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Abstract—Phenylephrine is used to treat maternal hy-
potension induced by spinal anesthesia. Studies show that
phenylephrine is able to correct hypotension but an over-
dose could result in bradycardia and hypertension. The
response of this drug has not been fully investigated and
hence it creates significant workload for the anesthetists.
They are required to adequately and continuously regulate
the dose of phenylephrine.

A model of blood pressure and associated uncertainty,
during spinal anesthesia, is derived for use with an auto-
matic drug delivery system. The model of input-output re-
lationship is arranged into a 10-state multivariable model,
using clinical data and the subspace identification and the
prediction error method. The relationship among the out-
put (patient’s blood pressure), the primary input (phenyle-
phrine) and measured disturbances (spinal anesthesia and
heart rate) is considered. Uncertainties in the model pa-
rameters, reflecting a diverse patient population based on a
40 cases observational study, are arranged in a linear frac-
tional structure.

Index Terms—Blood Pressure Control, Phenylephrine

I. Introduction

Studies show that hypotension occurs in up to 85% of the
patients undergoing spinal anaesthesia [1]. Recent studies
have suggested that use of ephedrine to correct maternal
hypotension, during spinal anesthesia for Cesarean section,
is associated with higher incidence of fetal acidosis, when
compared to phenylephrine [2]. There is an increasing sup-
port in the medical community for phenylephrine to treat
hypotension with better fetal outcome. However, there are
no studies available in the literature to demonstrate the
lowest effective dose of phenylephrine to correct maternal
hypotension without producing side effects (e.g. hyperten-
sion and reflex bradycardia) [3].

At present, the pregnant patient’s response to phenyle-
phrine is not fully described and determined. Therefore
to enable better care there is a need to investigate how
the patient reacts to phenylephrine. This can further lead
to the development of an automatic/advisory drug deliv-
ery system that physicians can rely upon in controlling
maternal hypotension. The computerized system will first
calculate the dosage and duration of the phenylephrine ef-
fect, and then administer the drug according to the patient
model through a electronic infusion pump. The precision
achieved will allow the anesthetists to closely manipulate
maternal hypotension.

Clinical data were collected from patients subjected to
spinal anesthesia for Cesarean section. If hypotension or-
rcurred, patients were randomized to receive one of the
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following phenylephrine doses: 20, 40, 60 or 80 micro-
grams, to treat hypotension following spinal anesthesia. If
the patient’s Systolic Blood Pressure (SBP) was observed
to be under 100mmHg or less than 80% of her baseline
for roughly 70 seconds, phenylephrine was administered
according to the approved clinical protocol. If the blood
pressure did not rise above 100mmHg after the initial dose,
double the dose, up to 100 micrograms was administered.

The scope of this paper was confined to data analysis
and modelling. The clinical aspect of this project was ad-
dressed in another paper[4]. Data was collected from 40
cases, from which a nominal patient model was derived.
Data analysis was conducted with the help of the Mat-
lab System Identification Toolbox which implements sub-
space and structured ARMAX algorithms. In Section II
of this paper, the data acquisition and signal conditioning
for identification was disclosed, followed by the identifica-
tion procedure presented in Section III. In Section IV the
models and their uncertainty were shown. In Section V
the results of model validation were displayed followed by
conclusions in Section VI.

II. Data Acquisition and Conditioning

The patient’s SBP fluctuates subject to heart rate [5]
while the amount of phenylephrine and drugs associated
with spinal anesthesia are injected. The patient was mod-
elled as a discrete linear time invariant MISO model. The
disturbance part of the model was characterized by influ-
ence of spinal anesthesia and heart rate upon SBP. The ma-
nipulated variable to process variable input-output model
looks at the influence of phenylephrine upon SBP.

The digitization of these models was performed at a 10-
second sampling rate. SBP and heart rate data were col-
lected from the existing Datex/AS5 monitor at the BC
Women’s Hospital in Vancouver BC, Canada by connect-
ing the monitor through the serial port to a Dell data ac-
quisition laptop running the S5 Collect software provided
by Datex Ohmeda. The injection of drugs (spinal anes-
thesia and phenylephrine) was marked manually by the
built-in snapshot function of the monitor. SBP was mea-
sured using a non-invasive reading with the cuff inflated
as frequently as possible. The time to inflate the SBP cuff
was about 35 seconds hence data between the effective data
samples were generated by the monitor via extrapolation.
The data was often corrupted and hence such inaccurate
or missing data are occasionally observed. The data was
processed and interpolated based on clinical knowledge.

The data was divided into 3 partitions shown in Fig. 1
and filtered by a first order low pass filters selected accord-
ing to measured signal-to-noise ratios. The filter cutoff
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frequency of 1Hz for partition 1 was the highest since the
response in heart rate was acknowledged to be almost in-
stantaneous. The cutoff frequency for partition 2 at 0.7Hz
was the lowest because this was the noisiest data parti-
tion. Noise was caused by patient movement. The cutoff
frequency of partition 3 was also selected to be 1Hz in order
to capture the fast dynamics of phenylephrine. To achieve
the aforementioned decisions the frequency response of the
filtered data was examined to determine the best frequency
range for each low pass filter. The SBP data was first-
order-detrended for removal of its linear trend.
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Fig. 1. The three Partitions of a Typical Case: 1-Normal, 2-
After Administration of Spinal Anesthesia, 3-After Administration
of Phenylephrine.

III. System Identification

Individual additive effects of phenylephrine, spinal anes-
thesia and heart rate response on the final output sug-
gested that the hypothesis of a linear model was fairly re-
alistic. Therefore individual responses were extracted by
direct simple addition and subtraction. The first attempt
was made to identify the system as three independent SISO
systems. In partition 1, heart rate was the only input and
SBP is the output, therefore the response of heart rate
was identified by feeding the data into Matlab as if it was
a SISO system. Then in partition 2, the same procedure
was performed to discover the response of spinal anesthesia
except that the effect of heart rate was subtracted from the
SBP output. Lastly, spinal anesthesia and heart rate re-
sponse were subtracted from SBP in partition 3 to identify
the phenylephrine response.

The model however extracted did not agree very well
with the clinical data. The main flaw was that partition
2 is so short that the complete spinal anesthesia response
cannot be observed. This resulted in over-estimation of the
spinal anesthesia gain. Since this exaggerated spinal anes-
thesia gain was subtracted from partition 3, the phenyle-
phrine response became inaccurate.

It was concluded that the entire dataset in Fig.1 had to
be identified simultaneously, as a MISO system. The sub-
space method was chosen for this system identification due
to the nature of the problem. Since the subspace method,
unlike other methods such as ARX and ARMAX, is non-
iterative, a reasonable solution could be found even when
input excitation was limited to only one excitation from
the spinal anesthesia and a few from the phenylephrine

administration[6]. Even though this method was supe-
rior to identifying three partitions independently, a num-
ber of cases were still discovered to have negative gain for
phenylephrine and positive gain for spinal anesthesia. Af-
ter investigation, it was concluded that the oscillations cou-
pled with the complex components in the identified poles
and zeros were the cause of the incorrect modelling.

In order to further refine the model, structured ARMAX
was employed to parameterize the gains and the zeros but
not the poles. The locations of the poles were first com-
puted at the average location among cases solely with real
poles after the results of the subspace method. Then only
the gain and location of zeros were estimated once again us-
ing ARMAX. Gains and zeros were identified for each cases
and their mean were derived for the nominal model. The
structured ARMAX approach identified much fewer cases
with complex zeros. The refinement technique successfully
eliminated the number of outliers to three and ten in the
phenylephrine channel and spinal anesthesia channel, re-
spectively. Outliers were discarded in the mean model es-
timation because of their complex components. Due to
the fact that the iterative search of structured ARMAX in-
volves a certain degree of randomness, results were slightly
different every time but variations were small compared to
uncertainties analyzed and discussed in the next section.

The final input-output relationship was modelled as a
discrete transfer function matrix, as in Fig. 2. Two zeros
and three poles were observed to be sufficient to approxi-
mate dynamics of phenylephrine and heart rate dynamics.
For spinal anesthesia, an external integrator and a delay
of 18 samples were augmented to the 2-zero-3-pole system.
The integrator compensates the first order trend of the
data and the delay accounts for the 180 seconds dead time
in the spinal anesthesia response when the sampling rate
was set at 10 seconds. The 180 seconds dead time was an
estimate drawn from observation and clinical knowledge.
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Fig. 2. The Patient Model.

Each input has its own zeros and gains but shares the
same poles. The gain Ks exists only in the spinal anesthe-
sia input corresponding to the integrator gain. The heart
rate input and SBP output are measured above patient’s
baseline. If the delay in spinal anesthesia input is con-
sidered external to the system model, the three discrete
transfer functions can be converted into a 10-state MISO
system.
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IV. Model and Model Uncertainty

The nominal discrete transfer function model can be
rearranged into a canonical state space model for uncer-
tainty analysis (Fig. 3). The relationship of parameters
between the state space and transfer function model is
demonstrated in the equations for the A, B and C matri-
ces. For simplicity, the integrator augmented in the spinal
anesthesia channel is not included in the uncertainty anal-
ysis. Nonetheless the variance for the integrator gain, Ks,
is 1000 times less than the mean; therefore neglecting this
uncertainty for Ks is acceptable.

A =




a1 1 0
a2 0 1
a3 0 0


 =




1.2456 1 0
0.0919 0 1
−0.3523 0 0


 (1)

B =




K1 K2 K3

K1b21 K2b22 K3b23
K1b31 K2b32 K3b33


 =




0.3893 −0.6213 0.0091
0.2842 −1.0247 0.0062
−0.0436 0.0901 −0.0016




(2)

C =
[

1 0 0
]

(3)

Ks = 0.0153 (4)
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Fig. 3. Linear Fractional Uncertainty Model with the Delay and
Integrator Separated.

Illustrated in Fig. 3, dA contains uncertainty on the
poles of the system and dB contains uncertainty on ze-
ros and gains of the system. Since all three inputs share
the same poles, only the first column of dA is nonzero. The
distribution histograms for the twelve variables inside the
A and B matrices are plotted in Fig. 4 and 5. It is worth-
while to mention that the A matrix was not refined by the
structured ARMAX and it is an average of results from the
subspace identification. Therefore, variables within the B
matrix seem to be more normally distributed and more
accurate than the ones in the A matrix. Experiment was
carried out to refine the A matrix with structured ARMAX
while variables in the B matrix were fixed, but the poor
results in model validation suggested that refining the A
matrix degrades the model.

According to common clinical practice, physicians of-
ten rely on the 95% confidence interval. If parameters
are assumed to be normally distributed, the 95% confi-
dence interval is between the mean plus or minus twice
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Fig. 4. Distribution of First Column of A and First Column of B.
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Fig. 5. Distribution of Second Column of B and Third Column of B

the standard deviation. dA and dB are determined from
their corresponding variances and they are related to the
linear fractional uncertainty model in Fig. 3.

dA = ±



da1 0 0
da2 0 0
da3 0 0


 = ±




1.288 0 0
2.173 0 0
0.935 0 0


 (5)

dB = ±



db11 db12 db13
db21 db22 db23
db31 db32 db33


 = ±




6.485 4.129 5.923
7.299 5.510 8.270
0.554 0.766 0.555




(6)

Physicians often investigate the 95% confidence level of
the maximum correction in SBP by phenylephrine, which
is the peak gain of an impulse response. Table I shows
the mean, standard deviation and 95% confidence range
(normal distribution assumed) of the SBP correction by
using different dose of phenylephrine.

Dose: 20ug 40ug 60ug 80ug
Mean 4.25 21.43 20.73 24.09

Std Dev 4.20 13.23 11.90 14.81
Range low -4.15 -5.03 -3.07 -5.53
Range up 12.7 47.89 44.5 53.71

TABLE I: Mean, Std Deviation and 95% Ranges of SBP Correc-
tion(units in mmHg)

V. Model Validation

Simulations were run to validate the patient model. All
forty cases were validated. Most clinical data matches the
model, as in the left figure of Fig. 6. The solid line is the
simulated SBP and the dash line is the clinical data.

In isolated cases, the model failed to reflect:
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1. a constant offset;
2. an integrating factor in the phenylephrine;
3. estimate of the spinal anesthesia gain (K2).
Some of these characteristics mentioned can be observed

from model validations results presented in Fig. 7 and 8.
This is the direction of future work.

An individual model was derived for the case displayed
in the left figure of Fig. 6 and its model validation was
shown on the right. The nominal model was compara-
ble to the individual in terms of capturing features of the
response. Although the fit was higher for the individual
model, 44.71% compared to 53.78%, main features such as
the peak gain of phenylephrine and the drop in SBP due
to the spinal anesthesia were simulated gracefully in both
models. The low fit percentage for the case-specific model
was believed to be the contribution of errors in data due
to the quality of the measurement.
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Fig. 6. Nominal Model Validation and Individual Model Validation
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Fig. 7. Offset Mismatch Model Validation and Integrating Action
Mismatch in phenylephrine Model Validation
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Fig. 8. Underestimate of K2 Model Validation, fit=-0.02563%.

VI. Conclusion

A nominal patient model of SBP response to phenyle-
phrine when common disturbances such as, variations of

the HR and administration of spinal anesthesia, are occur-
ring was derived. Although the order of model was believed
to be capable of representing the complexity of a patient,
validations showed that the model matches clinical data
by roughly 30-40% in most cases. Judging by the fact
that the model derived from one particular case did not
replicate the data better than the nominal model, it was
concluded that data collected for this study contained sig-
nificant noise. By averaging the model, errors and noises,
the nominal model performs well when used to predict the
relationship between HR, spinal anesthesia, phenylephrine
and SBP. Improvements in the correctness of the model
were expected if noise can be reduced by taking continu-
ous SBP.

The response of phenylephrine had been analyzed for-
mally and systematically. The results clearly benefited
physicians and patients in terms of preventing the overuse
of phenylephrine, which is recognized to cause hyperten-
sion with reflex bradycardia. Furthermore, the model will
become starting point for an automatic/advisory drug de-
livery system, aimed at stabilizing SBP of patients by
means of phenylephrine controlled administration.
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