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Abstract
The classic way to control a system, in a model based

framework, is to obtain a model of the system and then
to use it for the design of a controller, process that can be
executed online by an indirect adaptive controller. This
work is devoted to describe the particular structure of
such a controller. Therefore in this paper we show how
Laguerre orthonormal basis functions can be extended to
multivariate systems and used to produce a valid linear
process model. Further this model can be used in a con-
strained multivariable predictive controller, at each time
step, to produce a control move that accounts for a good
reference tracking in the presence of disturbances and a
reduced actuator movement within given constraints. A
simulation model is used to evaluate the controller perfor-
mance.

Keywords: MIMO Indirect Adaptive Control, Con-
strained Model Based Predictive Control (MBPC), MIMO
Laguerre Identification.

1. Introduction
Process industries need a multivariable predictive con-

troller that is low cost, easy to setup and maintains
an adaptive behaviour which accounts for plant non-
linearities as well as potential mismodeling.

Therefore, to answer this request, we present in
this paper the architecture of a system, i.e a multi-
input/multi-output (MIMO) adaptive model based pre-
dictive controller (MBPC), which has attributes like: low-
cost, reliable and easy-to-use. This controller is now a real
time prototype implemented on a Windows-NT platform
to be used in plant trials.

The classic way to control a system, in a model based
framework, is to obtain a model of the system and then
to use it for the design of a controller. This is the choice
we have made for the architecture of our controller which
as result became indirect and adaptive.
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For the identification part of the procedure Laguerre
orthonormal basis function identification was employed.
Since our aim was to deal with MIMO systems the SISO
algorithm [3] was extended to include multivariate fea-
tures. Before making a decision with respect to this par-
ticular way of producing on-line a linear plant model a
comparison with other established MIMO methods like
subspace identification was pursued. Further the identifi-
cation of marginally stable system was investigated and a
solution provided. More on these issues in Section 2.

The beginning of multivariable model based predictive
control methods can be tracked back in late 70s. It has be-
come very widely and successfully used in certain sectors
of the process industries, particularly the petro-chemical
sector. The main attraction for this method in the indus-
trial world was the ability to use a dynamic model of the
process in order to predict the behaviour of the controlled
variable within a limited time horizon. In fact the idea be-
hind this controller is to use the predicted process variable
in an on-line optimization procedure such as to determine
the manipulated variable. This procedure is explained
further in Section 3. Predictive control method deals nat-
urally with constraints and multivariable systems. The
problem associated with the on-line/real time implemen-
tation is the computation time which limits the controller
bandwidth. As we continuously improve the algorithm
and the computer speeds continue to increase this prob-
lem will disappear. Moreover in process industries, where
the update time is of the order of several minutes, the
computation time represents less of an issue.

One of the reasons of taking the indirect adaptive ap-
proach is the previous practical experience which Univer-
sal Dynamics Ltd. build over 10 years in the area of devel-
oping and applying a SISO Laguerre based indirect adap-
tive predictive controller, U.S.Patent # 5335164. This
reason together with the theoretical support outlined in
Sections 2-4. forms the foundation of the controller em-
ployed on simulation model in Section 5. Sections 6. and
7. will reveal to the reader the benefits of a commercial
implementation and conclusions, respectively.



2. The MIMO Laguerre orthonormal
basis function identification

Recently a significant amount of work in the academic
community was put into developing cheap and reliable
identification schemes from the computational and numer-
ical point of view, respectively. Subspace methods [7, 11]
have constituted for the past couple of years ”the solu-
tion” for identification of MIMO stable systems. There
are various forms of subspace methods, all of them are di-
rected towards the same goal of identifying a multivariable
system using only simple computations.

The resemblance between subspace methods and the
MIMO Laguerre orthonormal basis function identification
is that the Laguerre coefficients represent a projection of
the plant model onto a linear space whose basis is formed
by an orthonormal set of Laguerre functions.

There are a number of appealing advantages of using
an orthonormal basis function for identification:

• The structure is linear in the model parameters sub-
ject to estimation, therefore known techniques like
recursive least squares estimation can be used, see
[3].

• Since we deal with a fixed structure of the model, in
spite of the iterative procedure, we can avoid prob-
lems generated usually by the convergence of the pa-
rameter estimate vector to a local minimum [3]

• The concept proved its simplicity when dealing with
unknown dead time processes, closely resembling
Pade type of approximation. Moreover, the orthonor-
mality facilitates the modeling of dead time dominant
plants.

• A reduced number of functions in the basis is possible
giving in exchange an efficient way to store the model
parameters and filter the incoming plant data.

• The distinguishing feature of this method is the abil-
ity to include prior knowledge on the system poles.

• As described in [12] statistical properties of the esti-
mate can be calculated.

• The scheme practical implementation is facilitated by
the simple concept of the Laguerre basis function, the
reason why we have chosen this particular orthonor-
mal basis.

The way the MIMO system identification using La-
guerre orthonormal basis functions works is very similar
with the SISO case [8]. The plant model transfer matrix is
represented as a series expansion in the basis and then ap-
proximated with a finite number of terms. The difference
between the MIMO and SISO case is that a the model
structure is not unique. Therefore our MIMO model is
achieved by ”copying” the SISO structure to the cells of

a transfer matrix that will linearly approximate the mul-
tivariable plant.

The SISO construction is detailed in [3, 13]. Briefly
we show here the Laplace domain representation of the
Laguerre function, a complete orthonormal set in L2:

Li(s) =
√

2p
(s − p)i−1

(s + p)i
, i = 1, . . . , N (1)

where i is the number of Laguerre filters (i = 1, N), p > 0
is the time scale, and Li(s) are the Laguerre polynomials.
The reason for using the Laplace domain description is its
simplicity in representing the Laguerre ladder network.

Specifying prior information about the system is
achieved in our case via a choice for the pole location for
each individual cell of the global transfer matrix used to
model the process, leading to a matrix of poles. This
choice is made automatically based on an series of in-
dependent off line optimizations corresponding for each
channel. This method is searching for the optimal La-
guerre network pole such as to provide the best approx-
imation of a given individual transfer function. Such a
feature enables the system to recognize the wide distri-
bution of time constants in the different channels of the
MIMO model. We have a strong preference for real poles
since the speed and accuracy of the estimation algorithm is
greatly improved. This choice will lead to a slightly larger
number of Laguerre filters required to model second order
dynamics.

Each SISO Laguerre ladder network can be expressed
as a stable, observable and controllable state space form
as:

l(k + 1) = Aij l(k) + biju(k) (2)
y(k) = cT

ij l(k) (3)

with l(k)T =
[
l1(k), . . . , lN (k)

]T is the state of the
ladder, and cij

T
k (k) =

[
c1(k), . . . , cN (k)

]
are the Laguerre

coefficients at time k. Aij is a lower triangular square (N
x N) matrix.

Once all the individual transfer functions of the plant
model were defined we pack them into a global state space
representation for which a minimal realization is consid-
ered. This represents our basis during the identification
algorithm.

Before employing the plant data for the recursive
model estimation is desirable to filter it, in particular if a
dc offset or an integrator is present we want to the data
filter to remove this component. Hence, we will always
deal with filtered versions of the IO data.

The recursive estimator used to produce the model,
see [9], is characterised by the following parameters which
reflect the forgetting factor as well as improved conver-
gence characteristics. Nominal values for its parameters
are: α = 0.5, β = 0.005, δ = 0.005, λ = 0.98, P = 10İ,
K = [0...0]T .



Increased measurement noise or a large number of fil-
ters in the individual networks will lead to a reduced level
of accuracy in the identified model. In [10] the reader
can find a theoretical analysis performed to quantify the
undermodelling and measurement noise induced errors in
the estimation.

The form of the identification mechanism presented
above is suitable for stable systems. Sometimes in prac-
tical applications we are challenged by systems with an
integrating characteristic of one or more channels. In such
conditions our approach is to factor the plant in its stable
and marginally stable part, considered known. Note that
the same procedure can be applied to a plant that con-
tains a well known unstable dynamics. Of course in this
case the robustness of the identification algorithm is con-
ditioned by the exact knowledge of the marginally stable
or unstable part of it.

3. Constrained multivariable MBPC
Consistent effort spend in the last couple of years in

the development and analysis of MBPC made the algo-
rithm to exhibit features like:

• A fairly intuitive approach which can be understood
without advanced mathematics.

• The common elements of MBPC schemes, such as
models, objective functions, prediction horizons, etc,
can be tailored to specific problems.

• A cost function accounting for both the tracking error
and control moves.

• The ability to account for changes in the plant model
at each time step.

• The usual combination of linear dynamics and in-
equality constraints allows realistic nonlinearities to
be handled.

• An implementation based on a QP algorithm in the
constrained case or for a fast solution a simple least
squares solver option.

• Reference management which can be employed for
specific batch profiles.

The defining feature of MBPC is the repeated opti-
misation of a performance objective over a finite horizon
extending from a future time (N1) up to a prediction hori-
zon (N2) [2, 1]. Figure 1 characterises the way prediction
is used within the MBPC control strategy. Given a set-
point, a reference r(k+ l) is produced and used within the
optimisation of the cost function (4). Manipulating the
control variable u(k + l), over the control horizon (Nu),
the algorithm drives the predicted output ỹ(k + l), over
the prediction horizon, towards the reference.

k+Nu k+N1 k+N2k-n k k+1 k+l

y(k)=r(k)

SET POINT

REFERENCE

r(k+l)
PREDICTED OUTPUT

CONTROL HORIZON - Nu

MINIMUM OUTPUT HORIZON - N1

MAXIMUM OUTPUT HORIZON - N2

PAST FUTURE

u(k+l)
MANIPULATED

INPUT
CONSTANT INPUT

k-2 k-1

Figure 1: Prediction strategy

The future control movement is determined by min-
imising the cost function:

J(k) =

N2∑

l=N1

‖(ỹ(k + l)− r(k + l)‖2
Q(l) +

Nu∑

l=0

‖∆u(k + l)‖2
R(l)

(4)

subject to constraints on:

• the inputs levels ul(l)≤u(l)≤uu(l) where k≤l≤k+Nu−1
• the input rates of change ∆ul(l)≤∆u(l)≤∆uu(l) where

k≤l≤k + Nu − 1

• the output (and state) levels yl(l)≤ỹ(l)≤yu(l) where
k + N1≤l≤k + N2

Q(l) and R(l) are weights independent of time k and the
norm ‖.‖2

Q within the cost function is defined as ‖α‖2
Q =

αT Qα. It is assumed that ∆u(l) = 0 for l≥k + Nu. As
in [6] the optimisation is carried out using a quadratic
program (QP).

OUTPUTCOMMANDREFERENCE
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Figure 2: The structure of MBPC schemes

The general structure, Figure 2, of MBPC schemes
is the following:

Optimiser contains the constrained cost function. The
main task of the optimiser is to compute the present
and future manipulated variable moves such that the
predicted output follows the reference in a desirable
manner.

Predictor employing the internal model and the mea-
surement or estimate of the current state provides
the optimiser with future predicted values of states
and outputs.



Internal model represents the plant. In this paper we
use a state-space linear time invariant model for the
plant.

Observer provides current state estimates, which can be
used in the predictor.

If we have knowledge of the existence of marginally
stable plant then, as described in [6], the control move-
ment is computed based on the prediction of the aug-
mented model. This approach respects the internal model
principle. Ramping references or disturbances are treated
in a similar manner to ensure a zero steady state error.

4. Indirect adaptive control method
The indirect adaptive control scheme suggested uses a

modified recursive least square algorithm, see [9], to esti-
mate the parameters of the models involved in the control
equation.

Figure 3: The closed loop of the advanced control system
applied to the batch reactor

The adaptive control identification algorithm has a
number of free parameters. A designer has to minimize
this number since the scheme is implemented in real time.
For instance the choice of the Laguerre filter pole p can
be restricted to a fixed value once an initial guess for the
system model is available. For a given plant there is an op-
timal pole that will minimize the number of filters required
to obtain a required accuracy for the model. A frequent
situation encountered in process industries involves multi-
rate systems. At present our approach is to unify the
sampling rate and manipulate the matrix of poles in ex-
change. Since for a given model of the plant the crossover
frequency region is very important from the perspective
of the closed loop system transient response a good choice
for the Laguerre pole will be in that area.

In a similar fashion the dead time of the process is well
modeled by a Laguerre network, depending on its number

of filters. A tradeoff has been observed between the dead-
time modeling and the model settling time. Too many
filters will result in a long process model settling time.

The closed loop system is depicted in Figure 3. The
advanced controller was implemented in C++ and runs on
the Windows-NTTM operating system. An OLE for pro-
cess control (called OPC server) is used to communicate,
for instance, to the existent Distributed Control System
(DCS). Logic was programed in the DCS device to allow
operation from the existing operator console. The oper-
ator can select between manual, PID (DCS) or advanced
control modes.

Two important issues are raised during the adapta-
tion:

1. under which conditions and how well the process es-
timate will converge to the real plant parameters.

2. what can we say about the stability of these scheme
when we are in fact switching between controllers
designed based on plants identified at different set-
points and subjected to various loads.

It is possible and we are working at this stage to prove
the convergence of the MIMO estimation procedure based
on the following typical assumptions: persistent input ex-
citation in all input channels, bounded disturbances and
a model considered to describe accurately the real plant.
Note that some of these assumptions are necessary and
achievable in practice for a good identification.

When the estimation of the plant model is done in a re-
cursive least squares manner the persistent excitation is a
requirement, see [4]. This condition translates into special
characteristics of the shape of the manipulated variable
which are external to the adaptive loop. Unfortunately
in practice the external signals may not fulfill the require-
ments due to the set-point profile or to the fact that in the
MIMO case the number of input variables can be larger
than that of outputs/references.

For instance, say for a square MIMO system, a step
change in the reference can provide the identification al-
gorithm with a significant amount of information in the
moments that follow the change but as soon as the tran-
sient disappears into the plant noise the plant/model mis-
matches become unobservable.

It is crucial therefore for the controller to modify its
settings to account for such kind of changes or as an alter-
native a PRBS signal has to be added at the plant input.
The second alternative is compulsory in the case of a non
square system (more inputs than outputs).

Since the control law is computed at each time instant
issues of stability and the convergence of the method be-
come paramount. In [14] these issues are partially ad-
dressed. Further in [5] the stability of switching systems
with average dwell time is analyzed and we believe that
this work, under certain assumptions, can be applied to
our indirect adaptive controller scheme.



Although, the proposed controller works well in a wide
variety of situations it still lacks a theoretical analysis.
For instance it is not yet clear how the transition between
the different internal models or settings in the controller
might affect the overall system stability and performance
or what are in this cases its robustness properties. An-
other important issue is the on-line model validation. In
other words we are still searching an answer to the ques-
tion ”Which model is best for control, the one employed
at the present or the one just identified?”.

5. The controller performance
The utility of the MIMO adaptive predictive controller

is illustrated in this paper with a brief simulation study.
The choice for the plant includes a MIMO case with large
discrepancies between channels such as: different dynam-
ics (including different gains), time delay, inverse response
and strong cross-coupling. The plant G(z) has four inputs
and three outputs:

G11(z) = 20
(z − 0.8)(z − 0.1)z−4

(z − 0.5)(z − 0.4)
G12(z) = 20
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Figure 4: A snapshot of the controller face plate reflecting the
quality of the identification algorithm

The development, see Figure 4, allows us to look at
step responses of the identified model. In this case to show

the ability of the identification algorithm these step re-
sponses are overlaid on the real plant responses (unknown
in practical situations). Hence, we are able to view how
the algorithm accounts for the large discrepancies between
the individual entries of the system transfer matrix. This
snapshot from the controller face plate is useful to com-
pare how well the identification algorithm performed and
it reflects the evolution of the model during the identifi-
cation and control procedure.
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Figure 5: Time responses for a sequence of steps in the refer-
ence signals subject to random walk type of disturbances

The hypothesis presented in the previous section was
satisfied in the sense that a persistent excitation in all
channels was employed as square waves with different fun-
damental frequencies of 0.1 and 0.3 Hz, respectively. The
amplitude of the excitation signals was small compared
to the reference signals, not affecting the closed loop be-
haviour. For more realism in our simulation we have also
considered the output data being corrupted with a sta-
tionary white Gaussian measurement noise.
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In Figure 5 we show a typical time response plot used
to help the user understand how the controller performs
on the process. In this case for clarity of the plots we have
used a 2 × 2 system. A random walk type of disturbance
was applied simultaneously with steps in the reference sig-
nals. In this paper we do not focus on showing the benefit
of having a constrained algorithm mainly because of lack
of space but as well because this issue was addressed ex-
tensively in the literature, see [6]. Instead we concentrate
on how the internal model principle was applied such as
to reject ramping disturbances.

Observe in Figure 6 the profile of the output distur-
bance and the command sequence generated by the con-
troller to reject it, all this while providing a good tracking
of the reference.

6. Conclusions
An advanced model based predictive controller was

developed for use on MIMO processes with a possible in-
tegrating response, exibiting long dead time and time con-
stants. The controller was developed in a modular struc-
ture. A flexible test-bed like the Matlab Simulink devel-
opment space [6] was enahanced with the identification
module. This enables us to go towards the implementa-
tion of hardware in the loop directly.

Since the R&D was pursued in Matlab-Simulink we
were able to do most of the preliminary testing in this
environment. Mapping the Matlab code into C++ repre-
sented now an easier task. A thorough analysis of the pa-
rameters involved in the controller provided some golden
values for a number of tuning parameters, hence reducing
commissioning time.

Bringing this product to the market involves a con-
sistent financial effort and further developments at the
level of the graphic user interface (GUI) such as to take
advantage of the company’s previous experience in terms
of blending the controller features with a proper way to
manage the overwhelming quantity of information for the
industrial user. Laboratory tests with the beta version
are currently being conducted to evaluate the real time
capability of the controller.

The applicability of this controller ranges from pulp
and paper to biomedical engineering. The main benefits of
this control strategy are: a systematic tuning procedure,
reduced cross couplings between channels and minimized
closed loop overshoot and settling time, all which lead to
good integral performance indexes.
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