
FPGA Placement by Graph Isomorphism
Hossein Omidian Savarbaghi

Dept. of Computer Eng.
Islamic Azad University

Science and research branch
Tehran, Iran

h_omidian_sa@yahoo.com

Kia Bazargan
Dept. of Elec. and Computer Eng.

University of Minnesota
200 Union St SE

Minneapolis, MN 55455

kia@ece.umn.edu

ABSTRACT
FPGA placement and routing are still challenging problems.
Given the increased diversity of logic and routing resources on
FPGA chips, it seems appropriate to tackle the placement problem
as a mapping between the nodes and edges in a circuit graph to
compatible resources in the architecture graph. We explore
utilizing graph isomorphism algorithms to perform FPGA
placement. We use a hierarchical approach in which the circuit
and architecture graphs are simultaneously clustered to reduce the
size of the search space, and then a novel reductive graph product
method is used to solve the isomorphism problem. The graph
product algorithm is called reductive as it eliminates a linear
number of candidates at every step of the search process, reducing
the number of candidate nodes by approximately 1/3. Compared
to the annealing-based placement tool VPR 5.0, we achieve
approximately 40% improvement in placement runtime, while
improving the critical path delay by about 7% and wire length by
5%, while demanding 1.3% more channels on average.

Categories and Subject Descriptors
J.6 [COMPUTER-AIDED ENGINEERING]: Computer-aided
design.
B.7.2 [INTEGRATED CIRCUITS]: Design Aids- Placement and
routing.

General Terms
Algorithms, Design, Theory.

Keywords
Placement, graph isomorphism, graph product, clustering.

1. INTRODUCTION
The FPGA placement problem has been studied for a few

decades. The solutions to this problem include meta-heuristics
(e.g., annealing [1], ant colony [2]), hierarchical [3], and parallel
implementations [4],. The placement (and routing) problem is
becoming more challenging as the number of resources on the
chip are growing exponentially [5] and FPGAs contain
increasingly heterogeneous collection of resources [6] [7] (LUTs,
memory blocks of different sizes, DSP blocks, serial I/O,
multipliers, and even embedded processor cores).

ACM/SIGDA International Symposium on Field Programmable Gate Array
(FPGA 2011), Monterey California

Placement and routing are in essence graph mapping
problems: from the circuit graph to the architecture graph,
matching the types of circuit nodes (e.g., memory or
multiplication operations) to compatible types in the architecture
graph (e.g. memory can be mapped either to embedded memory
blocks or collection of LUTs. Similarly, a multiplication operation
in the circuit graph can be mapped either to an embedded
multiplier unit or a soft multiplier mapped to the LUTs). The same
is true for routing resources: timing critical nets have to be
mapped to faster routing resources.

Graph Isomorphism algorithms are potentially good
candidates for simultaneously solving the placement and routing
problems, but their success has been limited primarily due to their
high time complexity. We utilize the high degree of symmetry in
the architecture to significantly cut on the runtime of graph
isomorphism algorithms. We employ clustering, as well as a novel
reductive graph multiplication algorithm to solve the graph
isomorphism problem efficiently. Compared to the well-known
annealing-based algorithm VPR 5.0 [1], we achieve about
approximately 40% speedup while improving delay (7%) and wire
length (5%) and slightly worsening channel width (1.3%).

The rest of the paper is as follows: Section 2 gives a high-level
description of our algorithm. Section 3 covers the background
material for graph isomorphism and clustering. Details of our
approach is described in Section 4. Experimental results are
presented in Section 5, followed by conclusions and future
directions in Section 6.

2. OVERVIEW OF THE APPROACH
Our approach uses a graph isomorphism algorithm as its

core, but uses two main techniques to speed up the algorithm. The
first technique is to adopt a hierarchical methodology to reduce
the search space. The challenge is to maintain enough
architectural details to achieve a high-quality solution at every
level of the hierarchy. The second technique is to use the inherent
abundance of symmetry in the architecture graph to trim the
search space significantly.

Figure 1 shows the overall flow of our algorithm, which uses
a “V” cycle [8][9] of clustering and local bottom-up placement,
followed by unclustering and final top-down placement in a
hierarchical fashion. The circuit graph (top-left in Figure 1) is first
recursively clustered using the method described in [10] until the
cluster size limits are reached (a maximum of 9 nodes in each
cluster in our case). Then each cluster is mapped to a subset of the
architecture graph (e.g., an array of 3x3 logic elements), which
essentially means finding a local placement solution for each
cluster. The process is repeated in a hierarchical fashion until the
number of clusters is small enough (the bottom-most oval in

Figure 1). After that, the unclustering phase begins, in which local
placements are packed together and the final coordinates of nodes
are assigned.

Figure 1. Overall flow of our algorithm

There are five major steps in our algorithm. Phase 1 is
initialization. Phases 2 – 4 are repeated hierarchically (arrows
going down in Figure 1), followed by Phase 5 (arrows going up):
• Phase 1: initialization. In this phase, timing analysis is done

on the circuit graph to determine timing critical nets.
Furthermore, the architecture graph is pre-processed to
generate hierarchical representations of the architecture to be
used during the graph isomorphism phase.

• Phase 2: Clustering. In this phase, the aim is to cluster
highly connected logic elements (LEs) in the circuit, subject
to cluster size limits. Clustering results in smaller circuit
graph sizes that help maintain reasonable runtimes during the
isomorphism phase. The quality of clustering has a major
impact on the overall quality of our algorithm.

• Phase 3: Finding graph isomorphism. After one level of
clustering is done, each cluster represents a small circuit sub
graph to be mapped to the corresponding hierarchy of the
architecture graph. The best sub graph isomorphism of these
two graphs is found in which timing critical edges are
mapped to faster routing resources. The principal issue is to
find this sub graph isomorphism in the lowest time,
otherwise the best sub graph isomorphism could be found by
spending a huge amount of time exhaustively considering all
cases.

• Phase 4: Local placement. After finding the sub graph
isomorphism of the circuit and architecture sub graphs, each
node of the circuit graph is labeled by a local placement
coordinate. Although we do not currently perform additional
local optimizations in this phase, our future work includes
further refining local placements by repeating static timing
analysis and repeating the local placement phase.

• [Phases 2—4 are repeated recursively until the number of
clusters is small enough. Each cluster in Phase 4 is now
considered as a node to be clustered in Phase 2]

• Phase 5: Unclustering and final placement. After the
bottom-up placement of the circuit is done, a top-down
placement phase begins that stitches together the local
placements, assigning final coordinates to all nodes.

Although we do not currently apply further optimizations
during the top-down placement phase, our future work
includes exploring refinements such as considering the
rotations or mirror images of local placements when stitching
them together to build the final placement.

3. PRELIMINARIES
In this section we briefly cover a few of the existing algorithms
for graph isomorphism and also graph clustering problems. Our
technique employs a novel reductive graph multiplication
algorithm to solve the isomorphism problem and Marek-
Sadowska’s clustering approach [10] to build the hierarchy of the
architecture and the circuit graph.

3.1 Graph isomorphism
The graph isomorphism problem has been extensively studied in
the past and there are many algorithms that target various classes
of the problem. We first give a formal definition of the problem
and then list a number of well-known algorithms.
Definition 1: the graph isomorphism problem. Given two graphs
G1(V1,E1) and G2(V2,E2), there is an exact isomorphism between
the graphs if |V1|=|V2| and |E1|=|E2| and we can find a mapping
Ω: V1 → V2 that maps every node of G1 to a unique node of G2
such that ∀(u1,v1)∈E1, (Ω(u1), Ω(v1)) ∈E2 and ∀(u2,v2)∈E2, (Ω-

1(u2), Ω-1(v2)) ∈E1. In other words, there is isomorphism between
two graphs if there is a one-to-one correspondence between the
nodes and the edges of the two graphs.
The complete isomorphism problem has limited applications. In
many problems, it is not important to find an exact match between
two graphs, but rather to find an isomorphism between a graph
and a sub-graph of the second graph.
Definition 2: the partial graph isomorphism problem. Given two
graphs G1(V1,E1) and G2(V2,E2), there is a partial graph
isomorphism between the two graphs if G1 contains a sub-graph
G3(V3,E3) that is isomorphic to G2. In other words for a graph

G1(V1,E1),∃ set V3⊆V1 and E3⊆E1 such that |V3|=|V2| and

|E3|≤|E2| and there is a mappingΩ: V3 → V2 that maps every node
of G3 to a unique node of G2 such that ∀(u3,v3)∈E3, (Ω(u3), Ω(v3))
∈E2 (but not necessarily ∀(u2,v2)∈E2, (Ω-1(u2), Ω-1(v2)) ∈E3)
Intuitively, for our placement application we are interested in a
sub-set of the architecture graph to which we can map every node
and edge of the circuit graph (but not necessarily map every edge
in the architecture graph to an edge in the circuit graph).

3.1.1 Nauty
Generally speaking, graph isomorphism algorithms suffer from
long runtimes and are not scalable. One of the best open-source
sub graph isomorphism implementations is Nauty (No
automorphisms, yes?). Nauty is “a set of procedures for
determining the automorphism group of a vertex-coloured graph.
It provides this information in the form of a set of generators, the
size of the group, and the orbits of the group. It is also able to
produce a canonically labeled isomorph of the graph, to assist in
isomorphism testing” [11]. The main features of the algorithm are
explained in [11], although the authors have made significant
improvements in the latest implementation.
In our initial implementations, we used Nauty as our isomorphism
engine, but its runtime was high and hence we explored faster

methods that utilize the high degree of symmetry in the FPGA
architecture graph. Graph product methods for finding sub graph
isomorphism between two graphs are of similar runtimes to
Nauty, but are much more suitable for utilizing the symmetries
and cutting on the runtime.

3.1.2 Graph Product
The product of two graphs is a graph that determines the degree of
similarity between all pairs of nodes between two graphs. Nodes
of the product graph of ܩଵሺ ଵܸ, ଶሺܩ ଵሻ andܧ ଶܸ, ଶሻ, are orderedܧ
pairs ሺݒ, ݒ ሻ whereݓ א ଵܸ and ݓ א ଶܸ and are indexed based on
original graph index. There is an edge between ሺݒ, ሻ andݓ
ሺݒ, ௗሻ in the product graph if and only if either of the followingݓ
two conditions are met: (1) there is an edge between ݒ and ݒୠ in
 ଶ, or (2) there isܩ in ୢݓ andݓ ଵ and there is an edge betweenܩ
no edge between ݒ and ݒୠ in ܩଵ and no edge between ݓ and ୢݓ
in ܩଶ. More formally, the product graph of graphs ܩଵሺ ଵܸ, ଵሻ andܧ
ଶሺܩ ଶܸ, ,ሺܸܩ ଶሻ is graphܧ ,ݒሻ where its node set is ൛ሺܧ ሻݓ א ଵܸ ൈ
ଶܸ, ሼሺݒ, ݒ|ሻݓ א ଵܸ, ݓ א ଶܸሽൟ and its edge set is

ܧ

ൌ ൜൫ሺݒ, ,ሻݓ ሺݒ, ௗሻ൯ݓ א ଵܸ ൈ ଶܸฬ
ݒ ് ݓ,ݒ ് ௗݓ

൫ሺݒ, ሻݒ א ,ଵܧ ሺݓ, ௗሻݓ א ଶ൯ܧ
ൠ

 ራ൜ሺሺݒ, ,ሻݓ ሺݒ, ௗሻሻݓ א ଵܸ ൈ ଶܸฬ
ݒ ് ݓ,ݒ ് ௗݓ

ሺݒ, ሻݒ ב ,ଵܧ ሺݓ, ௗሻݓ ב ଶሻܧ
ൠ

Figure 2. Product graph: graph G is the product of graphs G1
and G2.

As depicted in Figure 2, in the product graph there is an edge
labeled e1 between nodes a and b, because there is an edge
between v1 and v3 in E1 and also there is an edge between w2 and
w4 in E2. On the other hand, there is an edge between nodes c and
d in the product graph labeled e2, because there is no edge
between v1 and v2 in E1, and none between w4 and w1 in E2.
The product graph can be used in finding sub graph isomorphisms
between two graphs (Section 4.3). We later show in Section 4
how we utilize graph products to perform local placement.

3.2 Clustering
We tried two clustering approaches: hMETIS [12] and Marek-
Sadowska’s clustering method [10]. The latter performed better in
our application.

3.2.1 Partitioning using hMETIS

hMETIS [12] is a well-known partitioning package for
partitioning large hypergraphs. It uses a multi-level approach of
clustering and unclustering nodes, and handles hyper edges
efficiently. Its quality is one of the best for minimizing the cut
cost across partitions.
Even though hMetis works well in top-down partitioning-based
placement algorithms that minimize wire length [8], but in our
isomorphism approach, it did not yield high quality results for
minimizing timing critical net lengths. To address this issue, we
tried applying static timing analysis and delay budget assignment
[14] [15] to give higher weights to timing critical nets, but even
with timing weights, hMetis did not fare as well as Marek-
Sadowska’s approach [10] in our framework.

3.2.2 Clustering using Marek-Sadowska’s work [10]:
We briefly describe the clustering method used in [10]. We used
this clustering algorithm in our approach. A circuit is represented
as a weighted digraph G(V,H,w), where V is the set of nodes
(corresponding to LEs in an FPGA), H is the set of hyperedges
between nodes and w(e) is a positive hyperedge weight assigned
for each ݁ א Hyperedge weights are inversely proportional to .ܪ
the cardinality of the hyperedge therefore smaller nets will have
higher weights.
Also, to each node a degree will be assigned which equals the
The Connectivity factor (c) of an LE is defined as:

ܿ ൌ ௌ௧
ௗ ଶ

where the degree of the node is the number of nets connected to
that LE, and the separation of an LE is the number of all
terminals connected to it by all its incident edges. Needless to say,
smaller values of c signify LEs with more LEs in their
neighborhood.
The very first step in clustering is to determine the c factor for all
unclustered LEs and select an LE with the higher degree and
lower c as a seed for a new cluster. This seed will absorb other
nodes to the cluster. Then, a Gain value is assigned to each
unclustered node. The gain is defined as:
,ሺܺܩ ,ܥ ሻݔ ൌ ሻݔሺݓ2݊ ൈ ሺ1 െ ௫ሻߙ

Where X is the candidate nodes set, C is a currently open cluster,
x is the connected net set, ߙ௫ is the number of pins of net x that
are already inside C, n is the cluster size and w(x) is the weight of
net x (w(x)=2/r where r is the number of pins on x).
We set the maximum number of nodes inside a cluster to a limit,
which we choose to be the number of LEs in a hierarchy level of
the architecture graph (in our case, we chose the limit to be 9,
which corresponds to a subset of 3x3 LEs in the architecture
graph).

4. OUR APPROACH
The outline of our approach was described in Section 2. In this
section we provide a more detailed description of our algorithms.

Section 4.1 lists the main pseudo-code of our approach. In the first
phase (lines 6 to 8), we perform static timing analysis and assign
timing criticalities to edges in the circuit graph. We also build

hierarchical sub graphs of the architecture (Section 4.2 provides
more details). In Phase 2 (lines 10 to 20) we continue clustering
until all nodes are clustered. For clustering, first we have to
determine the degree and connectivity c values (Section 3.2.2) for
each node (line 10) and based on these values, choose the best
candidate among unclustered nodes to act as the seed for the new
cluster (line 13). Then the seed will absorb the best unclustered
nodes based on the Gain function. After absorbing each node to
the cluster, in order not to use this node in the following steps, its
is_clustered variable is set to 1 (line 17). The clustering process
continues while the number of absorbed nodes is no more than
cluster_limit (cluster_limit is chosen based on the architecture
graph). At the end of this phase, we will have as many clusters as
the value of cluster_number variable. After clusters are formed,
we perform phases 2 and 3 for each cluster independently (lines
 23 to 32).
In Phase 3, we take each cluster and find a sub-graph
isomorphism between the nodes in the cluster and the
corresponding hierarchy level architecture sub-graph. We provide
more details on modeling the architecture graph (Section 4.2) that
allow prioritizing circuit edges and mapping timing critical edges
to faster routing resources in the architecture graph. More detailed
explanation of the isomorphism process itself is provided in
sections 0 and 4.4).
After finding sub-graph isomorphism, a mapping between the
circuit graph and the architecture graph is found. As a resultfor
each cluster, local placement of each node in the cluster is
determined (line 31).
After local placement of all clusters in Phase 4, a high level graph
is built for top-down placement. To do so, each cluster is
considered as a node and edges between clusters become graph
edges. It is obvious that internal edges in each cluster will be
omitted after considering a cluster as a node (line 33). Then this
graph is considered as a new circuit graph (line 34) and the steps
detailed above are repeated. Hierarchical_number variable saves
the number of hierarchical levels (line 35). We continue until the
whole graph is considered as one cluster (number_of_nodes <=
cluster_limit). In Phase 5, we perform the final placement process
(lines 37 to 39), in which we start from the highest level and
record its final placement. Then we go down each level and adjust
node coordinates to combine their local placement with the
coordinates from the higher level final placement (line 38). We
repeat this for all hierarchical levels.

4.1 Main Algorithm Pseudo-Code

1 Input:
2 GRAPH Gc(Vc,Ec) // Circuit graph
3 GRAPH GA(VA,EA) // Architecture graph
4 Output:
5 Mapping Π:Gc GA

6 // Phase 1: initialization
7 Perform timing analysis and assign edge criticalities to ckt
8 Build hierarchical levels of the architecture (Sec. 4.2)
9 While number_of_nodes > cluster_limit

 // Phase 2: Clustering
10 Find degree and C for each node
11 While there are unclustered nodes

12 Allocate Cluster[j] in memory
13 Choose best seed candidate, add to Cluster[j]
14 For i = 1 to cluster_limit do
15 Temp_node node with best (Cluster[j], Gc)

 cost //best node for absorption
16 Cluster[j] Cluster[j] Temp_node
17 Temp_node.is_clustered 1
18 End for
19 j++
20 End while
21 Cluster_number j
22 /* Phase 3: Find sub graph isomorphism for each

 cluster*/
23 For i = 1 to cluster_number do

 // create product graph P(Vp,Ep)
24 For j = 1 to classes_of_arch_graph_number do
25 P Product_graphs (cluster[i] ,

 arch_graph_class[j])
26 Find sub graph isomorphism
27 if sub-graph isomorphism found
28 Break
29 End if
30 End for

 // Phase 4: Place locally
31 Place locally nodes of cluster[i]
32 End for

 // Phase 5-a: Create high level graph
33 Number_of_nodes Ceate high level graph
34 Circuit graph high level graph
35 Hierarchical_number++
36 End while // started on Line 6

// Phase 5-b: Finalize Placement
37 For i = 1 to Hierarchical_number do
38 Use hierarchical node’s coordinate to adjust lower level

 coordinates
39 End for

4.2 Modeling the Architecture Graph
A challenging problem when dealing with placement instances is
how to map timing critical nets to faster routing resources1.
Methods like annealing try to use intermediate cost functions such
as sum of weighted net lengths that represent the delay incurred
on a net when its terminals are placed. For example TVPR uses a
lookup table that stores the best-case delay incurred if a terminal
of a net is placed at the (0,0) coordinate and the other terminal is
placed at (x,y). The assignment of critical nets to resources is left
to the annealing process.
In our approach, we first discretize the range of net criticalities,
and try to map the most critical nets to the fastest routing
resources first. Then, unassigned nets are tried with the next
“class” of routing resources.

1 Assignment of “nets” to “routing resources” is done at the

routing step. However, assigning terminals of a net to locations
on the FPGA implicitly affects the net to routing segment
assignment during routing. So in this context, when we talk
about assigning nets to segments during placement, we are
really talking about placing its terminals with potential routing
resource assignment in mind.

As explained in previous sections, for each hierarchy level in the
V-cycle (Figure 1), an architecture sub-graph must be built.
Figure 3 shows one such graph. As can be seen in the figure,
several “class” graphs are built based on the routing resources in
the FPGA architecture. Class 1 uses only the fastest routing
resources as edges in the architecture sub-graph (e.g., single-
segment routing resources if they are the fastest). Class 2 sub-
graph contains Class 1 edges in addition to the next class of
routing resources (e.g., double lines if their delay is the next best
after single lines). This will continue until all nets are represented
in the last class graph.

Figure 3. Modeling connections in an architecture sub-graph

To find a sub-graph isomorph of the architecture graph to match
the circuit sub-graph, we first run the isomorphism algorithm on
Class 1 sub-graph. If we cannot find a solution in the first class,
we try the next class (lines 24 to 30 in Section 4.1). Finding sub-
graph isomorphism (line 26) is explained in more details in
sections 0 and 4.4.

4.3 Reductive Graph Product
The general procedure for building the product of two graphs was
described in Section 3.1.2. We noted earlier that finding sub-graph
isomorphism using graph products could be time consuming. In
this section we explain how we can utilize the high degree of
symmetry in the architecture graph to prune out many similar
solutions and hence speedup the isomorphism algorithm
significantly.
After multiplying two graphs, product graph nodes must be visited
to find nodes with higher number of connections. Such nodes
indicate that the corresponding nodes in the two graphs have
similar connectivity patterns, and hence are good candidates for
mapping. A collection of such highly similar nodes is the sub-
graph isomorphism between the two graphs. This will be done by
weighting each vertex of the product graph. For example, in
Figure 4-d, the four solid red circles in P indicate that an
isomorphism is found that maps v1 w3, v2 w4, v3 w5, and
v4 w2. We call the collection of the red circles an
“isomorphism set”. To avoid cluttering the figure, edges are not
shown.
We use two heuristics to significantly speed up the search in the
product graph to find a collection of nodes that determine the sub-
graph isomorphism between the two graphs: (1) eliminating rows
and columns, and (2) starting the search from the clustering seed
nodes. Below we explain each heuristic in more details.

• Eliminating rows / columns: We note that neither of the
circuit or architecture graphs contain self-edges (i.e., edges
that connect a node to itself). General graph product
algorithms have to handle such cases but fortunately we do
not. As a result, when looking for candidate nodes in the
product graph to build the “isomorphism set”, once we
choose a node we can eliminate all nodes in that row and
column. This process is shown in Figure 4 in which
eliminated nodes are shown using dotted circles.

• Starting from the seed node: During clustering, one node is
always selected as the seed node to absorb neighboring nodes
to the cluster. The seed nodes have a higher connectivity
compared to other nodes. As a result, we can assure that in
multiplying two graphs with appropriate weighting, there are
always some nodes with higher weights. Choosing such
nodes first has two major advantages: (1) seed nodes are
usually connected to the most critical nets, so by finding a
match for them first, we indirectly ensure the most critical
nets in the current class are assigned first, and (2), given that
seed nodes have high degrees, by choosing their
corresponding node in the architecture graph first, we
increase the likelihood of finding a legal solution for the
isomorphism problem in lower classes of the architecture
graph.

.

Figure 4. Finding an isomorphism using the product graph

The number of candidate nodes in the original graph product
algorithm is O(V3), where V=max{V1,V2} because in each of the
V iterations, we have to look for the best weight among V2 nodes2.
Our row/column elimination technique reduces the time constant
by 1/3, even though it does not change the asymptotic time
complexity. The reason for the reduction is that in the first
iteration we have V2 candidate nodes, then by eliminating a row
and column we have (V-1)2 candidates and so on. The series
12+22+…+V2 evaluates to approximately 1/3V3. For small values
of V, which happens to be our case (e.g., V=9, which corresponds

2 For each candidate node, we have to find the highest weight

node. This can be done using heap trees in O(log V) in each
step.

to an architecture sub-graph of 3x3 LEs), the time constant has a
significant impact.

4.4 Sub-graph Isomorphism Pseudo-Code
1. Input:
2. GRAPH G1(V1,E1) //First Graph
3. GRAPH G1(V1,E1) //Second Graph
4. Output:
5. GRAPH G3(V3,E3) //Sub-graph Isomorphism
6. P(Vp, Ep, Wp) Product_graphs(G1 , G2): // Wp weight
7. Vp ={(v,w)| v א V1 , w א V2}

8. Ep = {((va,vb)(wa,wb)) | va,vb א V2 , wa,wb א V2}
9. Wp = Kp * Number of edges related to each node
10. For ∀ v ∈Vp
11. Temp_node Chose best node(P)
12. Temp.visited 1
13. mark all nodes in this row and

column as visited
14. End for

5. EXPERIMENTAL RESULTS
We placed and routed the 20 MCNC circuit benchmarks of the
VPR package and 3 of the largest benchmarks of the Altera
QUIP tool set (oc_web_dma, oc_mem_ctrl and
oc_des_des3pref). The results are shown in the following table.
VPR refers to VPR 5.0 and ISO refers to our isomorphism
algorithm.
The results show that critical path and wire length are better in
our approach on average, but that result should be taken with a
grain of salt, as in most cases our results are slightly worse, but
the overall average is tilted due to a number of cases that show
significant improvement (e.g., apex4, exp5p, ex1010, s298).
NOTE: As of now, our code has a bug that does not allow us to
place the I/O blocks. As a result, the runtime numbers reported

in the column labeled “ISO (w/o IO)” are slightly deflated (VPR
numbers do include I/O blocks). To address this issue and
provide a more realistic comparison, we analyzed the ISO
runtime trend as a function of the CLB count. If we draw a
scatter plot that shows the CLB count on the x-axis and the
runtime on the y-axis, we notice that the runtime is
approximately a linear function of the number of CLBs (this
only applies to the 20 MCNC benchmarks: the isomorphism
algorithm significantly outperforms VPR on the three large
QUIP benchmarks, and hence were set aside as outliers). The
scatter plot of the 20 MCNC benchmarks is shown in Figure 5
(last page). We used the trend line to inflate no-I/O runtime
numbers to get the numbers in the column labeled “ISO
(inflated)”.

Table 1. Comparison of ISO with VPR

Circuit CLB Net Runtime (ms) Critical Path
(x10-8)

Max Net
Length

Max Ch
Width

 VPR(w/IO) ISO
(w/o IO)

ISO
(inflated) VPR ISO VPR ISO VPR ISO

alu4 1522 1536 100187 57134 55172 7.92 7.55 1795 1839 19 17
apex2 1878 1916 129984 73481 82438 7.44 7.47 1609 1661 20 20
apex4 1262 1271 136328 76694 36703 13.82 8.24 865 881 20 20
bigkey 1707 1936 110796 62255 97998 4.76 4.86 3417 3524 13 13
clma 8383 8445 959574 555001 562906 15.05 15.62 9170 5513 23 23
des 1591 1847 104016 61386 95017 5.76 5.86 2579 2698 16 15
diffeq 1497 1561 81953 47935 59244 5.31 5.12 2355 2453 14 14
dsip 1370 1599 86078 48961 73495 6.77 5.34 5746 5341 16 15
elliptic 3604 3735 280594 159608 222768 11.37 11.56 5848 6075 19 19
ex5p 1064 1072 56578 31875 25433 8.42 7.19 1692 1773 20 23
ex1010 4598 4608 379281 214001 278682 15.34 13.49 3094 3189 19 20
frisc 3556 3576 289297 160599 211353 8.67 8.708 4564 3627 23 23
misex3 1397 1411 74204 42447 46519 6.38 6.486 1406 1334 20 22
pdc 4575 4591 425781 241590 279628.01 14.8 14.95 3257 3389 32 32
s298 1931 1935 135156 78342 84038 15.21 9.07 2456 2550 17 17
s38417 6406 6435 760265 434556 418504 8.05 8.18 3738 3850 17 17

s38584.1 6447 6485 807359 467956 436536 5.85 5.99 9114 9277 17 17
seq 1750 1791 138438 79019 75676 6.03 6.17 1408 1439 20 22
spla 3690 3706 437359 247363 215715 12.43 12.29 2566 2175 29 28
tseng 1047 1099 49515 27819 31686 5.16 5.34 1457 1538 13 13
oc_wb
_dma 9872 9654 125071 69283 78794 9.37 9.41 1216 1231 28 28

oc_mem
_ctrl 8611 8726 112031 59589 70679 8.94 9.01 884 902 20 22

oc_des_
des3perf 38218 38452 140629 87961 88582 15.47 15.59 3317 3386 16 17

Average 257412 147168 157717 9.49 8.84 3198 3028 19.61 19.87
Ratio
(ISO /
VPR)

 0.57 0.61 0.93 0.95 1.01

6. CONCLUSIONS AND FUTURE WORK
We presented a hierarchical placement methodology in which a
reductive graph product isomorphism algorithm is applied at
every level of the hierarchy. We achieved significant speedup
over VPR 5.0 while maintaining similar placement qualities.
There are several aspects of the algorithm that we plan to
improve in the future. As of now, we only perform placement
but do not provide any routing hints to the router. We plan to use
isomorphism data during the routing phase so that we can pre-
assign preferred routing resources for critical nets, and let the
VPR router route the rest of the nets.
An interesting experiment would be to test our algorithm on
benchmarks that have heterogeneous blocks such as memory
blocks with different sizes, multipliers, etc., and see if such
blocks will act as “anchors” in our isomorphism algorithm and
significantly reduce runtimes.
Other improvements include considering rotations and mirror
images of local placements when building the global placement,
and also performing multiple runs of static timing analysis and
local placement.

7. REFERENCES
[1] Jason Luu , Ian Kuon , Peter Jamieson , Ted Campbell ,

Andy Ye , Wei Mark Fang , Jonathan Rose, VPR 5.0:
FPGA cad and architecture exploration tools with single-
driver routing, heterogeneity and process scaling,
Proceeding of the ACM/SIGDA international symposium
on Field programmable gate arrays, February 22-24, 2009,
Monterey, California, USA

[2] Gang Wang, "Ant Colony Metaheuristics for Fundamental
Architectural Design Problems", PhD Thesis, University of
California Santa Barbara,2007.

[3] Dai H, Zhou Q, Bian JN., "Multilevel optimization for
large-scale hierarchical FPGA placement", Journal of
Computer Science and Technology, 25(5): 1083-1091 Sept.
2010. DOI 10.1007/s11390-010-1085-4

[4] Cristinel Ababei, "Speeding Up FPGA Placement via
Partitioning and Multithreading", International Journal of
Reconfigurable Computing, Vol. 2009 (2009)

[5] International Technology Roadmap for Semiconductors (ITRS),
http://public.itrs.net/

[6] http://www.xilinx.com
[7] http://www.altera.com
[8] George Karypis and Vipin Kumar, “A fast and high quality

multilevel scheme for partitioning irregular graphs”,
International Conference on Parallel Processing, pp. 113-
122, 1995.

[9] J. Cong, M. Xie and Y. Zhang, "An Enhanced Multilevel
Routing System," Proc. IEEE International Conference on
Computer Aided Design, San Jose, California, pp. 51-58,
November 2002

[10] Amit Singh , Malgorzata Marek-Sadowska, Efficient circuit
clustering for area and power reduction in FPGAs,
Proceedings of the 2002 ACM/SIGDA tenth international
symposium on Field-programmable gate arrays, February
24-26, 2002, Monterey, California, USA.

[11] http://cs.anu.edu.au/~bdm/nauty/
[12] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, ‘Multilevel

Hypergraph Partitioning: Application in VLSI domain’, Proc.
ACM/IEEE DAC, June 1997.

[13] Pongstorn Maidee, Cristinel Ababei, and Kia Bazarga,
"Timing-driven Partitioning-based Placement for Island
Style FPGAs", IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), Vol.
24, No. 3, pp. 395 - 406, Mar. 2005.

[14] S. Ghiasi , E. Bozorgzadeh , S. Choudhuri , M.
Sarrafzadeh, A unified theory of timing budget
management, Proceedings of the 2004 IEEE/ACM
International conference on Computer-aided design, p.653-
659, November 07-11, 2004

[15] E. Bozorgzadeh , S. Ghiasi , A. Takahashi , M.
Sarrafzadeh, Optimal integer delay budgeting on directed
acyclic graphs, Proceedings of the 40th conference on
Design automation, June 02-06, 2003, Anaheim, CA, USA.

y = 72.71x ‐ 57092
R² = 0.965

0

100000

200000

300000

400000

500000

600000

0 2000 4000 6000 8000 10000

iso runtime as a func of CLB count

Figure 5 Runtime trend of our algorithm

