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Abstract

The human circadian pacemaker is a biological timekeep-
ing mechanism that governs alertness as well as many other
physiological processes of the human body. It is widely
accepted that daytime alertness is maximized when an in-
dividual’s sleep/wake schedule and circadian pacemaker are
synchronized. Unfortunately today’s world is characterized
by widely distributed activity schedules which often make
this difficult. However research in chronobiology indicates
that ambient light stimulus can be used to phase advance
or delay the human circadian pacemaker. To optimally con-
trol the human circadian pacemaker using light, the authors
present a model based predictive control system. This ap-
proach readily facilitates closed-loop control and elegantly
handles the constraints present in a typical human environ-
ment, thus has merit for a number of practical applications.
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1 Introduction

Research in the field of chronobiology, the study of
time-varying biological systems, has shown that hu-
mans possess an endogenous circadian pacemaker: a
self-oscillating chemical process in the suprachiasmatic
nucleus region of the brain with a period very near to
24 hours [2]. The human circadian pacemaker is under-
stood to synchronize the rhythm of many physiological
processes and govern daily fluctuations in core body
temperature [8], hormone levels [12], and alertness [14].

Given the fact that the period of the circadian cy-
cle is 24 hours, it is not surprising that light is
the strongest stimulus that affects the human circa-
dian pacemaker [1][3]. In fact, light stimulus has
been shown to phase shift the human circadian pace-
maker [1][6][7][9]. The effect of this phenomenon on the
cycle of alertness is of particular interest, as it is desir-
able to maximize alertness during waking hours. This
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can be achieved by shifting the phase of the human cir-
cadian pacemaker, using light, to achieve synchronicity
with a given activity schedule. The authors present a
means of optimal controlling light in a closed loop man-
ner, accounting for inherent constraints connected with
introducing light stimulus to a human.

Increasingly accurate models of the effect of light on
the human circadian pacemaker have been developed
over the past two decades. Early models [3] led to
qualitative approaches for modifying circadian rhythms
in laboratory and clinical applications. The use of a
mathematical Van der Pol oscillator equation to model
the circadian pacemaker was first suggested in 1982
by Kronauer et al. [10] and led to the development of
more precise algorithms to determine the intensity and
duration of light pulses required to produce circadian
phase shifts [9]. Subsequent refinements of this model
by Jewett et al. [5] to match empirical data now accu-
rately describe a continuous distribution of light stimuli
and corresponding circadian phase shifts.

The authors present a means to optimally achieve de-
sired circadian phase shifts through the application of
control system theory. In developing an approach to
the problem, the following unique features of the sys-
tem are considered:

• there are practical constraints to light levels in a
typical human environment

• the model of the human circadian pacemaker is
nonlinear

• processing time is not a critical factor since the
circadian process happens over 24 hours

The authors describe an approach based on model
based predictive control (MBPC) that addresses these
features by making use of model based predictions
in order to optimize inputs in the presence of con-
straints. Incorporating a state-feedback compensation
block deals with the nonlinearities



2 Model of Human Circadian Pacemaker

A mathematical model of the effect of light on the hu-
man circadian pacemaker was developed by Jewett and
Kronauer in 1999 [5] based on data from many empir-
ical observations. This model describes a human as a
single-input single-output (SISO) system in which light
and an indicator of circadian state are the input and
output respectively. The model is a set of differential
equations that captures the oscillatory nature of the
circadian pacemaker and the nonlinear effects of light.

Oscillator Equations: The self-sustaining
rhythm of the circadian pacemaker is modeled by a
modified Van der Pol oscillator with a natural period
of slightly more than 24 hours:
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where µ = 0.13, q = 1/3, τx = 24.2, k = 0.55, and B is
a driving input due to light. The state variables x and
xc are two sinusoids that are out of phase by 90 ◦.

Measurement of the state of the human circadian pace-
maker can be accomplished by monitoring any of a
number of physiological markers that display corre-
sponding circadian fluctuations. Core body temper-
ature (CBT) is one of these markers and fluctuates
approximately sinusoidally. The time at which CBT
reaches a minimum is a reliable marker of circadian
phase and in the model is used to relate the state of the
mathematical model to the actual physiological state of
a human subject [5]. The time of the minimum of vari-
able x is defined to occur 0.8 hours before the time of
CBT minimum:

CBTmin = xmin + 0.8 hours

Note that for the purposes of this work, the authors
make the assumption that the relation between core
body temperature and variable x can be extended to
all phases with

CBT = x + 0.8 hours,

and subsequently treat the state variable x as the
measured output of the human circadian pacemaker
model. In practice, measuring an individual’s circadian
CBT fluctuations requires ‘demasking’ signal process-
ing techniques [13]. To allow a focus on the control
algorithms, this state estimation step is simplified and
the circadian state is assumed to be directly measured.
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Figure 1: The response of the human circadian pacemaker
to a light pulse. a) light intensity input (I) b)
driving input (B) to the circadian pacemaker
c) response of x and xc to the light input (solid
line) and unforced response (dashed line)

Light Equations: The light input is specified
as the ambient light intensity in units of Lux. The
following equations relate the light intensity (I) expe-
rienced by a human into a driving input (B) on the
circadian pacemaker.

The logarithmic response (α) of the human eye to light
is modelled by:

α = α0

(

I

9500

)p

(3)

where I is the ambient light intensity in units of Lux,
α0 = 0.16, and p=0.6. Further, I is related to a driving
input (B) on the circadian pacemaker as follows:

ṅ = 60[α(1 − n) − βn] (4)

B = Gα(1 − n)(1 − mx)(1 − mxc) (5)

where β=0.013 and G=19.875. Equation (4) models
a filter (n) acting upon (α) and equation (5) models
the modulation of the driving input (B) by the current
state of the circadian pacemaker and the filter.

Open Loop Model Response: The response
of the human circadian pacemaker to a pulse of light
and the corresponding driving input (B) is shown in
Figure 1. The driving input (B) exhibits an initial peak
that decays to a steady state value. Further it is seen
how the primary effect of B is to apply an upward force
on the state variable x. Depending on the phase of x,
B can cause either a phase-advance or phase-delay.



3 Model Linearization

The model equations described in Section 2 lend them-
selves well to a nonlinear state space representation. To
enable the use of MBPC, the original model with light
intensity (I) as the manipulated variable is transformed
into a linear model where the manipulated variable is
the driving input (B). This transformation is achieved
by the use of a nonlinear state feedback compensation
block together with a nominal linear approximation.

State feedback linearization: The most sig-
nificant nonlinear aspect of the model is the relation be-
tween the light intensity (I) and the driving input (B)
that is applied to the circadian oscillator. To hide these
nonlinearities from the controller, a nonlinear compen-
sator is designed to perform a reverse transformation,
from B to I, that will allow the controller to manipulate
B rather than I. An estimate of the current circadian
state (x), that is derived as discussed in Section 2, is
used in the compensator.

To begin creating the B to I transformation, equation
(5) is rearranged as:

α =
B

G(1 − n)(1 − mx)(1 − mxc)
(6)

A complication arises due to the presence of the state
variable n that has itself a nonlinear dependance on the
value of α in equation (4). Equation (4) describes a de-
caying exponential function that approaches its steady
state value within a short amount of time relative to
the length of an average light pulse (16 hours). Thus,
the authors simplify equation (6) by approximating n

as a constant:

napprox = lim
t→∞

n =
α

α + β
(7)

Substituting the value of napprox from equation (7) for
n in equation (6) leads to:
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B

G
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)
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Further, equation (3) is rearranged to:
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To complete the transformation equations (8) and (9)
combine to:

I ≈ 9500

(
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(10)
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Figure 2: Unforced response (I=0) of x and xc with lin-
ear approximation (µ=0) of equation (1) (solid
line) versus the original nonlinear form (dashed
line).

Equation 10 is a transfer function of the form I =
f(B, x, xc) that serves as a nonlinear compensation
block to convert from B to I. Note that since the terms
x and xc are states of the plant it is implemented using
state-feedback.

Nominal linear model approximation:

With a nonlinear compensation block allowing B

to serve as the manipulated variable, the next goal
is to describe the oscillator equations (1) and (2)
as a linear state space system with B as the input.
A quasi-LPV [4][11] approach was considered here.
However, an analysis of the nonlinearities present in
this system led to the conclusion that a nominal linear
approximation would provide a sufficiently accurate
model over the operational envelope of this plant
for a length of time corresponding to the prediction
horizons used within the MBPC.

Equation (1) contains an expression of terms of x that
slightly modifies the original Van der Pol equation so
that it matches experimental results. Two terms con-
tain higher order terms of x and therefore introduce
nonlinearities. However, the significance of the these
terms is reduced by the scaling factor (µ). Also, the
expression contains only odd powers of x, and forms
an odd function which has an integral of 0 over the
normal operating range of x ε [-1,1]. So, due to the
small instantaneous effects that average to zero over a
full period these terms are eliminated from equation
(1) by setting µ=0. A simulation showing the effect of
this simplification is shown in Figure 2.

The remaining nonlinearities in the model equations
are the two B terms in equation (2). In a similar man-
ner, these terms only serve to make minor adjustments
to the behavior of the system as shown by the small



values of the multiplicative parameters q and k. The
simplification to linearity is performed by setting q=0
and k=0.

The above simplifications result in a nominal linear ver-
sion of equations (1) and (2) that can be expressed, in
state space form, by:
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4 The application of MBPC

Putting together the linearized state space model and
the nonlinear compensation block, a predictive con-
troller is developed. An MBPC based on the linear
state-space model from equations (11) and (12) is used
to determine the optimal control moves in terms of B.
The nonlinear compensation block then converts from
B to the light intensity I. This control architecture is
shown in Figure 3.
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Figure 3: Controller architecture.

The reference trajectory is the desired path of the cir-
cadian state variable x. During normal conditions x

follows a nearly sinusoidal rhythm with slight aberra-
tions due to the nonlinearities present in the plant. For
simplicity the authors chose to use a pure sinusoid as
the reference trajectory. Accordingly, the MBPC toler-
ates small deviations from the reference trajectory, but
tracks the fundamental phase and period. These track-
ing goals are achieved through the implementation of
an appropriate error tracking cost function.

The cost function has in its expression the time-varying
reference error weight, δ, and the cost for manipulated

variable changes, λ, respectively:
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where p is the prediction and control horizon. In the
unconstrained case, the nonlinearities in the system are
hidden from the MBPC and optimal control moves can
be calculated from the cost function (13).

In practical applications however there will be con-
straints on the light intensity (I). In many situations
future constraints on illumination input can also be an-
ticipated from knowledge of an individual’s sleep/wake
schedule. Therefore the authors designed the MBPC
to handle such time-varying constraints on I. Some
nonlinear complications arise since constraints on the
MBPC’s manipulated variable must be expressed in
terms of B.

The transformation from a light intensity value (I) to
a driving input value (B) is given by equations (3),(4),
and (5). At a given time k, B is a function of the
current circadian state and current and past values of
light intensity:

B(k) = f(x(k), xc(k),

k
∑

i=−∞

I(i))

Therefore, to transform a future constraint on I into a
constraint on B, the future circadian state and all the
future control moves must be known. This leads to an
iterative problem since the future circadian state and
control moves depend in turn on the constraints. To
solve this, two simplifications are made. First the effect
of the state variable n is simplified in the same manner
as is done in the nonlinear compensation block. Sub-
stituting the value of napprox from equation (7) for n in
equation (5) results in a time-invariant approximation
of B:

B(k) ≈ G
α(k)β

α(k) + β
(1 − mx(k))(1 − mxc(k)) (14)

where α is given by equation (3). Second, the future
values of x and xc are approximated by substituting
their predicted free response values. The free response
is determined by calculating future values assuming
that the current light intensity (I) remains constant.
This assumption yields sufficient accuracy since the
strong stiffness of the circadian pacemaker causes it to
continue oscillating regularly under typical conditions.
Thus, future I constraints are transformed to B con-
straints using equation (14) with the predicted free re-
sponse values for x and xc. The optimal control moves
are then calculated under the following constraint con-
dition:

Bmin(k) ≤ B(k) ≤ Bmax(k) for k = 1 . . . p
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Figure 4: Scenario 1 simulation. In diagram a) the cir-
cadian pacemaker x (solid line) is tracked to a
reference trajectory (dashed line) with no phase
shift. Diagrams b) and c) show the driving
input B and the actual light intensity I re-
spectively (solid lines) with their constraint en-
velopes (dashed lines).

5 Simulations and Results

Applications for this control system are found in situa-
tions where a person’s circadian pacemaker needs to be
tracked to an optimal rhythm in the presence of input
constraints. To demonstrate the operation of the con-
trol system the authors created two scenarios involving
astronauts.

Astronauts in orbit experience light/dark cycles with
greatly reduced periods. It is therefore necessary to
artificially maintain 24 hour circadian cycles to ensure
optimal alertness and increased quality of sleep during
missions.

The following constraints are imposed on the light in-
tensity input (I):

• the range of light extends from darkness to a high
intensity light source:
(0 Lux ≤ I ≤ 10, 000 Lux)

• no light can be received during sleep:
(I = 0 Lux)

• a minimum amount of light is necessary to per-
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Figure 5: Scenario 2 simulation. In diagram a) the cir-
cadian pacemaker x (solid line) is tracked to a
reference trajectory (dashed line) with a three
hour shift over two days. Diagrams b) and c)
show the driving input B and the actual light
intensity I respectively (solid lines) with their
constraint envelopes (dashed lines).

form daily activities while awake:
(I ≥ 300 Lux)

• for the first hour after rising and the last hour
before sleeping the minimum amount of light is
reduced to 100 Lux

Scenario 1: In this scenario an astronaut is
maintaining a regular 24 hour schedule of 8 hours asleep
and 16 hours awake, and the astronaut’s circadian
rhythm is already synchronized to the reference tra-
jectory (optimal rhythm). As expected, the circadian
pacemaker continues naturally on its 24 hour rhythm,
and as can be seen in Figure 4, little control effort is
needed to maintain it.

Scenario 2: In this scenario the astronaut re-
ceives a mission requirement that involves shifting the
waking hours ahead by 3 hours. In anticipation of this,
the sleep schedule is adjusted over two days and it is
left to the control system to ensure that the circadian
pacemaker catches up. With knowledge of the schedule
change, a reference trajectory with a 3 hour phase lead
is introduced and the MBPC determines the optimal
light levels over the course of three days. As shown in



Figure 5, the astronaut’s circadian rhythm is success-
fully tracked by the third day.

6 Conclusions

In a novel application of control system theory to the
field of chronobiology, the authors have presented a
means of optimally controlling the human circadian
pacemaker using light stimulus. The control architec-
ture developed consists of a constrained MBPC aug-
mented by a nonlinear block to address nonlinearities
present in the model of the circadian pacemaker. In
simulated scenarios requiring shifting of the human cir-
cadian pacemaker the controller performed successfully.

Areas for further work include improvements to the
state estimation and the cost function implementa-
tions. To focus on the control aspect, the authors as-
sumed the presence of a means of accurately sensing
the human circadian pacemaker state. A more com-
plete treatment of circadian pacemaker state estima-
tion would be beneficial. The inclusion of a nonlinear
cost function on the driving input (B) would allow ac-
curate representation of the physical cost of illumina-
tion.

The MBPC approach to modifying the human cir-
cadian pacemaker described in this paper is a vi-
able means of implementing a practical control sys-
tem that maximizes an individual’s alertness during
waking periods. Applications include environmental
control systems in environments that have irregular or
unnatural illumination patterns, such as those found
in submarines and the International Space Station.
Other general applications include situations requiring
changes in an individual’s sleep/wake schedule such as
shift work and transmeridian travel.
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