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Abstract

The focal point of this paper is to develop a measure for closed-loop nonlinearity. In this work,
the Vinnicombe metric and the quasi-linear parameter varying representation of nonlinear systems
are exploited for this purpose. It is expected that the proposed measure can serve as a decision mak-
ing tool for control engineers when deciding whether a linear or a nonlinear control strategy should
be employed to solve their control problems. A continuous stirred tank reactor (CSTR) simulation
example is used to illustrate the proposed measure.
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1 Introduction

In model-based control design, it is often desirable to check the adequacy of a linear model before any
attempts to use a nonlinear controller are made. To achieve this in a systematic manner, linearity
tests are required to ascertain whether a nonlinear controller is really needed. Over the past few
decades, various linearity tests were proposed. Among them, the statistical approach (Ramsey, 1969;
Subba Rao and Gabr, 1980; Hinich, 1982; Brock et al., 1987; Hjellvik and Tjøstheim, 1995; Billings
and Voon, 1983), the norm-bounded error approach (Nikolaou, 1993; Ogunnaike et al., 1993) and
the geometrical approach (Guay et al., 1995) are often encoutered in the literature.

In general, the statistical approach is normally based on the test of a hypothesis using statistical
inference. For example, the regression error specification test (RESET) (Ramsey, 1969) checks the
hypothesis of a signal-to-noise ratio admitting an asymptotic χ2 distribution. On another hand,
the Brock-Dechert-Sheinkman test (BDS) (Brock et al., 1987) exploits the concept of correlation
dimension arising from chaos theory and statistical properties of an independent and identically
distributed (i.i.d.) noise sequence. If the nonlinearity exists, the null hypothesis of the correlation
dimension being an i.i.d. sequence is rejected.

The second class of nonlinearity tests involves measures of norm-bounded deviation of a non-
linear plant from its ideal linear counterpart in the vicinity of a particular operating point, see for
example (Nikolaou, 1993). A slightly different approach, which also falls into this class, is proposed
by (Ogunnaike et al., 1993). In this approach, the changes in the local gain are obtained over a
specific operating region. However, this method is known to suffer from sensitivity to the choice of
perturbation directions.

The third class consists of geometrical approaches proposed by (Guay, 1995; Guay et al., 1995,
1997a,b). Unlike the methods mentioned in the first two classes, which measure the open-loop
nonlinearity, methods in this class are establishing measures for closed-loop nonlinearity, particularly
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for systems with a unity feedback. It is noted that since feedback control is known to modify system’s
open-loop nonlinearity, the closed-loop nonlinearity measure is found to be more appropriate from the
control design perspective. In (Guay et al., 1997b), differential geometry interpretation of the relative
gain array was used to assess the degree of closed-loop nonlinearity for a given plant. Unfortunately,
the accuracy of this method deteriorates due to process noise.

Since its debut, the Vinnicombe (or ν-gap) metric notion developed by (Vinnicombe, 1993) has
attracted much attention particularly in robust control and system identification. In principle, the
ν-gap metric measures the aperture of two closed Hilbert sub-spaces representing the bounded input-
output pairs (i.e. the plant model graph) of two linear (possibly unbounded) operators. Together
with a homotopy condition, the ν-gap metric gives the least conservative robust stability results
(Vinnicombe, 1993). This means that if the ν-gap between two plants is big, then a controller that
gives satisfactory robust stability for one plant will show poor robust stability or even destablize the
other plant. Like wise, if the ν-gap between two plants is small, then a controller which guarantees
robust stability of one plant implies that it robustly stabilizes the other.

Recently, several attempts have been made to extend the idea of the ν-gap metric to nonlinear
systems. For instance, in (Vinnicombe, 1998, 1999) a set of integral quadratic constraints (IQCs)
(Megretski and Rantzer, 1997) was used to describe the system’s nonlinearity. Then, conditions to
which the linear controller fails to stabilize the nonlinear plant were established in terms of IQCs and
the ν-gap metric. Other nonlinear extensions of the ν-gap metric include (Georgiou and Smith, 1997;
Anderson et al., 1998; Vinnicombe, 1999; James et al., 2000; Anderson et al., 2002). In general, the
distance between a nonlinear plant and its linear model can be obtained using the above measures.
To do so, the gap between the graphs of a nonlinear plant and a defined linear model is computed.
The computed gap is then compared against what a linear controller can handle. If the gap is small
in the sense of ν-gap metric, then any linear controller designed for the identified linear plant is
also claimed to maintain the closed-loop stability of the nonlinear plant. This also implies indirectly
that the degree of closed-loop nonlinearity is manageable by the aforementioned linear controller. Of
course any statements about performance would be still conservative. Unequivocally, ν-gap metric
can be seen as a potential powerful tool to assess the degree of closed-loop nonlinearity indirectly.
At the best knowledge of the authors, none of the metrics mentioned above are exploited to provide
a reliable closed-loop nonlinearity measure. Hence, the ν-gap metric is used in a completely different
context in this work.

A nonlinear model (or operator), which captures system’s nonlinearity, is crucial to the success
of the proposed algorithm. In this development, a Quasi-Linear Parameter Varying (quasi-LPV)
(Shamma and Cloutier, 1993) is an appealing candidate owing to the following reasons: (i) plant’s
nonlinearity can be captured by selecting appropriate scheduling parameters; (ii) it is not a linearized
version of the nonlinear plant, instead it is derived through a state transformation; (iii) a family of
local linear models can be easily obtained by merely freezing the scheduling parameters. In this
light, the focal point of this paper is to develop an indirect closed-loop nonlinearity measure by
exploiting the ν-gap metric notion and the special structure of systems which admit a quasi-LPV
transformation.

This paper is organized as follows. Section 2 gives a brief review on the quasi-LPV representation,
the H∞ loop-shaping controller design procedure and the linear ν-gap metric notion. Next, a
computational algorithm is presented in Section 3. In Section 4, an example involving the control
of a continuous stirred tank reactor (CSTR) is used to illustrate the proposed measure in Section 4.
Finally, some concluding remarks are drawn in Section 5.
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2 Briefing on Quasi-LPV, Vinnicombe Metric and H∞ Loop-Shaping

2.1 Quasi-LPV Transformation

Any plant exhibiting output nonlinearity such as the one in Eq. (1)

d

dt

[
y
xr

]
= φ(y) +

[
Ã11 Ã12

Ã21 Ã22

] [
y
xr

]
+

[
B̃1(y)
B̃2(y)

]
u, (1)

can be easily recast into a quasi-LPV representation as shown in Eq. (2) provided that xr,eq is
differentiable with respect to the scheduling parameter y:

d

dt

[
y

xr − xr,eq(y)

]
=

[
0 Ã12(y)
0 Ã22(y)− dxr,eq(y)

dy Ã12(y)

][
y

xr − xr,eq(y)

]

+

[
B̃1(y)

B̃2(y)− dxr,eq(y)
dy B̃1(y)

]
(u− ueq(y)) (2)

In the above, xr,eq(y) denotes a family of the equilibrium points obtained by setting the derivatives
in Eq. (1) to zero. Note that for plants that do not exhibit output nonlinearity, the quasi-LPV
representation approximates the actual plant up to the first order approximation of all other states
except the scheduling state.

In order to use Eq. (2) for control purposes, the state dependent ueq(y) needs to be known.
Any incorrect estimation of ueq(y) may jeopardize the robust property of the closed-loop system. To
avoid this problem, an integrator at the plant input, which stores the trim input value ueq(y), can
be added as suggested in Shamma and Cloutier (1993). As a consequence Eq. (2) can be rewritten
as follows:

d

dt




y
xr − xr,eq(y)
u− ueq(y)


 =




0 Ã12(y) B̃1(y)
0 Ã22(y)− dxr,eq(y)

dy Ã12(y) B̃2(y)− dxeq(y)
dy B̃1(y)

0 −dueq(y)
dy Ã12(y) −dueq(y)

dy B̃1(y)







y
xr − xr,eq(y)
u− ueq(y)




+




0
0
1


 v (3)

2.2 H∞ Loop-Shaping

Proposed by McFarlane and Glover (1992), the H∞ loop-shaping controller design method is based
on the H∞ robust stabilization and classical loop-shaping technique. The H∞ loop-shaping consists
of two major steps:

1. The open-loop plant is shaped using pre- and post-compensators to give a desired open-loop
shape. Normally, it is desirable to shape the plant such that the maximum singular value
frequency plot has a -20dB/decade slope at the crossover frequency.

2. Denoted by Ps = W1PW2, the shaped plant is then robustly stabilized with respect to coprime
factor uncertainty using a controller synthesis method based on an H∞ optimization.

It is noted that the H∞ norm of the closed-loop transfer function is minimized in the above H∞
robust stabilization synthesis. Denoted by bP,C , the reciprocal of Eq. (4) is often called the gener-
alized stability margin which has a close relationship with the ν-gap metric. Mathematically, the
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genralized stability margin is defined as:

bP,C ,





∥∥∥∥∥

[
P

I

]
(I − CP )−1

[
−C I

]∥∥∥∥∥
−1

∞
if

[
I P

C I

]−1

∈ H∞

0, otherwise.

(4)

For a more detail treatment of the H∞ loop-shaping, see (McFarlane and Glover, 1992).

2.3 Vinnicombe Metric

Given two (possibly unbounded) linear operators, the ν-gap metric is defined in terms of P1 and P2

as:

δν(P1, P2) ,




‖(I + P2P

∗
2 )−

1
2 (P1 − P2)(I + P1P

∗
1 )−

1
2 ‖∞, if Index(P1, P2) = 0

1, otherwise
(5)

where, P ∗ = P T (−s) and Index(P1, P2) , η(P1, P ∗
2 )− deg(P2). In the above, η and deg denote the

number of open RHP poles and McMillan degree, respectively.
Note that the index can be determined from the “A” state matrix of a state-space realization of

[P1, −P ∗
2 ] which is given by:

AP1,P ∗2 =
[−(A2 −B2WDT

1 C2)T CT
2 Y C1

B1W
T BT

2 A1 −B1D
T
2 Y C1

]
, (6)

where W := (I + DT
1 D2)−1, Y := (I + D1D

T
2 )−1 and (A1, B1, C1, D1) and (A2, B2, C2, D2) are

state-space realizations of P1 and P2, respectively, see (Vinnicombe, 1999, 2001). It follows that

Index(P1, P2) = 0 ⇐⇒ AP1,P ∗2 has precisely deg(P2) eigenvalues with a positive real part.

Together with the bP,C , the following theorem is one of the main results arising from the ν-gap metric
theory.

Theorem 1. Given a nominal plant P1 ∈ Pp×q, a compensator C ∈ Pq×p and a constant β, then:
[P2, C] is stable for all plants P2 ∈ Pp×q satisfying δν(P1, P2) ≤ β iff bP1,C > β.

For a quasi-LPV system Pp×q(y) with a gridding space Ω of a scheduling parameter y, the above
theorem can be restated as follows:

Corollary 1. Given a nominal plant Pi(y) ∈ Pp×q(y) obtained by freezing the scheduling parameter
y ∈ Ω at operating point yi, a compensator C ∈ Pq×p and a constant γ, then: [Pj(y), C] is stable
for all plants Pj(y) ∈ Pp×q(y), ∀y ∈ Ω satisfying δν(Pi(y), Pj(y)) ≤ γ iff bPi(y),C > γ.

3 Vinnicombe Metric As A Nonlinearity Measure

In this section, a nonlinear measure algorithm based on a ν-gap metric and a quasi-LPV representa-
tion is proposed. The basic idea behind the proposed approach is that if the uncertainty ball induced
by plant’s nonlinearity is larger than what the best available linear controller can cope with, then the
degree of closed-loop nonlinearity is not manageable by the designed linear controller. This means
that the designed controller stabilizes the plant at some operating points where the nonlinearity is
mild and it destabilizes the plant at other points where the effect of the nonlinearity becomes promi-
nent. Under such a condition, the control engineer might want to consider a nonlinear controller
design approach to address the control problems. Conversely, if the aforementioned uncertainty ball
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is small and within the tolerance of the designed linear controller, then this controller should be
sufficient to tackle the stabilization problem.

However, to implement this idea, one needs to define how large the uncertainty ball really is and
how best the nominal model is. In this approach, the ν-gap metric is used to quantify the size of
an uncertainty ball and also to justify what is meant by the best nominal model. A computational
algorithm summarizing the proposed measure can be defined as follows.

3.1 The Computational Algorithm

1. Recast the nonlinear system into a quasi-LPV representation.

2. Grid the scheduling parameter space. A set of linear models is then obtained by simply freezing
the scheduling parameter.

3. For each model at operating point yi ∈ Ω, the ν-gaps to all other models are obtained (i.e.
δi = {δν(Pi(y), Pj(y)), ∀ Pj(y) ∈ Pp×q(y), ∀y ∈ Ω}).

4. Denoted by P0(y), the best nominal model for closed-loop control is the one that has the
smallest ∞-norm δ∗ in δi, ∀ i.

5. Apply pre- and post-compensators to the best nominal model P0(y) (i.e. Ps(y) = W1P0(y)W2)
such that the maximum singular value of the shaped plant has a desired loop-shape.

6. Since the ν-gap metric is sensitive to scaling, the same compensators obtained from step 5 are
applied to all plants in Pp×q(y). Repeat steps 3 to 5 until the weights W1 and W2 and the
choice of the best nominal model converge.

7. Design a robust linear controller using the H∞ loop-shaping for Ps(y) and compute bPC,max,
the maximum uncertainty ball that the resulting linear controller can tolerate.

8. If the bPC,max is small (bPC,max < 0.25), go to step 5. (This often indicates that the chosen loop
shape is incompatible with robust stability requirements – see McFarlane and Glover (1990)).

9. Find the farthest point P ′(y) ∈ {Pp×q(y)∩ y ∈ Ω} (in the ν gap metric sense) in the polytope
centered at P0(y). The ν-gap between P0(y) and P ′(y) is denoted by δ′.

10. By Corollary 1, it is obvious that if the bPC,max is greater than δ′, the nonlinearity is manageable
by the designed linear controller.

11. If the bPC,max < δ′, the nonlinearity is larger than what the linear controller can cope with and
hence a nonlinear controller becomes mandatory for a stable closed-loop.

4 A Continuous Stirred Tank Reactor Example

A schematic diagram of a CSTR is depicted in Figure 1. Consider an irreversible, first-order, exother-
mic reaction from component A to component B that occurs in the reactor. Assuming constant liquid
volume, the following nonlinear ordinary differential equations describe the CSTR process dynamics
(Henson and Seborg, 1997).

dCA

dt
=

q

V
(CAf − CA)− ko exp(− E

RT
)CA

dT

dt
=

q

V
(Tf − T ) + k2CA + k1(Tc − T ) (7)

with k1 = UA
V ρCp

and k2 = (−∆H)
ρCp

k0 exp(− E
RT ). Where CA, T , and Tc represent reactor effluent

concentration of component A, reactor temperature, and coolant temperature, respectively. The
control objective is to provide a good control of CA in the temperature range from T = 300 K to
373 K by manipulating Tc.
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Figure 1: Continuous stirred tank reactor

To begin, Eq. (7) is first recast into a quasi-LPV representation via a state transformation. In
this example, the reactor temperature is chosen as scheduling parameter. The resulting quasi-LPV
model is

d

dt




T
CA − CA,eq

Tc − Tc,eq


 =




0 k2 k1

0 −( q
V + k0 exp(− E

RT ))− dCA,eq

dT k2 −dCA,eq

dT k1

0 −dTc,eq

dT k2 −dTc,eq

dT k1







T
CA − CA,eq

Tc − Tc,eq




+




0
0
1


 v (8)

By using a 50 scheduling parameter grid and employing the computational algorithm proposed in
Section 3, the best model P0(y) is the one corresponding to T = 341 K. Based on this nominal model,
a pre-compensator W1 = 1030s+400

s+50 and a unity post-compensator are applied to P0(y) such that
the closed-loop bandwidth is 20 rad/s. As required by the H∞ loop-shaping procedure, the slope
of the loop-shape at the crossover frequency is -20dB/decade as in Figure 2. Since it is known that
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Figure 2: Unshaped (dotted) and shaped (solid) loop gains
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the ν-gap metric is sensitive to scaling, it is desirable to check how does these compensators affect
the choice of the nominal design model. Figures 3 and 4 show the ν-gap between a chosen model at
temperature Ti and a model at temperature Tj ∀ Ti, Ti ∈ [300 373]K. A significant reduction in the
ν-gap is observed when the compensators are applied to the quasi-LPV plant at all gridding points.
However, it is also interesting to note that the best model remains the same. In addition, the model
P ′(y) that was located at the farthest point (in the ν-gap sense) along the scheduling parameter
trajectory also remains unchanged. In this case, that model is the one at T = 300 K.
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Figure 3: Left: Unshaped ν-gap over all gridding space. Right: Unshaped ν-gap for
nominal model at T=341 K
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Figure 4: Left: Shaped ν-gap over all gridding space. Right: Shaped ν-gap for
nominal model at T=341 K

At first glance, Figure 3 suggests that the ν-gap between P0(y) and P ′(y) is 0.9666. This implies
that the uncertainty induced by the closed-loop nonlinearity is very large and may not be manageble
by a single linear controller. As shown in Figure 5, the servo responses of the CSTR under a unity
feedback are unacceptable (i.e. the process is at the brink of instability). Note that this observation
is consistent with the result obtained from the ν-gap metric calculations.

However, as one can see in Figure 4, the aforementioned ν-gap was reduced to 0.1964 after
applying the appropriate compensators. Based on the best model and the loop-shape given in
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Figure 5: Upper: Servo responses of the CSTR under unity feedback. T (solid),
setpoint (dotted). Lower: The corresponding system command, Tc (solid)
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Figure 2, a linear H∞ controller is obtained via the H∞ loop-shaping design method discussed in
Section 2. For this design, the bPC,max is found to be 0.4440 which is equivalent to 44% coprime
factor uncertainty. This suggests that the designed controller is sufficient to cope with the closed-loop
nonlinearity when the plant is pre- and post-compensated. Simulation results, as shown in Figure 6,
confirm this claim.

5 Conclusion

An indirect closed-loop nonlinearity measure using the ν-gap metric and the quasi-LPV representa-
tion is proposed. The contribution of this work is two-fold. Firstly, it acts as an effective decision
making tool for the control engineers when they are faced with the problem of deciding whether to
stick to the linear control strategy or use a nonlinear control approach in solving their problems. Sec-
ondly, for a certain class of nonlinear systems, the proposed measure can be used as a way to design
compensators which reduce the closed-loop nonlinearity. However, a systematic approach to closed-
loop nonlinearity reduction needs a more indepth study. As an alternative to the gridding of the
scheduling parameter space, a coprime factorization of the quasi-LPV system can produce promising
results. This is the path on which our research is moving onto. Dealing with non-differentiable
nonlinearity such as hysteresis can be difficult. The proposed method can be extended to handle
this type of nonlinearity by embedding such a nonlinearity using an IQC followed by a quasi-LPV
transformation of the remaining model. This will be an extension of the work by (Vinnicombe,
1998).
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