
Exploring Automated Space/Time Tradeoffs for
OpenVX Compute Graphs

Hossein Omidian
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, BC, Canada

Email: hosseino@ece.ubc.ca

Guy G.F. Lemieux
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, BC, Canada

Email: lemieux@ece.ubc.ca

Abstract—With the rise of FPGA-based implementation of
Computer Vision (CV) applications, the need for a programming
method that achieves the target throughput or area-budget while
retaining flexibility is magnified. High-level synthesis (HLS) tools
provide this opportunity while eliminating the necessity of hard-
ware engineering knowledge. Existing methods of programming
FPGAs with HLS require the user to explicitly manage resources
at every stage in their algorithm in order to meet a specified area
target or throughput target. In this paper, we provide a frame-
work for meeting such targets with compute graphs specified
in OpenVX, a C-based programming environment for computer
vision. To do this, we build our own OpenVX system using Xilinx
Vivado HLS, and add an algorithmic layer which allows the user
to specify an area budget (while maximizing throughput) or a
throughput target (while minimizing area). Our OpenVX system
consists of a series of compute kernels, prewritten in C++ for HLS
and heavily parameterized as well as an Intra-node Optimizer
to enable the creation of different size/throughput targets using
different image tile-sizes. It also uses a heuristic algorithm with
an Inter-node Optimizer step which combines/splits kernels and
then replicates them to minimize the area cost. We evaluate the
system on typical OpenVX benchmarks under a variety of fixed
area constraints, and find that our system is able to automatically
achieve over 95% area utilization. We also evaluate the system
with same benchmarks under variety of fixed throughput targets,
and find our system saves up to 30% in area cost compared
to manually parallelized implementations. Our results show our
heuristic approach is able to hit the same throughput targets and
save 19% area on average compared to existing ILP approaches.
While existing methods can easily achieve a single design point,
they are unable to automatically generate a set of solutions
from the same source; a prominent capability embedded in our
tool. Moreover our tool uses Inter-node Optimizer to find better
space/time tradeoffs.

I. INTRODUCTION

Implementing Computer Vision (CV) applications on dif-
ferent embedded systems has became a big focus of both
industrial and academic communities in recent years. Since
most CV applications are computationally intensive, using
parallelism techniques for implementing them is considered
a must. Although in theory CPU and GPU platforms can
perform such intensive computations, power remains the main
challenge since the power density of a single chip is reaching
its limits [1]. Previous studies such as [2] suggest custom
fixed-function hardware implementation is often the only way
to implement image processing applications within the power
limits of a mobile platform. Furthermore, custom hardware

implementations can be used as accelerators in datacenters in
order to solve the power issue [3].

Since an FPGA is significantly more energy efficient com-
pared to a CPU or GPU, it can be a great alternative platform
for running computationally intensive applications. Using FP-
GAs in Bing search by Microsoft [4] and the recent acquisition
of Altera by Intel are just a few examples showcasing the
increasing demand for FPGAs in different applications. Un-
fortunately, implementing custom hardware and FPGA designs
are not widely popular amongst application developers mainly
due to specific requirements of HDL programming, such
as hardware engineering knowledge. Several industrial and
academic HLS tools have been developed in order to provide
an environment for users to describe their application in high-
level languages such as C/C++ to avoid the difficulty of HDL
programming. Existing methods of programming FPGAs with
HLS require the user to explicitly manage resources at every
stage in their algorithm in order to meet a specified area
target or throughput target by manual loop unrolling or adding
different pragmas to the code.

In this work, we introduce a novel approach to explore the
space/time tradeoffs for OpenVX [5] compute graphs in order
to find optimum solutions, meeting different area or throughput
targets. OpenVX has been introduced as a C-based cross-
platform standard for imaging and vision application domains,
where a workload can be tiled and compute nodes can run on
tiles instead of the whole image. We have implemented an
infrastructure which automatically explores the area/through-
put problem domain while leveraging commercial HLS tool
advantages. We analyzed OpenVX kernels (nodes) to increase
parallelism based on pipeline opportunities and different loop
transformation strategies [6], [7]. After analyzing each kernel,
we rewrote them in C++ while heavily parameterizing for
HLS. Users can describe a CV computation as an OpenVX
compute graph and then define either a throughput target, or an
area budget. Our OpenVX system analyzes the compute graph
and generates different implementations for each node with
different area, IO and throughput characteristics by creating
different HLS projects and passing them to Xilinx Vivado
HLS. In order to get precise throughput/area information for
different FPGA targets and avoid the implementations with
deadlock, our tool automatically generates Vivado projects
including a System-Verilog testbench for each implementation.
In addition our tool uses node replication and node combining

978-1-5090-4825-0/17/$31.00 c©2017 IEEE

to cover more possible solutions by either increasing the tile
size or improving throughput for existing implementations.

Our tool uses two internal optimization approaches. The
first, based upon integer linear programming (ILP), is similar
to previous work on task graph optimizations by Cong et al [8].
The second is a heuristic approach based on [9]. Although the
ILP approach works well, maintaining the ILP optimization
model within the tool prohibits the use of certain optimiza-
tions. Instead, the heuristic approach is able to perform object
coalescing which cannot be done as an ILP formulation.
This leads to area saving and less runtime compared to the
ILP approach. There have been several recent studies on
implementing image processing and OpenVX applications on
FPGAs and exploring the area/throughput trade-off for them
such as [10], [11] and [12]. These existing approaches either
use a specific programming model which requires the user to
learn a new programming language, or they implement a soft
multi-core platform on FPGA and then run the application
on it. Automatically exploring area/throughput tradeoffs using
C++ as well as automatically finding optimum implementa-
tions for different area budgets or throughput targets, make
our approach unique.

II. OPENVX BASED HLS

Figure 1 illustrates the detailed flow of the proposed tool. It
receives an OpenVX compute graph and analyzes it to obtain
a matched kernel for each node, all of which are heavily
parameterized C++ functions with Xilinx AXI-Stream [13]
in/out arguments. Taking into account the user area budget
or throughput target, our tool creates different Vivado HLS
projects in order to generate different implementations for
each kernel. To minimize the search space, our tool prunes the
dominated points in the design space using Zhong et.al. [14]
approach. Previous studies [15] showed that the report gener-
ated by the HLS tool is not accurate and should therefore
not be used for exploring the problem space. To obtain a
precise throughput and area cost, our tool also generates
Vivado projects using the HDL output generated from HLS
tool. Using Vivado design suite, the tool is able to find
throughput/area correlation for each kernel which will be
eventually used in trade-off finding process. In addition, our
tool uses a step called Intra-node Optimizer to generate more
implementations to widen the trade-off solution space by
filling the throughput/area correlation gaps in it. Finally the
tool uses Trade-off Finder to find a good compromise between
area and throughput. Below we discuss all of these steps in
detail.

A. OpenVX programming model

OpenVX is a cross-platform C-based API standard for
Computer Vision applications. It enables performance and
power-optimized CV processing, especially important in em-
bedded and real-time use-cases such as face, body and gesture
tracking, smart video surveillance, advanced driver assistance
systems (ADAS), and more. OpenVX specifies a higher level
of abstraction which makes it suitable for targeting different

Kernel	Analyzer

Intra-Node	
Optimizer

1

3

2

4

DB	of	Implementations	
for	each	node

Trade-off	
Finder

SOC

3
2

1
4

Compute	Graph

C++-based	CV	Kernels

C++

C++

C++

C++
Different	

Implementations	
Generator

Trade-off

1

2
3 4

Design	Evaluator	
+	Throughput	
Calculator

Area/Throughput	
correlation	for	each	node

DB	of	Implementations	
for	each	node

1

1

2

2
3

3

4

4

𝝁𝒑

FPGA	Fabric

Fig. 1: Tool flow

computing architectures. Most CV applications can be de-
scribed as a set of vision kernels (nodes) which communicate
through input/output data dependencies. OpenVX describes
this set of vision kernels in a graph-oriented execution model
(Compute Graph) based on Directed Acyclic Graphs (DAGs).
Figure 2a shows an OpenVX code example (vxSobel3x3) and
2b shows the corresponding graph for it.

Since OpenVX compute graphs are DAGs, it makes them
suitable candidates to be implemented as pipelined hardware
accelerators on FPGAs. Below we discuss how our tool gen-
erates variety of different implementations for those hardware
accelerators.

B. Finding different implementations

Consider an application described as a compute graph with
N nodes f1, f2, ..., fN . For each node fm our tool tries to
find different implementations P 1

m, P
2
m, ..., P

Sm
m where each

implementation P sm can perform functionality of fm with
area cost A(P sm), number of pixels it can consume/produce

/ / vxSobel3x3 example
vx node nodes [] = {

vxColorConver tNode (graph , rgb , g r ay) ,
vxGaussian3x3Node (graph , gray , g a u s s) ,
vxSobel3x3Node (graph , gauss , gradx , g rady) ,
vxMagnitudeNode (graph , gradx , grady , mag) ,
vxPhaseNode (graph , gradx , grady , phase)

} ;

(a) OpenVX source code

Color	
Convert

Gaussian	
3x3gray

Sobel
3x3

gauss

gradx

grady

Magnitude

Phase

rgb

mag

phase

(b) Sobel graph

Fig. 2: OpenVX source code and graph representation

NP (P sm) and initial interval II(P sm). For implementation P sm,
the area cost on FPGAs is calculated as:

A(P sm) = wlut.LUT (P sm) + wdsp.DSP (P sm) + wbram.BRAM(P sm) (1)

where LUT (P sm), DSP (P sm) and BRAM(P sm) are the LUT,
DSP and BRAM cost of implementation P sm. Note LUT
weight (wlut), DSP weight (wdsp) and BRAM weight (wbram)
are different for various FPGA architectures. In this study we
have set these weights differently for Xilinx, Altera and VPR
architectures.

For node fm and its implementation P sm, input “inverse
throughput” ϑin(P sm) and output inverse throughput ϑout(P sm)
for each input/output are calculated as:

ϑin(P sm) =
II(P sm)

In(fm)
, ϑout(P

s
m) =

II(P sm)

Out(fm)
(2)

where In(fm) and Out(fm) are the number of data tokens
that fm consumes on the input data channel and produces
on the output data channel during each firing, respectively.
Note that inverse throughput shows the number of cycles to
consume/produce per datum in its input/output channel. For
most CV kernels, their input/output channels have matched
inverse throughput, ϑIO(P sm). Kernel throughput is number
of pixels consumed/produced in each clock cycle:

Θ(P sm) =
NP (P sm)

ϑIO(P sm)
(3)

The Different Implementation Generator (DIG) module in
our tool automatically finds the above mentioned implemen-

f2 f3f1

P1 P2 P3

II=4 II=4 II=4

NP=20NP=20NP=20

P’1

P’2

P’3

II=1

II=1

II=1NP=3NP=3
NP=5

P”2

II=1

NP=20

NP=2 NP=2

NP=5

a)

b)

c)

Fig. 3: Two different approaches for satisfying Θ = 5

tations using heavily parametrized C++ based kernels. The
DIG needs to be able to automatically find a wide range of
different implementations to cover the solution space as much
as possible. To have a better understanding of the complexity
of this problem and the variety of possible solutions let’s look
at a simple example of a 3-node graph shown in Figure 3a.
Figures 3b and 3c show two different approaches to satisfy
a target throughput of 5; one reads 20 pixels and picks
implementations with II = 4 for each node, the other reads
5 pixels and picks implementations with II = 1. Further,
Figure 3c shows another approach for node f2 in which instead
of picking an implementation with NP = 5, it picks two
implementations with NP = 3 and NP = 2 and splits the
data between them. Figures 3b and 3c are just two examples
of various iterations of II , NP and splitting/joining nodes
which can be utilized to find the solution. In addition, the
strategy of reading image data from the main memory can vary
for different implementations when NP and II change. The
strategy impacts DMA configuration and alignment network
design which leads us to different overhead cost for each.

The above-mentioned example shows that for every area
budget or throughput target, there are a variety of different
acceptable solutions. This makes the trade-off finding problem
a complex and nontrivial problem. It also shows the impor-
tance of generating a variety of different implementations with
different NP , II and area cost to cover the solution space as
much as possible.

C. CV Accelerator on FPGA

Before describing the tool flow in more detail, it is ben-
eficial to go through the overall system description first. As
mentioned earlier, the main goal of this study is to find a good
area/throughput trade-off for CV applications by generating
different implementations which is done through changing tile-
width and/or using different function implementations inside

Image width
Im

ag
e

he
ig

ht
Tile width

AXI
Interconnect

AXI DMA

I$
D$

Alignment
Network

CV
Accelerator

AXI-Stream

AXI-Stream

Main Memory

Fig. 4: System view implemented on Xilinx FPGA

fm

𝑊"×𝑊$ 𝑊$×𝑊"

𝜗&'

𝜗&'

𝜗&'

𝑊$

𝑊"
𝜗&'

𝜗()
𝜗()

𝜗()

𝜗()

𝜗()

𝑊"
𝑊$

𝜗()

.

.

.

.

.

.

.

.

.

.

.

.

SDA SDA

Fig. 5: Internal view of a general node in CV hardware
accelerator

the kernel. Figure 4 gives a high-level system view of a CV
accelerator implemented on Xilinx FPGAs. The host processor
is responsible for configuring DMA (i.e. Xilinx AXI DMA
IP core) to read/write image data in strides from the main
memory. On the other end, DMA sends/receives image data
to/from the accelerator in AXI-Stream protocol. Since the
DMA data-width should be a power of two and the CV
accelerator may read data at a different width in pixels, there
should be a Data Alignment Network implemented as mixed-
width FIFOs in between to align the data sent back and forth
between DMA and accelerator.

Figure 5 provides an internal view of a general node in a
CV hardware accelerator. Representing tile-width with WT , a
general node m with implementation P sm consumes WT pixels
(NPin(P sm) = WT) as stream in and generates WT pixels
as stream out with inverse throughput equal to ϑIO. Since
the hardware function inside the node might consume/produce
different number of pixels, two Stream Data Adjusters (SDAs)
are added to either end. Assuming the hardware function
can consume/produce WF pixels in its input/output channels,
the input SDA should get WT pixels from input and pass
WF pixels to the function with inverse throughput equal to
WF

WT
ϑIO. On the other end, output SDA gets WF pixels with

inverse throughput ϑfm and provides WT pixels with inverse
throughput equal to WT

WF
ϑfm . As Figure 5 shows, four layers

of FIFO are added in between in order to match different
throughputs in various stages. To prevent losing data, FIFO
depths should be calculated carefully to prevent any data
losses.

1) Stream Data Adjuster in more details: SDA can deal
with two different types of kernels; Pixel2Pixel kernels and
Window2Pixel kernels.
Pixel2Pixel kernels such as vxConvertColor produces

B1 A1
B2 A2
B3 A3
B4 A4

B3 B1 A3 A1
B4 B2 A4 A2

S
D
A

2

1 1
fm

B’1 A’1
B’2 A’2
B’3 A’3
B’4 A’4

B’3 B’1 A’3 A’1
B’4 B’2 A’4 A’2

S
D
A

2
1 1

Fig. 6: Pixel2Pixel kernel example, WT = 4,WF = 2

one pixel for each pixel received:

P̃i,j = f(Pi,j) (4)

Figure 6. This shows how SDA functions as an adjuster for a
simple Pixel2Pixel kernel which receives/produces 4 pixels in
every 2 clock cycles and its hardware function consumes/pro-
duces 2 pixels in every clock cycle. In order to match the
stream rate between IO and the function, SDA simply uses
upstream to downstream transformation by splitting data in its
input and sending it to the function. On the other end it joins
data coming from the function and sends it to the output. In
this example WT

ϑIO
is equal to WF

ϑfm
, so it only needs to capture

WT pixels in its FIFO (2× 2 FIFO) every two clock cycles.
Window2Pixel kernels such as vxSobel3x3 consume a

window of pixels for every produced pixel in their outputs:

P̃i,j = f(


Pi−δ,j−δ . . . Pi−δ,j . . . Pi−δ,j+δ

...
. . .

...
. . .

...
Pi,j−δ . . . Pi,j . . . Pi,j+δ

...
. . .

...
. . .

...
xj+δ,j−δ . . . Pi+δ,j . . . Pi+δ,j+δ

), δ = w−1
2 (5)

A kernel with a tile-width of WT and window size of w ×w
consumes WT +w−1 pixels and produces WT pixels in every
firing.

Figure 7 shows how SDA handles the stream adjustment for
a Window2Pixel kernel with WT equal to 4, WF equal to 2
and window size equal to 3× 3. This kernel receives 6 pixels
and produces 4 pixels every 2 clock cycles. The hardware
function produces 2 pixels every clock cycle which means it
needs to get 4 pixels every clock cycle. In this case, SDA
splits the input stream data maintaining some data overlap.
This data overlap has two consequences; overhead of 2 pixels
for every 6 pixels consumed by the kernel in each firing, and
the need for a line-buffer with minimum depth of 5. Figure
8 illustrates a general Window2Pixel kernel with tile-width of
WT and window size of 3× 3 with WF equals to WT

N . Since
the function needs to receive WT

N + 2 pixels in its firing the
overhead is 2N . Also to produce the first output, the function
needs to have a line buffer with a minimum depth of 2N + 1.

D. Heavily parameterized C++-based OpenVX kernels

A set of heavily parameterized C++ based OpenVX ker-
nels with AXI-Stream input/output have been implemented
to generate different implementations for each kernel. Each
kernel is parameterized in two levels, IO level and core level.

S
D
A

2

1
1

fm
B’1
B’2
B’3
B’4

B’3 B’1
B’4 B’2

S
D
A

2
1 1

C0 B0 A0
C1 B1 A1
C2 B2 A2
C3 B3 A3
C4 B4 A4
C5 B5 A5

C2 C0 B2 B0 A2 A0
C3 C1 B3 B1 A3 A1
C4 C2 B4 B2 A4 A2
C5 C3 B5 B3 A5 A3

Fig. 7: Window2Pixel kernel example, WT = 4,WF = 2

The number of pixels that a kernel consumes/produces in its
IO as well as the number of pixels needed to provide/gather
to/from its core are parameterized in IO level. For each kernel,
the main core function has been analyzed to find all degrees
of parallelism and then heavily parameterized. This can be
done by labeling all loops and generating a set of suitable
pragmas saved as a JSON file for each kernel. Considering
this parameterization, the tool can generate different imple-
mentations with different number of inputs (NP (P sm)), area
cost (A(P sm)) and initiation interval (II(P sm)). Figure 9 shows
the area, throughput per input (1

II) and tile-width correlation
of different implementations for Gaussian3x3 kernel. Each
dot represents an implementation.

E. Intra-node Optimizer

In addition, an Intra-node Optimizer step in the tool gener-
ates a wider range of implementations. Intra-node Optimizer
replicates and combines existing implementations in order to
widen the solution space. Node replication can be used to
either increase the throughput or widen the tile-width. Figure
10a demonstrates a general Pixel2Pixel kernel with inverse
throughput ϑIO and tile-width WT . In order to improve the
throughput (reduce the ϑIO), the tool replicates the node and
sends data to each replica with a round-robin order. Figure
10b shows how the tool improves the throughput N -times by
making N replicas of the original kernel. Figure 10c shows
how the tool increase the tile-width by replicating the kernel.
Because of data dependencies in Window2Pixel kernels,
replication only can be used for increasing tile-width. Our tool
replicates Window2Pixel kernels considering the window
size and handles the data passing. Figure 11 demonstrates
how the tool passes data to each replica when windows must
overlap, e.g. in 2D convolutions.

Intra-node Optimizer also combines existing implementa-
tions and then replicates the combined node on the fly. Figure
12 shows a simple node combining example. Assume node
fn’s throughput is N times bigger than node fm’s throughput.
Two different approaches are shown in Figure 12 to match
the throughputs: the first approach is replicating node fm,
N times and using a 1 → N data splitter so that node fn
can send data to those replicas in a round-robin order (Figure
12a). In the second approach shown in Figure 12b, another
implementation for node fn with a throughput equal to twice
node fm’s throughput is found (f ′n). Then the nodes f ′n and fm
are combined and the combined node is replicated N

2 times.
Note that second approach needs a 1 → N

2 data splitter and
is much smaller than the 1 → N data splitter in the first
approach.

All the above mentioned techniques are used in Intra-node
Optimizer to find a wide range of implementations for each
kernel which widens the solution space for the area/throughput
scaling problem. Below we discuss our trade-off formulation
and solutions.

F. Trade-off Finding Formulation and Solutions

Trade-off finding has two different modes in our tool.
• Given an available area on chip AC and different im-

plementations for each node fj , which implementation
P ij should be selected and how many replicas nrij are
needed in order to maximize application throughput ΘA

subject to the constraint the application area cost AA is
not bigger than AC .

• Given a throughput target Θtgt, and different implementa-
tions for each node fj , which implementation P ij should
be selected and how many replicas nrij are needed in
order to minimize area cost AA subject to the constraint
the application throughput ΘA is bigger than Θtgt.

To solve described trade-off finding problem we used an
ILP approach as well as a heuristic approach.

1) Using Integer Linear Programming: This problem can
be defined as an Integer Linear Programming (ILP) model
similar to Cong et al [8] formulation and solved with an ILP
solver such as GLPK [16] which goes through all the possi-
bilities in the solution space and find the optimum solution,
subject to the constraints. Although ILP solvers can solve these
problems, the approach does have two shortcomings:
• Lack of flexibility: the problem must be defined in

advance and it’s not possible to change the problem’s
structure while solving it by ILP. In other words, com-
bining or splitting nodes are not possible while using ILP.

• Time inefficient: In our experiments, ILP was usually
slower than the heuristic algorithm used.

2) Using Heuristic Approach: This problem can be solved
using heuristic approaches instead of using ILP. Omidian et
al [9] used throughput analysis and throughput propagation
as well as node replication and node combining to implement
stream application on a coarse grain architecture. We adopted
this approach and modified it for implementing CV applica-
tions on FPGAs using HLS.

III. EXPERIMENTAL RESULTS

Our experiments are carried out in two parts. We evaluate
our strategies of finding a good area/throughput tradeoff by
targeting different FPGA architectures. Then we evaluate our
tool by setting different throughput targets to examine whether
we can find the optimum solution for each target.

To show the capabilities of our approach, we have utilized
the following benchmarks implemented as OpenVX compute
graph:
• Sobel is a Sobel-filter based edge detection with 5 nodes.
• Canny implements Canny edge detector with 6 nodes.
• Harris implements Harris corner detector with 6 nodes.
All the kernels inside each of the aforementioned bench-

marks are analyzed and rewritten as parameterized C++ based

SDA fm

𝐴"
𝐴#

𝐴$%&#

𝐵"
𝐵#

𝐵$%&#

𝐶"
𝐶#

𝐶$%&#

𝐶$)*

𝐶$%&#

𝐶*
𝐶*&#

𝐶+*&#

𝐶"
𝐶#

𝐶*&#

.

.

.

.

.

.

.

.

.

.

.

.

.	.	.	.

.	.	.	.

.
.
.
.

𝐵$)*

𝐵$%&#

𝐵*
𝐵*&#

𝐵+*&#

𝐵"
𝐵#

𝐵*&#

.

.

.

.

.

.

.

.

.

.

.

.

.	.	.	.

.	.	.	.

.
.
.
.

𝐴$)*

𝐴$%&#

𝐴*
𝐴*&#

𝐴+*&#

𝐴"
𝐴#

𝐴*&#

.

.

.

.

.

.

.

.

.

.

.

.

.	.	.	.

.	.	.	.

.
.
.
.

𝑊
-
+
2

𝑊
-
𝑁
+
2

N N N

2N+1

.

.

.

.

.

.

.

.

.

.

.

. 𝐶′$%

𝐶′*&#

𝐶′+*

𝐶′#

𝐶′*

.	.	.	.

.	.	.	. 𝐵′$%

𝐵′*&#

𝐵′+*

𝐵′#

𝐵′*

.	.	.	.

.	.	.	. 𝐴′$%

𝐴′*&#

𝐴′+*

𝐴′#
.
.
.

.

.

.

.

.

.

.

.	.	.	.

.	.	.	.

.
.
.

N N N

𝐴′*

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.
.
.

𝑊
-
𝑁

SDA

𝐴#

𝐴$%

𝐵#

𝐵$%

𝐶#

𝐶$%

𝑊
-

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 8: Window2Pixel kernel

1/Initiation-Interval

10
0.8

50

0

100

0.610

150

LU
T/

Pi
xe

l

200

Tile Width

20 0.4

250

30 0.240

Fig. 9: Area, throughput and tile-width correlation for
Gaussian3x3 kernel

kernels with stream-in/stream-out arguments. Using our tool,
a library of different implementations for each kernel is
generated. To examine whether our tool can cover different
architectures, we evaluated it with VPR, a part of the academic
Verilog-To-Routing project [17]. Using VPR, different size
FPGAs were generated based on Altera Stratix IV, with logic
cluster size N = 10, look-up table size K = 6, channel
segment length L = 4. Then we passed each FPGA’s size as
an area budget to our tool. Figure 13 shows the percentage
of LUTs used for implementing Sobel on different device
sizes. As shown, our tool was able to automatically find
suitable implementations for different architecture targets and
fill over 95% of the chip area on average. Further, as shown
in Figure 14 our tool fills the FPGA area while improving
the throughput. The dots in the Figure show the LUTs per
throughput results for each FPGA size. Considering results
shown in this figures, we can see that the tool covers different
area constraints while meeting the expected throughput for
them. We also evaluated our tool with different Xilinx FPGAs.
Figure 15 shows the percentage of LUTs used for implement-
ing Sobel and Harris benchmarks on different Xilinx 7 series
devices. As shown, our tool was able to automatically find
suitable implementations for different architecture targets and
fill over 97% of the chip area on average.

a) 𝑓"𝜗$% 𝜗$%
𝑊' 𝑊'

𝑓"
𝜗$% 𝜗$%𝑊' 𝑊'

𝑓"
𝜗$% 𝜗$%𝑊' 𝑊'

𝑓"
𝜗$% 𝜗$%𝑊' 𝑊'

𝜗$%
𝑁

𝑊' 𝜗$%
𝑁

𝑊'

𝑓"
𝜗$% 𝜗$%𝑊' 𝑊'

𝑓"
𝜗$% 𝜗$%𝑊' 𝑊'

𝑓"
𝜗$% 𝜗$%𝑊' 𝑊'

𝜗$%
𝑁𝑊'

𝜗$%
𝑁𝑊'

b)

c)

.

.

.

.

.

.

Fig. 10: Pixel2Pixel replication

Finding an optimum implementation for different through-
put targets was the second goal of this study. To evaluate that,
we tested our tool by setting different throughput targets for
different benchmarks and compared our tool to a fully manual
HLS approach. Since we implemented heavily parameterized
kernels for our OpenVX approach first, we learned which
parallelization strategies worked better. Using that knowledge,
we generated a manual HLS version. Due to limited time
(as all designers will experience), we had to choose just
a handful of implementation strategies which gave similar
optimal area and throughput as our tool. However, to achieve
designs with throughputs in between the optimal points, these
implementations were scaled in the most logical way possible
and they became less efficient; they used more area as we
moved further away from the optimal design points. Figure
16 shows how our tool covers a large design space and hits
all targets more efficiently for the vxMagnitude kernel. We
compared our tool results for different CV kernels with our
manual HLS and observed that our approach found better
implementations for different throughput targets that saves up

a)

𝑓"
𝜗$% 𝜗$%𝑊' 𝑊'

𝑊
'
+2
𝛿

𝑓"
𝜗$% 𝜗$%𝑊' 𝑊'

𝑓"
𝜗$% 𝜗$%𝑊' 𝑊'

𝑓"
𝜗$% 𝜗$%𝑊' 𝑊'

.

.

.

.

.

.

.

.

.

.

.

.

b)

𝑁
𝑊
'
+2
𝛿

𝛿

𝛿

𝛿

𝛿
𝛿

𝛿

𝛿

𝛿

𝛿

𝛿

𝜗$%

𝜗$%

𝛿 𝜗$%

𝑁
𝑊
'

Fig. 11: Window2Pixel replication

𝑓"
𝜗$%𝑊'

𝑓"
𝜗$%𝑊'

𝑓"
𝜗$%𝑊'

𝜗$%
𝑁𝑊'

b)

.

.

.

𝑓)

𝑓"
2𝜗$%𝑊'

𝑓"

2𝜗$%𝑊'

𝜗$%
𝑁

𝑊' .
.
.

𝑓′)

𝑓"

𝑓"

𝑓′)

a)

𝑁

𝑁
2

𝑊'𝜗$%
𝑁

Fig. 12: Node combining

to 30% area.
Figure 17 shows area per throughout, normalized by the

median value, for a range of throughput targets. As shown,
for throughput targets larger than 5 Pixel/clk, our tool finds
good area/throughput tradeoffs for each throughput target. For
throughput targets less than 5, for some benchmarks such as
Guassian Filter, the line buffer and SDA overhead became
a big portion of the area cost and increased the area per
throughput ratio.

To solve the trade-off finding problem, we used ILP and
a heuristic approaches. Figure 18 shows the percentage of
area saved by the heuristic approach compared to the ILP

88

90

92

94

96

98

100

102

Us
ed

	L
UT

(P
er
ce
nt
ag
e)

FPGA	Size

Fig. 13: LUT usage percentage for Sobel implementations on
different VPR architectures

0

500

1000

1500

2000

2500

3000

20
x2
0

23
x2
3

26
x2
6

29
x2
9

32
x3
2

35
x3
5

38
x3
8

41
x4
1

44
x4
4

47
x4
7

50
x5
0

53
x5
3

56
x5
6

59
x5
9

62
x6
2

65
x6
5

68
x6
8

71
x7
1

74
x7
4

77
x7
7

80
x8
0

83
x8
3

86
x8
6

89
x8
9

LU
T/
Th

ro
ug

hp
ut

FPGA	Size

Fig. 14: Throughput achieved for Sobel on different FPGA
size

88

90

92

94

96

98

100

102

Us
ed

	L
UT

(%
)

Xilinx	7	Series

Sobel Harris

Fig. 15: Percentage of LUT usage for different Xilinx FPGAs

approach for implementing Sobel on different Xilinx FPGAs.
The heuristic approach saves 19% area on average while
decreasing the throughput only by less than 2%. The Inter-
node Optimizer step in the heuristic approach is the key to
the area saving, a step which is not possible to add to the ILP
approach.

IV. CONCLUSION

In this paper, we studied the problem of automatically
finding area/throughput trade-off of CV applications using
OpenVX compute graphs implemented as hardware acceler-
ators and mapped onto FPGAs. We proposed a framework
on top of the Xilinx Vivado HLS tool which receives C++

600

700

800

900

1000

1100

1200

1300

1400

5 10 15 20 25 30 35 40

LU
T/
Th

ro
ug

hp
ut

Throughput	Target

Our	Approach

Baseline

Fig. 16: vxMagnitude Area/Throughput results for different
throughput targets

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2

2.1
2.2
2.3

0 10 20 30 40

Sc
al
ed

	A
re
a/
Th

ro
ug
hp

ut
	b
y	
M
ed

ia
n

Throughput	Targets(Pixel/Clk)

Canny

Magnitude_test

Sobel

Guassian_filter

Harris

Fig. 17: Area cost results for different throughput targets

-50

-40

-30

-20

-10

0

10

20

30

40

50

He
ur
ist
ic
	v
s	I
LP
	S
av
ed

	a
re
a(
%
)	

Xilinx	7	Series

Fig. 18: Area saved percentage for Heuristic compared to ILP
for Sobel benchmark due to Inter-node Optimizer step

based CV kernels and uses different approaches in order to
find different implementations for each kernel. Moreover it
compiles an OpenVX compute graph, analyzes it and finds a
good trade-off between area and throughput. Our approach is
differentiated from the existing approaches as 1) it automati-
cally investigates finding different implementations, and 2) it
combines module selection and replication methods as well as
changing tile-size with node combining and splitting in order
to automatically find a better area/throughput tradeoff. This
approach was verified with different OpenVX benchmarks
targeting several different FPGA sizes. Our tool is able to
automatically achieve over 95% of the target area budget while
improving the throughput. Our tool also can automatically

satisfy a variety of throughput targets while minimizing the
area cost. The proposed system saves up to 30% of the area
cost compared to manually written and heavily parallelized
implementations. Using Inter-node Optimizer step, our heuris-
tic tradeoff finder is able to hit the same throughput targets
while saving 19% area on average compared to existing ILP
approaches.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Pro-
ceedings of the 38th Annual International Symposium on Computer
Architecture, 2011, pp. 365–376.

[2] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in Proceedings of the
37th Annual International Symposium on Computer Architecture, 2010,
pp. 37–47.

[3] J. Cong, M. Huang, D. Wu, and C. H. Yu, “Invited - heterogeneous
datacenters: Options and opportunities,” in Proceedings of the 53rd
Annual Design Automation Conference, 2016, pp. 16:1–16:6.

[4] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Hasel-
man, S. Hauck, S. Heil, A. Hormati, J. Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger,
“A reconfigurable fabric for accelerating large-scale datacenter services,”
IEEE Micro, pp. 10–22, 2015.

[5] Khronos-Group, “Portable, power-efficient vision processing,” 2017.
[Online]. Available: https://www.khronos.org/openvx/

[6] A. W. Lim and M. S. Lam, “Maximizing parallelism and minimizing
synchronization with affine transforms,” in Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’97, 1997.

[7] V. Sarkar and R. Thekkath, “A general framework for iteration-
reordering loop transformations,” SIGPLAN Not., pp. 175–187, 1992.

[8] J. Cong, M. Huang, B. Liu, P. Zhang, and Y. Zou, “Combining module
selection and replication for throughput-driven streaming programs,” in
2012 Design, Automation Test in Europe Conference Exhibition (DATE),
2012, pp. 1018–1023.

[9] H. Omidian and G. G. F. Lemieux, “Automated space/time scaling of
streaming task graph,” International Workshop on Overlay Architectures
for FPGA (OLAF), vol. abs/1606.03717, 2016.

[10] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini, “Adrenaline:
An openvx environment to optimize embedded vision applications on
many-core accelerators,” in 2015 IEEE 9th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip, 2015, pp. 289–296.

[11] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,
A. Vasilyev, M. Horowitz, and P. Hanrahan, “Darkroom: Compiling
high-level image processing code into hardware pipelines,” ACM Trans.
Graph., pp. 144:1–144:11, 2014.

[12] J. Hegarty, R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz, and
P. Hanrahan, “Rigel: Flexible multi-rate image processing hardware,”
ACM Trans. Graph., pp. 85:1–85:11, 2016.

[13] Xilinx-inc, “Axi4 stream interconnect,” 2017. [Online].
Available: https://www.xilinx.com/products/intellectual-property/axi4-
stream interconnect.html

[14] G. Zhong, V. Venkataramani, Y. Liang, T. Mitra, and S. Niar, “Design
space exploration of multiple loops on fpgas using high level synthesis,”
in 2014 IEEE 32nd International Conference on Computer Design
(ICCD), 2014, pp. 456–463.

[15] D. Liu and B. C. Schafer, “Efficient and reliable high-level synthesis
design space explorer for fpgas,” in 2016 26th International Conference
on Field Programmable Logic and Applications (FPL), 2016, pp. 1–8.

[16] G. project, “Gnu linear programming kit,” 2017. [Online]. Available:
https://www.gnu.org/software/glpk/

[17] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose,
and V. Betz, “Vtr 7.0: Next generation architecture and cad system for
fpgas,” ACM Trans. Reconfigurable Technol. Syst., pp. 6:1–6:30, 2014.

