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ABSTRACT
Soft vector processors (SVPs) achieve significant performance
gains through the use of parallel ALUs. However, since
ALUs are used in a time-multiplexed fashion, this does not
exploit a key strength of FPGA performance: pipeline par-
allelism. This paper shows how streaming pipelines can be
integrated into the datapath of a SVP to achieve dramatic
speedups. The SVP plays an important role in supplying
the pipeline with high-bandwidth input data and storing
its results using on-chip memory. However, the SVP must
also perform the housekeeping tasks necessary to keep the
pipeline busy. In particular, it orchestrates data movement
between on-chip memory and external DRAM, it pre- or
post-processes the data using its own ALUs, and it controls
the overall sequence of execution. Since the SVP is pro-
grammed in C, these tasks are easier to develop and debug
than using a traditional HDL approach. Using the N-body
problem as a case study, this paper illustrates how custom
streaming pipelines are integrated into the SVP datapath
and multiple techniques for generating them. Using a cus-
tom pipeline, we demonstrate speedups over 7,000 times and
performance-per-ALM over 100 times better than Nios II/f.
The custom pipeline is also 50 times faster than a naive Intel
Core i7 processor implementation.

1. INTRODUCTION
Although capable of high performance, FPGAs are also

difficult to program. Exploiting both wide and deep custom
pipelines typically requires a hardware designer to design a
custom system in VHDL or Verilog. Recently, the emergence
of ESL tools such as Vivado HLS and Altera’s OpenCL com-
piler allow software programmers to produce FPGA designs
using C or OpenCL. However, since all ESL tools translate a
high-level algorithm into an HDL, they share common draw-
backs: changes to the algorithm require lengthy FPGA re-
compiles, recompiling may run out of resources (eg, logic
blocks) or fail to meet timing, debugging support is very
limited, and high-level algorithmic features such as dynamic
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memory allocation and recursion are unavailable. Hence,
ESL tools are not the most effective way to make FPGAs
accessible to software programmers.

Another approach to supporting programmers is to pro-
vide a soft vector processor (SVP). A SVP achieves high per-
formance through wide data parallelism, efficient looping,
and prefetching. The main advantages of a SVP are scalable
performance and a traditional software programming model.
Performance scaling is achieved by adding more ALUs, but
beyond a certain point (eg, 64 ALUs) the increases in par-
allelism are eroded by clock frequency degradation. This
ultimately limits performance scaling.

To increase performance of SVPs even further, they must
also harness deep pipeline parallelism. For example, most
types of encryption (such as AES) need deep pipelines to
get significant speedup. Although processors (and SVPs)
are not built to exploit deep pipeline parallelism, FPGAs
support it very well.



The natural questions then become: How can a SVP be
interfaced with deep pipelines to exploit both wide and deep
parallelism? What kind of performance can be achieved?
What types of problems arise, and how can they be solved?

To investigate these questions, we developed the Vector-
Blox MXP, shown in Figure 1 and devised a way to add
deep custom pipelines to the processor, shown in Figure 2.
The interface is kept as simple as possible so that software
programmers can eventually develop these custom pipelines
using C; we also show that a simple high-level synthesis tool
can be created for this purpose. To demonstrate speedups,
we selected the N-body gravity problem as case study. In
this problem, each body exerts an attractive force on every
other body, resulting in an O(N2) computation. The size
and direction of the force between two bodies depends upon
their two masses as well as the distance between them. Solv-
ing the problem requires square root and divide, neither of
which are native operations to the MXP. Hence, we start by
implementing simple custom instructions for the reciprocal
and square root operations. Then, we implement the entire
gravity equation as a deep pipeline.

It is important to note that we view the problem of adding
floating-point units (FPUs) as a special case of adding deep,
custom pipelines. FPUs are large in area, so many appli-
cations will not need one FPU for every integer ALU. In
fact, many floating-point applications would find a single f-
p divide unit or f-p square root unit to be sufficient, along
with several f-p adders and f-p multipliers. Also, FPUs are
deeply pipelined, so they need very long vectors to keep their
pipelines utilized, especially when many units are instanti-
ated in parallel. So, for both area and performance reasons,
the programmer should control the number of integer units
separately from the number of f-p adders, the number of f-
p multipliers, etc. Hence, this paper is not just proposing
a method for connecting specialized pipelines, but also for
connecting general floating-point operators to SVPs.

The main contribution of this work is introducing a mod-
ular way of allowing users to add streaming pipelines into
SVPs as custom vector instructions to get huge speedups.
On the surface, this appears to be a simple extension of the
way custom instructions are added to scalar CPUs such as
Nios II. However, there are unique challenges to be able to
stream data from multiple operands in a SVP. Also, scalar
CPU custom instructions are often data starved, limiting
their benefits. We show that SVPs can provide high-bandwidth
data streaming to properly utilize custom instructions.

2. BACKGROUND
Vector processing has a long tradition in high performance

computing, with designs originating in the 1960s. The canon-
ical example (and the first commercially successful) is the
Cray-1 [1]. The Cray-1 used a RISC-like load/store model,
processing vector operands from a vector register file (VRF)
of 8 named registers that were each 64-bits wide and 64 el-
ements deep. Vector operations were streamed through the
execution units at a rate of one per clock cycle.

2.1 FPGA-based Soft Vector Processors
The VIRAM [2] project demonstrated that vector pro-

cessing could be more efficient than traditional processor
architectures for embedded multimedia ASIC designs. Fol-
lowing this path, two FPGA-based projects implemented a
VIRAM-like soft vector processor in FPGAs: VESPA [3] and

VIPERS [4]. All three processors employed a hybrid vector-
SIMD model, where vectors are streamed sequentially over
time through replicated (parallel) execution units.

VESPA included support for heterogeneous vector lanes [5],
e.g. there are fewer multipliers than general-purpose ALUs.
Due to the mismatch between vector register file width and
execution unit width, a parallel load queue was used to
buffer a vector for heterogeneous operations, and a separate
output queue was used to buffer results before writeback.
This required additional memory and multiplexers. In con-
trast, this paper uses pre-existing alignment networks and
requires no additional buffering to solve the width mismatch
problem for 2-input/1-output custom instructions. We show
how to add custom vector instructions that require more
operands using minimal additional buffering.

VEGAS [6] and VENICE [7] are refinements of the VIPERS
processor, further tailoring the architecture for FPGAs. Im-
provements include replacing the VRF with a scratchpad
memory to allow for arbitrary data packing and access, re-
moving vector length limits, enabling sub-word SIMD (four
packed bytes or two packed shorts) within each lane, simpli-
fied conditionals and flags to fit within FPGA BRAMs, and
a DMA-based memory interface rather than a traditional
vector load/store approach.

Work by Cong et al. [8] created composable vector units.
At compilation time, the DFG of a vector program was ex-
amined for clusters of operations that can be composed to-
gether to create a new streaming instruction that uses mul-
tiple operators and operands. This was done by chaining
together existing functional units using an interconnection
network and multi-ported register file. This is similar to
traditional vector chaining, but it was resolved statically
by the compiler (not dynamically the architecture) and en-
coded into the instruction stream. This provided pipeline
parallelism, but was limited by the number of available op-
erators and available register file ports. It is not easily ex-
tended to support wide SIMD-style parallelism. The re-
ported speedups were less than a factor of two.

The FPVC, or floating point vector coprocessor, was de-
veloped by Kathiara and Leeser [9]. It adds a floating-point
vector unit to the hard Xilinx PowerPC cores which can ex-
ploit SIMD parallelism as well as pipeline parallelism. The
FPVC fetches its own VIRAM-like instructions and has its
own private register file. Unlike most other vector architec-
tures, it can also execute its own scalar operations separate
from the host PowerPC.

Convey’s HC-2 [10] is a vector computer built using sev-
eral FPGAs. The FPGAs can adopt one of several ‘per-
sonalities’, each of which provides a domain-specific vector
instruction set. User-developed personalities are also possi-
ble. Designed for high-performance computing, the machine
includes a high bandwidth, highly interleaved, multi-bank
DRAM array to reduce strided access latency.

2.2 VectorBlox MXP
The VectorBlox MXP [11], or MXP for short, is a new

SVP that somewhat resembles VENICE [7]. It is designed
for embedded systems that use a simple memory system.
Figure 1 gives a high-level system view of MXP on Altera
FPGAs; there is also a Xilinx version.

The host processor, Nios II/f, runs C code compiled with
Altera’s gcc. MXP instructions are inserted as Nios custom
instructions using inline C functions. There are two types of
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Figure 3: Alignment of data operands during vector
instruction execution

MXP instructions: DMA operations and vector operations.
Nios, DMA and vector operations all run concurrently, pro-
viding 3-way parallelism. Hardware interlocks resolve de-
pendencies between the DMA and vector engines without
software intervention.

In addition, the user can add custom operators or pipelines
by connecting them in Altera’s Qsys tool using a ‘conduit’
interface connection. These conduits are indicated in Fig-
ure 1 using the letter ‘C’, as opposed to Avalon masters (M)
or slaves (S).

Figure 2 provides an internal view of the processor. The
2D DMA engine fetches data from the external Avalon sys-
tem, typically from a DRAM controller. This efficiently
copies data from external DRAM to a scratchpad memory
built using on-chip block RAM. The scratchpad is double-
clocked to provide four access ports. The DMA engine uses
one of these ports; the vector engine uses the other three
to fetch operands and store results. Internally, the scratch-
pad is organized as a wide, byte-addressable multibanked
memory to provide concurrent, high-bandwidth data access.

Source and destination vectors are specified by a pointer
into the scratchpad. These vectors can be unaligned with
respect to each other. Data alignment networks ensure that
any starting address can be issued to any port. Unaligned
vectors naturally occur with sliding window algorithms such
as convolutions; at each iteration the starting location of
the vector to be processed will advance by one element.
For these cases MXP has three separate alignment networks
as shown in Figure 3: networks A and B align the source
operands to the ALUs, while network C aligns the write-
back results. Data is read out from the scratchpad in waves,
where one wave is a full-width set of data that requires just
one clock cycle. Back-to-back waves form a data stream.

Networks A and B shift the data to ensure that the first
vector element of operands A and B, respectively, appears at
the ‘top’ position of the wave, regardless of which bank it is
actually stored in. Successive data elements are also shifted,
forming a contiguous fully packed wave. The waves stream
through the ALUs, which are followed by an optional sum-
mation stage (for accumulation reductions), and finally into
network C to align the writeback. Figure 3 shows an align-
ment example where the first wave of 4 elements are read
out from two vectors, and written back to a third vector,
where all three vectors have differing alignments. Execution
of a vector instruction on all 8 elements fits into two waves
and fills two back-to-back pipeline cycles. A following vec-

tor instruction can issue its own operands with completely
different alignments and have its waves packed back-to-back
with the preceeding instruction.

The regular integer ALUs for MXP are located between
the front-end alignment networks A and B and the back-
end alignment network C. These are not directly shown in
Figure 2, but they should be assumed to coexist with the
‘custom pipelines’ stage. The regular ALUs have a 3-stage
pipeline, while custom pipelines can be of arbitrary length
and have an arbitrary number of internal operators. The
figure shows four different custom pipelines in the processor.

The number of parallel lanes (scratchpad banks/execution
units) is configurable at synthesis time, but software does
not need to be rewritten for different configurations thanks
to the vector paradigm. Vector operations may execute over
multiple cycles depending on the vector length and num-
ber of parallel lanes. Multiple instructions may be in the
pipeline at a time. When hardware detects a hazard, e.g.
when a vector instruction attempts to read a value currently
in the pipeline, pipeline bubbles are inserted until the values
are written back to the scratchpad.

The MXP natively supports integer and fixed-point data
types. Every instruction can operate on bytes, shorts, or 32-
bit integers in either signed or unsigned mode. Operations
include traditional ALU instructions, including multiply, ro-
tate and shift instructions, plus a move and several condi-
tional move instructions. Also, fixed-point multiply can be
done with a fixed decimal position. Note that divide or mod-
ulo operations and floating-point data types are missing, as
these require complex logic.

3. CUSTOM VECTOR INSTRUCTIONS

3.1 Minimal Core Instructions
The VectorBlox MXP was designed to have a minimal

core instruction set. It is very important to keep this in-
struction set minimal with a SVP because the area required
by an operation will be replicated in every vector lane, thus
multiplying its cost. In MXP, multiplication/shift/rotate
instructions are included as core instructions because they
share use of the hard multipliers in the FPGA fabric. How-
ever, divide and modulo are not included as core instructions
because they require more than 3 pipeline stages and more
logic than all other operators combined.

In addition to the minimal core instruction set, there are
a large number of simple, stateless 1- or 2-input, single-
output operators with no state that can be created. This
includes arithmetic (e.g. divide, modulo, reciprocal, square
root, reciprocal square root), bit manipulation (e.g. popula-
tion count, leading-zero count, bit reversal), and encryption
acceleration (e.g. s-box lookup, byte swapping, finite field
arithmetic). Some of these operators require very little logic,
while others demand a significant amount of logic. However,
supporting all such operators is prohibitively expensive in
FPGAs. Also, it is hard to imagine a single application that
makes use of almost all of these specialized instructions. Fi-
nally, even when they are used by an application, they may
not appear very frequently in the dynamic instruction mix.

For this reason, we have excluded many operations that
could potentially be useful, but we felt are too specialized.
Instead, we have devised a way for users to add these op-
erations to the processor using custom vector instructions.
Also, we allow the user to decide how many of these opera-
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tors should be added to the pipeline, since it may not make
sense to replicate large operators in every lane.

3.2 Custom Vector Instructions (CVIs)
For applications that require more complex operations,

where software emulation is too difficult or slow, users can
add their own application-specific custom vector instruc-
tions, also known as CVIs, into the pipeline.

Our add-on CVI approach is different from the VESPA
approach [3], which allows selective instruction subsetting
from a master instruction set. Subsetting allows very fine-
grained control but it typically saves only a small amount of
logic. Because no core set of instructions are defined, it also
leads to derivative SVPs with incompatible instruction sets.

In contrast, the MXP approach defines a core set of in-
structions to increase software portability, while user-specified
CVIs can be added to accelerate application-specific oper-
ations that are rarely needed by other applications. CVIs
use an external conduit port interface to MXP, allowing the
addition to be done without modifying the processor source
HDL. This modularity will also make it easier to add CVIs
using run-time reconfiguration. The user can create CVIs or
take advantage of our current library of CVIs. This library
includes count leading zeroes, compress, divide, square root,
and prefix sum operations.

3.3 CVI Interface
A typical CVI is executed in MXP like a standard arith-

metic instruction, with two source operands and one destina-
tion operand. The main difference is that data is sent out of
MXP, through the conduit to the CVI and back again, then
multiplexed back into the MXP pipeline before writeback.
One individual CVI may consist of many parallel execution
units, processing data in both a parallel and a streaming
fashion.

In Altera’s Qsys environment, CVIs are implemented as
Avalon components with a specific conduit interface. Vector
data and control signals are exported out of the top level of
MXP and connected to the CVI automatically through the
conduit. The conduit interface to a CVI designer can be seen
in Figure 4. The left side (Figure 4a) shows an example of
a simple CVI, the ‘difference-squared’ operation. This CVI
does the same action on all data, so its individual execution
units are simply replicated across the number of CVI lanes.

In the simplest case, the number of CVI lanes will match the
number of MXP lanes. This is adequate if the CVI is small,
or there is plenty of area available. Later, we will consider
the area-limited case when there must be fewer CVI lanes
than MXP lanes.

The right side (Figure 4b) shows a more complicated ex-
ample, a prefix sum, where data is communicated across
lanes. The prefix sum calculates a new vector that stores
the running total of the input vector appearing on operand
A. Even if expressed as a tree, its complexity scales faster
than O(N). This makes it a very different type of opera-
tion than the difference-squared operation, which does not
have communication between lanes. As a result, computing
a prefix sum is a difficult operation for wide vector engines;
it is best implemented in a streaming fashion. Since a vector
may be longer than the width of the SVP, it is important
to accumulate the value across multiple clock cycles in time.
To support this, the CVI interface provides a clock and vec-
tor start signal. Furthermore, a data valid signal indicates
when each wave of input data is provided, and individual
data-enable input signals (not shown for clarity) are pro-
vided for each lane.

Additional signals in the CVI interface include an opsize
(2 bits) that indicates byte/short/word data. Also, output
byte-enable signals allow writing back only partial vector
data, or to implement conditional-move operations, or when
writing back a last (incomplete) wave. Finally, an opcode
field is provided to allow the selection of multiple CVIs. Al-
ternatively, the opcode can be passed to a single CVI and
used as a mode-select for different functions, such as shar-
ing logic for divide and modulo, or to implement different
rounding modes. The opcode field is shown as two bits, but
this can be easily extended.

We have found this interface capable of implementing a
wide array of CVIs. We are considering extending this inter-
face with a few additional control signals, such as signed/unsigned,
scalar load, and pipeline status information, but we wish to
keep the interface as simple as possible.

3.4 Heterogeneous Lane Support
Custom operators may be prohibitively large to add to

each vector lane. For example, a fully pipelined Q16.16
fixed-point divider requires 2,652 ALMs to implement in a
Stratix IV FPGA. This is more logic than an entire vector
lane in the MXP. Thus, it can be desirable to use fewer di-
viders than the number of lanes (depending upon the portion
of divides in the dynamic instruction mix). MXP supports
using narrower CVIs with minimal overhead by reusing ex-
isting address generation and data alignment logic.

Figure 5 shows how CVIs with a different number of lanes
are added to the existing MXP datapath. During normal
operation, the address generation logic increments each ad-
dress by the width of the vector processor each cycle. For the
example shown, i.e. an MXP with four 32-bit lanes (writ-
ten as a ‘V4’), each source and destination address is incre-
mented by 16 bytes, until the entire vector is processed. As
discussed in Section 2, the input alignment networks align
the start of both source vectors to lane 0 before the data
is processed by the ALUs. After execution, the destination
alignment network is used to align the result to the correct
bank in the scratchpad for writeback.

During a CVI, the address generation logic only incre-
ments the source and destination addresses by the number
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of CVI lanes times the 4-byte width of each lane. In the
example shown, the addresses are incremented by 12 bytes
for each wave, regardless of the SVP width. As in normal
execution, the alignment networks still align source data to
start at lane 0 before data is processed in the custom ALUs.
In this case, the fourth lane would not contain any data,
so its data-enable input would be inactive. After execution,
the CVI result is muxed back into the main MXP pipeline,
and finally the resulting data is aligned for writeback into
the scratchpad. On CVI writeback, the output byte enables
are then used to write out data for only the first 12 bytes of
each wave; the destination alignment network then reposi-
tions the wave to the correct target address.

3.5 CVIs with Deep Pipelines
MXP uses an in-order, stall-free backend for execution

and writeback to achieve high frequencies. The CVIs are
inserted in parallel to the regular 3-stage execution pipeline
of MXP, which means they can also have 3 internal register
stages. If fewer stages are needed, it must be padded to 3
stages. This is usually sufficient for combinations of small
operators, bit twiddling, and reductions.

Some operations, such as divide or floating point, require
much deeper pipelines. If the user naively creates a pipeline
that is longer than 3 cycles, the first wave of data would ap-
pear to the writeback stage later than the writeback address,
and the last wave of data would not reach the writeback
stage at all.

To address the latter problem, we have devised a very sim-
ple strategy for inserting long pipelines. In software, we ex-
tend the vector length to account for the additional pipeline
stages (minus the 3 normal stages). This solves part of the
problem, allowing the last wave of vector data to get flushed
out of the pipeline and appear at the writeback stage. Dur-
ing the last cycles, the pipeline will read data past the end
of the input operands, but their results will never be written

back. However, the beginning of the output vector will have
garbage results.

To eliminate this waste of space, the MXP could simply
delay the writeback address by the appropriate number of
clock cycles. However, another way is to allow the CVI it-
self to specify its destination address for each wave. This
requires the MXP to inform the CVI of the destination ad-
dresses, and rely upon the CVI to delay them appropriately.
We have chosen this latter technique, as it allows for more
complex operations where the write address needs to be con-
trolled by the CVI, such as vector compression. Because this
can write to arbitrary addresses, any CVI using this mode
must set a flag which tells the SVP to flush its pipeline after
the CVI has completed.

4. MULTI-OPERAND CVI
The CVIs described in the previous section are intended

for 1 or 2 input operands, and 1 destination operand. This
can be useful for some applications, but it is not very flexible.
Certainly, the DAGs of most large compute kernels require
multiple inputs and outputs, and require both scalar and
vector operands. In this section, we describe how to to sup-
port multiple-input, multiple-output CVIs. As a motivating
example, we have chosen the N-body gravitational problem.
We modified the problem slightly to produce a pleasing vi-
sual demonstration: we restrict calculations to only 2 di-
mensions, we use a repelling force rather than an attracting
force, and we allow collisions with the screen boundary.

4.1 N-Body Problem
The traditional N-body problem simulates a 3D universe,

where each celestial object is a body, or particle, with a fixed
mass. Over time, the velocity and position of each particle is
updated according to interactions with other particles and
the environment. In particular, each particle exerts a net
force (i.e., gravity) on every other particle. The computa-
tional complexity of the basic all-pairs approach we use is
O(N2). Although advanced methods exist to reduce this
time complexity, we do not explore them here.

In our modified version, we consider a 2D screen rather
than a 3D universe. The screen is easier to render than a
3D universe, but it also has boundaries. Also, we change the
sign of gravity so that objects repel each other, rather than
attract. (Attractive forces with screen boundaries would re-
sult in the eventual collapse into a moving black hole, which
is not visually appealing.) Like the traditional N-body prob-
lem, we also treat particles as point masses, i.e. there are
no collisions between particles. We have also adjusted the
gravitational constant to produce visually pleasing results.

The run-time of the N-body is dominated by the gravity
force calculation, shown below:

~Fi,j = G
MiMj

r2
= 0.0625

MiMj

| ~Pi − ~Pj |3
( ~Pi − ~Pj)

where ~Fi,j is the force particle i imposes on particle j, ~Pi

is the position of particle i, and Mi is the size or ‘mass’ of
particle i. When computing these forces, we chose a fixed-
point Q16.16 fixed-point representation, where the integer
component of ~P represents a pixel location on the screen.

When a particle reaches the display boundary, its position
and velocity are adjusted to reflect off the edge (towards the
center) after removing some energy from the particle. These
checks do not dominate the run-time as they are only O(N).
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a) Wide multi-operand streaming datapaths require interleaved data

b) Deep multi-operand streaming datapaths can avoid interleaved data
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Figure 7: Multi-operand custom vector instructions

An implementation of the gravity computation as a stream-
ing pipeline is shown in Figure 6. This is a fixed-point
pipeline with 74 stages; the depth is dominated by the fixed-
point square root and division operators at 16 and 48 cy-
cles, respectively.1 For each particle, its x position, y posi-
tion, and mass (premultiplied by the gravitational constant)
is loaded into scalar data registers within the instruction.
This is the reference particle. Then, three vectors repre-
senting the x position, y position and mass of all particles
are streamed through the vector pipeline. The pipeline inte-
grates the forces exerted by all these particles, and computes
a net force on the reference particle.

Overall, the pipeline requires 3 scalar inputs (reference
particle properties) and 3 vector inputs (all other particles).
It also produces 2 vector outputs (an x vector and a y vec-
tor), although the output vectors are of length 1 because

1We used Altera’s LPM primitives for these operators. The
pipeline would benefit from a combined reciprocal square
root operator, but it does not exist in the Altera library.

of the accumulators at the end of the pipeline. Hence, this
gravity pipeline is a 3-input, 2-output CVI.

All of the MXP vector instructions, including the custom
type, only have 2 inputs and 1 output. This is a limitation in
the software API, where only 2 inputs and 1 output can be
specified, as well as the hardware dispatch, where only two
source vector addresses and one destination vector address
can be issued. Hence, programming a CVI with an arbitrary
number of inputs and outputs requires a different way of
looking at things.

Loading of scalar data can be accomplished by using vec-
tor operations with length 1, and either using an opcode bit
to select scalar loading versus vector execution, or by fixed
ping-ponging between scalar loading and vector execution.
We use the ping-pong approach to save opcodes.

Supporting multiple vector operands is not as simple, how-
ever, and will be discussed below.

4.2 Multi-Operand CVI Dispatch
The wide approach requires data to be laid out spatially,

such that operand A appears as vector element 0, operand
B appears as vector element 1, and so forth. This is shown
in Figure 7a. In other words, the operands are laid out
consecutively in memory as if packed into a C structure. To
stream these operands as vectors, an array-of-structs (AoS)
is created. Ideally, the input operands would precisely fit
into the first wave; with two read ports, the amount of input
data would be twice the vector engine width. If more input
data is required, then multiple waves will be required, which
will be similar to the depth approach below. If less input
data is required, then the CVI does not need to span the
entire width of the SVP. In this case, it may be possible to
provide multiple copies of the pipeline to add SIMD-level
parallelism to the CVI.

The main drawback of the wide approach is that the data
must be interleaved into an AoS. In our experience, SVPs
work better when data is arranged into a struct-of-arrays
(SoA). The SoA layout assures that each data item is in its
own array, so SVP instructions can operate on contiguouly
packed vectors.

For example, suppose image data is interleaved into an
AoS as {r,g,b} triplets. With this organization, it is difficult
to convert the data to {y,u,v} triplets because each output
data item requires a different equation. When the image
data is blocked as in a SoA, it is easy to compute the {y}
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vbx_interleave_4_2( int TYPE, int INSTR, int NE, int VL,
 int8 *v_D1, int8 *v_D2,
 int8 *v_A1, int8 *v_A2, int8 *v_B1, int8 *v_B2 )
{
  vbx_set_vl( VL );
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              v_A1[VL]-v_A1[0], v_B1[VL]-v_B1[0] );
  vbx_3D( TYPE, VINSTR, v_D1, v_A1, v_B1 );
}

Figure 8: Using 3D vector operations for multi-
operand dispatch

matrix based upon the {r}, {g}, and {b} matrices. Further-
more, converting between AoS and SoA on the fly requires
data copying and can take a long time. Hence, it is better
for regular SVP instructions to use SoA format.

An alternative depth approach to multiple-operand CVIs
requires data to be interleaved in time. This is shown in
Figure 7b, where a streaming datapath only has access to
two physical ports, operands A and B of one vector lane.
This can be combined with wide parallelism by replicating
the deep pipeline. It is not desirable to simply fully read two
input vectors and then read the third input, though, as the
CVI would have to buffer the full length of the instruction.
In MXP, vector lengths are limited only by the size of the
scratchpad, so the buffering could be costly. Rather, it is
desirable to only buffer a single cycle’s worth of inputs.

We accomplish this in MXP by using its 2D and 3D in-
struction dispatch to issue a single wavefront of data from
each input on alternating cycles. The 2D instructions work
by first executing a normal (1D) vector instruction, then ap-
plying a different stride to each of the input addresses and
output address and repeating this operation multiple times.
The strides and repetitions can be set at runtime using a
separate set 2D instruction. The 3D instructions are an ex-
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Figure 9: Multi-operand custom vector instructions
with funnel adapters

tension of this, where 2D instructions are repeated using
another set of strides.

Figure 8 illustrates how these 2D/3D ops are used to dis-
patch CVIs with multiple operands. In this example, a CVI
with 4 inputs (A1, A2, B1, and B2) and 2 outputs (D1 and
D2) is to be executed. The desired result is that the CVI will
alternate A1/B1 and A2/B2 inputs each cycle, and alternate
D1/D2 outputs each cycle.

To get this outcome, first the 1D vector length (VL) is set
to the number of CVI lanes, and the 2D strides are set to
the difference between input addresses (A2-A1, B2-B1) and
output addresses (D2-D1). Since the inner vector length is
the same as the number of custom instruction lanes, each
row is dispatched as one wave in a single cycle, followed by
a stride to the next input. The 2D vector length is set to the
total number of cycles required (max(inputs/2, outputs/1)).
Note that if more than 2 cycles (4 inputs or 2 outputs) are
needed, sets of additional inputs and outputs will need to
be laid out with a constant stride from each other.

Since a 2D operation merely alternates between sets of
inputs (and outputs), a 3D instruction is used to stream
through the arrays of data. Each 2D instruction processes
one wavefront (of CVI lanes) worth of data, so the 3D in-
struction is set to stride by the number of CVI lanes. The
number of these iterations (the 3D length) is set to the data
length divided by the number of CVI lanes.

In Figure 8, the complex setup routine (top) can be ab-
stracted away to a single function call, vbx_interleave_4_2()
(middle). One possible implementation of this call is shown
at the bottom of the figure.

On the hardware side, data is presented in wavefronts and
needs to be multiplexed into a pipeline. Because a new set
of inputs only arrives every max(inputs/2, outputs) cycles,
the pipeline would be idle part of the time if it had the same
width and clockrate as the CVI interface. We can recover
the lost performance, and save area, by interleaving two or
more logical streams into one physical pipeline. To do this,
we have created ‘funnel adapters’ which are used to accept
the spatially distributed wave and feed it to the pipeline over
time. This is illustrated in Figure 9.

The funnel adapter for our 3-input, 2 output particle physics
pipeline, which has inputs arriving every 2 cycles (and out-
puts leaving every 2 cycles), allows two MXP lanes worth of
data to share a single physical streaming pipeline.

4.3 Face Detection CVI Example
As another example, we have also designed a multiple-

input/output CVI for Viola-Jones face detection. The face
detection pipeline is shown in Figure 10. Unlike the gravity
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Figure 10: Face detection pipeline

Figure 11: FLOAT Custom Vector Pipeline in Al-
tera’s DSP Builder

pipeline, the face detection requires far more inputs – a total
of 18 vector inputs and 1 scalar input. It produces a single
vector output.

Using regular SVP instructions, this face detection re-
quires a total of 19 instructions, requiring 19 clock cycles per
wave of data. In contrast, due to the large number of vector
input operands, the face detection pipeline takes 9 clock cy-
cles per wave of data. Hence, the best-case speedup expected
from this custom pipeline is 19

9
, or roughly 2 times. Even

though face detection contains a large number of operators,
the number of input operands limits the overall speedup.
Hence, not all applications will benefit significantly from
custom pipelines.

5. CVI DESIGN METHODOLOGIES
While implementing a CVI to accelerate a SVP program

is much easier than writing a complete accelerator, imple-
menting them in HDL is not desirable for our target users,
software programmers. Hence, we have explored two alter-
natives for generating CVI pipelines.

5.1 Altera’s DSP Builder Pipelines
Altera’s DSP Builder [12] (ADSPB) is a block-based toolset

integrating into Matlab and Simulink to allow for push-
button generation of RTL code. Figure 11 shows a floating-
point version of our physics pipeline implemented in AD-
SPB. ADSPB was able to create the entire pipeline, includ-
ing accumulation units, and design was significantly faster
than manually building the fixed-point version in VHDL.
Although we were not able to create a fixed-point version of

#define CVI_LANES 8 /* number of physical lanes */
typedef int32_t f16_t
f16_t ref_px, ref_py, ref_gm;
f16_t px[CVI_LANES], py[CVI_LANES], m[CVI_LANES];
f16_t result_x[CVI_LANES], result_y[CVI_LANES];

void force_calc()
{

for( int glane = 0 ; glane < CVI_LANES ; glane++ ) {
f16_t gmm = f16_mul( ref_gm, m[glane] );
f16_t dx = f16_sub( ref_px, px[glane] );
f16_t dy = f16_sub( ref_py, py[glane] );
f16_t dx2 = f16_mul(dx,dx);
f16_t dy2 = f16_mul(dy,dy);
f16_t r2 = f16_add(dx2,dy2);
f16_t r = f16_sqrt(r2);
f16_t rr = f16_div(F16(1.0),r);
f16_t gmm_rr = f16_mul(rr,gmm_68);
f16_t gmm_rr2 = f16_mul(rr,gmm_rr);
f16_t gmm_rr3 = f16_mul(rr,gmm_rr2);
f16_t dfx = f16_mul(dx,gmm_rr3);
f16_t dfy = f16_mul(dy,gmm_rr3);
f16_t result_x = f16_add(result_x[glane],dfx);
f16_t result_y = f16_add(result_y[glane],dfy);
result_x[glane] = result_x;
result_y[glane] = result_y;

}
}

Figure 12: Gravity pipeline C code for HLS (retim-
ing registers omitted for clarity)

our pipeline in ADSPB because it lacks fixed-point recipro-
cal and square root, we were happy to generate a floating-
point version as an additional data point of interest.

Some glue logic was needed to integrate the pipeline into
a CVI, however, because our CVI pipelines require a clock
enable signal, which ADSPB generated logic does not have.
Rather than attempt to modify the generated code (includ-
ing libraries used), we built a FIFO buffer to retime data
appropriately, which adds minimal logic and uses one addi-
tional M9K memory per lane. This glue logic is sufficiently
generic to allow any ADSPB-generated pipeline to be inte-
grated into a CVI.

5.2 High Level Synthesis
Additionally, we have started to develop a High-level Syn-

thesis (HLS) tool to implement CVIs in C. The goal is to
show that only very simple HLS features are required to
produce functional CVIs. For this reason, we started with
bare LLVM rather than a more advanced HLS tool such as
LegUp [13].

The user writes a function in C that produces the de-
sired dataflow behaviour. This function has a standard API
interface that matches the physical CVI interface shown in
Figure 4. The input and output data are presented as global
variables, and the user reads and writes to these variables
to achieve the desired streaming behaviour. At the moment,
our compiler recognizes specific global variable names, but
this can be modified to use pragmas.

Like LegUp, our compiler converts C code into Verilog
RTL output. However, since we are only attempting to gen-
erate dataflows, not complex sequential behaviour, only sim-
ple translation steps are required. For example, we unroll
all loops as if they are for-generate hardware statements.

In our current implementation, the user manually inserts
pipeline registers for retiming using a special function, reg().
For example, a_3 = reg(a,3); tells our LLVM compiler to



Table 1: Results with MXP compared to Nios II/f, Intel, and ARM Processors
Processor Area (ALMs) DSP 18-bit Fmax (MHz) s/frame GigaOp/s pairs/s Speedup

Nios II/f (fixed) 1,223 4 283 231.6 0.004 0.3M 1.0
Cortex A9 (zedboard) (fixed) – – 667 52.1 0.02 1.3M 4.5
Cortex A9 (zedboard) (float) – – 667 14.0 0.07 4.8M 16.6

Intel Core i7-2600 (fixed) – – 3400 6.5 0.15 10.3M 35.6
Intel Core i7-2600 (float) – – 3400 1.6 0.63 41.9M 144.8

MXP V32 (fixed) 46,250 132 193 73.8 0.14 9.1M 31.4
MXP V32+16FLOAT 115,142 644 122 0.041 24.6 1,326M 5,669
MXP V32+16FIXED 86,642 740 153 0.032 31.3 2,087M 7,203

Figure 13: Area of gravity pipeline systems

create signal a 3 after adding 3 pipeline stages. Apart from
this function, our C code is naturally readable by a soft-
ware programmer. Later, we plan to add automatic retiming
heuristics.

Although our compiler is limited in scope, we are able
generate Verilog that is cycle-accurate with the fixed-point
gravity pipeline described earlier in this paper. A portion
of our C code using a Q16.16 fixed-point data type is shown
in Figure 12. For clarity, we have removed the retiming
registers and not shown the fixed-point function definitions.

6. RESULTS
All FPGA results are obtained using Quartus II 13.0 and

a Terasic DE4 development board which has a Stratix IV
GX530 FPGA and a 64-bit DDR2 interface. For compar-
ison, Intel Core i7-2600 and ARM Cortex-A9 (from a Xil-
inx Zynq-based ZedBoard) performance results are shown.
Both fixed-point (fixed) and floating-point (float) implemen-
tations were used. MXP natively supports fixed-point multi-
plication in all lanes. The Nios II/f contains an integer hard-
ware multiplier and hardware divider; additional instruc-
tions are to operate on fixed-point data. The Intel, ARM
and Nios II versions are written with the same C source us-
ing libfixmath [14]. We developed a vectorized version of
this library for use with MXP. Nios II/f and MXP results
use gcc-4.1.2 with ‘-O2’. The Core i7 results use gcc-4.6.3
and ‘-O2 -ftree-vectorize -m64 -march=corei7-avx’. ARM
results use gcc-4.7.2 and reports the best runtime among
‘-O2’ and ‘-O3’.

The MXP results vary the number of SVP lanes (V2, V8,
and V32) and the number of CVI lanes. Three types of CVIs
are generated: one containing separate fixed-point divide
and square root instructions (DIV/SQRT), one containing a

manually generated fixed-point gravity pipe (FIXED), and
an ADSPB pipe (FLOAT). The LLVM pipeline results are
omitted because they are nearly identical to (FIXED).

Figure 13 shows the area, in Adaptive Logic Modules
(ALMs) on the left and DSP Block 18-bit elements on the
right. The DIV/SQRT configurations take roughly the same
area (in ALMs) as the FIXED pipeline. However, FIXED re-
quires more multipliers. The FLOAT pipelines require about
5,500 ALMs and 38 DSP elements per lane versus 3,000 and
32 per lane for FIXED.

Running the N-body problem with 8,192 particles, Fig-
ure 14 shows the speedup relative to a Nios II/f soft proces-
sor for the various MXP configurations as well as a 3.4GHz
Intel Core i7-2600 and a 667MHz ARM Cortex A9. The
processor implementations are naive, but typical of what a
C programmer might start with. A highly optimized single-
core AVX implementation for i7-2600 matches our best MXP
performance at 2× 109 pairs per second [15]. However, that
code was painstakingly hand-written in assembly language.2

Overall, this is over 7,200 times faster than Nios II/f.

7. CONCLUSIONS AND FUTURE WORK
This work has demonstrated a way to reuse existing struc-

tures in SVPs to attach a variable number of streaming
pipelines with minimal resource overhead. These can be
accessed in software via custom vector instructions (CVIs).
Logic-intensive operators, such as fixed-point divide, should
not be simply replicated across all vector lanes. Doing so
wastes FPGA area unnecessarily. Instead, it is important

2The AVX-optimized version also solves the 3D problem.
Our 2D pipeline can be converted into a 3D version, with
no expected loss in performance, with just 3 more additions
and 2 more multiplications.



Figure 14: Performance and performance-per-area of gravity pipeline

to consider the frequency of use of the specialized pipeline,
and add enough copies to get the most speed-up with mini-
mal area overhead. Methods for dispatching complex CVIs
were presented, including a time-interleaved method that al-
lows an arbitrary number of inputs and outputs using funnel
adapters.

The performance results achieve speedups far beyod what
a plain SVP can accomplish. For example, a 32-lane SVP
achieves a speedup of 31.4, whereas a CVI-optimized version
is another 230 times faster, with a net speedup of 7,200
versus Nios II/f. This puts the MXP at par with an AVX-
optimized Intel Core i7 implementation.

One area of future work is to make a repository of common
operations and data types, such as min, max, power, and log
for fixed-point, floating-point and even complex numbers.
Also, we plan to continue exploring high-level synthesis op-
tions so that programmers can easily generate custom CVIs.
Finally, allowing the programmer to dynamically reconfigure
the CVIs will help when an FPGA must run several different
applications.

As limitations of our work, some read and write band-
width of the scratchpad is not utilized during the execu-
tion of our CVIs. Also, more advanced instruction dispatch
strategies could be used to overlap execution of multiple
CVIs. Alternatively, regular vector instructions could also
overlap with a CVI.
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