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Abstract

This tutorial paper looks back at almost 50 years of
adaptive control trying to establish how much more
we need to secure for the industrial community an
adaptive controller which will be used and referred to
with the same ease as PID controllers are now. Since
the first commercial adaptive controller, significant
progress in the design and analysis of these controllers
has been achieved. Various forms of adaptive con-
trollers are now readily available targeting a significant
range of industries from process to aerospace. A
general overview of adaptive control will allow the
audience to place on the map several industrial
architectures for such controllers, all with the aim
of bridging the gap between academic and industrial
views of the topic. Such a presentation of design and
analysis tools currently opens a more philosophical
question ”Has the critical mass in adaptive control
been reached?”
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1 Introduction

According to the Webster’s dictionary, ”to adapt”
means: ”To adjust oneself to particular conditions; To
bring oneself in harmony with a particular environ-
ment; To bring one’s acts, behavior in harmony with
a particular environment”, while adaptation means:
”Adjustment to environmental conditions; Alteration
or change in form or structure to better fit the envi-
ronment”.

For a control system, the plant constitutes the environ-
ment. Plant nonlinearities can be found in most of the
processes from flight to process control. For instance,
in steel rolling mills, paper machines or rotary kilns,
the dynamics can change due to nonlinear actuators or
sensors (e.g. nonlinear valves, pH probes), flow and
speed variations raw material variability or wear and
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tear. For an aircraft, nonlinearities are mainly corre-
lated with the compressibility of the air and the tur-
bulent flow around control and lift surfaces. In ship
steering, changing wave characteristics represent a ma-
jor challenge.It is well recognized that linear feedback
can cope fairly well with parameter changes within cer-
tain limits.

Following this the immediate question is ”When is a
controller adaptive?”. A short possible answer was
offered by G. Zames during a presentation made at
the 35th Conference in Decision and Control, Kobe,
Dec. 1996: ”a non-adaptive controller is based solely
on a-priori information whereas an adaptive controller
is based also on a posteriori information”. When
the process changes with operating conditions in a
known, predictable fashion gain scheduling can pro-
vide the required performance. Therefore in cases like:
flight control systems, compensation for production
rate changes, compensation for paper machine speed
the controller parameters can be made to vary in a
predetermined fashion by the operating conditions.

The main focus of this paper is connected with a nar-
rower definition of adaptive control, which is centered
around a fixed-structure controller with adjustable pa-
rameters, i.e. the controller possesses a mechanism
for automatically adjusting them, based on posterior
information. From an academic perspective adaptive
control theory essentially deals with finding parameter
adjustment algorithms that offer global stability and
convergence guarantees. Linear controllers with guar-
anteed robust performance properties appear to a de-
signer as the natural choice for simple, certifiable and
easy to implement controllers. Our experience shows
that if the use of a fixed controller cannot achieve a
satisfactory compromise between robust stability and
performance, then and only then, should adaptive con-
trol be used. The use of adaptive control is justified on
complex systems exhibiting time-varying dynamics.

In this realm, as academics but also engineers with
strong industrial ties, our immediate advice is to use
the simplest technique that satisfies the specifications,
using the words of great Einstein, we should strive to
“make things as simple as possible, but no simpler”.



This paper looks back at almost 50 years of adaptive
control trying to establish how much more we need
to do in order to secure for the industrial community
an adaptive controller that will be used and referred
to with the same ease as PID controllers are now.
Since the first commercial adaptive controller, signif-
icant progress in the design and analysis of these con-
trollers has been achieved. Various forms of adaptive
controllers are now readily available, targeting a signif-
icant range of industries from process to aerospace.

A general overview of adaptive control will allow the
audience to understand the architectures of such con-
trollers, all with the aim of bridging the gap between
academic and industrial views on this topic.Leaving
behind for a second the historical evolution of adap-
tive control, the present reality is that a number of
active control methods are directly linked to the funda-
mental idea of adjusting a parameter of the controller
based on further evolutions of the plant. Therefore,
in no particular order we can enumerate adaptive con-
trol approaches like: model reference adaptive control,
self/auto tuning, model following, multi-model iden-
tification and control, pseudo inverse projection, dual
control or even feedback linearization.

In this paper one of our major goals is to present suc-
cinct information on a number of methods, techniques
and concepts used in adaptive control and which are
now embedded in commercial products or are ready
for implementation. Such information will permit the
industrial readers to better evaluate their needs.

The paper will be structured as follows:

Section ?? will be allocated to several challenges posed
by most adaptive controllers such as: passive versus ac-
tive learning, opportunities for analytic solutions, prac-
tical methods for having the controllers with the adap-
tation mechanism on at all times, control of processes
with rapidly time-varying dynamics and the commis-
sioning of adaptive controllers.

2 Development of Adaptive Control

The history of adaptive control goes back nearly 50
years, [30]. The development of adaptive control
started in the 1950’s with the aim of developing adap-
tive flight control systems, although that problem was
eventually solved by gain scheduling. Among the vari-
ous solutions that were proposed for the flight control
problem, the one that would have the most impact on
the field was the so-called model-reference adaptive sys-
tem (MRAS). Figure 1 depicts a typical MRAS where
the specifications are in terms of a reference model and
the parameters of the controller are adjusted directly
to achieve those specifications. Although the original
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Figure 2: Indirect self-tuning control

algorithm proved unstable, it lead to the development
during the 1970’s and 1980’s of algorithms with guar-
anteed stability, convergence and robustness proper-
ties. In 1957 Bellman developed dynamic program-
ming. In 1958 Kalman [?] developed the self-optimizing
controller “which adjusts itself automatically to control
an arbitrary dynamic process”. This would provide the
foundation for the development of the self-tuning reg-
ulator by Peterka [?] and Åström and Wittenmark [?].
Self-tuning control consists of two operations:

• Model building via identification

• Controller design using the identified model

Self-tuning control can be thought of as an on-line au-
tomation of the off-line model-based tuning procedure
performed by control engineers. Figure 2 depicts the
architecture of an indirect self-tuning controller where
these two operations are clearly seen. It is possible to
reformulate the self-tuning problem in a way that the
model estimation step essentially disappears, in which
case the controller parameters are directly adapted,
this is the so-called direct self-tuner, closer in spirit
to the MRAS.

In 1957, Bellman [?] invented dynamic programming
which he later applied to adaptive control [?]. Not
very much later in 1960 Feldbaum [?] developed the
dual controller in which the control action serves a dual
purpose as it is “directing as well as investigating”. In
a major departure from the MRAS an STC schemes
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which relied on the so-called certainty-equivalence prin-
ciple (somewhat of a euphemism to say that those
schemes ignore the uncertainty on the estimates by
treating them as true values), the dual controller ex-
plicitely accounts for the uncertainty and attempts to
reduce it. Figure 3 depicts the architecture of dual
control which uses nonlinear stochastic control theory
and amalgamates both parameters (and their uncer-
tainties) and state variables into a hyperstate, which
yields the control signal via a nonlinear mapping. The
dual controller can handle very fast parameter changes
and will constantly seek the best compromise between
the regulation performance, caution and probing. Un-
fortunately, the solution to the dual control problem is
untractable for most systems.

Following this initial wave of adaptive controllers the
1970’s and 1980’s saw rapid development in the field.
In the early 1980’s the first convergence and stability
analysis proofs appeared, followed by a systematic ro-
bustness analysis.

3 Model Reference Adaptive Control

The model reference adaptive control is in fact a class
of direct self tuners since no explicit estimate or identi-
fication of the plant is made. In exchange the controller
parameters are identified directly. This approach leaves
no room for checking the model quality.

As simple way to produce a model reference adaptive
controller is to start with a time varying matrix of gains
K(t). This methodology applies to several approaches
among which the MIT rule is probably the most classic
one. In the MIT rule case the gain is chosen to min-
imize the following loss function J(K(t)) = 0.5e2(t).
To make J(K(t)) small we should change K(t) in the
direction of the negative gradient:

dK(t)
dt

= −γ ∂J(K(t))
∂K(t)

= −γe(t) ∂e(t)
∂K(t)

(1)

where ∂e(t)/∂K(t) is the partial derivative called sen-
sitivity derivative of the system.

As an example let us consider the problem of a SISO
plant for which its gain is unknown (i.e. P (s) = kP0(s),
where P0(s) is what we call nominal plant). We apply
the MIT rule to find the controller parameter θ when
the gain k is unknown. The plant model is Pm(s) =
k0P0(s), where K0 is a given constant. The defined
error in this case is:

e(t) = y(t) − ym(t) = kP (l)θr(t) − k0P (l)r(t) (2)

where y(t), ym(t), r(t) and l = d/dt are the plant out-
put, plant model output and reference, tuning param-
eter and differential operator, respectively. The sensi-
tivity derivative is:

∂e(t)
∂θ

= kP (l)r(t) =
k

k0
ym(t) (3)

The MIT rule gives the following tuning for θ:

dθ

dt
= −γ′ k

k0
ym(t)e(t) = γym(t)e(t) (4)

Note that for a correct value of γ sign knowledge of k
sign is required.

In the industrial world there were reports of instability
based on the basic MIT rule. It has been understood
that the choice of the adaptation gain is critical and
its value depends on the signal levels. Normalizing the
signals will create the required independence for this
algorithm. So the MIT rule has to be modified as fol-
lows:

dθ

dt
= γφe(t) (5)

where φ = ∂e(t)/∂θ. The adjustment rule:

dθ

dt
=

γφe(t)
α+ φTφ

(6)

where α > 0 is introduced to avoid zero division when
φTφ is small. In the above θ can be a vector of param-
eters.

4 Self-Tuning Control

4.1 Recursive identification for adaptive control
All methods that use the least–squares criterion

V (t) =
1
t

t∑
i=1

[y(i) − xT (i)θ̂]2

identify the average behaviour of the process. When
the parameters are time varying, it is desirable to base
the identification on the most recent data rather than
on the old one, not representative of the process any-
more. This can be achieved by exponential discounting
of old data, using the criterion
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V (t) =
1
t

t∑
i=1

λt−i[y(i) − xT (i)θ̂]2

where 0 < λ ≤ 1 is called the forgetting factor. The
new criterion can also be written

V (t) = λV (t− 1) + [y(t) − xT (t)θ̂]2

Then, it can be shown (Goodwin and Payne, 1977) that
the RLS scheme becomes

θ̂(t+ 1) = θ̂(t) +K(t+ 1)[y(t+ 1)− xT (t+ 1)θ̂(t)]

K(t+ 1) = P (t)x(t+ 1)/[λ+ xT (t+ 1)P (t)x(t+ 1)]

P (t+ 1) =

{
P (t)− P (t)x(t+ 1)xT (t+ 1)P (t)

[λ+ xT (t+ 1)P (t)x(t+ 1)]

}
1

λ

In choosing λ, one has to compromise between fast
tracking and long term quality of the estimates. The
use of the forgetting may give rise to problems.

The smaller λ is, the faster the algorithm can track,
but the more the estimates will vary, even the true
parameters are time-invariant.
A small λ may also cause blowup of the covariance
matrix P , since in the absence of excitation, covariance
matrix update equation essentially becomes

P (t+ 1) =
1
λ
P (t)

in which case P grows exponentially, leading to wild
fluctuations in the parameter estimates.
One way around this is to vary the forgetting factor
according to the prediction error ε as in

λ(t) = 1 − kε2(t)

Then, in case of low excitation ε will be small and λ
will be close to 1. In case of large prediction errors, λ
will decrease.

The Exponential Forgetting and Resetting Algorithm
(EFRA) due to Salgado, Goodwin and Middleton1 al-
lows tracking of time-varying parameters while guar-
anteeing boundedness of the covariance matrix:

ε(t+ 1) = y(t+ 1) − xT (t+ 1)θ̂(t)

θ̂(t+ 1) = θ̂T (t) +
αP (t)x(t+ 1)

λ+ xT (t+ 1)P (t)x(k + 1)
ε(t)

P (t+ 1) =
1
λ

[
P (t) − P (t)x(t+ 1)xT (t+ 1)P (t)

λ+ x(t+ 1)TP (t)x(t+ 1)

]

+βI − γP (t)2

1M.E. Salgado, G.C. Goodwin, and R.H. Middleton, “Ex-
ponential Forgetting and Resetting”, International Journal of
Control, vol. 47, no. 2, pp. 477–485, 1988.

where I is the identity matrix, and α, β and γ are
constants.

With the EFRA, the covariance matrix is bounded on
both sides:

σminI ≤ P (t) ≤ σmaxI ∀t
where

σmin ≈ β

α− η σmax ≈ η

γ
+
β

η

with
η =

1 − λ
λ

With α = 0.5, β = γ = 0.005 and λ = 0.95, σmin =
0.01 and σmax = 10.

4.2 Prototype algorithms
Prototype single-input, single-output algorithms will
be presented, along the line of [?]. Consider the simple
process described by

A(q)y(t) = B(q)(u(t) + v(t)

where A and B are coprime, degA = n, the relative
degree is d = degA(q) − degB(q), and v(t) is a load
disturbance. The two-degree-of-freedom controller

R(q)u(t) = T (q)yr − S(q)y(t)

will be used to obtain a closed-loop system as

Am(q)ym(t) = Bm(q)yr(t)

With this two-degree-of-freedom controller, the closed-
loop system is

y(t) =
BT

AR+BS
yr(t) +

BR

AR+BS
v(t)

The closed-loop characteristic polynomial is thus

Ac = AR+BS

This equation is known as the Diophantine equation or
the Bezout identity and it plays a central role in many
control aspects of modern control theory. The design
problem is thus to find R, S and T such that

BT

AR+BS
=
BT

Ac
=
Bm

Am

Generally deg(AR + BS) > degAm. It means that
BT and AR + BS have a common factor A0. As it is
desirable to cancel only stable and well damped zeros,
write

B = B+B−

where B+ contains well damped stable zeros that can
be cancelled and B− contains unstable and poorly
damped zeros that should not be cancelled, i.e.

Bm = B−B′
m
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It follows that B+ is a factor of R, i.e.

R = B+R′

Then
B+B−T

AB+R′ +B+B−S
=
B−B′

mA0

AmA0

Thus, the solution to the design problem is obtained
from:

AR′ +B−S = A0Am

and
T = B′

mA0

The Diophantine equation has no solution if A and B−

have common factors. When A and B− are coprime, it
has an infinite number of solutions:

R = R0 +B−U

S = S0 −AU
where R0 and S0 are solutions and U is an arbitrary
polynomial. All those solutions have the same closed-
loop properties, but differ by their noise rejection prop-
erties. Causality of the controller imposes

degS ≤ degR

deg T ≤ degR

degAm − degB′
m ≥ degA− degB+

It is also natural to look for minimum-degree solution

degS = degA− 1

degAc = degB+ + degA0 + degAm ≥ 2 degA− 1

or
degA0 ≥ 2 degA− degB+ − degAm − 1

For minimum degree pole placement control, choose:

degAm = degA

degBm = degB

degA0 = degA− degB+ − 1

Then the pole placement algorithm is

1. Factor B as B = B+B− with B+ monic

2. Find R′ and S with degS = degA− 1 from

AR′ +B−S = A0Am

3. With T = B′
mA0 and R = B+R′, the controller is

Ru = Tyr − Sy

Note that LQG controller can be obtained as the solu-
tion of the Diophantine equation

P (q)C(q) = A(q)R(q) +B(q)S(q)

The closed-loop characteristic polynomial is P (q)C(q)
where the stable polynomial P (q) is obtained from the
following spectral factorization:

rP (q)P (q−1) = ρA(q)A(q−1) +B(q)B(q−1)

Indirect adaptive pole-placement
Given A0, Am, B′

m and n, at each sampling time do
the following:

• Estimate Â and B̂ (also Ĉ) if in a stochastic frame-
work using RLS (or e.g. AML in the stochastic
case)

• Perform pole-placement procedure as described
previously using Â and B̂.

Note that pole placement is often done in a determistic
framework, i.e. there is little perturbation on the pro-
cess. It is then important to ensure sufficient excita-
tion by frequent setpoint changes. We also need to find
common factors between Â and B̂ and to factor B̂ as
B̂ = B̂+B̂−

Direct adaptive pole placement

Ay(t) = Bu(t)

Amy(t) = Bmu(t)

Consider the Diophantine equation

A0Am = AR′ +B−S

Multiply both sides by y(t)

A0Amy(t) = R′Ay(t)+B−Sy(t) = R′Bu(t)+B−Sy(t)

Because R′B = R′B+B− = RB−

A0Amy(t) = B−[Ru(t) + Sy(t)]

This could be considered a process model. Note how-
ever, that it is nonlinear in the parameters. Only when
all zeros are cancelled, i.e. when B− = 1 does it be-
come linear in the parameters.

Indirect vs. direct adaptive control

4.3 Self-Tuning vs. Auto-Tuning

• Self-tuning
– Continuous updating of controller parameters
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– Used for truly time-varying plants

• Auto-tuning
– Once controller parameters near convergence,

adaptation is stopped

– Used for time invariant or very slowly varying
processes

– Used for periodic, usually on-demand tuning

4.4 A practical adaptive predictive controller
The set of Laguerre functions is particularly appealing
to describe stable dynamic systems because it is sim-
ple to represent and is similar to transient signals. It
also closely resembles Padé approximants. The contin-
uous Laguerre functions, a complete orthonormal set
in L2[0,∞), can be represented by the simple and con-
venient ladder network shown in Figure 4 and can be
described by:

Fi(s) =
√

2p
(s− p)i−1

(s+ p)i
, i = 1, .., N (7)

where i is the order of the function (i = 1, ..N), and
p > 0 is the time-scale. Based on the continuous net-
work compensation method, the Laguerre ladder net-
work of Fig. 4 can be expressed in a stable, observable
and controllable state-space form as,

l(t+ 1) = Al(t) + bu(t) (8)

y(t) = cT l(t) (9)

with lT (t) = [ l1(t) l2(t) . . . lN (t) ]T , and cT =
[c1 c2 . . . cN ]. The li’s are the outputs from each block
in Fig. 4, and u(t), y(t) are the plant input and out-
put respectively. A is a lower triangular N ×N matrix
where the same elements are found respectively across
the diagonal or every subdiagonal , b is the input vec-
tor, and c is the Laguerre spectrum vector. The vec-
tor c gives the projection of the plant output onto the
linear space whose basis is the orthonormal set of La-
guerre functions. Some of the advantages of using the
above series representation are that,(a) because of its
resemblance to the Padé approximants time-delays can
be very well represented as part of the plant dynam-
ics, (b) theoretically the model order N does not affect
the coefficients ci, and (c) extensions to multivariable
schemes do not require the use of interactor matrices
(Zervos and Dumont, 1988b).

Most industrial applications of control use a discrete
time model of the plant. It is possible to define a set
of z-transfer functions that are orthonormal and have
a structure similar to the continuous Laguerre filters :

Li(z) =
√

1 − a2

z − a
(

1 − az
z − a

)i−1

(10)

The above model can be identified using a simple least-
squares type algorithm. Consider the real plant de-
scribed by

y(t) =
N∑

i=1

ciLi(q) +
∞∑

i=N+1

ciLi(q) + w(t) (11)

where w(t) is a disturbance. It is obvious that this
model has an output-error structure, is linear in the
parameters, and gives a convex identification problem.
Because of that, and of the orthonormality of the La-
guerre filter outputs (obtained if the plant is perturbed
by a white noise or a PRBS), it is trivial to show that:

• Even if w(t) it colored and non-zero mean, simple
least-squares provide consistent estimates of the
ci’s.

• The estimate of the nominal plant, i.e. of ci, for
i = 1, · · · , N is unaffected by the presence of the
unmodelled dynamics represented by ci, for i =
N + 1, · · · ,∞.

Wahlberg (1991) shows that the the mapping (1 +
aeiω)(eiω + a) improves the condition number of the
least-squares covariance matrix. Furthermore, the im-
plicit assumption that the system is low-pass in nature
reduces the asymptotic covariance of the estimate at
high frequencies. For recursive least-squares, Gunnars-
son and Wahlberg(1991) show that the mean square
error of the transfer function estimate can be approxi-
mated by

π̂(eiω) =
1

2

(
N(1− λ)

1− a2

|eiω − a|2
Φv(e

iω)

Φu(eiω)
+

µ2

1− λ
r1(e

iω)

)

Note that the case a = 0 corresponds to a FIR model.
The MSE is seen to be proportional to the number of
parameters. Compared with a FIR model, a represen-
tation in terms of an orthonormal series representation
will be more efficient, will require less parameters and
thus will give a smaller MSE. Furthermore, the distur-
bance spectrum is scaled by

1 − a2

|eiω − a|2

thus reducing the detrimental effect of disturbances at
high frequencies.

5 Dual Control

6 Iterative Control

n the early 1990’s, several auhors have proposed a
new approach, the so-called iterative control design ap-
proach which can be seen as an alternative to adaptive
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Figure 4: Representation of plant dynamics using a truncated continuous Laguerre ladder network.
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control, see for instance [?, ?, ?, ?, ?]. Because adaptive
controllers combine identification with a time-varying
controller, they results in systems with complex be-
haviours that are difficult to analyse. The basic idea
of iterative control is to observe the system under fixed
feedback for a sufficient long period, after which iden-
tification and control re-design is performed. The re-
designed controller is then implemented and the pro-
cess repated until a criterion indicative of satisfactory
performance is met. Thus, at any given time, the sys-
tem is under linear time-invariant control and is easy
to analyse. It is like adaptive control with the control
update only being done at the end of the experiment.
Because a fixed controller is used during identification,
an external perturbation has to be sent to the loop in
order to guarantee closed-loop identifiability.

Although most iterative control design techniques that
have been proposed rely on the identification of a pro-
cess model to redesign the controller, in the spirit of
indirect adaptive control, it is also possible to obtain
iterative control design techniques that can be termed
model-free in the sense that they estimate the controller
parameters directly, in the spirit of direct adaptive con-

trol, see for instance [?, ?].

Iterative control design techniques have already met
with a certain amount of success in industrial appli-
cations, particularly in iterative tuning of PID con-
trollers, [?].

7 Multivariable Adaptive Control

We consider that a normalized coprime factor ap-
proach can be the self explanatory. Both indirect (e.g.
achieved through an explicit separation between plant
and controller parameters) and direct (e.g.wihtout an
explicit identification of the plant parameters) self tun-
ing are control methods with an ability to tune its own
parameters.

Uc

Uf V-1 NM-1
~

~

~
R(s) Ym(s)

V(s)

Y(s)E(s)

U(s)

Figure 6: Coprime Factor Formulation of Self Tuners

Starting with a simple right coprime factorization of
the plant 2 P (s) = N(s)M−1(s) and a 2 degrees of
freedom controller implemented in an observer form [?]

2p is a transmission pole of P (s) if det(M(s)) = 0 and z is
a transmission zero of P (s) if det(N(s)) = 0, order n of the
system is δdet(N(s)), definitions which correspond to a minimal
realization of P (s)
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as in Figure 6 we observe the following dependencies:

Y (s) = N(s)M−1(s) (12)
Ym(s) = Ũf (s)R(s) = Nm(s)M−1

m (s)R(s) (13)

E(s) = Ym(s) − Ũc(s)Y (s) (14)
U(s) = Ṽ −1(s)E(s) + V (s) (15)

The controller implementation is C(s) = Ṽ −1Ũc based
on a left coprime factorization that satisfies the Bezout
identity Ṽ (s)M(s) + Ũc(s)N(s) = I. If such a factor-
ization exists it is equivalent to C(s) being a stabilizing
controller for P (s).

Dropping the s from all transfer matrices in closed loop
and assuming the load disturbance V (s) = 0 for the
closed loop presented in Figure 6 the following depen-
dencies can be observed:

Y (s) = NM−1(I+ Ṽ −1ŨcNM
−1)−1Ṽ −1ŨfR(s) (16)

Based on the Bezout identity:

NM−1(I+Ṽ −1ŨcNM
−1)−1Ṽ −1 = N(Ṽ M+ŨcN)−1 = N

(17)
we have Y (s) = NUfR(s) and since (I − ŨcN) = Ṽ M

the error can be expressed as E(s) = Ṽ MŨfR(s) and
therefore the command as U(s) = MUfR(s).

Using again Figure 6, the Bezout identity and assuming
that R(s) = 0 we have:

Y (s) = NM−1(I + Ṽ −1ŨcNM
−1)−1V (s) (18)

= N(M + Ṽ −1ŨcN)−1V (s) (19)
= N(Ṽ M + ŨcN)−1Ṽ −1V (s) (20)
= Ñ Ṽ −1V (s) (21)

Then applying the superposition principle:

Y (s) = NŨfR(s) +NṼ −1V (s)

U(s) = MŨfR(s) +MṼ −1V (s) (22)

The typical indirect self tuning takes place in two
stages: i) plant NM−1 identification ii) obtaining a
solution Ṽ−1Ũc (i.e. the controller) of the Bezout iden-
tity3. For the second step it is worth mentioning the ex-
ceptional ability of the indirect self tuner to use a wide
variety of controller design methodologies (e.g. lin-
ear quadratic, minimum variance, predictive, frequency
loop-shaping based etc.). These design methods com-
bined with visibility of the model which are appealing
features for the industrial control community.

3Remember that if such a factorization exists the controller
Ṽ −1Ũc is stabilizing for the plant NM−1

For direct self tuning regulators the starting point is
again the Bezout identity. Post multiplying this iden-
tity with Y (s) we have:

Y (s) = (Ṽ M + ŨcN)Y (s) (23)
= Ṽ MY (s) + ŨcNY (s) (24)

and further using the plant dynamics written as
MY (s) = NU(s)

Y (s) = Ṽ NU(s) + ŨcNY (s) (25)

or as model:

Y (s) = (I − ŨcN)−1Ṽ NU(s) (26)

Equation (??)is in fact the process model param-
eterized in the controller coprime factors. Hence
if the above model is identified the controller is
obtained without design based on some identified
model. The only problem is that Equation (??) is
nonlinear in N , which makes the identification task
and hence obtaining the direct self tuner more difficult.

An example of indirect self tuning - Model fol-
lowing adaptive control

One of the common appearances that indirect self tun-
ing algorithms are taking is model following. The
closed loop presented in Figure 6 together with the
equation (22) can be linked to model following based
on the assumption that V (s) = MN−1Y m(s). This
model following scheme is presented in Figure ??.

Uc

NmMm
-1 V-1 NM-1

~

~
R(s)

Ym(s)

V(s)

Y(s)E(s)

U(s)

MN-1

Figure 7: Coprime Factor Formulation of Self Tuners
(Model Following Equivalent)

For this structure is easy to observe the requirement
for an accurate plant model. This can be achieved
through on-line identification. Note that the choice
of the model to be followed has to account for plant
limitations due to unstable zeros (which correspond to
an inverse response), time delays and unstable poles.
Moreover input constraints which can lead to the con-
trol of a highly nonlinear system need to be indirectly
embedded in this model. Bad choices for the NmM

−1
m

model will result in a closed loop system with poor
sensitivity.
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In essence model following means in general the ad-
justment of a constant feedback gain, assuming that
this gain is used in the nominal system, so that the
time varying system approximates the ideal, which is
usually linear, in some sense. This control technique
was employed by many researchers initially on aircraft
models ranging from F-8 to F-16 and F-18. Most of the
simulations performed were considered successful, pro-
viding an improved system response in the case when
model parameters are varying.

Adaptive model following involves the redesign of the
control law by a parameter estimation of the new sys-
tem and a re-optimization. The resulting controller can
be either a total new design or an augmented version
of the initial controller, depending on the strategy.

Many schemes are employing the conventional con-
troller in parallel with the adaptive one, each of them
being used in different situations. For instance the
nominal one is employed during the normal operations
or when the adaptive controller exhibits failures, as op-
posed to the adaptive one which is introduced in the
algorithm when parameters vary and hence adaptation
is needed.

8 Nonlinear Adaptive Control

8.1 Nonlinear Laguerre modelling
The Laguerre methodology can be extended to nonlin-
ear systems, following the work of Schetzen (1980). The
nonlinear Laguerre model is a special case of a Wiener
model, where the linear dynamic part represented by
a series of Laguerre filters is followed by a memory-
less nonlinear mapping. Such a nonlinear model can
be derived from the Volterra series input-output repre-
sentation, where the Volterra kernels are expanded via
truncated Laguerre functions. A finite-time observable
nonlinear system can be approximated as a truncated
Wiener-Volterra series:

y(t) = h0(t) +
N∑

n=1

∫
· · ·

∫
hn(τ1, · · · , τn)

n∏
i=1

u(t − τi)dτi

For instance, truncating the series after the second-
order kernel:

y(t) = h0(t) +
∫ ∞

0

h1(τ1)u(t− τ1)dτ1 + (27)
∫ ∞

0

∫ ∞

0

h2(τ1, τ2)u(t− τ1)u(t− τ2)dτ1dτ2

Assuming that the Volterra kernels are in L2[,∞), they
can be expanded and approximated as:

h1(τ1) =
N∑

k=1

ckφk(τ1) (28)

h2(τ1, τ2) =
N∑

n=1

N∑
m=1

cnmφn(τ1)φn(τ2) (29)

Using Laguerre functions, this second-order nonlinear
system can be expressed as the nonlinear state-space
model:

l̇(t) = Al(t) + bu(t) (30)
y(t) = c0 + cT l(t) + lT (t)Dl(t) (31)

where c = {ck} and D = {cnm}. Note that since the
Volterra kernels are symmetric, cnm = cmn and thus
D is symmetric. A discrete model can be derived in
a similar form. Note that this model is linear in the
parameters, and can thus be easily identified.

8.1.1 Feedback linearization: There is much
current interest in the adaptive control of nonlinear
systems. This is a difficult problem since no general
methods are available. The idea of obtaining a mod-
ified plant which exhibits a linear characteristics and
use it to derive a controller is probably the most natu-
ral approach to nonlinear control. The method is called
feedback linearization and can be extended to adaptive
control via tuning on-line some of its parameters. For
a clear understanding we are presenting feedback lin-
earization applied to a simple SISO system with two
states:

ẋ1(t) = x2(t) + f(x1(t)) (32)
ẋ2(t) = u(t) (33)

where f()̇ is the output nonlinearity as a differentiable
function.

Introducing new coordinates ζ1(t) = x1(t) and ζ2(t) =
x2(t) + f(x1(t)) we rewrite the above system as:

ζ̇1(t) = ζ2(t) (34)
ζ̇2(t) = ζ2(t)ḟ(ζ1(t)) + u(t) (35)

Using the control law

u(t) = −a2ζ1(t) − a1ζ2(t) − ζ2(t)ḟ(ζ1(t)) + v(t) (36)

we get a linear closed loop described by:

ζ̇(t) =
[

0 1
−a2 −a1

]
ζ(t) +

[
0
1

]
v(t) (37)

The transformation that links the original input to the
closed loop input is:

u(t) = −a2x1(t)−(a1+ḟ(x1(t)))(x2(t)+f(x1(t)))+v(t)
(38)
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Moving in the direction of adaptive control we rewrite
the original system based on the unknown parameter θ
as:

ẋ1(t) = x2(t) + θf(x1(t)) (39)
ẋ2(t) = u(t) (40)

Applying the well known certainty equivalence princi-
ple we have the following mapping between the original
input and the closed loop input:

u(t) = −a2x1(t)−(a1+ḟ(x1(t)))(x2(t)+θ̂f(x1(t)))+v(t)
(41)

which unfortunately gives an error equation nonlinear
in the parameter θ. The solution is to use the modified
coordinates ζ1(t) = x1(t) and ζ2(t) = x2(t)+ θ̂f(x1(t)),
where θ̂ is an estimation of θ. The system above be-
comes:

ζ̇1(t) = ẋ1(t) = x2(t) + θf(x1(t)) (42)

= ζ2(t) + (θ − θ̂)f(ζ1(t)) (43)

ζ̇2(t) = ˙̂
θf(x1(t) + θ̂(x2(t) + θf(x1(t)))ḟ(x1(t)) + u(t)

The control law becomes:

u(t) = −a2ζ1(t) − a1ζ2(t) − θ̂(x2 + θ̂f(x1(t)))ḟ(x1(t)) −
−f(x1(t)) ˙̂

θ + v(t) (44)

which results in the following linear closed loop:

ζ̇(t) =
[

0 1
−a2 −a1

]
ζ(t)+

[
f(ζ1(t)

θ̂f(ζ1(t))ḟ(ζ1(t))

]
θ̂+

[
0
1

]
v(t)

(45)

A generalization of this approach to MIMO systems is
given in [?].

8.1.2 Quasi-LPV adaptive control: This
section suggests a new nonlinear adaptive strategy
based on four ingredients:

• High fidelity models

• Nonlinear model approximation techniques

• Nonlinear identification

• Constrained Model Based Predictive Control

This approach is motivated by a number of problems
encountered with other active approaches surveyed.

High fidelity dynamic models are increasingly built for
complex plants. This has been the case in the aerospace
and process control industries for many years. Most
of the nonlinear models available require in general,
extra tuning to reflect a specific process within required

fidelity. Automatic tuning of these parameters can be
obtained through nonlinear output error identification
performed in recursive fashion.

Before embarking onto this path a nonlinear model ap-
proximation technique is required to produce a suitable
model. In [?] a quasi-LPV model that embeds the plant
nonlinearities without interpolating between point-wise
(Jacobian) linearization is presented. The main charac-
teristic of these models, compared with the usual LPV
way of representing systems, is that the scheduling vari-
able is a state of the model. The quasi-LPV approach is
mostly suited for systems exhibiting output nonlinear-
ities. Such nonlinearities enable us to write the system
in form of equations (46). A principal requirement for a
nonlinear system to be transformed into a quasi-LPV
system is that the number of available equations has
to be equal to the number of states plus the number
of outputs minus the number of scheduling variables.
When it is impossible to embed all the system non-
linearities in the output then the transformations used
in producing the quasi-LPV model, see equation (48),
have to be approximated up to first order terms in all
the states except the scheduling parameters.

To develop the quasi-LPV model we start with a non-
linear model written in a form for which the nonlinear-
ities depend only on the scheduling variable α:

d

dt

[
α
q

]
= f(α) +

[
A11(α) A12(α)
A21(α) A22(α)

] [
α
q

]
+

[
B11(α)
B21(α)

]
δ (46)

A family of equilibrium states, parameterized by the
scheduling variable α, is obtained by setting the state
derivatives to zero:

0 = f(α) +A(α)
[

α
qeq(α)

]
+B(α)δeq(α)

Providing that there exist continuously differentiable
functions qeq(α) and δeq(α), we are able to write the
system (46) in the following form [?]:

d
dt

[
α

q − qeq(α)

]
=[

0 A12(α)
0 A22 − d

dαqeq(α)A12(α)

] [
α

q − qeq(α)

]
+[

B11(α)
B21(α) − d

dαqeq(α)B11(α)

]
(δ − δeq(α))

(47)

This form gives a different α-dependent family than
would be obtained by point-wise linearization. In or-
der to use (47), the function δeq(α) must be known.
This can be estimated by using an ‘inner loop’ [?] but,
because of model uncertainty, this can reduce the ro-
bustness of the main control loop in a way which is
difficult to predict at the design stage. Like in [?] we
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avoid the problem generated by the existence of an in-
ner loop required to compute δeq(α) by adding an in-
tegrator at the plant input. As a result we have the
quasi-LPV form for the system dynamics:

d
dt


 α
q − qeq(α)
δ − δeq(α)


 =


0 A12(α) B11(α)

0 A22 − d
dαqeq(α)A12(α) B21(α) − d

dα [qeq(α)]B11(α)
0 − d

dα [δeq(α)]A12(α) − d
dαδeq(α)B11(α)


×


 α
q − qeq(α)
δ − δeq(α)


 +


0

0
1


 ν

(48)
This final form is actually the representation used for
identification and further control purposes. The quasi-
LPV model of the plant gives the clarity required by
industry since it retains a physical meaning for the el-
ements of the model LTV matrices. It is advisable to
have the scheduling variable as a system output rather
than an estimate.

The matrices A(α) and B(α) depend in a nonlinear
fashion on a number of model parameters. The nonlin-
ear output error identification method is employed to
produce representations for the model LTV matrices,
hence the quasi-LPV model runs in parallel with the
nonlinear plant providing the state equilibrium values
qeq(α), δeq(α) together with the A(α), B(α), C, D ma-
trices depending on the current value of the scheduling
parameter α.

Freezing the high fidelity model with respect to the pa-
rameter vector yields a linear model which is used by
the controller as its internal model. An important ad-
vantage for real-time implementation is that this is a
computationally inexpensive way of obtaining, in adap-
tive fashion, a linear internal model which approxi-
mates the nonlinear one.

We envisage a constrained model based predictive con-
troller providing the inputs to the plant. Giving it
enough degrees of freedom (a large enough set of con-
trol inputs) enables it to keep the plant close to the
required trajectory. The structure of the controller
consists of standard modules. The states, including
α, are assumed measurable. If α remains constant,
the MBPC controller stabilizing this model will drive
the states to zero which means that the δ input to the
plant will be set at the true δeq trim value. The internal
model will be the corresponding LTI system obtained
at each value of the scheduling parameter α.

The main question raised while implementing the adap-
tive mechanism was which model should be used to pro-
vide predictions. Two strategies have been considered
for use during setpoint changes which cause significant
α variations:

• No a priori trajectory information. A single model
was used across the whole prediction horizon, but
changed at each current time step in accordance
with the measured α value.

• A priori trajectory information available. This al-
lows the internal model to vary over the prediction
horizon, but one needs to predict α over the pre-
diction horizon in order to do this. It is important
to base this prediction on the desired trajectory,
rather than the achieved one. This might look as
a gross approximation but it retains the QP struc-
ture of the optimisation problem. Basing it on the
achieved trajectory would lose even the convexity
property, so should be avoided if at all possible.

Note that these two strategies become the same in the
special case when both the control horizon and the pre-
diction horizon are one. It is advisable to take one of
the above suggested paths since otherwise, obtaining
the models through the plant future dynamics, the re-
sulting cost function is no longer quadratic in the com-
mand increment. This method avoids a nonlinear con-
strained optimization for which it is hard to guarantee
a global solution.

9 Commercial Adaptive Controllers

9.1 BrainWave
9.2 Connoisseur
9.3

10 Conclusions
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