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ABSTRACT 
FPGA placement and routing are still challenging problems. 
Given the increased diversity of logic and routing resources on 
FPGA chips, it seems appropriate to tackle the placement problem 
as a mapping between the nodes and edges in a circuit graph to 
compatible resources in the architecture graph. We explore 
utilizing graph isomorphism algorithms to perform FPGA 
placement. We use a hierarchical approach in which the circuit 
and architecture graphs are simultaneously clustered to reduce the 
size of the search space, and then a novel reductive graph product 
method is used to solve the isomorphism problem. The graph 
product algorithm is called reductive as it eliminates a linear 
number of candidates at every step of the search process, reducing 
the number of candidate nodes by approximately 1/3. Compared 
to the annealing-based placement tool VPR 5.0, we achieve 
approximately 40% improvement in placement runtime, while 
improving the critical path delay by about 7% and wire length by 
5%, while demanding 1.3% more channels on average. 

Categories and Subject Descriptors 
J.6 [COMPUTER-AIDED ENGINEERING]: Computer-aided 
design. 
B.7.2 [INTEGRATED CIRCUITS]: Design Aids- Placement and 
routing. 

General Terms 
Algorithms, Design, Theory. 

Keywords 
Placement, graph isomorphism, graph product, clustering. 

1. INTRODUCTION 
The FPGA placement problem has been studied for a few 

decades. The solutions to this problem include meta-heuristics 
(e.g., annealing [1], ant colony [2]), hierarchical [3], and parallel 
implementations [4],. The placement (and routing) problem is 
becoming more challenging as the number of resources on the 
chip are growing exponentially [5] and FPGAs contain 
increasingly heterogeneous collection of resources  [6] [7] (LUTs, 
memory blocks of different sizes, DSP blocks, serial I/O, 
multipliers, and even embedded processor cores). 
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Placement and routing are in essence graph mapping 
problems: from the circuit graph to the architecture graph, 
matching the types of circuit nodes (e.g., memory or 
multiplication operations) to compatible types in the architecture 
graph (e.g. memory can be mapped either to embedded memory 
blocks or collection of LUTs. Similarly, a multiplication operation 
in the circuit graph can be mapped either to an embedded 
multiplier unit or a soft multiplier mapped to the LUTs). The same 
is true for routing resources: timing critical nets have to be 
mapped to faster routing resources. 

Graph Isomorphism algorithms are potentially good 
candidates for simultaneously solving the placement and routing 
problems, but their success has been limited primarily due to their 
high time complexity. We utilize the high degree of symmetry in 
the architecture to significantly cut on the runtime of graph 
isomorphism algorithms. We employ clustering, as well as a novel 
reductive graph multiplication algorithm to solve the graph 
isomorphism problem efficiently. Compared to the well-known 
annealing-based algorithm VPR 5.0 [1], we achieve about 
approximately 40% speedup while improving delay (7%) and wire 
length (5%) and slightly worsening channel width (1.3%). 

The rest of the paper is as follows: Section 2 gives a high-level 
description of our algorithm. Section 3 covers the background 
material for graph isomorphism and clustering. Details of our 
approach is described in Section  4. Experimental results are 
presented in Section 5, followed by conclusions and future 
directions in Section 6. 

2. OVERVIEW OF THE APPROACH 
Our approach uses a graph isomorphism algorithm as its 

core, but uses two main techniques to speed up the algorithm. The 
first technique is to adopt a hierarchical methodology to reduce 
the search space. The challenge is to maintain enough 
architectural details to achieve a high-quality solution at every 
level of the hierarchy. The second technique is to use the inherent 
abundance of symmetry in the architecture graph to trim the 
search space significantly. 

Figure 1 shows the overall flow of our algorithm, which uses 
a “V” cycle [8][9] of clustering and local bottom-up placement, 
followed by unclustering and final top-down placement in a 
hierarchical fashion. The circuit graph (top-left in Figure 1) is first 
recursively clustered using the method described in [10] until the 
cluster size limits are reached (a maximum of 9 nodes in each 
cluster in our case). Then each cluster is mapped to a subset of the 
architecture graph (e.g., an array of 3x3 logic elements), which 
essentially means finding a local placement solution for each 
cluster. The process is repeated in a hierarchical fashion until the 
number of clusters is small enough (the bottom-most oval in 



Figure 1). After that, the unclustering phase begins, in which local 
placements are packed together and the final coordinates of nodes 
are assigned.  

 

 
Figure 1. Overall flow of our algorithm 

There are five major steps in our algorithm. Phase 1 is 
initialization. Phases 2 – 4 are repeated hierarchically (arrows 
going down in Figure 1), followed by Phase 5 (arrows going up): 
• Phase 1: initialization. In this phase, timing analysis is done 

on the circuit graph to determine timing critical nets. 
Furthermore, the architecture graph is pre-processed to 
generate hierarchical representations of the architecture to be 
used during the graph isomorphism phase. 

• Phase 2: Clustering. In this phase, the aim is to cluster 
highly connected logic elements (LEs) in the circuit, subject 
to cluster size limits. Clustering results in smaller circuit 
graph sizes that help maintain reasonable runtimes during the 
isomorphism phase. The quality of clustering has a major 
impact on the overall quality of our algorithm.  

• Phase 3: Finding graph isomorphism. After one level of 
clustering is done, each cluster represents a small circuit sub 
graph to be mapped to the corresponding hierarchy of the 
architecture graph. The best sub graph isomorphism of these 
two graphs is found in which timing critical edges are 
mapped to faster routing resources. The principal issue is to 
find this sub graph isomorphism in the lowest time, 
otherwise the best sub graph isomorphism could be found by 
spending a huge amount of time exhaustively considering all 
cases. 

• Phase 4: Local placement. After finding the sub graph 
isomorphism of the circuit and architecture sub graphs, each 
node of the circuit graph is labeled by a local placement 
coordinate. Although we do not currently perform additional 
local optimizations in this phase, our future work includes 
further refining local placements by repeating static timing 
analysis and repeating the local placement phase. 

• [Phases 2—4 are repeated recursively until the number of 
clusters is small enough. Each cluster in Phase 4 is now 
considered as a node to be clustered in Phase 2] 

• Phase 5: Unclustering and final placement. After the 
bottom-up placement of the circuit is done, a top-down 
placement phase begins that stitches together the local 
placements, assigning final coordinates to all nodes. 

Although we do not currently apply further optimizations 
during the top-down placement phase, our future work 
includes exploring refinements such as considering the 
rotations or mirror images of local placements when stitching 
them together to build the final placement. 

3. PRELIMINARIES 
In this section we briefly cover a few of the existing algorithms 
for graph isomorphism and also graph clustering problems. Our 
technique employs a novel reductive graph multiplication 
algorithm to solve the isomorphism problem and Marek-
Sadowska’s clustering approach [10] to build the hierarchy of the 
architecture and the circuit graph.  
 

3.1 Graph isomorphism 
The graph isomorphism problem has been extensively studied in 
the past and there are many algorithms that target various classes 
of the problem. We first give a formal definition of the problem 
and then list a number of well-known algorithms. 
Definition 1: the graph isomorphism problem. Given two graphs 
G1(V1,E1) and G2(V2,E2), there is an exact isomorphism between 
the graphs if |V1|=|V2| and |E1|=|E2| and we can find a mapping 
Ω: V1 → V2 that maps every node of G1 to a unique node of G2 
such that ∀(u1,v1)∈E1, (Ω(u1), Ω(v1)) ∈E2 and  ∀(u2,v2)∈E2, (Ω-

1(u2), Ω-1(v2)) ∈E1. In other words, there is isomorphism between 
two graphs if there is a one-to-one correspondence between the 
nodes and the edges of the two graphs. 
The complete isomorphism problem has limited applications. In 
many problems, it is not important to find an exact match between 
two graphs, but rather to find an isomorphism between a graph 
and a sub-graph of the second graph. 
Definition 2: the partial graph isomorphism problem. Given two 
graphs G1(V1,E1) and G2(V2,E2), there is a partial graph 
isomorphism between the two graphs if G1 contains a sub-graph 
G3(V3,E3) that is isomorphic to G2. In other words for a graph 

G1(V1,E1),∃ set V3⊆V1 and E3⊆E1 such that |V3|=|V2| and 

|E3|≤|E2| and there is a mappingΩ: V3 → V2 that maps every node 
of G3 to a unique node of G2 such that ∀(u3,v3)∈E3, (Ω(u3), Ω(v3)) 
∈E2 (but not necessarily  ∀(u2,v2)∈E2, (Ω-1(u2), Ω-1(v2)) ∈E3) 
Intuitively, for our placement application we are interested in a 
sub-set of the architecture graph to which we can map every node 
and edge of the circuit graph (but not necessarily map every edge 
in the architecture graph to an edge in the circuit graph). 

3.1.1  Nauty 
Generally speaking, graph isomorphism algorithms suffer from 
long runtimes and are not scalable. One of the best open-source 
sub graph isomorphism implementations is Nauty (No 
automorphisms, yes?). Nauty is “a set of procedures for 
determining the automorphism group of a vertex-coloured graph. 
It provides this information in the form of a set of generators, the 
size of the group, and the orbits of the group. It is also able to 
produce a canonically labeled isomorph of the graph, to assist in 
isomorphism testing” [11]. The main features of the algorithm are 
explained in [11], although the authors have made significant 
improvements in the latest implementation.  
In our initial implementations, we used Nauty as our isomorphism 
engine, but its runtime was high and hence we explored faster 



methods that utilize the high degree of symmetry in the FPGA 
architecture graph. Graph product methods for finding sub graph 
isomorphism between two graphs are of similar runtimes to 
Nauty, but are much more suitable for utilizing the symmetries 
and cutting on the runtime.  

3.1.2 Graph Product 
The product of two graphs is a graph that determines the degree of 
similarity between all pairs of nodes between two graphs. Nodes 
of the product graph of ܩଵሺ ଵܸ, ଶሺܩ ଵሻ andܧ ଶܸ,  ଶሻ, are orderedܧ
pairs ሺݒ, ݒ ሻ whereݓ א ଵܸ and ݓ א ଶܸ and are indexed based on 
original graph index. There is an edge between ሺݒ,  ሻ andݓ
ሺݒ,  ௗሻ in the product graph if and only if either of the followingݓ
two conditions are met: (1) there is an edge between ݒ and ݒୠ in 
 ଶ, or (2) there isܩ in ୢݓ  andݓ ଵ and there is an edge betweenܩ
no edge between ݒ and ݒୠ in ܩଵ and no edge between ݓ and ୢݓ 
in ܩଶ. More formally, the product graph of graphs ܩଵሺ ଵܸ,  ଵሻ andܧ
ଶሺܩ ଶܸ, ,ሺܸܩ ଶሻ is graphܧ ,ݒሻ where its node set is ൛ሺܧ ሻݓ א ଵܸ ൈ
ଶܸ, ሼሺݒ, ݒ|ሻݓ א ଵܸ, ݓ א ଶܸሽൟ and its edge set is  

ܧ

ൌ ൜൫ሺݒ, ,ሻݓ ሺݒ, ௗሻ൯ݓ א ଵܸ ൈ ଶܸฬ
ݒ ് ݓ,ݒ ് ௗݓ

൫ሺݒ, ሻݒ א ,ଵܧ ሺݓ, ௗሻݓ א ଶ൯ܧ
ൠ 

 

 ራ൜ሺሺݒ, ,ሻݓ ሺݒ, ௗሻሻݓ א ଵܸ ൈ ଶܸฬ
ݒ ് ݓ,ݒ ് ௗݓ

ሺݒ, ሻݒ ב ,ଵܧ ሺݓ, ௗሻݓ ב ଶሻܧ
ൠ 

 
 

 
 

Figure 2. Product graph: graph G is the product of graphs G1 
and G2. 

As depicted in Figure 2, in the product graph there is an edge 
labeled e1 between nodes a and b, because there is an edge 
between v1 and v3 in E1 and also there is an edge between w2 and 
w4 in E2. On the other hand, there is an edge between nodes c and 
d in the product graph labeled e2, because there is no edge 
between v1 and v2 in E1, and none between w4 and w1 in E2. 
The product graph can be used in finding sub graph isomorphisms 
between two graphs (Section 4.3). We later show in Section  4 
how we utilize graph products to perform local placement.  

3.2 Clustering 
We tried two clustering approaches: hMETIS [12] and Marek-
Sadowska’s clustering method [10]. The latter performed better in 
our application. 

3.2.1 Partitioning using hMETIS  
 
hMETIS [12] is a well-known partitioning package for 
partitioning large hypergraphs. It uses a multi-level approach of 
clustering and unclustering nodes, and handles hyper edges 
efficiently. Its quality is one of the best for minimizing the cut 
cost across partitions.   
Even though hMetis works well in top-down partitioning-based 
placement algorithms that minimize wire length  [8], but in our 
isomorphism approach, it did not yield high quality results for 
minimizing timing critical net lengths. To address this issue, we 
tried applying static timing analysis and delay budget assignment 
[14] [15] to give higher weights to timing critical nets, but even 
with timing weights, hMetis did not fare as well as Marek-
Sadowska’s approach [10] in our framework. 

3.2.2 Clustering using Marek-Sadowska’s work [10]: 
We briefly describe the clustering method used in [10]. We used 
this clustering algorithm in our approach. A circuit is represented 
as a weighted digraph G(V,H,w), where V is the set of nodes 
(corresponding to LEs in an FPGA), H is the set of hyperedges 
between nodes and w(e) is a positive hyperedge weight assigned 
for each ݁ א  Hyperedge weights are inversely proportional to .ܪ
the cardinality of the hyperedge therefore smaller nets will have 
higher weights. 
Also, to each node a degree will be assigned which equals the  
The Connectivity factor (c) of an LE is defined as: 

ܿ ൌ ௌ௧
ௗ ଶ

  

where the degree of the node is the number of nets connected to 
that LE, and the  separation of an LE is the number of all 
terminals connected to it by all its incident edges. Needless to say, 
smaller values of c signify LEs with more LEs in their 
neighborhood. 
The very first step in clustering is to determine the c factor for all 
unclustered LEs and select an LE with the higher degree and 
lower c as a seed for a new cluster. This seed will absorb other 
nodes to the cluster. Then, a Gain value is assigned to each 
unclustered node. The gain is defined as: 
,ሺܺܩ ,ܥ ሻݔ ൌ ሻݔሺݓ2݊ ൈ ሺ1 െ   ௫ሻߙ

Where X is the candidate nodes set, C is a currently open cluster, 
x is the connected net set, ߙ௫  is the number of pins of net x that 
are already inside C, n is the cluster size and w(x) is the weight of 
net x (w(x)=2/r where r is the number of pins on x). 
We set the maximum number of nodes inside a cluster to a limit, 
which we choose to be the number of LEs in a hierarchy level of 
the architecture graph (in our case, we chose the limit to be 9, 
which corresponds to a subset of 3x3 LEs in the architecture 
graph). 
 

4. OUR APPROACH 
The outline of our approach was described in Section 2. In this 
section we provide a more detailed description of our algorithms.  

Section  4.1 lists the main pseudo-code of our approach. In the first 
phase (lines  6 to  8), we perform static timing analysis and assign 
timing criticalities to edges in the circuit graph. We also build 



hierarchical sub graphs of the architecture (Section  4.2 provides 
more details). In Phase 2 (lines  10 to  20) we continue clustering 
until all nodes are clustered. For clustering, first we have to 
determine the degree and connectivity c values (Section 3.2.2)  for 
each node (line  10) and based on these values, choose the best 
candidate among unclustered nodes to act as the seed for the new 
cluster (line  13). Then the seed will absorb the best unclustered 
nodes based on the Gain function. After absorbing each node to 
the cluster, in order not to use this node in the following steps, its 
is_clustered variable is set to 1 (line  17). The clustering process 
continues while the number of absorbed nodes is no more than 
cluster_limit (cluster_limit is chosen based on the architecture 
graph). At the end of this phase, we will have as many clusters as 
the value of cluster_number variable. After clusters are formed, 
we perform phases 2 and 3 for each cluster independently (lines 
 23 to  32). 
In Phase 3, we take each cluster and find a sub-graph 
isomorphism between the nodes in the cluster and the 
corresponding hierarchy level architecture sub-graph. We provide 
more details on modeling the architecture graph (Section  4.2) that 
allow prioritizing circuit edges and mapping timing critical edges 
to faster routing resources in the architecture graph. More detailed 
explanation of the isomorphism process itself is provided in 
sections  0 and  4.4). 
After finding sub-graph isomorphism, a mapping between the 
circuit graph and the architecture graph is found. As a resultfor 
each cluster, local placement of each node in the cluster is 
determined (line  31). 
After local placement of all clusters in Phase 4, a high level graph 
is built for top-down placement. To do so, each cluster is 
considered as a node and edges between clusters become graph 
edges. It is obvious that internal edges in each cluster will be 
omitted after considering a cluster as a node (line  33). Then this 
graph is considered as a new circuit graph (line  34) and the steps 
detailed above are repeated. Hierarchical_number variable saves 
the number of hierarchical levels (line  35). We continue until the 
whole graph is considered as one cluster (number_of_nodes <= 
cluster_limit). In Phase 5, we perform the final placement process 
(lines  37 to  39), in which we start from the highest level and 
record its final placement. Then we go down each level and adjust 
node coordinates to combine their local placement with the 
coordinates from the higher level final placement (line  38). We 
repeat this for all hierarchical levels. 

4.1 Main Algorithm Pseudo-Code 
 
1 Input: 
2  GRAPH Gc(Vc,Ec)   // Circuit graph 
3  GRAPH GA(VA,EA)  // Architecture graph 
4 Output:  
5   Mapping Π:Gc GA 

 
6 // Phase 1: initialization 
7 Perform timing analysis and assign edge criticalities to ckt 
8 Build hierarchical levels of the architecture (Sec.  4.2) 
9 While number_of_nodes > cluster_limit 

  // Phase 2: Clustering 
10   Find degree and C for each node 
11   While there are unclustered nodes 

12    Allocate Cluster[j] in memory 
13    Choose best seed candidate, add to Cluster[j] 
14    For i = 1 to cluster_limit do 
15     Temp_node  node with best (Cluster[j], Gc) 

             cost //best node for absorption 
16     Cluster[j]  Cluster[j]  Temp_node 
17     Temp_node.is_clustered  1 
18    End for 
19    j++ 
20   End while 
21   Cluster_number  j 
22   /* Phase 3: Find sub graph isomorphism for each 

   cluster*/ 
23   For i = 1 to cluster_number do 

   // create product graph P(Vp,Ep) 
24    For j = 1 to classes_of_arch_graph_number do 
25     P  Product_graphs (cluster[i] , 

         arch_graph_class[j]) 
26     Find sub graph isomorphism 
27     if sub-graph isomorphism found 
28      Break 
29     End if 
30    End for 

  // Phase 4: Place locally 
31   Place locally nodes of cluster[i] 
32   End for 

  // Phase 5-a: Create high level graph 
33   Number_of_nodes  Ceate high level graph 
34   Circuit graph  high level graph 
35   Hierarchical_number++ 
36 End while  // started on Line  6 

// Phase 5-b: Finalize Placement 
37 For i = 1 to Hierarchical_number do 
38   Use hierarchical node’s coordinate to adjust lower level 

    coordinates 
39 End for 
 

4.2 Modeling the Architecture Graph 
A challenging problem when dealing with placement instances is 
how to map timing critical nets to faster routing resources1. 
Methods like annealing try to use intermediate cost functions such 
as sum of weighted net lengths that represent the delay incurred 
on a net when its terminals are placed. For example TVPR uses a 
lookup table that stores the best-case delay incurred if a terminal 
of a net is placed at the (0,0) coordinate and the other terminal is 
placed at (x,y). The assignment of critical nets to resources is left 
to the annealing process. 
In our approach, we first discretize the range of net criticalities, 
and try to map the most critical nets to the fastest routing 
resources first. Then, unassigned nets are tried with the next 
“class” of routing resources.  

                                                                 
1 Assignment of “nets” to “routing resources” is done at the 

routing step. However, assigning terminals of a net to locations 
on the FPGA implicitly affects the net to routing segment 
assignment during routing. So in this context, when we talk 
about assigning nets to segments during placement, we are 
really talking about placing its terminals with potential routing 
resource assignment in mind. 



As explained in previous sections, for each hierarchy level in the 
V-cycle (Figure 1), an architecture sub-graph must be built. 
Figure 3 shows one such graph. As can be seen in the figure, 
several “class” graphs are built based on the routing resources in 
the FPGA architecture. Class 1 uses only the fastest routing 
resources as edges in the architecture sub-graph (e.g., single-
segment routing resources if they are the fastest). Class 2 sub-
graph contains Class 1 edges in addition to the next class of 
routing resources (e.g., double lines if their delay is the next best 
after single lines). This will continue until all nets are represented 
in the last class graph. 
 

 
Figure 3. Modeling connections in an architecture sub-graph 

To find a sub-graph isomorph of the architecture graph to match 
the circuit sub-graph, we first run the isomorphism algorithm on 
Class 1 sub-graph. If we cannot find a solution in the first class, 
we try the next class (lines  24 to  30 in Section  4.1). Finding sub-
graph isomorphism (line  26) is explained in more details in 
sections  0 and  4.4. 

4.3 Reductive Graph Product 
The general procedure for building the product of two graphs was 
described in Section 3.1.2. We noted earlier that finding sub-graph 
isomorphism using graph products could be time consuming. In 
this section we explain how we can utilize the high degree of 
symmetry in the architecture graph to prune out many similar 
solutions and hence speedup the isomorphism algorithm 
significantly. 
After multiplying two graphs, product graph nodes must be visited 
to find nodes with higher number of connections. Such nodes 
indicate that the corresponding nodes in the two graphs have 
similar connectivity patterns, and hence are good candidates for 
mapping. A collection of such highly similar nodes is the sub-
graph isomorphism between the two graphs. This will be done by 
weighting each vertex of the product graph. For example, in 
Figure 4-d, the four solid red circles in P indicate that an 
isomorphism is found that maps v1 w3, v2 w4, v3  w5, and 
v4  w2. We call the collection of the red circles an 
“isomorphism set”. To avoid cluttering the figure, edges are not 
shown. 
We use two heuristics to significantly speed up the search in the 
product graph to find a collection of nodes that determine the sub-
graph isomorphism between the two graphs: (1) eliminating rows 
and columns, and (2) starting the search from the clustering seed 
nodes. Below we explain each heuristic in more details. 

• Eliminating rows / columns: We note that neither of the 
circuit or architecture graphs contain self-edges (i.e., edges 
that connect a node to itself). General graph product 
algorithms have to handle such cases but fortunately we do 
not. As a result, when looking for candidate nodes in the 
product graph to build the “isomorphism set”, once we 
choose a node we can eliminate all nodes in that row and 
column. This process is shown in Figure 4 in which 
eliminated nodes are shown using dotted circles. 

• Starting from the seed node: During clustering, one node is 
always selected as the seed node to absorb neighboring nodes 
to the cluster. The seed nodes have a higher connectivity 
compared to other nodes. As a result, we can assure that in 
multiplying two graphs with appropriate weighting, there are 
always some nodes with higher weights. Choosing such 
nodes first has two major advantages: (1) seed nodes are 
usually connected to the most critical nets, so by finding a 
match for them first, we indirectly ensure the most critical 
nets in the current class are assigned first, and (2), given that 
seed nodes have high degrees, by choosing their 
corresponding node in the architecture graph first, we 
increase the likelihood of finding a legal solution for the 
isomorphism problem in lower classes of the architecture 
graph. 

. 

 
Figure 4. Finding an isomorphism using the product graph 

The number of candidate nodes in the original graph product 
algorithm is O(V3), where V=max{V1,V2} because in each of the 
V iterations, we have to look for the best weight among V2 nodes2. 
Our row/column elimination technique reduces the time constant 
by 1/3, even though it does not change the asymptotic time 
complexity. The reason for the reduction is that in the first 
iteration we have V2 candidate nodes, then by eliminating a row 
and column we have (V-1)2 candidates and so on. The series 
12+22+…+V2 evaluates to approximately 1/3V3. For small values 
of V, which happens to be our case (e.g., V=9, which corresponds 

                                                                 
2 For each candidate node, we have to find the highest weight 

node. This can be done using heap trees in O(log V) in each 
step. 



to an architecture sub-graph of 3x3 LEs), the time constant has a 
significant impact. 

4.4 Sub-graph Isomorphism Pseudo-Code 
1. Input: 
2. GRAPH G1(V1,E1) //First Graph 
3. GRAPH G1(V1,E1) //Second Graph 
4. Output:  
5. GRAPH G3(V3,E3) //Sub-graph Isomorphism 
6. P(Vp, Ep, Wp)  Product_graphs(G1 , G2): // Wp weight 
7. Vp ={(v,w)| v א V1 , w א V2} 

8. Ep = {((va,vb)(wa,wb)) | va,vb א V2 , wa,wb א V2} 
9. Wp = Kp * Number of edges related to each node 
10. For ∀ v ∈Vp  
11.  Temp_node  Chose best node( P ) 
12.  Temp.visited  1 
13.  mark all nodes in this row and  

column as visited 
14. End for 

 

 

5. EXPERIMENTAL RESULTS 
We placed and routed the 20 MCNC circuit benchmarks of the 
VPR package and 3 of the largest benchmarks of the Altera 
QUIP tool set (oc_web_dma, oc_mem_ctrl and 
oc_des_des3pref). The results are shown in the following table. 
VPR refers to VPR 5.0 and ISO refers to our isomorphism 
algorithm.  
The results show that critical path and wire length are better in 
our approach on average, but that result should be taken with a 
grain of salt, as in most cases our results are slightly worse, but 
the overall average is tilted due to a number of cases that show 
significant improvement (e.g., apex4, exp5p, ex1010, s298). 
NOTE: As of now, our code has a bug that does not allow us to 
place the I/O blocks. As a result, the runtime numbers reported 

in the column labeled “ISO (w/o IO)” are slightly deflated (VPR 
numbers do include I/O blocks). To address this issue and 
provide a more realistic comparison, we analyzed the ISO 
runtime trend as a function of the CLB count. If we draw a 
scatter plot that shows the CLB count on the x-axis and the 
runtime on the y-axis, we notice that the runtime is 
approximately a linear function of the number of CLBs (this 
only applies to the 20 MCNC  benchmarks: the isomorphism 
algorithm significantly outperforms VPR on the three large 
QUIP benchmarks, and hence were set aside as outliers). The 
scatter plot of the 20 MCNC benchmarks is shown in Figure 5 
(last page). We used the trend line to inflate no-I/O runtime 
numbers to get the numbers in the column labeled “ISO 
(inflated)”. 

 
Table 1. Comparison of ISO with VPR 

Circuit CLB Net Runtime (ms)  Critical Path 
(x10-8) 

Max Net 
Length 

Max Ch 
Width 

      VPR(w/IO) ISO 
(w/o IO) 

ISO 
(inflated) VPR ISO VPR ISO VPR ISO 

alu4 1522 1536 100187 57134 55172 7.92 7.55 1795 1839 19 17 
apex2 1878 1916 129984 73481 82438 7.44 7.47 1609 1661 20 20 
apex4 1262 1271 136328 76694 36703 13.82 8.24 865 881 20 20 
bigkey 1707 1936 110796 62255 97998 4.76 4.86 3417 3524 13 13 
clma 8383 8445 959574 555001 562906 15.05 15.62 9170 5513 23 23 
des 1591 1847 104016 61386 95017 5.76 5.86 2579 2698 16 15 
diffeq 1497 1561 81953 47935 59244 5.31 5.12 2355 2453 14 14 
dsip 1370 1599 86078 48961 73495 6.77 5.34 5746 5341 16 15 
elliptic 3604 3735 280594 159608 222768 11.37 11.56 5848 6075 19 19 
ex5p 1064 1072 56578 31875 25433 8.42 7.19 1692 1773 20 23 
ex1010 4598 4608 379281 214001 278682 15.34 13.49 3094 3189 19 20 
frisc 3556 3576 289297 160599 211353 8.67 8.708 4564 3627 23 23 
misex3 1397 1411 74204 42447 46519 6.38 6.486 1406 1334 20 22 
pdc 4575 4591 425781 241590 279628.01 14.8 14.95 3257 3389 32 32 
s298 1931 1935 135156 78342 84038 15.21 9.07 2456 2550 17 17 
s38417 6406 6435 760265 434556 418504 8.05 8.18 3738 3850 17 17 



s38584.1 6447 6485 807359 467956 436536 5.85 5.99 9114 9277 17 17 
seq 1750 1791 138438 79019 75676 6.03 6.17 1408 1439 20 22 
spla 3690 3706 437359 247363 215715 12.43 12.29 2566 2175 29 28 
tseng 1047 1099 49515 27819 31686 5.16 5.34 1457 1538 13 13 
oc_wb 
_dma 9872 9654 125071 69283 78794 9.37 9.41 1216 1231 28 28 

oc_mem 
_ctrl 8611 8726 112031 59589 70679 8.94 9.01 884 902 20 22 

oc_des_ 
des3perf 38218 38452 140629 87961 88582 15.47 15.59 3317 3386 16 17 

Average     257412 147168 157717 9.49 8.84 3198 3028 19.61 19.87 
Ratio 
(ISO / 
VPR) 

      0.57 0.61   0.93   0.95   1.01 

 
 

6. CONCLUSIONS AND FUTURE WORK 
We presented a hierarchical placement methodology in which a 
reductive graph product isomorphism algorithm is applied at 
every level of the hierarchy. We achieved significant speedup 
over VPR 5.0 while maintaining similar placement qualities. 
There are several aspects of the algorithm that we plan to 
improve in the future. As of now, we only perform placement 
but do not provide any routing hints to the router. We plan to use 
isomorphism data during the routing phase so that we can pre-
assign preferred routing resources for critical nets, and let the 
VPR router route the rest of the nets. 
An interesting experiment would be to test our algorithm on 
benchmarks that have heterogeneous blocks such as memory 
blocks with different sizes, multipliers, etc., and see if such 
blocks will act as “anchors” in our isomorphism algorithm and 
significantly reduce runtimes.  
Other improvements include considering rotations and mirror 
images of local placements when building the global placement, 
and also performing multiple runs of static timing analysis and 
local placement. 
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Figure 5 Runtime trend of our algorithm


