-
trol, pseudo-inverse recon�guration, control distribution and polynomial networks super-
controller strategy. The reader will be able in the next few sections to get more insight
into those methods which will be required later to evaluate the newly suggested strategy,
and see how the drawbacks of these methods are addressed.

Pre-computed laws

The concept of scheduling originated in the ight control area as an e�ective solution
to deal with aerodynamic coe�cient changes with respect to airspeed, angle of attack
(AOA) or altitude. In such applications measured data from the environment triggers the
right control action. This principle can be used within the recon�gurable ight control
framework as well.

The idea extended in the �eld of recon�gurable ight control is altogether di�erent.
Pre-computed control laws are stored and activated in accordance with the information
from an FDI system that monitors the plant and provides state estimates used as basis of
a controller scheduling scheme.

In the case of complex systems for which fast parameter changes might be encoun-
tered due to the system envelope, failures or external disturbances, we measure the in-
telligence of a controller for such a system via its speed and accuracy in responding to
such changes [Bla95]. From the set of controllers corresponding to such environments
encountered during operation we have to determine the best one to be used.

PLANT

Reconfigurable Gain
Scheduling Feedback

FDI Logic Reconfigurable
Feedforward Processor
&
Redundant Control
Effector Feedback

Input Commands

Figure 7.2: Restructurable ight control based on pre-computed laws

One of the schemes suggested by [MHBC89], quoted in [Pat96], is based on the fol-
lowing principles emphasised in the block diagram of Figure 7.2. The role of the processor
shown in the �gure is to cancel out the e�ect of the command error integrators as \sur-
faces are taken out" from the system (i.e. the plant becomes \slim"). The FDI logic is
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designed to predict the plant states and to trigger the scheduled feedback. This feedback
is in fact adjusted by a feedforward compensator (i.e. in open loop fashion) which means
that no information about the closed loop is available resulting in a great drawback during
failures, when the FDI system may induce instability and poor performance as a result of
malfunctioning. This represent a major concern in most of the FDI based schemes.

Two main streams can be distinguished in the literature: the �rst one is the direct
switching (i.e. an output based choice switching towards the next controller in a prede-
termined structure) and the second one called indirect switching is a strategy aiming to
have multiple models used in determining when and to which controller we should switch.
Researchers like [MGHM88], the initiator of the indirect switching, and [Mor93, NB97]
concentrate their attention on proving the stability of such schemes.

Another approach that falls into the category of pre-computed control laws was devel-
oped by [MS91]. This method involves multiple model adaptive estimation and control as
shown in the structure of Figure 7.3.

Kalman Filter Based
On First Hypothesis

Controller

ControllerKalman Filter Based
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Hypothesis Conditional
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Plant Command
Plant Output
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Figure 7.3: Restructurable ight control based on pre-computed laws and a probabilistic
structure

For an adequate model of the aircraft and parameters being allowed to take discrete
values, a Kalman �lter is designed for each parameter value resulting in a bank of separate
�lters. Based on the residuals of these �lters the conditional probability of each discrete
parameter value is evaluated at each time step. The output value of each controller from
the bank is weighted by its corresponding probability.

Examples of this method in the literature, when several controllers were designed for
various conditions such as: healthy aircraft, failed pitch rate sensor, failed tail-plane and
failed combination of other control surfaces equivalent to a \pseudo structural damage",
can be found in [MS91].

The third approach of interest to this presentation is due to [NB97]. In their work
Narendra et al. [NB97] suggests the architecture of the recon�gurable/adaptive control
system presented in Figure 7.4.

In this approach the objective is to minimise the control error ei = ŷi� y between the
real and desired output. All the errors between the output of the identi�cation model Ii
and the plant output are computed. Corresponding to each identi�cation model Ii there
is a controller Ci whose parameter qi is chosen such that Ci achieves the control objective
for Ii.

The switching rule that selects the appropriate ŷi tries to yield the best performance
for a given objective while stabilising the system. The choice for the switching rule was
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to determine the performance cost indexes of the form:

Ji(k) = �e2i (k) + �

kX
j=0

��(k�j)ei(j)

Using the parameters � and � of the above performance index we can describe various
choices of instantaneous and long term accuracy measures. The exponential weighting
determines the memory of the cost function in rapid switching environments and ensures
its boundedness when ei is bounded.

The index Ji(k) is read at each time step. An elapsed time Tm > 0 is allowed after
every switch and only then the controller corresponding to the model having minimum
Ji(k) is chosen for control. The dwell time Tm is required in order to prevent arbitrarily
fast switching.

I1

I2

In

C1

C2

Cn

PLANT

Switch

Identification
Errors

Estimates

Desired Output

Control Error

Figure 7.4: Restructurable ight control based on n identi�cation models and controllers

The complexity of the problem in the multiple model case increases when a wider range
of failure conditions is addressed. So, the additional computing resources can constitute
a serious disadvantage. Examples of simpli�cations made to improve the computational
speed for a terminal missile guidance can be found in [Rau95]. In [FR94] a novel approach
employs each model from the bank in simulation done o�-line storing the results. Just one
Kalman �lter is running on-line of which estimated results are compared with the stored
ones enabling the decision of which model should be used.

Model following

The model following as a recon�gurable control technique was employed by many re-
searchers such as [MO90, SKB82, Cha84, GB95, Bod97]. Aircraft models from F-8 to F-
16 and F-18 were used in performing various simulation checks of the schemes suggested.
These simulations were considered successful, providing an improved system response in
the case when model parameters are varying of impairments can be found in the plant
(aircraft).
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In essence model following means the adjustment of a constant feedback gain, assuming
that this gain is used in the nominal system, so that the recon�gured system approximates
the nominal (ideal) one in some sense.

Adaptive recon�guration via model following involves the redesign of the ight control
law by a parameter estimation of the failed system and a re-optimisation. The resulting
controller can be either a total new design or an augmented version of the initial controller,
depending on the strategy.

Many schemes employ the conventional controller in parallel with the adaptive one,
each of them being used in di�erent situations. The nominal one is employed during the
ight with the healthy aircraft or when the adaptive controller exhibits failures, as opposed
to the adaptive one which is introduced in the algorithm when parameters vary and/or
adaptation is needed. There are several problems associated with the on-line redesign of
the control law.

The linear dependence between the error signal and the unknown parameters makes
possible the use of a least square algorithm where a forgetting factor is introduced in the
algorithm when parameters vary and adaptation is needed. The least square algorithm
becomes unstable when there is insu�cient excitation (ie. the case of a steady level ight).
This method is discussed in detail in identi�cation theory. Such situations are tackled by
the conventional controller that runs in parallel with the adaptive one or by a persistent
excitation of the regressors vector z in order to guarantee convergence of the parameters
to the nominal values. Unfortunately the second approach might induce discontinuities
and transients in the response of the algorithm. A stabilised version of the least square
on-line identi�cation with forgetting factor was developed in [CPM95].

In the case of ight control systems the form of the linear di�erential equations that
reect the plant model are:

_x = Ax+Bu+ d

y = Cx

The usual meaning in state space formulations is given to A, B, C matrices or u, x, y
vectors. An input disturbance term d is introduced on purpose to account for the trim
values of the input necessary to maintain steady ight at the operating point { a feature
that will free the pilot from this task if used in the automation of trim computation.

A reference model with states available for measurement is de�ned as:

_ym = Amym +Bmr

where y 2 R
m and r 2 R

m , Am, Bm 2 R
m�m square matrices and Am stable.

Simple solutions in the case of model reference control are obtained when the plant can
be made to follow the reference model transfer matrix using an implementable (proper)
compensator condition which mathematically boils down to det(CB) 6= 0 1. Note that
det(CB) 6= 0 implies that the high frequency roll-o� in each I/O direction is no faster
than 20dB/decade(i.e system is essentially like an integrator at high frequencies), so it

1The matrix CB is called the plant high frequency gain matrix, a critical parameter in adaptive algo-
rithms [Bod97].
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does not often hold. A more complex reference model is required if the above assumption
is not satis�ed.

The feedback control law de�ned on the assumption of measurable states, which is
valid in the ight control case, is:

u = C0r +G0x+ v

where C0, G0 2 R
m�m and v 2 R

m are free controller parameters to be determined by the
algorithm.

Considering the closed loop dynamics:

_x = Ax+BG0x+BC0r +Bv + d

y = Cx

or directly in terms of y:

_y = (CA+ CBG0)x+ CBC0r +CBv + Cd

the above equation will lead to the values of the controller parameter in the nominal case
(i.e. when the plant model is considered known):

C�0 = (CB)�1Bm

G�0 = (CB)�1(AmC �CA)

v� = �(CB)�1(Cd)

The implementation of the model following control strategy is given in Figure 7.5.

ym = Am ym + Bm r 
.

Go

Co x = A x + B u + d
y = C x

Reference Error
V

Figure 7.5: RFCS structure using model following

According to one of the most active researchers in this particular �eld [Bod97] the
adaptive model following can be regarded as being direct (implicit) or indirect (explicit).
The following sections are aimed at clarifying the di�erence in between these two.

Direct model following

The de�ning feature of direct adaptive control is that the algorithm estimates the controller
parameters C0, G0, v directly from data.
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Two main approaches to this estimation problem are considered in the literature [GA92,
GB95]:

The output error (e0 = y � ym):

It is possible to write this error in the following form:

e0 = (sI �Am)
�1CB[(C0 � C�o )r + (G0 �G�0)x+ (v � v�)]

or

e0 = (sI �Am)
�1CB[�w]

where � = [(C0 � C�o ); (G0 �G�0); (v � v�)] and w = [r; x; 1]T .

The update law _� = �Ge0w
T leads to a stable adaptive system in Lyapunov sense, as

proved in [Bod97] when (sI � Am)
�1 is strictly positive real transfer matrix (Am � AT

m

is negative de�nite) and (CB)TG�1 > 0 a positive de�nite matrix. Conditions for having
this approach implementable require knowledge of CB and G.

The input error (eu = um � u)

Using the following identity:

u� = C�0B
�1
m ( _y �Amy) +G�0x+ v�

the input error is de�ned as:

eu = C0B
�1
m ( _y �Amy) +G0x+ v � u

or eu = �z where � is de�ned as before and z = [B�1
m ( _y � Amy); x; 1]

T is the regressor
vector.

This approach avoids the existence of the transfer matrix between the parameter er-
ror and the error signal which eliminates conditions more strictly stated above, making
possible the use of least square algorithms in a straight forward manner. Least square
algorithms are used due to their faster convergence, compared with gradient algorithms.

In general the direct adaptive control methods used for control recon�guration were
proved to perform well the following tasks: the selection of proper trim values for inputs (a
failure causing rapid changes in the command trim), the system decoupling of the inputs
and outputs during the failure when the symmetry of the aircraft is lost and the tracking of
the pilot commands which is ensured despite a major reduction in the control e�ectiveness.

The implicit model following can be implemented with lower gains [Pat96] which are
a�ected by the error directly, in real time.

Several issues are still open so questions such as: the performance of the algorithm
when noise is present or when state variables were not �ltered from noise. Another UN-
addressed issue is the constraints upon inputs (saturations). Currently these are handled
by the aircraft outer loop controller.
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Indirect model following

The indirect adaptive control methods are based on a recursive identi�er combined with a
control algorithm which uses the estimated parameters of the plant or the corresponding
model as if they were perfect estimates. Additionally, it uses the estimated uncertainty
a�ecting these parameters or the model.

The error vector using plant estimates Â, B̂, d̂ is:

ei = Âx+ B̂u+ d̂� _x

= (Â�A)x+ (B̂ �B)u+ (d̂� d)

Least square algorithms of various types are used to �nd Â, B̂, d̂ and �ltering via
�lters having transfer functions like 1

1+0:1s to obtain the state derivative _x.

Once the estimates of Â, B̂, d̂ are obtained the controller parameter are determined
via the following expressions:

C�0 = (CB̂)�1Bm

G�0 = (CB̂)�1(AmC �CA)

v� = �(CB̂)�1(Cd̂)

This method is less susceptible to parameter variation but model states must be gen-
erated and high feedback gains are required for adequate performance. The estimate of
CB̂ has to have det(CB̂) 6= 0 at all times. In [DG96] a method based on pseudo-inverse
calculations for (CB)�1 is seen as a possible solution that o�ers feasibility of the indirect
approach at all times.

The number of parameters to be identi�ed is bigger than in the direct case (the plant
has more parameters than the model n > m). Moreover two optimisations are required to
produce the solution which slows down signi�cantly the computations.

Such a control scheme is attractive, especially as a replacement of the FDI combined
with the multi-model approach, but has to be robust to uncertainties and well behaved in
the transient regime. The indirect approach as part of adaptive control schemes is able
to provide the control of multivariable plants in the presence of drastic changes in the
dynamics such as failures.

The presence of failures raises various problems due to:

� a strong coupling for the original plant

� a ight envelope to be covered by the continuous use of the adaptive algorithm and
a system that may be highly unstable leaving little time for recon�guration

� limitation of the actuators authority

� signi�cant sensor noise

Mixed methods, considered to lie under the umbrella of indirect adaptive recon�gurable
control, are based on: neural networks, fuzzy logic or knowledge based systems. They are
called mixed due to the identi�cation, that is carried out in general in an unconventional
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manner. Sometimes accommodation methods based on statistical approach are restrictive
in terms of dynamic changes and failure patterns, extensive on-line tuning being still
needed after FDI. All these represent time consuming procedures.

A typical scheme to accommodate failures via intelligent control will involve a low
level layer, running at a high sampling rate in order to accommodate hard type of faults
such as: actuator failure, structure break or sensor breakdown, stores a set of predictable
failure patterns. Then a timely action is produced to prevent the vehicle from being
uncontrollable. Afterwards a higher layer accommodates the soft fault, more di�cult to
detect and isolate because of the induced ambiguities in the con�guration management
system.

An example of such mixed methods is given in [CMP93] when the model is identi�ed on-
line via the on-line optimising networks using a constrained least square algorithm. Then
the Hop�eld network generates an optimal model following the open loop control law. The
work in the area of receding horizon control, predictive control applied to recon�gurable
control is mainly due to [CMP93, PCM95, WB95].

The model based predictive control (MBPC) approach to recon�guration is in fact an
indirect recon�gurable control system that performs an on-line system identi�cation, some-
times taking advantage about the particular form of the aircraft linear dynamics expressed
in terms of stability derivatives, followed by on-line optimisation which is maximising the
aircraft tracking performance before and after control surface failure, preventing instabil-
ity. This method was employed with reasonably success by [CMP93, WB95]. Actually
the paper by [WB95] concentrates much more on the identi�cation algorithm, a modi�ed
parameter sequential least square identi�cation.

In the case of [PCM95] a combined LQR with LP control strategy is employed such
that a suboptimal tracking control law that does not violate the constraints is synthesised.
This is not actually a proper MBPC formulation but is the closest algorithm to the ones
we are already used to. The LQR controller closes an inner loop, the input constraints
being addressed in an outer on-line LP optimisation.

We would like to emphasise the latest contribution in this �eld provided by [PCS97]
where a point-wise linearisation that replace the identi�cation part from their previous
approach is employed.

Pseudo-inverse method

As in the case of other intelligent control approaches to control recon�guration the research
on pseudo-inverse recon�gurable control was largely motivated by problems encountered
in the aircraft industry - ight control design. In accommodating on-line unanticipated
failures the self repairing system 2 based on the pseudo-inverse method (PIM) is considered
a key approach. Researchers like [Ost85, Rat85] have used PIM successfully in ight
simulations.

The basic idea featured by PIM is an on-line modi�cation of the feedback gain produced
such that properties of the nominal system are still retained despite the impairment.

2Some authors refer to \recon�gurable" control laws designed a priori to accommodate certain antici-
pated failures as opposed to \restructurable" control that implies an automatic design that accommodates
unanticipated impairments.
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Theoretically speaking the method relies on the computation of the pseudo-inverse of a
constant matrix via least square approximation as described in [ZDG96].

In control system design the �rst issue to be addressed, before performance, is the
one of stability. Unfortunately this is one of the main drawbacks of PIM, because only a
few stability guarantees have been given in the literature [GA91] and even those are quite
conservative. Most of the works talk about the instability encountered when applying
PIM without any safeguard, but do not provide enough insight about when the method
works or fails and under what circumstances.

Consider the standard form of the state space representation of the open loop plant:

_x = Ax+Bu (7.1)

y = Cx

where A 2 R
n�n , B 2 R

n�m , C 2 R
p�n . This plant has wrapped around it a state

feedback u = Kx. Note the assumption of measurable states which is generally valid in
ight control. The closed loop system is:

_x = (A+BK)x+Bu

y = Cx

The system model containing impairments is expressed as:

_xf = Afxf +Bfuf

yf = Cfxf

where Af , Bf , Cf have the same dimensions as A, B, C.
The closed loop with the new feedback Kf , to be determined will be:

_xf = (Af +BfKf )xf +Bfuf

yf = Cfxf

For the �rst time, in [Ost85], the idea of �nding Kf such that the closed loop matrix
which de�nes the failed system dynamics is similar, in a least square sense, with the one
belonging to the healthy system, is proposed:

Kf = By
f (A�Af +BK)

where By
f denotes the pseudo-inverse of Bf in the least square sense is mentioned.

The row rank of Bf de�nes the type of problem we are going to solve. If Bf has
full row rank then Kf obtained via the pseudo-inverse calculation always satis�es the
equation A+BK = Af +NfKf otherwise an approximate solution can be found. Having
such an approximate solution means that we do not know how close the behaviour of the
recon�gured system is to the nominal one. Hence some guarantees are required.

There is a quick solutions both from the implementation and stability guarantees point
of view. This employs the PIM method in the restructurable control sense by having the
Kf computed and stored for many anticipated failures. The stability guarantees can be
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given by checking o� line all the plant plus controller combinations to be identi�ed by the
FDI system.

Another solution is the recon�gurable control solution which relies on a modi�ed ap-
proach by [GA91]. It is based on the PIM method in conjunction with the theory of robust
stability of systems with structured uncertainty. E�ectively this method tries to recover
the performance of the impaired system as much as possible, retaining the closed loop
stability.

In [ZK87, Yed88] stability bounds for linear systems with structured uncertainty are
derived. Both methods use a state space perturbation of the form _x = (A + E)x where
E =

Pq
i=1 kiEi with Ei constant matrices and A 2 R

n�n the stable state matrix of an LTI
system. The idea presented in [GA91] is to take advantage of these bounds and derive a
stable Af +BfKf closed loop state matrix based on them.

The SISO approach has an analytical solution for the problem:
minKfJ where J =k A + BK � Af + BfKf kF . The corresponding algorithm that
determines the solution of modi�ed PIM has several steps. A �rst attempt is made to
compute Kf via the classic PIM followed, in the unstable closed loop case, by a more
computationally involved algorithm that determines Kf via minimisation of J subject to
the constraints stated in [ZK87] or [Yed88]. This in e�ect picks up from the class of
stabilising controllers for the impaired plant the one that gives a closed loop behaviour
closed to the nominal one.

For the MIMO case the procedure is similar. In the unstable case e�ectively Kf is

perturbed (i.e. K̂f = Kf+	) with a 	 based on the bounds derived in [ZK87] or [Yed88].

As an important remark we have to mention that the constraints used in minimisation
are su�cient but not necessary conditions to guarantee stability; the constraints tend to
be more conservative as q, the number of Ei constant matrices increases [GA91].

In [Pat96] two other serious limitations of the PIM approach to control recon�guration
are mentioned:

1. PIM make no explicit use of the robustness properties of the FDI system relying too
much on the supervision system used in determining the fault signature.

2. The state measurement in other plants than aircraft is not always available.

The second alternative of employing model based predictive control (MPBC) as a
recon�gurable control system will use this approach, modi�ed at the level of controller
synthesis.

As a �nal conclusion we would like to point out the resemblance of the pseudo-inverse
method with model following { see [GA92] { another technique extensively used in air-
craft recon�gurable control. In the the �rst case a nominal design of the closed loop is
approximated whereas in the second an ideal model tends to be followed.

7.1.3 Comments on the FDI system

Critical failures in ight control may result from sensor failure, actuator, structure damage
or breakdown. The objective of most of RFCS { to permit a graceful degradation of system
performance in the presence of failures, damage or malfunctions { require the presence
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of a Fault Detection and Isolation (FDI) system. The FDI is required to quickly and
reliably determine the faulty components in the presence of noise and modelling errors.
Primarily requirements for a succesfull fault detection are: low false alarm, robustness
against disturbances and manoeuvres and minimal detection delay. Although developing
the FDI is beyond the purpose of these work we give a brief review of main strategies used
at the moment. This is due to the possible development and their use in conjunction with
high �delity models.

Involving into the plant model information about the delay of the FDI system in
providing information about the failed plant is a di�cult task. Before the failure the
controller based on the nominal model is used. At the time of the failure until the FDI
decides the new characteristics of the plant and hence the model in use we require a certain
degree of robustness to be built in the controller. After enough information was acquired
about the plant the FDI system will be able to select from a collection of pre-computed
controllers the one which provides the best performance and stability. The �lters carefully
tuned have to avoid the choice of a \bad" model. Of course, robust control design enable
us as well to reduce this number up to an implementable one.

An usual FDI system contains two levels:

1. An actuator failure FDI system used to detect and isolate the malfunction of the
actuator which could have severe impact on the system response. Typically the �rst
layer consists of devices that detect the failure by one of the following methods:
hardware and parity checks and/or detection �lters. Fault detection and isolation
�lters consists of a set of estimators arranged in several cascade layers to test for
various failures.

2. A second layer refers the system itself having the main task of providing information
regarding structural damage of the aircraft

According with the generally accepted terminology FDI systems perform the following
tasks:

� Detection | the indication that something is going wrong in the system behaviour.

� Isolation | the determination of the exact location of the failure.

� Identi�cation | the determination of the failure size.

As a result typical features for FDI systems are:

� Isolability | the ability to isolate certain speci�c faults provided their size is large
enough; this test depend on the system matrices structure being a statistical based
algorithm.

� Sensitivity | a qualitative measure de�ning the size of faults that can be isolated
under certain conditions; it depends on the size of system matrices elements and noise
properties having closely related the time in which the FDI produces a solution

� Robustness | the property that enables the existence of modelling errors; a serious
interference with fault isolation has to be overcome using time history
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It is required an enhanced robust stability and performance region achieved with each
model and the corresponding controller in order to ensure blending and switching of them.
The placement of the threshold, based on the ability of the FDI system and of individual
controllers to provide robust closed loops, it is very important. By placing it at the
signi�cantly higher level than the detection one it is possible to reduce false alarms without
a major decrease in the closed loop failure's sensitivity.

Several classi�cations of FDI methods were provided in literature but the one used
here is based on the type of method used:

� failure sensitive �lters

� voting systems

� multiple hypothesis �lter detectors

� jump process formulations

� innovation based detection systems

In all these methods a priori knowledge of the plant dynamic model is required with
more emphasise on this issue in the �rst case described above. For this case actually
methods of detecting and isolating faults accurately are subject of current research.

In fact the research that has been carried out until now has not revealed completely
how much further information can be provided by the FDI unit or what are the best
mechanisms to perform the integrated design of the FDI and the recon�gurable controller.

Looking at the interaction between the FDI system and the high �delity model we
need to establish, if it is possible, how quick and accurate an update of this model can
be such as to reect the dimension of the failure. Our main concern is that the existence
of one structural failure in general is driving towards a series of failures which can hardly
be addressed by a system which deals with predetermined situations. For instance in the
case quoted in the work of [Sma97] the separation of engines 3 and 4 of a Boeing 747-200F
caused several structural and actuator failures:

1. right hand wing leading edge severely damaged

2. right hand wing leading edge aps partly lost

3. no outboard aileron available due to the outboard trailing edge aps failure

4. right hand inboard aileron less e�ective due to disturbed airow caused by right
wing damage and loss of pylon 3

5. the loss of pylons 3 and 4

6. partly lost spoiler system

7. malfunction of the lower rudder
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In [Sma97] insight is provided into the ying capabilities of an impaired aircraft. In
e�ect the author was updating o� line an high �delity model based on the data obtained
from the Digital Flight Data Recorder (DFDR) such as to account for the right wing
multiple engine separations and for the contribution of the right wing leading edge damage.
This example represents an important argument to support our fault tolerant strategy
assuming the existence of an FDI system which could have done in automatic manner
what the author of [Sma97] achieved after certain e�ort during his research (i.e. an
accurate update of the high �delity model). For instance the augmentation of the aircraft
aerodynamic surfaces and actuators with a system { an active component of the FDI {
which informs the about the possible losses of parts or surfaces in ight can represent a
potential alternative.

Going forward we can imagine a solution which involves a high �delity model embed-
ding all possible failure modes encountered in the past period of time in various accidents
combined with an FDI system capable of detecting and isolating these. The FDI system
probably will have the high-�delity model { written as a function of the aerodynamic coef-
�cients susceptible to modi�cation as parameters. Then the identifying these parameters
on line the computational burden can be a reduced and in the same time more knowledge
about the model is built in the FDI system. The possible drawback of such scheme is the
existence of a nonlinear optimisation that has to be employed for the current values of
the model parameters. In principle operating such a system in real time will enable us to
tackle the di�cult problem of the on board implementation and to account for the failure
modes encountered during various accidents.

7.2 A new recon�guration strategy

As we were able to see in the �rst sections of this chapter several methods were developed
to deal with fault tolerant issues. In the following, inspired by these methods, their features
and drawbacks, we suggest a new recon�guration strategy based on four ingredients:

� Fault Detection and Isolation (FDI)

� High �delity models

� Model approximation and simpli�cations techniques

� Constrained Model Based Predictive Control (MBPC)

Such an approach is motivated by several factors and a few problems encountered with
other active approaches surveyed in the previous sections of this chapter.

The four system components shown in Figure 7.6 work together as follows:

1. When a failure occurs the FDI system pinpoints the nature of it. Updated parame-
ters are passed to the high �delity model. Actuator failure information is passed to
the MBPC controller as constraint modi�cations, if appropriate.

2. Freezing the high �delity model with respect to the parameter vector yields a linear
model which is used by the MBPC as its internal model. An important advantage
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for real-time implementation is that this is a computationally inexpensive way of
obtaining, in adaptive fashion, a linear internal model, compared with other possi-
bilities such as identi�cation.

3. The constrained MBPC controller provides inputs to the plant. Giving it enough
degrees of freedom (a large enough set of control inputs) enables it to keep the
plant close to the required trajectory. We are assuming here that any failures are
compatible with maintaining this trajectory.

FDI

PLANT

MBPC

High Fidelity Model
(A(�); B(�))

Figure 7.6: The recon�guration and scheduling MBPC based strategy

All the components performing the functions mentioned above are shown in Figure 7.6.
We claim that the system ensures the following successive layers of recon�guration:

� A simple recon�guration occurs if there are actuator failures which are consistent
with maintenance of the required ight conditions. This can occur even without FDI
information [Mac97].

� Small structural failures are reected in the high-�delity model, as shown in Sec-
tion 7.2.1, and hence in the linear internal model used by the MBPC controller. No
tuning is necessary for the controller; its original cost function still reects well the
various criteria for which it was designed.

� Major failures will again lead to a change in the linear internal model, but now re-
tuning of the controller will be necessary. The approach which keeps the horizons
�xed but adjusts the weights in (2.1) appears to be the most promising at present.
This solution is presented in Section 7.2.4.

In answering the question \WhyMBPC for recon�gurable control?" we can enumerate
the following reasons:

1. the MBPC multi-model formulation (see Section 2.2 and Section 3.3.2), enables us
to cover most of the situations addressed by the formulation based on pre-computed
laws,
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2. the simple form of the cost function leads to a linear time-invariant controller in
the unconstrained case which can be parametrised with respect to the elements of
output and control increment diagonal weights, and

3. the property of handling constraints in a straightforward manner, and

4. being a challenging problem it can emphasise several features of predictive controllers
and push the scheme to its limits.
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Figure 7.7: Yaw angle step demand with failed rudder: Controlled outputs

For instance, to o�er a better insight into the last feature mentioned and its implica-
tions in recon�gurable control, we present here an example of recon�guration performed
by an MBPC ight controller, when the rudder of an aircraft jams, and it is required to
change the aircraft heading (yaw angle). The same linearised model of the `RCAM' model
is used for this example, as in Chapter 5. This is the internal model used by the MBPC
controller.

There are 3 controlled variables: the yaw angle, the roll angle, and the side-slip, and
4 actuators: the rudder, the ailerons, the tail-plane, and the engine thrust. A rudder jam
(at the neutral position) is simulated by disconnecting the rudder demand signal (issued
by the controller) from the rudder. A step demand is then made on the yaw angle.

The results are shown in Figures 7.7 and 7.8. Each of the sub-�gures in these �gures
shows 5 cases:

Case 1 Normal operation of the rudder. The rudder and aileron positions are constrained
to be within �2 units on the graphs, which represents �20� in each case.
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Case 2 Jammed rudder. No FDI information supplied to the controller, so that the con-
troller is not aware of the failure. The constraints on the rudder position demand are
removed, in order to see the e�ects of actuator constraints (known to the controller)
in this scenario. (The rudder demand has been reduced by a factor of 300 in the
�gure for this case.) Of all the cases, this gives the slowest yaw angle response.

Case 3 Jammed rudder. No FDI information supplied to the controller, but the usual
�20� constraints are restored on the rudder position. The yaw response is signi�-
cantly faster in this case, because the controller stops relying on the rudder sooner,
and makes more use of the ailerons, as can be seen from the larger roll angle.

Case 4 Jammed rudder. FDI information supplied | the constraint on the rudder de-
mand has now been tightened to �0�, so that the controller knows that it cannot
move the rudder. In fact this makes so little di�erence that the plots for Cases 3
and 4 cannot be distinguished from each other. The reason for this is that in each
case the controller moves the rudder demand to its constraint almost immediately,
and then uses the ailerons and other actuators. Since the actual rudder position is
the same in both cases, the two behaviours are virtually identical.

Case 5 Jammed rudder. FDI information supplied, as in Case 4. But now the weight
on roll errors in the cost function has been reduced by a factor of 3, approximately.
This leads to a much faster response of the yaw angle. It can be seen that a much
larger roll angle develops during the �rst 10 seconds of the manoeuvre when this
weight has been reduced, and the lift then has a larger component in the horizontal
plane, which changes the aircraft's heading.

Because the manoeuvre simulated here is rather arti�cial we can consider a more
practical requirement than changing only the yaw angle. This would be to change the
aircraft heading, without much concern for what combination of body angles was most
appropriate to achieve it.

To continue the comparison with other methods presented in the foregoing sections it
is well to note that our approach is one that, like in the model following case, computes
on-line the closed loop feedback matrix based on an update of the internal model. For this
model no special restrictions apart from its controllability and observability are required.
Therefore, we approach recon�gurable control as a multi-model adaptive control problem,
namely one in which adaptation occurs by discrete changes to the internal model, rather
than continuous tracking of a gradually-changing model.

The classic pseudo-inverse method was extended in the MBPC case such that an
automatic tuning procedure for the predictive controller is provided. We have imagined
this procedure not only as a tool to provide o�-line tuning of the controller having an
internal model based on the impaired plant such as to match the performance of the
nominal one, but as a potential method to be applied on-line in the event of a major
failure.

As shown in the survey section Patcher et. al. [PCM95] were the �rst to view a sim-
pli�ed version of constrained predictive control as a promising tool for recon�guration.
Their scheme was an indirect adaptive approach with the system identi�cation module
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employing a mixed identi�cation method (optimisation involving ight mechanics infor-
mation) and the controller being split into two loops (an LQR inner loop and an outer
linear programme on-line optimisation to enforce constraints a step ahead).
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Figure 7.8: Yaw angle step demand with failed rudder: Actuator demands. (Key as for
previous �gure.)

In our scheme the on-line identi�cation is replaced with a combination of high-�delity
models and approximation/simpli�cation techniques that will lead to a linear representa-
tion of the plant to be used as the MBPC internal model. We therefore do not use an
identi�cation module, at least for ordinary `scheduling'. For recon�guration in case of fail-
ures some fault detection module is required; for the purpose of this work we assume the
existence of such a module. In fact two techniques were developed: one of them involves
a quasi-LPV form of the nonlinear model versus the other approach which is based on
point-wise linearisations around current value of the input and state pair along the plant
trajectory.

7.2.1 High �delity models written in the quasi-LPV form

High �delity dynamic models are increasingly built for complex plants. This has been the
case in the aerospace industry for many years. This section will �rstly introduce quasi-
LPV models. Next it shows how these can be integrated to give a strategy for scheduling
and recon�guration. The solution will be illustrated via a well known missile example.

In [SC93] a quasi-LPV model that embeds the plant nonlinearities without interpo-
lating between point-wise (Jacobian) linearisations is presented. The main characteristic
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of these models, compared with the usual LPV way of representing systems, is that the
scheduling variable is a state of the model.

The quasi-LPV approach is mostly suited for systems exhibiting output nonlinearities
(e.g. aerospace applications). Such nonlinearities enable us to write the system in form of
equations (7.2). A principal requirement for a nonlinear system to be transformed into a
quasi-LPV system is that the number of available equations has to be equal to the number
of states plus the number of outputs minus the number of scheduling variables. When it is
impossible to embed all the system nonlinearities in the output then the transformations
used in producing the quasi-LPV model, see equation (7.4), have to be approximated up
to �rst order terms in all the states except the scheduling parameters.

To develop the quasi-LPV model we start with a nonlinear missile model with the
states � (angle of attack) and q (pitch rate), and the command � (horizontal �n angle) of
which complete details are given in [SC93].

Then we write the nonlinear in model such a form that the nonlinearities depend only
on the scheduling variable �:

d

dt

�
�
q

�
= f(�) +

�
A11(�) A12(�)
A21(�) A22(�)

� �
�
q

�
+

�
B11(�)
B21(�)

�
� (7.2)

A family of equilibrium states, parametrised by the scheduling variable �, is obtained
by setting the state derivatives to zero:

0 = f(�) +A(�)

�
�

qeq(�)

�
+B(�)�eq(�)

Providing that there exist continuously di�erentiable functions qeq(�) and �eq(�), we
are able to write the system (7.2) in the following form [SC93]:

d
dt

�
�

q � qeq(�)

�
=�

0 A12(�)

0 A22 �
d
d�
qeq(�)A12(�)

� �
�

q � qeq(�)

�
+�

B11(�)

B21(�)�
d
d�
qeq(�)B11(�)

�
(� � �eq(�))

(7.3)

This form gives a di�erent �-dependent family than would be obtained by point-wise
linearisation.

In order to use (7.3), the function �eq(�) must be known. This can be estimated
by using an `inner loop' [SC93] but, because of model uncertainty, this can reduce the
robustness of the main control loop in a way which is di�cult to predict at the design
stage. Like in [SC93] we avoid the problem generated by the existence of an inner loop
required to compute �eq(�) by adding an integrator at the plant input. As a result we
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have the quasi-LPV form for the system dynamics:

d
dt
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(7.4)

This �nal form is actually the representation used for control purposes. If � remains
constant, the MBPC controller stabilising this model will drive the states to zero which
means that the � input to the plant will be set at the true �eq trim value. The MBPC in-
ternal model will be the corresponding LTI system obtained at each value of the scheduling
parameter �.

The controlled output of the plant is the normal acceleration (nZ), which is a nonlinear
function of � and �� �eq(�). In the internal model a linearised approximation of nZ with
respect to � is used, as in [SC93].

The normal force (CZ) and pitch moment (Cm) aerodynamic coe�cients are embedded
in the expressions for qeq(�), �eq(�), A(�) and B(�). The representation of CZ and Cm is
approximated by the following expressions:

CZ = �Z(�) + bZ�

Cm = �m(�) + bm�

where the expressions for bZ and bm are given in [SC93], and �Z(�), �m(�) are polynomials
in �. Let kZ and km, respectively, be the vectors of coe�cients of these polynomials. We
assume that kZ and km will be the outputs of an FDI module, as shown in Figure 7.9.
These expressions for CZ and Cm explicitly contain contributions from all the missile's
surfaces, and are based on data obtained from wind tunnel tests. Such data may be
available in the form of a database [Hoa78].

The quasi-LPV model of the plant gives the clarity required by industry and eases
certi�cation since it retains a physical meaning for the elements of the model LTV matrices.
It is advisable to have the scheduling variable as a system output rather than an estimate.

7.2.2 The HIRM nonlinear model and its on-line point-wise linearisation

In this section we restrict our attention to the longitudinal channel of the High Incidence
Research Model. We assume that the side slip angle and the roll and yaw rates are zero.
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The model is based on the following equations of motion [MBT97]:

_ = �
� g
V

�
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�
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�
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�
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�
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_q = M

�
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�
� ZATPF

_V = �g sin()�

�
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m

�
+

�
F

m

�
_H = V sin()

In these equations , �, q, V , H denote the vertical ight path angle, angle of attack, pitch
rate, airspeed, and altitude, respectively. The variables m, �c, Jy are constants denoting,
respectively, the aircraft mass, the reference mean aerodynamic chord, and pitch moment
of inertia.

The aerodynamic drag (D), lift (L) and pitch moment (M), expressed in body axes,
are:

D = �qS
h
CX�TS

(�; �TS) + CX�CS
(�; �TS)�CS

i
L = �qS

h
CZ�TS (�; �TS) + CZ�CS (�; �TS)�CS+

+ CZq(�; �CS)
q�c

2V

i
M = �qS�c

h
CM�TS

(�; �TS) + CM�CS
(�; �TS)�CS+

+ CMq(�; �CS)
q�c

2V

i

where �q = 1
2�(H)V 2 is the dynamic pressure and �(H) the air density which varies as a

function of altitude.

In the above equations the meaning of F , �TS , �CS is thrust magnitude, symmetrical
taileron deection, and symmetrical canard deection, respectively.

The non dimensional coe�cients in these equations CX�TS
(�; �TS), CX�CS

(�; �CS),
CZ�TS (�; �TS), CZ�CS (�; �CS), CZq (�; �CS), CM�TS

(�; �TS), CM�CS
(�; �CS), CMq (�; �CS)

are given in look-up tables obtained as a result of wind tunnel tests [MBT97, Wil97]. In
the high �delity model their values are computed by linearly interpolating between the
values stored as functions of the variable � and the corresponding surface deection.

We propose to obtain an on-line linearisation of the system by using Taylor series
to derive the analytical expressions for the linear equations. This is done around the
current input and state pair, which are not, in general, equilibrium points (that is, the
linearisation is not performed about a \trimmed" condition of the aircraft). The values of
the derivatives of the aerodynamic coe�cients are stored in look-up tables.

As an example, we show here the expression for �V = V � Vc, where V is the total
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airspeed and Vc is the current airspeed value at which the linearisation is performed:
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where the subscript c denotes the current value of a variable and C collects all the values
determined at the current state and input from the Taylor series expansion. In trim _Vc
and C are zero.

This procedure allows linearised models to be obtained quickly enough for real-time
use in the case of MBPC because of the way the internal model is written in �x and
�u. Of course this assumes that the FDI system can update the look-up tables quickly
enough.

The reason of having two alternative approaches used in getting the MBPC internal
model (i.e. the quasi-LPV and point-wise linearisation) is the impossibility of writing the
nonlinear model in a quasi-LPV form when we want to leave un-blended the redundant
actuators. Such a case occurs when we would like to have the optimiser deciding upon
this issue.

The way the aerodynamic forces, together with the engine thrust, act upon the 6-DOF
nonlinear simulation model is de�ned based on wind tunnel data and simple actuator
models (i.e. �rst order models plus delay). At the moment the model is programmed
in C using the Matlab Simulink S-function template and run on a SPARCstation 20 as
compiled code.

For the simulations shown in Section 7.2.5 we have employed numerical linearisation
instead (the Simulink function linmod), for convenience. In principle this gives the same
linearised model because of the way the A, B, C, D matrices are computed in the case of
a trim or non-trim pair of inputs and states.

7.2.3 Designing the MBPC controller

The autopilot structure

In Figure 7.9 all the essential components of the system which perform the functions
referred in the Section 7.2 for the missile case are depicted.
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Figure 7.9: The missile autopilot having recon�guration and scheduling features

The quasi-LPV model runs in parallel with the nonlinear plant providing the states
equilibrium values qeq(�), �eq(�) together with the A(�), B(�), C, D matrices depending
on the current value of the parameter �.

The structure of theMBPC controller consists of standard modules. States, including
�, are assumed measurable, since they are usually available in ight control. We use a
state-space LTI model for the plant, di�erent at each time step and corresponding to the
parameter value �.

The other alternative, of on-line point-wise linearisations which was used in the HIRM
case is depicted in Figure 7.6. Here the strategy is the same as in the missile case with
the exception of the way the MBPC internal model is produced.

Prediction strategies

The main question raised while implementing the adaptive mechanism was which model
should be used to provide predictions. Two strategies have been considered for use during
manoeuvres which cause signi�cant � variations:

� No a priori trajectory information. A single model was used across the whole pre-
diction horizon (ie for l = 1; : : : ; Ny) but changed at each current time step (ie
di�erent for each k) in accordance with the measured � value.

� A priori trajectory information available. This allows the internal model to vary
over the prediction horizon, but one needs to predict � over the prediction horizon
in order to do this. It is important to base this prediction on the commanded
trajectory, rather than the achieved one; this is more approximate, but it retains the
QP structure of the optimisation problem. Basing it on the achieved trajectory would
lose even the convexity property, so should be avoided if at all possible [CKC96].
For the missile it is possible to obtain a prediction for �, based on the commanded
trajectory for nZ .

Note that these two strategies become the same in the special case when Ny = Nu = 1.
In our evaluations we have simulated only the �rst prediction strategy.
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It is advisable to take one of the above suggested paths. Otherwise, obtaining the mod-
els through the plant future dynamics, the resulting cost function is no longer quadratic in
the command increment. This results in the standard MBPC quadratic optimisation be-
ing transformed into a nonlinear constrained optimisation for which it is hard to guarantee
a global solution [CKC96].

Designing the missile controller for the unfailed condition

The controller design followed the conventional procedure used for MBPC design (see
Chapter 4). This involved tuning the MBPC controller for a plant model obtained by
freezing the healthy quasi-LPV model at � = 0. Note that this model is unstable. The
plant model used for control had the following continuous time transfer function:

nZ
�

=
(s� 31:58)(s + 31:30)

s(s+ 6:0029)(s � 5:3984)

A sampling time of Ts = 0:01s will provide a good approximation over the system band-
width.

Horizon dimensions were de�ned according with the general guide lines used in tuning
MBPC controllers [HM97c, HM96b] and Chapter 4. The tuning was performed in the
unconstrained case.

The control horizon was chosen to be the same as the number of states (Nu = 3 in
this case) which will ensure stability even in the worst case, namely when all the modes
are unstable, should that ever occur [RM93].

The small sampling time has determined a long prediction horizon of Ny = 30 in order
to predict 0:3s ahead. This was enough to ensure the performance criteria required [SC93].

The MBPC control weighting matrix had to be made relatively small R = 0:005 due
to the small e�ectiveness of the �n in this particular model. The constraint predictive
controller tracking weighting matrix Q = 1 reects the requirements on the time response
characteristics (rise time, settling time and overshoot) for the closed loop system. These
were obtained after some trial and error, starting with unit values for both weighting
matrices.

The next step in design, after checking the unconstrained closed loop behaviour, was
to enforce the constraints and check the constrained MBPC performance. Once these
steps were passed the controller was checked when performing adaptation with respect to
�.

Designing the HIRM controller for the unfailed condition

As in the missile case the controller design followed the general procedure which we have
developed for conventional MBPC control [MBT97, HM96b]. This involved tuning the
MBPC controller for a plant model obtained by linearising the healthy high-�delity model
for an equilibrium point corresponding to a level ight with Mach number M = 0:30 at a
hight of H = 5000 ft with parametric uncertainties in M of 3%.

A sampling time of Ts = 0:05s provided for the discrete time model a good approx-
imation of the continuous time one over the whole open-loop bandwidth (the smallest
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constant which appears in the model is on the transfer function from symmetrical taileron
(�TS) to pitch rate (q) and it is de�ned by a cross-over of about 10rad=s).

The HIRM longitudinal model contains actuator models for which the bandwidths are
at 60rad=s, 10rad=s and 1rad=s for canards, taileron and engines, respectively.

In order to speed up the process the tuning was performed �rst for the unconstrained
case. The control horizon was chosen to be the same as the number of states Nu = 11 but
the small sampling time led to a long prediction horizon of N2 = 60 in order to predict 3
s ahead. This was enough to ensure the achievement of the performance criteria.

The MBPC control weighting matrix had to be made relatively big
R =

�
9� 104 3� 104 1� 104

�
, a typical choice for longitudinal channel of the aircraft.

The MBPC tracking weighting matrix Q =
�
700 1

�
reects the requirements on the

time response characteristics (rise time, settling time and overshoot) for the closed loop
system. These were obtained after some trial and error, starting with unit values for both
weighting matrices.

7.2.4 Automatic Tuning for MBPC During Recon�guration

In [Mac97, HM98a, HM98c] and the previous section a particular combination of high
�delity models, fault detection and isolation (FDI), model approximation/simpli�cation
and constrained predictive control which enables a generic solution to recon�guration and
adaptation was described.

As will be shown in Section 7.2.5 it is not too simplistic to believe that it is enough to
change the internal model and the constraints limits in order to reect a fault for which
the MBPC controller has to provide satisfactory control inputs. But, in the most general
case the controller needs to be re-tuned in order to achieve satisfactory performance.
\Tuning" here means the adjustment of the MBPC cost function weights and possibly
the relaxation of some of the constraints in order to make the problem feasible.

Therefore, in this section, on-line optimisation to provide the tuning parameters that
will enable the recon�gured controller to provide good performance is investigated [HM98b].
In Section 7.2.5 a practical problem of recon�guring a missile on-line in the presence of
major impairments is solved.

Matching the reference closed loop eigenvalues via on-line optimisation

Our main goal is to have the same responses for the impaired system as the ones achieved
by the healthy plant and its controller. Before discussing the optimisation problem in-
volved in solving the matching of the two closed loops, we would like to point out two
assumptions made for both Section 7.2.4 and 7.2.4.

First one assumes the horizons as �xed parameters for both the nominal and the
impaired system cost functions. In fact horizon dimensions are de�ned according with the
general guide lines [Soe92] used in tuning MBPC controllers. The control horizon was
chosen to be the same as the number of model states which will ensure stability even in
the worst case when all the plant modes are unstable [RM93]. The prediction horizon is
determined by the sampling time and the performance to be reached with the closed loop.
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The second assumption refers to the order of the impaired system. Because in our case
the impaired model is obtained employing the high �delity model written in the quasi-
LPV form [HM98a] the number of states is considered to be the same in spite of major
structural failures.

Authors like [GA91] applying pseudo-inverse recon�guration methods, translate the
matching of the healthy and impaired system responses into the goal of keeping the closed
loop eigenvalues of the impaired system in the same region as in the nominal case, if
possible.

Initially, we matched the MBPC controller by performing a Frobenius norm optimi-
sation of the form:

min
�
kKf (�)�KnkF

The results obtained drove us to the conclusion that a matching of the closed-loop eigen-
values with the ones corresponding to the nominal closed-loop will be more appropriate.
As result the following optimisation was employed:

min
�
k �Af (�)� �AnkF

The minimisation was carried out using the fminu function from the Matlab Optimisation
Toolbox, a nonlinear optimisation algorithm based on quasi-Newton method using a mixed
quadratic and cubic search procedure. This was employed due to the particular nonlinear
dependency of Af on �.

The form of the cost function (2.10) depending on Q and R explains the existence of a
non-unique solution. In other words, for the SISO case, the non-uniqueness of the solution
can be explained observing that the actual parameter in the optimisation problem is the
ratio between the weights Q and R.

The reason of choosing the Frobenius norm as a measure for the distance between
the two closed loop matrices is not only related to the optimisation feasibility but as well
to stability guarantees that we provide when the recon�gured controller is employed. In
the case of a small perturbation upon the eigenvalues of the closed loop (Af ) from the
nominal closed loop (An) the Bauer-Fike theorem gives a condition for the location of the
eigenvalues of the recon�gured closed loop. We include the proof because in [GL96] the
theorem was stated and proved only for p-norms. The stability guarantees are restricted
to the assumption that An is non defective in the sense that it can be reduced to a diagonal
form by a similarity transformation.

Theorem 7.2.1 If � is an eigenvalue of the matrix Af 2 R
q�q , X�1AnX =

= diag([�1; : : : ; �q]) = D where X is the matrix of the An eigenvectors, k2(X) is the X
matrix condition number and � is an eigenvalue of An (� 2 �(An)) then:

min
�2�(Mn)

j�� �j � k2(X) k E kF (7.5)

where E = Af �An

Proof It is enough to consider the case when � is not in �(An). The matrix X
�1(Af�

�I)X is singular, then applying the matrix inversion lemma so is I+(D��I)�1X�1(Af �



7.2 A new recon�guration strategy 164

An)X. Note that if I +M is singular at least one of the eigenvalues of M is �1 which
means that kMkF � kMk2 � ��(M) � j � 1j. Thus, using the modi�ed sub multiplicative
property for the Frobenius norm written in its two di�erent forms kABk � kAk2kBkF
and kABk � kBk2kAkF we have:

1 � k(X�1AnX � �I)�1(X�1EX)kF

� k(X�1AnX � �I)�1k2k(X
�1EX)kF

� min
�2�(An)

1

j�� �j
kX�1k2kEXkF

� min
�2�(An)

1

j�� �j
kX�1k2kXk2kEkF

� min
�2�(An)

1

j�� �j
k2(X)kEkF

2

Basically the theorem de�nes a disk, centred on the old eigenvalue, in which a new
eigenvalue will be located once the optimisation performed. This bound is given by the
condition number of the eigenvector matrix of An and the value of the cost function.

The eigenvalues of Af lie in the union of disks j�� �j having a radius k2(X) k E kF . We
recommend a nominal design that will place the nominal closed loop eigenvalues centred
within the open unit disk ensuring an increased level of robust stability to the system.
Using the above procedure, for a good conditioning of eigenvectors of the nominal An,
the minimisation performed provides a closed loop behaviour of the recon�gured system
close to the nominal one. The increased control e�ort used, that requires enough actuator
authority, might be considered as a disadvantage of the current design procedure which
made us to consider the solution presented in the next section.

If k2(X) is large then small changes in Af can induce large changes in the closed
loop eigenvalues. In the case of a practical problem a poor conditioning of the matrix of
eigenvectors of An (X) is possible. This is a problem located at the level of the nominal
design. Further research has to be carried out in order to provide a good conditioning for
the k2(X) number when designing the MBPC controller for the nominal plant.

Despite the stability guarantees and a relatively simple optimisation procedure the
above approach su�ers from the fact that only the closed-loop poles are matched but not
the zeros, which are known to have as well a big e�ect on the system response.

Control recon�guration automatic design procedure

The natural evolution from the previous way of addressing the problem of recon�guration
was to solve a minimisation which accounts for both closed-loop poles and zeros matching
the system four-block transfer matrix.

The automatic tuning procedure employed as part of the overall control mechanism
follows the following steps:
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1. A nominal controller is designed for the given performance speci�cations having the

nominal realisation

�
An Bn
Cn Dn

�
as the internal model.

2. Given a plant model

�
Af Bf
Cf Df

�
reecting an impairment a closed loop realisation

is produced depending on the elements of the cost function weighting matrices Q
and R which we denote by the parameter vector �.

3. A minimisation procedure is performed with respect to � of the 1-norm of the
di�erence between the transfer matrix de�ning the nominal reference closed loop

M̂n

��
An Bn
Cn Dn

��
and the transfer matrix M̂f

��
Af Bf
Cf Df

�
;�

�
which is de�ned on

the basis of the impaired model controlled by the MBPC, depending on the param-
eter �.

The procedure can be frequency weighted via Wi andWo, as common in model match-
ing setups, leading to the following optimisation problem with respect to the parameter
�:

min
�

wwwwWo

�
M̂f

��
Af Bf

Cf Df

�
;�

�
� M̂n

��
An Bn

Cn Dn

���
Wi

wwww
1

(7.6)

The algorithm chosen to perform this minimisation is based on a fairly brute force
procedure but in exchange it provides feasibility together with good control of the level of
matching. This procedure proved successful when severe impairments were encountered.

Therefore here we include the steps of the algorithm which produces a solution for �
that gives the best matching:

1. Perform a gridding of the parameter space � with an appropriate step.

2. Compute for the current value of the parameter the value of the cost function from
(7.6).

3. Store the value of � and the corresponding norm if smaller than �gures previously
obtained.

4. Iterate Steps 2 and 3 for all the grid vertices.

7.2.5 Evaluation results

Evaluating the scheduling and recon�guration capabilities of the missile con-
troller

The two di�erent capabilities of the controller { scheduling on � and recon�guration { are
investigated in the following simulations.

Firstly we show the behaviour of the closed loop with the di�erent controllers when
the system is subjected to a step of 0:1 in the non-dimensional controlled variable nZ .



7.2 A new recon�guration strategy 166

0 1 2 3 4 5
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time [s]

nz

Figure 7.10: Comparison between the �xed and the adaptive MBPC (adaptive{solid,
�xed{broken)
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Figure 7.11: The recon�guration capabilities provided by the new approach (update in-
ternal model{broken, nominal internal model{solid)

The �rst controller is represented by the nominal design for which a �xed internal
model, de�ned at � = 0 is used, even though � varies during the manoeuvre.

In the second case the controller uses the �xed values for the cost function tuning
parameters (Ny, Nu, Q, R), but the internal model is updated to follow the evolution of
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�, as described in Section 7.2.1

For each such case we have ensured stability by an adequate choice of the control
horizon (Nu greater than the system order). In this �rst case no failures are assumed for
the controlled system.

The response of the system controlled by the adaptive MBPC provides less overshoot
and a shorter settling time as demonstrated in Figure 7.10.

In the second simulation we show the recon�guration capability of the new approach.
Successive structural failures of the missile were simulated: a failure on the body at t =
0:3s, and one on the �n at t = 0:5s. These failures modi�ed the aerodynamic characteristics
by 10% and 50%, respectively. Figure 7.11 shows how the controller coped with each
failure.

The failure was simulated by manipulating the nonlinear model dynamics. The im-
pairment was represented in the high �delity model by changing the coe�cients relating
the contributions of various aerodynamic surfaces to CZ and Cm.

In both situations the new controller behaved well, providing scheduling and recon�g-
uration as required.

Simulation results for several failure scenarios in the HIRM case

Actuator failures

One of the most frequent failures encountered in real life is actuator failure. The reduction
of control authority leads to reduced performance, or even instability.
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Figure 7.12: The recon�guration capabilities provided by the new approach in the case of
actuator failures (nominal { solid, stuck canard { broken)

The simulation result shown in Figure 7.12 shows the system (HIRM) response when
the canard actuator failed during a pitch rate demand of 6 deg=s. The step in pitch rate
demand occurred at time 5 s followed by the failure, a stuck symmetrical canard, which
occurred at time 8 s.
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This failure, was represented by tightening the constraints on the allowed canard de-
ection in the MBPC optimisation. Due to the MBPC feature of handling constraints
explicitly no other change was necessary in the structure of the controller.

The solid line in Figure 7.12 shows the response when no information about the failure
is passed to the controller.

By looking at the performance criteria stated in the GARTEUR Design Challenge [MBT97],
for this manoeuvre, we consider the controller performance in the presence of the failure
to be satisfactory.

Structural failures

For a �ghter aircraft, we can assume that one of the typical failures that its controller has
to cope with is battle damage which, in general, falls in the class of structural failures.
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Figure 7.13: The recon�guration capabilities provided by the new approach in the case of
structural failures (nominal { broken, 20 % change in aerodynamic coe�cients { solid)

The simplest way to simulate structural failures in the aircraft high �delity model is by
means of the non-dimensional aerodynamic coe�cients, which are modi�ed accordingly.
For instance a missing part of an aerodynamic surface translates into more drag and
a reduced lift, which in their turn are translated into new values of the aerodynamic
coe�cients. This is according with a study [Hoa78] which relates various types of structural
failures to the aerodynamic model.

In our scenario we assume that such a structural failure, which changed the values of
the aerodynamic coe�cients by 20 %, occurred at time 8 s while a change of 25 m=s in
speed set-point was demanded at time 5 s, see Figure 7.13. A fairly large set-point change
was chosen as part of the scenario because we want to show the controller fault tolerant
features. During this manoeuvre the actuator limits were not reached.

The performance of the recon�gurable ight controller, shown in Figure 7.13, complies
with the criteria mentioned in GARTEUR Design Challenge document [MBT97].
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Combined failures

Now we consider a simultaneous actuator and structural failure. This is typical of battle
damage or of fatigue fracture.
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Figure 7.14: The recon�guration capabilities provided by the new approach in the case of
a combined failure (nominal { broken, combined structural and actuator failure { solid)

In Figure 7.14 the performance of the controller is investigated when at time 5 s
a change of 25 m=s in the air speed was demanded, followed at time 8 s by an actuator
failure and at time 15 s by a structural failure similar to the ones described in Sections 7.2.5
and 7.2.5.

The model chosen to illustrate the algorithm was subjected to several failure scenarios
which showed the ability of the controller to meet robust performance criteria mentioned
in the GARTEUR [MBT97] and DERA design challenges.

Checking the automatic tuning procedure with the missile model

This work represent a natural extension of the idea described in [HM98a]. In this section
we concentrate on the same missile model of which complete details are given in [SC93]. In
ight scheduling for the nominal loop and recon�guration were performed using quasi-LPV
high-�delity models and MBPC control as described in the previous section.

The MBPC internal model is based on the plant having the approximated discrete
time transfer function (7.7) obtained for a sampling time of Ts = 0:01s. This model was
de�ned at � = 0, even though � varies during the manoeuvre, is the same one as in the
previous section described now in discrete time:

nZ
�

=
(z � 1:3732)(z � 0:073)

(z � 1)(z � 0:9417)(z � 1:055)
(7.7)

The structural failure was simulated by manipulating the nonlinear model dynamics.
The failure model (7.8) was obtained for values of the parameters kZ and km, see [HM98a],
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reecting a failure that modi�ed the aerodynamic characteristics. The resulting plant
model is:

nZ
�

=
(z � 0:77)(z � 1:42)

(z � 1)(z � 1:12)(z � 0:975)
(7.8)

As seen from (7.7) and (7.8) major failures lead to a change in the linear internal
model. The severity of these impairments requires controller re-tuning.
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Figure 7.15: Evaluation of the MBPC automatic tuning

The automatic tuning procedure keeps the horizons �xed but adjusts the weights in
(2.10) via the optimisation (7.6) performed with respect to �. The control horizon was
chosen to be the same as the number of states (Nu = 3 in this case) which will ensure
stability even in the worst case, namely when all the modes are unstable, should that
ever occur [RM93]. The small sampling time has determined a long prediction horizon
of Ny = 30 in order to predict 0:3s ahead. This was enough to ensure the performance
criteria required in [SC93]. The nominal values chosen for Q and R were 0:005 and 1,
respectively.

The new weights R = 0:035 and Q = 1:12 obtained from the optimal � were computed
using the procedure described in the Section 7.2.4. The value for the grid step was in this
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case 0:01 but for other cases exhibiting a large ratio between Q and R it has to be much
�ner. Of course the grid step inuences the solution speed.

We show in Figure 7.15 the behaviour of the closed loop with the di�erent controllers
when the system is subjected to a step of 0:1 in the non-dimensional controlled variable
nZ .

In Figure 7.15 the dash-dotted line depicts the behaviour of the nominal plant with an
MBPC controller based on a nominal internal model and nominal tuning. The broken line
shows the impaired plant controlled by the MBPC having information about the failure
via the internal model but still using the cost function nominal tuning. The solid line
shows the behaviour of the impaired plant this time controlled by the re-tuned MBPC
using the newly developed automatic procedure.

7.3 Conclusions

In our case the objective was to �nd a systematic way of recon�guring control systems in
the event of actuator and structural failures. Therefore we consider that the particular
combination of high �delity models, fault detection and isolation (FDI), model approx-
imation/simpli�cation and constrained predictive control enables a generic solution to
recon�guration and adaptation [Mac97].

Assuming reliable FDI, the proposed approach gives:

� A systematic and compact in some cases way of representing high-�delity models,

� Automatic updating of models following failure,

� Real-time production of internal models for MBPC control,

� An autopilot structure which integrates the components shown in Figure 7.9.

The exploitation of the quasi-LPV models �ts naturally in the MBPC framework.
Since no linearisation is involved these models are not limited to standard gain-scheduled
designs. Moreover, there is a wide class of systems exhibiting output nonlinearities. They
are particularly common in aerospace, but there are also process models which can be
expressed in a similar form.

There has been some progress in analysing the stability of certain multi-model control
schemes [NB97, Mor93], although it is too early to know whether these approaches will
be helpful for our proposal.

The automatic tuning procedure represents an extension to a general recon�guration
strategy described in [HM98a]. Depending on the bounds de�ned by the 1-norm compu-
tation we can state for a practical problem how big the failure can be to have the method
coping with it.

The examples tackled and the failure scenarios suggested are common enough to enable
the reader to have a documented opinion about the performance of the fault tolerant
method suggested. Of course more things have to be done in this direction by setting
up a benchmark in terms of failure scenarios but this initial attempts opened already the
path on which we are going to pursue our future research. For a while we are going to
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concentrate on the HIRM model but a possible move towards civil aviation aircraft can
be foreseen. As a validation scheme the control recon�guration concepts will use the full
nonlinear simulation of the aircraft, the main performance goal being to land the aircraft
safely whenever possible.

Although our approach is quite complex, we believe that the complexity is worthwhile
if e�ective scheduling and recon�guration can be achieved. The results of Section 7.2.5
are encouraging, and papers such as [PCS97] indicate that others also take this view.
Addressing the problem in such a manner will have a serious economical impact upon
the sales of the aircraft producing companies. Therefore embedding such a fault tolerant
system into the aircraft's ight controller will result in less incidents or accidents which
will enable open funding of future research.



Chapter 8

Conclusions

8.1 Most signi�cant contributions of the thesis

We will highlight here the contributions of the thesis which we consider most signi�cant
to research and development in the �eld of Model Based Predictive Control (MBPC)
applied to aerospace problems:

A personal view upon the �eld of MBPC control Using the experience accumulated
during the years of research in Cambridge we were able to have a global view upon
the MBPC technique and present various issues connected with. A comparison
between several formulations was provided with two aims: �rst one is to make the
reader aware about the equivalence of them and point out their advantages and
drawbacks and the second one was concerned with providing the necessary infor-
mation to make possible the understanding of the features addressed by the other
contributions included in the thesis.

General guidelines for MBPC tuning illustrated on various examples Tuning the
MPBC controllers is a relatively di�cult task that combines theoretical proved rules
with the experience of the designer materialised in several rules of thumb. We have
tried to deliver this knowledge in an structured manner using several examples, SISO
and MIMO systems. The aim of including this part in the thesis was to give the
reader the possibility to concentrate on the originality of the ideas presented in the
next chapters, assuming the controllers tuning as a secondary task.

A Development Space for MBPC control This part of the thesis answers the ques-
tion \Why an MBPC development space?". A new software was produced in order to
enable us to show in simulation the features of the MBPC controllers. The Matlab
{ Simulink Graphical User Interface (GUI) enable the user to integrate besides pre-
dictive control various other modules such as: aircraft or missile nonlinear models,
various scenarios for landing or failures and control recon�guration features.

A SAS for the RCAM model using MBPC control This contribution consists of ap-
plying Model Based Predictive Control (MBPC) to the GARTEUR - RCAM design

173
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challenge. Separate controllers are proposed for the longitudinal and lateral chan-
nels, each of these having MBPC in the inner loop and a conventional controller in
the outer loop. Emphasis is placed on describing the controller structure and the de-
sign process. Main conclusion of the research is that MBPC is not recommended for
routine use in ight control, but has good potential for higher level control functions
such as: on-board ight management and recon�guration of controllers in event of
damage of the aircraft structure or actuators.

A combined MBPC/H1 autopilot for a civil aircraft This development motivates
the combined use of an H1 loop-shaping controller and MBPC as a method of
designing automatic pilots for civil aircraft. The H1 loop-shaping controller will
provide stability augmentation and guidance. The MBPC controller will act as a
ight manager. The design procedure developed was tested by designing an autopilot
for the Research Civil Aircraft Model (RCAM) used in the GARTEUR design chal-
lenge. The resulting controller was subjected to a standard evaluation procedure.
Satisfactory results were achieved.

Recon�guration and scheduling using high-�delity models and MBPC Advances
towards recon�guration and scheduling in ight control systems using high �delity
models, Fault Detection and Isolation (FDI), model approximation/simpli�cation
and constrained Model Based Predictive Control (MBPC) were made. When ma-
jor failures are encountered in a missile or the HIRM aircraft model controlled by
a nominal MBPC controller these are reected in the internal model via a rel-
atively sophisticated mechanism involving high �delity models. At this stage an
optimisation based on the nominal tuning but updated internal model will provide
the required performance from the impaired system. As an additional feature we
have introduced the on-line computation of the tuning parameters { the controller
cost function weights{ which will enable the controller to match, on-line, a reference
closed loop. Of course this is an initial attempt a�ected by problems such as the
inability to ensure a real time implementation. This algorithm is applied to provide
the MBPC tuning only in the case of major structural impairments.

8.2 Recommendation for future research

� The Development Space represents an alternative to the MatlabMPC toolbox which
can be used in various situations from demonstrating the features of MBPC to the
development of the algorithm involving new on-line optimisation and computation
tools. Making it to include: exponential weighting of the cost function, an identi-
�cation module that will use subspace methods, in�nite horizon formulation with
constraints, variable step times into the future, nonlinear optimisation will complete
this software.

� In the case of the combinedMBPC/H1 autopilot the optimality of the solution has
to be investigated. As long as in practice the lack of interference between the two
controllers was shown now a theorem stating in the general case this property for
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the multi-rate system considered is necessary in order to o�er a complete solution
to the problem.

� The recon�guration and scheduling in ight using quasi-LPV high-�delity models
and MBPC control has to be tested on several systems. Once this stage will be
passed the set including the systems for which recon�guration can be addressed in
this way can be de�ned.

� Regarding the automatic procedure suggested, it would be useful to know its limi-
tations and ways of tuning it for best performance. The value of the cost function
minimised is an indicator of how close the controlled impaired system to the nominal
one is. It is worth while investigating a di�erent method of minimisation such as to
account a priori for such a measure. This is because we cannot expect the impaired
plant to provide the same performance as the nominal closed loop.

� The use of the automatic tuning feature can be also directed towards a tuning of
the MBPC controller such as to approximate an ideal model or other closed loops
including di�erent controllers.



Appendix A

A.1 setup.m

function [error_function] = setup(Ts_NNu_NN2,mml_mmu_rrl_rru,nnl_nnu,

R_small,Q_small,pr);

global ll mm nn mu_sys ns_sys po_sys NNu NN2 Uo Xo Yo X_pred A_new

B_new D_new E_new Ts J parameter fl precision setpoint A_matrix

B_matrix C_matrix D_matrix;

% Reading procedure of the values precised in the graphic interface

Ts = Ts_NNu_NN2(1);

NNu = Ts_NNu_NN2(2);

NN2 = Ts_NNu_NN2(3);

parameter =Ts_NNu_NN2(4);

fl =Ts_NNu_NN2(5);

mml = mml_mmu_rrl_rru(1,:)';

mmu = mml_mmu_rrl_rru(2,:)';

rrl = mml_mmu_rrl_rru(3,:)';

rru = mml_mmu_rrl_rru(4,:)';

nnl = nnl_nnu(1,:)';

nnu = nnl_nnu(2,:)';

precision = pr;

load discrete_model;

% Computation of orginal system dimensions

mu_ini = size(BB,2);

ns_ini = size(AA,1);

po_ini = size(CC,1);

% Feasibiliy of the algorithm

stop=0;

if NNu>NN2

error('??? We cannot operate MBPC algorithm with such settings

for horizons !!');

end

if NN2-NNu+1<3

error ('??? We cannot operate MBPC algorithm with such settings

for horizons !!');

end

if NNu-1<1
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error('??? We cannot operate MBPC algorithm with such settings

for horizons !!');

end

if NN2<1

error('??? We cannot operate MBPC algorithm with such settings

for horizons !!');

end

% A,B,C,D represent the discrete augmented model

% mu_ini = number of system inputs of augmented model

% ns_ini = number of system states of augmented model

% po_ini = number of system outputs of augmented model

A = [ AA , zeros(ns_ini,po_ini);

CC*AA , eye(po_ini,po_ini)];

B = [ BB;

CC*BB];

C = [zeros(po_ini,ns_ini) , eye(po_ini,po_ini)];

D = DD;

A_matrix = A;

B_matrix = B;

C_matrix = C;

D_matrix = D;

% Computation of augmented system dimensions

mu_sys = size(B,2);

ns_sys = size(A,1);

po_sys = size(C,1);

if stop == 0

% Constraints values

% mm = constraints upon inputs

mm1 = [-mml ; -mml];

for k = 3:NNu

mm1 = [mm1 ; -mml];

end;

mm = mm1;

mm1 = [+mmu ;+mmu];

for k = 3:NNu

mm1 = [mm1 ; +mmu];

end;

mm = [mm ; mm1];

% ll = constraints upon rate of inputs change

rr1 = [-rrl ; -rrl];

for k = 3:NNu

rr1 = [rr1 ; -rrl];

end;

ll = rr1;

rr1 = [+rru ; +rru];

for k = 3:NNu

rr1 = [rr1 ; +rru];

end;

ll = [ll ; rr1];

% nn = constraints upon states

nn1 = [-nnl ; -nnl];

for k = 3:NN2

nn1 = [nn1 ; -nnl];

end;

nn = nn1;
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nn1 = [+nnu ; +nnu];

for k = 3:NN2

nn1 = [nn1 ; +nnu];

end;

nn = [nn ; nn1];

% Kalman Filter matrix computation

% Kalman filter with estimated states

% KK = dlqe(A,0.001*eye(ns_sys,mu_sys),C,10000*eye(mu_sys),10*eye(po_sys));

% Kalman filter with measurable states

KK = zeros(ns_sys,po_sys);

% Computaion of matrices involved in the MBPC algorithm

[A_new,B_new,D_new,E_new] =

algorithm(ll,mm,nn,A,B,C,D,KK,NNu,NN2,mu_sys,ns_sys,po_sys,R_small,Q_small);

A_new = sparse(A_new);

B_new = sparse(B_new);

D_new = sparse(D_new);

E_new = sparse(E_new);

end

error_function = [];

A.2 algorithm.m

function [K_mbpc, L_mbpc, R_mbpc] =

algorithm(Z1,Z2,Z3,Z4,Z5,Z6,Z7,Z8,Z9,Z10,Z11,Z12,Z13,Z14,Z15,Z16)

inargs =

'(ll_,mm_,nn_,A_,B_,C_,D_,KK_,NN_u,NN_2,mu_sys_,ns_sys_,po_sys_,

R_small_,Q_small_,para)';

eval(mkargs(inargs,nargin,'ss'));

% Computation of constraint vectors dimension

[sl,cl] = size(ll_);

[sm,cm] = size(mm_);

[sn,cn] = size(nn_);

% Precomputational movements

F_aux_0 = A_-KK_*C_;

G_aux_0 = B_;

H_aux_0 = KK_;

% F_new computation

F_aux_1 = A_*F_aux_0;

F = [F_aux_0;

F_aux_1];

for j = 3:NN_2

F_aux_1 = A_*F_aux_1;

F = [F ;

F_aux_1];

end

F_new = F;

% H_new computation

H_aux_1 = A_*H_aux_0;

H = [H_aux_0;

H_aux_1];

for j = 3:NN_2

H_aux_1 = A_*H_aux_1;
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H = [H ;

H_aux_1];

end

H_new = H;

% G_new computation

G_aux_1 = A_*G_aux_0;

Z = zeros(ns_sys_,mu_sys_);

G_col_aux = [G_aux_0;

G_aux_1];

for j = 3:(NN_2-NN_u+1)

G_aux_1 = A_*G_aux_1;

G_col_aux = [G_col_aux;

G_aux_1 ];

end

G_col = G_col_aux;

for j = 1:(NN_u-1)

G_col = [Z ;

G_col];

end

G_matrix = [G_col G_matrix];

for q = 2:(NN_u-1)

G_aux_1 = A_*G_aux_1;

G_col_aux = [G_col_aux;

G_aux_1 ];

G_col = G_col_aux;

for j = 1:(NN_u-q)

G_col = [Z ;

G_col];

end

G_matrix = [G_col G_matrix];

end

G_aux_1 = A_*G_aux_1;

G_col_aux = [G_col_aux;

G_aux_1 ];

G_col = G_col_aux;

G_matrix = [G_col G_matrix];

G_new = G_matrix;

% C_new computation

C_first = C_;

C_matrix = C_first;

for q = 2:NN_2

Z_l = zeros(po_sys_,(ns_sys_*(q-1)));

Z_u = zeros((po_sys_*(q-1)),ns_sys_);

C_matrix = [C_matrix , Z_u;

Z_l , C_first];

end

C_new = C_matrix;

% Lambda_new computation

Z_m = zeros(mu_sys_);

I_m = eye(mu_sys_);
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for qq = 1:NN_u

if qq == 1

Lambda_line_aux = I_m;

else

Lambda_line_aux = [Lambda_line_aux,I_m];

end

Lambda_line = Lambda_line_aux;

for q = qq:NN_u-1

Lambda_line = [Lambda_line , Z_m];

end

if qq == 1

Lambda = Lambda_line;

else

Lambda = [Lambda ;

Lambda_line];

end

end

Lambda_new = Lambda;

% I_new computation

I_new = Lambda_line';

% Q_new computation

Q1 = Q_small_;

for k = 2:NN_2

Q1 = [Q1;Q_small_];

end

Q = diag(Q1);

% R_new computation

R1 = R_small_;

for k = 2:NN_u

R1 = [R1;R_small_];

end

R = diag(R1);

% A_new computation

A_new_ = G_new'*C_new'*Q*C_new*G_new+R;

% B_new computation

B_new_ = 2*[C_new*F_new C_new*H_new -eye(NN_2*po_sys_)]'*Q*C_new*G_new;

% L_new computation

L_new = [-eye(NN_u*mu_sys_);

eye(NN_u*mu_sys_)];

% M_new computation

M_new = L_new;

% N_new computation

N_new = [-eye(NN_2*ns_sys_);

eye(NN_2*ns_sys_)];

% D_new computation

D_new_ = [ L_new;

M_new*Lambda_new;

N_new*G_new];
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% E_new computation

[r1,c1] = size(M_new*I_new);

[r2,c2] = size(N_new*F_new);

[r3,c3] = size(N_new*H_new);

E_new_ = [ zeros(2*NN_u*mu_sys_,c1) , zeros(2*NN_u*mu_sys_,c2) ,

zeros(2*NN_u*mu_sys_,c3) , eye(2*NN_u*mu_sys_,sl) ,

zeros(2*NN_u*mu_sys_,sm) , zeros(2*NN_u*mu_sys_,sn);

(-M_new*I_new) , zeros(2*NN_u*mu_sys_,c2) ,

zeros(2*NN_u*mu_sys_,c3) , zeros(2*NN_u*mu_sys_,sl) ,

eye(2*NN_u*mu_sys_,sm) , zeros(2*NN_u*mu_sys_,sn);

zeros(2*NN_2*ns_sys_,c1) , (-N_new*F_new) ,

(-N_new*H_new) , zeros(2*NN_2*ns_sys_,sl) ,

zeros(2*NN_2*ns_sys_,sm) , eye(2*NN_2*ns_sys_,sn)];

% Generation of selection matrix

Sel = eye(mu_sys_);

Sel_aux = zeros(mu_sys_);

for i = 1:NN_u-1

Sel = [Sel, Sel_aux];

end

% Additional computations

A_inv = inv(A_new_);

D_t = D_new_';

% Sigma2 computation

S_new_1 = [ eye(ns_sys_,ns_sys_), zeros(ns_sys_,po_sys_),

zeros(ns_sys_,po_sys_)];

S_new_2 = [zeros(po_sys_,ns_sys_), eye(po_sys_,po_sys_),

zeros(po_sys_,po_sys_)];

S_aux_3 = [zeros(po_sys_,ns_sys_), zeros(po_sys_,po_sys_),

eye(po_sys_,po_sys_)];

S_new_3 = [];

for i = 1:NN_2

S_new_3 = [S_new_3; S_aux_3];

end

S_new = [S_new_1; S_new_2; S_new_3];

K_mbpc = Sel*A_inv*(Q*C_new*G_new)';

L_mbpc = [C_new*F_new C_new*H_new];

S_new_mod = [];

for i = 1:NN_2

S_new_mod = [S_new_mod; eye(po_sys_,po_sys_)];

end

R_mbpc = S_new_mod;

A.3 optimiser.m

function [sys,x0] =

optimiser(t, x, u, flag, ll, mm, nn, mu_sys, ns_sys, po_sys, NNu, NN2,

Uo, Xo, Yo, X_pred, A_new, B_new, D_new, E_new, Ts, parameter, fl)

global ll mm nn mu_sys ns_sys po_sys NNu NN2 Uo Xo Yo X_pred A_new

B_new D_new E_new Ts J parameter fl precision setpoint;

% Sample and offset times

offset = 0;

ts = Ts;
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if abs(flag) == 1 % return derivatives

sys = [];

elseif abs(flag) == 2 % return discrete states in sys

sys = [];

elseif flag ==3 % return outputs

% Is it a sample hit (within a tolerance of 1e-8) ?

if abs(round((t-offset)/ts)-(t-offset)/ts)<precision

time = u(1);

U = u(2:(mu_sys+1));

Y = u((mu_sys+2):(mu_sys+po_sys+1));

X_pred1 = u((mu_sys+po_sys+2):(mu_sys+ns_sys+po_sys+1));

comm = u((mu_sys+ns_sys+po_sys+2):(mu_sys+ns_sys+po_sys+po_sys+1));

if t == 0

J = [];

U = Uo;

Y = Yo;

X_pred1 = X_pred;

comm = Yo;

end

S = setpoint(((t*po_sys)+1):((t*po_sys)+(NN2*po_sys)));

% QP initialization

ccc = [X_pred1' Y' S']*B_new;

vvv = B_new'*[X_pred1; Y; S];

bbb = E_new*[U;X_pred1;Y;ll;mm;nn];

AAA = D_new;

QQQ = A_new;

if fl == 0

% Least square approximation (unconstrained approximation)

% The analytic solution in unconstrained case is computed at every step

% Delta_U_0 = -0.5*(1/parameter)*inv(A_new)*B_new'*[X_pred1' Y' S']';

Delta_U_0 = -0.5*inv(A_new)*vvv;

J1 = Delta_U_0'*QQQ*Delta_U_0+ccc*Delta_U_0;

Delta_U = Delta_U_0(1:mu_sys);

elseif fl == 1

% Matlab QP solver, constrained case

Delta_U_0 = qp(2*QQQ,vvv,AAA,bbb);

Delta_U_QP = Delta_U_0;

% Delta_U_0 = -0.5*inv(A_new)*vvv;

% Delta_U_0 = qp(2*QQQ,vvv,[],[],[],[],Delta_U_0);

J1 = Delta_U_0'*QQQ*Delta_U_0+ccc*Delta_U_0;

Delta_U = Delta_U_0(1:mu_sys);

elseif fl == 2

% C Ansi QP solver, constrained case

Delta_U_0 = lqp2(2*sparse(QQQ),vvv,sparse(-AAA),-bbb,[],[],[],0);

J1 = Delta_U_0'*QQQ*Delta_U_0+ccc*Delta_U_0;

Delta_U = Delta_U_0(1:mu_sys);

elseif fl == 3

% MWLS solver, constrained case

V = eye(NNu*mu_sys);

gamma = 4*NNu*mu_sys+2*NN2*ns_sys;

W = eye(gamma);
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big_x = ones(gamma,1);

zet = [U; X_pred1; Y; ll; mm; nn];

Delta_u_opt = -0.5*inv(A_new)*vvv;

ei = D_new*Delta_u_opt-E_new*zet+big_x;

eii = ei;

No_Optimization = 0;

if No_Optimization == 0

if norm(ei,'inf') <= 1

while norm(eii,'inf') > 1

den=0;

for i = 1:gamma

den=den + W(i,i)*abs(ei(i));

end;

for i = 1:gamma

W(i,i) = W(i,i)*abs(ei(i))/den;

end;

V = V/den;

H = (A_new^0.5)'*V*(A_new^0.5)+(D_new)'*W*(D_new);

b = -2*Delta_u_opt'*(A_new^0.5)'*V*(A_new^0.5)+2*(-E_new*zet+big_x)'*W*D_new;

Delta_u_opt = -0.5*inv(H)*b';

eii = D_new*Delta_u_opt-E_new*zet+big_x;

ei= eii;

end;

end;

end;

Delta_U_0 = Delta_u_opt;

J1 = Delta_U_0'*QQQ*Delta_U_0+ccc*Delta_U_0;

Delta_U = Delta_U_0(1:mu_sys);

else

end

J = [J;J1];

sys = Delta_U;

if abs(sys) < 1e-14*ones(mu_sys,1)

sys = zeros(1,mu_sys);

end

else

sys = zeros(1,mu_sys);

end

elseif flag == 4 % retun next sample hit

% ns stores the number of samples

ns = (t-offset)/ts;

% this is the time of nextsample hit

sys = offset+(1+floor(ns+1e-13*(1+ns)))*ts;

elseif flag == 0, % return initial conditions and size informations

sys = zeros(6,1);

sys(1) = 0; % number of continous state

sys(2) = 0; % number discrete state

sys(3) = mu_sys; % number of system outputs

sys(4) = 1+mu_sys+po_sys+ns_sys+po_sys;% number of system inputs

sys(5) = 0; % no roots

sys(6) = 0; % no direct feedthrough

x0 = [];

else

sys = [];

end
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