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Abstract

The focal point of this paper is to develop a measure of
closed-loop nonlinearity. In this work, the Vinnicombe met-
ric and the Quasi-Linear Parameter Varying representation
of a nonlinear system are exploited for this purpose. It is
expected that the proposed measure can serve as a decision
making tool for control engineers when considering whether
a linear or a nonlinear control strategy should be employed
to close the loop.

1 Introduction

Almost all processes are inherently nonlinear, however, this
does not require the use of nonlinear control. For instance,
[15] has shown that the control of a continuous stirred tank
reactor (CSTR) temperature over a wide operating range
can be achieved by using a single linear controller, in spite
of its well known highly nonlinear behavior. Similar obser-
vations are also found in [4].

Feedback control normally employed to handle uncertainty,
plant/model mismatch and noise attenuation, is also known
to modify closed-loop nonlinearity. Measuring open-loop
nonlinearity gives little information on the severity of
closed-loop nonlinearity. Therefore, a systematic approach
to quantify closed-loop nonlinearity is needed in order to
check the adequacy of a linear controller before any at-
tempts of using a nonlinear controller are made.

Over the past few decades, various linearity tests were pro-
posed [1, 2, 3, 8, 12, 13]. However, most of them are mea-
suring open-loop nonlinearity and are restricted to open-
loop stable systems. Recently, several attempts have been
made to tackle the quantification of closed-loop nonlinear-
ity [4, 9]. Particularly, [4] proposes a measure based on the
distance between a closed-loop containing a nonlinear pro-
cess and a linear controller, and an ideal linear closed-loop.
Albeit started independently, our approach is philosoph-
ically similar to that of [4]. In contrast to [4], the gap
between the graphs (i.e. all bounded input-output pairs)
of a nonlinear operator and its linear approximation is ex-
ploited in this work.

The gap metric framework has been first introduced to the

control community by Zames and El-Sakkary [19] and later
popularized by T.T. Georgiou and M.C. Smith, see [5, 6, 7].
The advantages of using the gap metric are that the re-
sulting closed-loop nonlinearity measure is not restricted
to any specific types of uncertainty representations such
as additive or multiplicative, and it can handle open-loop
unstable systems. In this work we show that when the non-
linear system can be approximated by a set of linear models
representing the local dynamics of the systems at different
operating points, the Vinnicombe (or ν-gap, denote by δν)
metric can be used to measure the closed-loop nonlinearity.

Since its debut, the ν-gap metric notion has attracted much
attention particularly in robust control and system identi-
fication. Like the gap metric, the ν-gap metric measures
the aperture of two closed Hilbert sub-spaces representing
the graphs of two linear (possibly unbounded) operators.
However, the strength of the ν-gap metric, as compared
to the gap metric, lies in the fact that it gives the least
conservative robust stability results whenever a homotopy
condition is satisfied [16]. In this sense if the ν-gap between
two plants is big, then a controller that gives satisfactory
robust stability for one plant will show poor robust stability
or even destablize the other plant. Likewise, if the ν-gap
between two plants is small, then a controller which guar-
antees robust stability of one plant implies that it robustly
stabilizes the other.

This work, assumes that the difference between a closed-
loop containing a nonlinear plant and a unity feedback and
an ideal linear closed-loop with a unity feedback is mainly
due to closed-loop nonlinearity. This implies that these
two closed-loops are subject to the same disturbances and
noises injected at the same points in the loops. If the closed-
loop nonlinearity (in gap terms, the uncertainty induced by
the nonlinearity) is insignificant relative to what the best
controller can cope with, then the closed-loop nonlinearity
is said to be manageable by a linear controller. Otherwise,
the closed-loop nonlinearity is significant, thus, the control
design engineer might want to consider a nonlinear control
strategy.

In this approach, the ν-gap metric is used to quantify the
degree of closed-loop nonlinearity. To do so, the nonlinear
plant is first decomposed into a set of linear models rep-
resenting the nonlinear plant’s local dynamics. Then the
ν-gap metrics of all the possible pairs in the member set
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are computed. The best nominal model in the sense that
it induces the smallest uncertainty ball is the one with the
smallest ν-gap. The radius of this uncertainty ball is simply
the maximum ν-gap in the member set. Since it is obvious
that closed-loop nonlinearity not only depends on the plant
itself, but also is a function of the controller, a linear con-
troller is needed to assess the degree of nonlinearity. If the
maximum ν-gap is smaller than what the best linear con-
troller can cope with (which is typically measured in terms
of the generalized stability margin), then this controller is
claimed to maintain the closed-loop stability of the nonlin-
ear plant. This means, in other words, that the closed-loop
nonlinearity is manageable by a linear controller. Of course
any statements about performance would be still conserva-
tive. Note that, at the best of authors’ knowledge, none
of the metrics mentioned above are exploited to provide a
reliable closed-loop nonlinearity measure, hence, the ν-gap
metric is used here in a completely novel context.

A nonlinear model (or operator), which captures the sys-
tem’s nonlinearity, is crucial for the success of the proposed
measure. In this light, the focal point of this paper is to
develop an indirect closed-loop nonlinearity measure by ex-
ploiting the ν-gap metric notion and the special structure
of systems which admit a Quasi-LPV transformation.

This paper is organized as follows. Section 2 starts with
notations used in this paper followed by a brief review on
the Quasi-LPV representation and some preliminary results
on the Quasi-LPV coprime factorizations together with a
brief introduction to the H∞ loop-shaping controller de-
sign procedure for completeness. Next, the Quasi-LPV ν-
gap metric and a computational algorithm are presented
in Section 3. In Section 4, an example involving a missile
control problem is used to illustrate the proposed measure.
Finally, some concluding remarks are drawn in Section 5.

2 Notation and Preliminaries

The notation used in this paper is standard: L2 is the finite
energy signal space and L

+
2 denotes signals in L2[0,∞).

G∗(s) = GT (−s). σ̄(·) and wno denote the maximum sin-
gular value and winding number, respectively. The schedul-
ing parameter space is denoted by by Ω. In this sense,
SΩ denotes all causal, Qe stable, finite-dimensional Quasi-
LPV systems defined in Ω. S−

Ω represents the elements in
SΩ that have causal inverses. [P, C] denotes the standard
closed-loop containing the plant P and the controller C.

2.1 Quasi-LPV Transformation

Any plant exhibiting an output nonlinearity such as the
one in Eq.(1)

d

dt

[

ρ

z

]

= φ(ρ) +

[

Ã(ρ)11 Ã(ρ)12

Ã(ρ)21 Ã(ρ)22

]

[

ρ

z

]

+

[

B̃1(ρ)

B̃2(ρ)

]

u, (1)

can be recast into a Quasi-LPV representation as shown in
Eq.(2) provided that zeq(ρ) is differentiable with respect to
the state scheduling parameter ρ:

d

dt

[ ρ

z−zeq(ρ)

]

= A(ρ)

[ ρ

z−zeq(ρ)

]

+ B(ρ) ( u−ueq(ρ) ) (2)

where

A(ρ) =

[

0 Ã12(ρ)

0 Ã22(ρ)−
dzeq(ρ)

dρ Ã12(ρ)

]

and

B(ρ) =

[

B̃1(ρ)

B̃2(ρ)−
dzeq(ρ)

dρ B̃1(ρ)

]

In the above, zeq(ρ) denotes a family of equilibrium points
obtained by setting the derivatives in Eq.(1) to zero. Note
that for plants that do not exhibit output nonlinearity,
the Quasi-LPV representation can approximate the actual
plant up to a first order approximation of all other states
except the scheduling state.

In order to use Eq.(2) for control purposes, the state depen-
dent ueq(ρ) needs to be known. Any incorrect estimation
of ueq(ρ) may jeopardize the robust property of the closed-
loop system. To avoid this problem, an integrator at the
plant input, which stores the trim input value ueq(ρ), can
be added as suggested in [14]. As a consequence Eq.(2) can
be rewritten as follows:

d

dt

[

ρ
z−zeq(ρ)

u−ueq(ρ)

]

= Â(ρ)

[

ρ
z−zeq(ρ)

u−ueq(ρ)

]

+
[

0
0
1

]

v (3)

where

Â(ρ) =





0 Ã12(ρ) B̃1(ρ)

0 Ã22(ρ)−
dzeq(ρ)

dρ Ã12(ρ) B̃2(ρ)−
dxeq(ρ)

dρ B̃1(ρ)

0 −
dueq(ρ)

dρ Ã12(ρ) −
dueq(ρ)

dρ B̃1(ρ)





In this development, a Quasi-LPV [14] is an appealing can-
didate owing to the following reasons: (i) plant’s nonlin-
earity can be captured by selecting appropriate scheduling
parameters; (ii) it is not a linearized version of the nonlinear
plant, instead it is derived through a state transformation;
(iii) a family of local linear models can be easily obtained
by merely freezing the scheduling parameters.

2.2 Quasi-LPV Coprime Factorizations

In the sequel, we will consider a Quasi-LPV system which
has the following state-space realization

ẋ(t) = A(ρ)x(t) + B(ρ)u(t) (4)

y(t) = C(ρ)x(t) + D(ρ)u(t)

where ρ ⊆ x(t) is the scheduling parameter residing in the
scheduling space Ω.

Definition 1 (Extended Quadratic Stability). For a
dynamic system characterized by the following state-space
equation

ẋ(t) = A(ρ)x(t), ρ ∈ Ω (5)
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the system is said to be extended quadratic stable (Qe sta-
ble) if there exists a real differentiable positive-definite ma-
trix function P (ρ) = P T (ρ) > 0 such that

d

dt
P (ρ) + A(ρ)T P (ρ) + P (ρ)A(ρ) < 0, ∀ρ ∈ Ω. (6)

Lemma 1. Any Qe stable system is exponentially stable,
if ∃ constants α, β > 0 such that

σ̄(Φρ(t, τ)) ≤ αe−β(t−τ) ∀ρ ∈ Ω

where Φρ(t, τ) denotes the transition matrix for Eq.(5)

Proof. see [18, pg. 16]

Definition 2 (Qe stabilizable). The Quasi-LPV system
given in Eq.(5) is said to be Qe stabilizable if ∃ a continuous
matrix function F (ρ), such that the following system is Qe

stable ∀ρ ∈ Ω

ẋ(t) = {A(ρ) + B(ρ)F (ρ)}x(t).

Definition 3 (Qe detectable). The Quasi-LPV system
given in Eq.(5) is said to be Qe detectable if ∃ a continuous
matrix function H(ρ), such that the following system is Qe

stable ∀ρ ∈ Ω

ẋ(t) = {A(ρ) + H(ρ)C(ρ)}x(t).

Lemma 2 (Quasi-LPV Coprime Factorizations). Let
Pρ have a continuous, Qe stabilizable and Qe detectable
state-space realization

Pρ :=

[

A(ρ) B(ρ)
C(ρ) D(ρ)

]

.

Let F (ρ) and H(ρ) be continuous matrix functions such
that ẋ(t) = {A(ρ) + B(ρ)F (ρ)}x(t) and ẋ(t) = {A(ρ) +
H(ρ)C(ρ)}x(t) are Qe stable ∀ρ ∈ Ω and define (dropping
ρ dependence for notation simplicity)

[

Nρ Ỹρ

Mρ X̃ρ

]

:=





A + BF B −H

C + DF D I

F I 0



 (7)

[

Xρ Yρ

M̃ρ −Ñρ

]

:=





A + HC H −(B + HD)
F 0 I

C I −D



 , (8)

then
[

Xρ Yρ

M̃ρ −Ñρ

] [

Nρ Ỹρ

Mρ X̃ρ

]

= I (9)

Proof. see [18, pg. 149]

Definition 4 (Contractive right coprime factoriza-
tion). Let Nρ ∈ SΩ and Mρ ∈ S−

Ω have the same number
of columns. The ordered pair [Nρ, Mρ] represents a con-
tractive right coprime factorization (crcf) of Pρ over the
ring SΩ, if

1. Pρ = NρM
−1
ρ ;

2. ∃ Xρ, Yρ ∈ SΩ such that XρNρ + YρMρ = I;

3. [NT
ρ MT

ρ ]T is a contraction in the following sense

sup
ρ∈Ω

sup
{u∈L

+
2 :‖u‖2≤1}

∥

∥

∥

[

Nρ

Mρ

]

u
∥

∥

∥
≤ 1 (10)

Definition 5. Define the contractive right graph symbol
Gρ : L

+
2 7→ L

+
2 ⊗ L

+
2 of an LPV system Pρ as follows

Gρ :=
[

Nρ

Mρ

]

, (11)

where [Nρ, Mρ] is a crcf of Pρ.

Remark 1: It is obvious that Gρ generates the set of all
stable input-output pairs of the LPV system Pρ by allowing
Gρ to act on the whole of L

+
2 .

Theorem 1 (Quasi-LPV Graph). Let Pρ have a con-
tinuous, Qe stabilizable and Qe detectable realization, then
a contractive right graph symbol of Pρ is given by

Gρ :=





A + BF BS− 1
2

C + DF DS− 1
2

F S− 1
2



 (12)

where F = −S−1(BT X1 + DT C), S = I + DT D, R =
I + DDT and X1 is a solution of the generalized control
Riccati inequality (GCRI)

Ẋ1 + (A − BS−1DT C)T X1 + X1(A − BS−1DT C) (13)

−X1BS−1BT X1 + CT R−1C < 0 ∀ρ ∈ Ω

Proof. see [18, pg. 150]

Remark 2: The results as stated here are for right coprime
fractorizations. The dual results are easily obtained for left
coprime factorizations.

Remark 3: Analogous to [16], the Quasi-LPV graph in
Eq.(12) is used in the next section to define the correspond-
ing Quasi-LPV ν-gap metric.

2.3 H
∞

Loop-Shaping

Proposed by [10], the H∞ loop-shaping controller design
method is based on the H∞ robust stabilization and classi-
cal loop-shaping technique. The H∞ loop-shaping consists
of two major steps:

1. The open-loop plant is shaped using pre- and post-
compensators to give a desired open-loop shape. Nor-
mally, it is desirable to shape the plant such that
the maximum singular value frequency plot has a -
20dB/decade slope at the crossover frequency.
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2. Denoted by Ps = W2PW1, the shaped plant is then
robustly stabilized with respect to coprime factor un-
certainty using a controller synthesis method based on
an H∞ optimization.

It is noted that the H∞ norm of the closed-loop transfer
function is minimized in the above H∞ robust stabilization
synthesis. Denoted by bP,C , the reciprocal of Eq. (14) is
often called the generalized stability margin which has a
close relationship with the ν-gap metric. Mathematically,
the genralized stability margin is defined as:

bP,C :=











‖[ P
I ] (I−CP )−1 [−C I ]‖

−1

∞ , if [ I P
C I ]

−1
∈ H∞

0, otherwise.

(14)
For a more detail treatment of the H∞ loop-shaping, see
[10].

3 Main Results

Having defined the Quasi-LPV coprime factorizations, the
Quasi-LPV ν-gap metric can be defined as follows:

Definition 6 (The Quasi-LPV ν-gap Metric). The
Quasi-LPV ν-gap δQLP V

ν is given by

δQLP V
ν (P (ρi),P (ρj)):=



















































‖G̃ρj Gρi‖∞ if det(G∗
ρj

Gρi)(jω) 6= 0

∀ω ∈ (−∞,∞)and
wno det(G∗

ρj
Gρi )(jω)

= 0, ∀ρi, ρj ∈ Ω

1 otherwise

where Gρi and G̃ρj denote the normalized right graph sym-
bol of P (ρi) and the normalized left graph symbol of P (ρj),
respectively as defined in Theorem 1. It is obvious that the
δQLP V
ν = δν whenever ρi, ρj are frozen. Together with the

bP,C , the following theorem is one of the main results aris-
ing from the ν-gap metric notion.

Theorem 2. Given a nominal plant P (ρi) ∈ Pρ obtained
by freezing the scheduling parameter ρi ∈ Ω, a controller C

and a constant γ, then: [P (ρj), C] is stable for all plants
P (ρj), ∀ρj ∈ Ω satisfying δQLP V

ν (P (ρi), P (ρj)) ≤ γ iff
bP (ρi),C > γ.

Proof. Since δQLP V
ν = δν whenever ρi, ρj are frozen, the

proof follows from that of [16], Theorem 4.5.

Theorem 3. Given a nominal plant P (ρi) ∈ Pρ and
perturbed plants P (ρj) ∈ Pρ ∀ρj ∈ Ω obtained by freez-
ing the scheduling parameter at ρi, ρj ∈ Ω respectively
and a constant γ < supC bP (ρi),C , then: [P (ρj), C] is
stable for all controllers, C, satisfying bP (ρi),C > γ iff
δQLP V
ν (P (ρi), P (ρj)) ≤ γ ∀ρj ∈ Ω.

Proof. See [16], Theorem 4.5.

The novel computational algorithm for closed-loop
nonlinearity

1. Recast the nonlinear system into a Quasi-LPV form
and grid the scheduling parameter space. A set of
linear models is obtained by freezing the scheduling
parameter.

2. For each model, the ν-gaps to all other models are
obtained. δi = {δQLP V

ν (P (ρi), P (ρj)), ∀ ρj ∈ Ω}.

3. Denote by L∗, the best nominal model for closed-loop
control is the one that has the smallest ∞-norm in
δi, ∀ i.

4. Apply pre- and post-compensators to L∗. (Ls =
W2L

∗W1). Repeat step 2, but applying W1 and W2

to all P (ρi) and P (ρj) this time. Obtain the new L∗

according to step 3 and subsequently the new Ls.

5. Design a robust controller using H∞ loop-shaping for
Ls and compute bPC,max, the maximum uncertainty
ball that the linear controller can tolerate.

6. Find the farthest point L′ (in the ν gap metric sense)
in the polytope centered at L∗. The ν-gap between L∗

and L′ is denoted by δ′.

7. By empolying Theorem 2, the closed-loop nonlinear-
ity is manageable by the designed linear controller if
bPC,max > δ′.

8. By using Theorem 3, the closed-loop nonlinearity is
larger than what the linear controller can cope with if
bPC,max < δ′.

4 A Missile Control Problem

A missile control problem is used to illustrate the effective-
ness of the proposed nonlinearity measure. The model is
adopted from [14]. The control objective is to control nor-
mal accelaration, nZ , by manipulating tail fin deflections.
To achieve this, two control loops, namely an inner-loop
and an outer-loop, are normally used. The inner-loop is
responsible for controlling the angle of attack, α, using fin
deflections, δ, while the outer-loop is used to control the nZ

by providing appropriate setpoints for α. However, since
our main concern is on closed-loop nonlinearity measure,
only the inner-loop design is considered here.

The Quasi-LPV representation of the missile dynamics is
given as follows (see [14] for the model description and sim-
ulation parameters):

d

dt

[

α
q−qeq(α)
δ−δeq(α)

]

= A(α)

[

α
q−qeq(α)
δ−δeq(α)

]

+
[

0
0
1

]

v (15)
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where

A(α) =





0 1 fgQS cos(α/f)bz
W V

0 −
dqeq(α)

dα
fQSdbm

Iyy
−

dqeq(α)

dα
fgQS cos(α/f)bz

W V

0 −
dδeq(α)

dα −
dδeq(α)

dα
fgQS cos(α/f)bz

W V





nZ − nZ,eq =
QSbZ

W
(δ − δeq) (16)

By using 50 grid points on the scheduling parameter α, Fig-
ure 1 shows the unshaped ν-gap contour between a chosen
nominal model at αi and all other models at αj ∈ Ω. It
is interesting to note that the contour is symmetric over
the x-axis and the two nominal models at ±8.75 are in fact
identical. The best linear approximations, L∗, are those at
αi = ±8.75◦. Denote by L′, the most dissimilar models
from L∗ are the ones at αj = 0◦,±30◦ and the correspond-
ing ν-gaps are 0.94. This means that any controllers that
give satisfactory stability of the nominal plant will likely
to destabilize the resulting closed-loop as the scheduling
parameter is approaching 0◦ or ±30◦. In fact, no mat-
ter which nominal model is chosen, the corresponding un-
shaped ν-gap exceeds 0.9 at some points when the angle of
attack is evolved around ±30◦.
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Figure 1: Unshaped ν gap contour

However, since the ν-gap is sensitive to dynamic scaling,
an appropriate weighting of the nominal plant is required.
This is done by employing the first step of the H∞ loop-
shaping technique. In this case, the corresponding pre- and
post-compensators are:

W1 = I3 and W2 =





58345(s+10)2

(s+300)(s+250)
0 0

0 3(40s+400)
s+100 0

0 0
117000(s+10)
(s+1)(s+200)





(17)
Figure 2 shows the resulting open-loop gain shapes.

Using the compensators in Eq.(17), the ν-gaps between
a chosen nominal model and all other members in the

Singular Values

Frequency (rad/sec)

S
in

gu
la

r 
V

al
ue

s 
(d

B
)

10
−1

10
0

10
1

10
2

10
3

−60

−40

−20

0

20

40

60

Figure 2: Shaped loop gains. Solid: α, dashed: q − qeq ,
dashed-dotted: nz

scheduling space are recomputed. Figure 3 shows the cor-
responding shaped ν-gap contour. Clearly, there is a sig-
nificant reduction in the ν-gap values, but the best linear
models remain the same (i.e. the models at αi = ±8.75◦).
The most dissimilar models also remain the same, but the
ν gap values are now 0.056, about 17 times less than that
of the unshaped case. This implies that the weighted local
models are very close to each other in closed-loop. The
reduction in the ν-gap is due to the linearizing effect of
feedback[3, 14].
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Figure 3: Shaped ν-gap contour

Based on the model at αi = 8.75◦, the H∞ linear controller
with bPC,max = 0.505 is obtained via H∞ loop-shaping
technique. Since the worst ν-gap induced by the nonlin-
earity is less than the bPC,max (i.e. 0.056 < 0.505), Theo-
rem 2 suggests that the designed controller is sufficient to
cope with the closed-loop nonlinearity when the plant is
pre- and post-compensated. Simulation results, as shown
in Figure 4, confirm that the linear controller does pro-
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vide good tracking performance when angle of attack α is
evolving within the ±30◦ available envelope.
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Figure 4: Servo responses of the angle of attack. (α
achieved solid vs. α demanded dotted).

5 Conclusion

An indirect closed-loop nonlinearity measure using the ν-
gap metric and the Quasi-LPV representation is proposed.
The contribution of this work is two-fold. Firstly, it acts as
an effective decision making tool for the control engineers
when they are faced with the problem of deciding whether
to stick to the linear control strategy or use a nonlinear con-
trol approach in solving their problems. Secondly, for a cer-
tain class of nonlinear systems, the proposed measure can
be used as a way to design compensators which reduce the
closed-loop nonlinearity. However, a systematic approach
to closed-loop nonlinearity reduction needs a more indepth
study. Dealing with non-differentiable nonlinearity such as
hysteresis can be difficult. The proposed method can be
extended to handle this type of nonlinearity by embedding
such a nonlinearity using an integral quadratic constraints
[11] followed by a Quasi-LPV transformation of the remain-
ing model. This will be an extension of the work presented
in [17].
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