
JANUS: A Compilation System for Balancing

Parallelism and Performance in OpenVX

Hossein Omidian1,∗ and Guy G. F. Lemieux1

1Department of Electrical and Computer Engineering, University of British Columbia,
Vancouver, BC, Canada

E-mail: ∗hosseino@ece.ubc.ca

Abstract. Embedded systems typically do not have enough on-chip memory for entire an
image buffer. Programming systems like OpenCV operate on entire image frames at each step,
making them use excessive memory bandwidth and power. In contrast, the paradigm used by
OpenVX is much more efficient; it uses image tiling, and the compilation system is allowed to
analyze and optimize the operation sequence, specified as a compute graph, before doing any
pixel processing. In this work, we are building a compilation system for OpenVX that can
analyze and optimize the compute graph to take advantage of parallel resources in many-core
systems or FPGAs. Using a database of prewritten OpenVX kernels, it automatically adjusts
the image tile size as well as using kernel duplication and coalescing to meet a defined area
(resource) target, or to meet a specified throughput target. This allows a single compute graph
to target implementations with a wide range of performance needs or capabilities, e.g. from
handheld to datacenter, that use minimal resources and power to reach the performance target.

1. Introduction
In recent years both industrial and academic communities have focused on implementing
Computer Vision (CV) applications on different embedded platforms. For the most
computationally intensive CV algorithms, using parallelism techniques for implementing them
is considered a must. Although in theory CPU and GPU platforms can perform such intensive
computations, power remains the main challenge. Previous studies suggest custom hardware
implementations [1, 2] as well as programmable many-core systems [3, 4, 5, 6, 7, 8] can be
good alternatives since they are able to perform such intense computations within the power
limits. Moreover, most CV applications can be define as streaming applications (i.e. each
stage receives stream of image pixels, rows or frames, processes them, and sends the results as
stream of data to the next stage). This means we can describe CV applications as compute
graphs or Synchronous Data Flow Graphs (SDFGs) [9]. Previous studies have shown custom
hardware implementations on FPGA as well as reconfigurable many-core systems have the
potential to dramatically increase the performance/Watt for implementing computationally
intensive SDFGs. The target embedded systems (for CV applications) can have on-chip resources
(e.g. computational, power, area, etc) as large as an autonomous car or as small as a battery
operated device. In both cases the final goal for developers is maximizing performance while
decreasing the power. Previous studies such as Chen et. al. [10] report the off-chip DRAM traffic
dominates the energy consumption and show eliminating the DRAM access reduces energy by
up to 150.31x. This means in order to save power, we need to keep data locally on chip as long as

possible and avoid dumping/restoring data to/from main memory. Traditional CV programming
systems such as OpenCV [11] operate on entire image frame at each step, which means for every
node in the compute graph (e.g. ConvertColor node), the application needs to read the entire
frame from off-chip memory, do the required process on the whole frame and then provide the
results for the next node by dumping the results back to the off-chip memory. In contrast,
OpenVX [12] has been introduced as a cross-platform standard which a computation can be
tiled and the workload can be run on those tiles independently while keeping several tiles in
on-chip memory concurrently.

Kernel	Analyzer

Intra-Node	
Optimizer

1 3

2 4

DB	of	Implementations	
for	each	kernel	(node)

Trade-off	
Finder 3

2

1
4

CV	Compute	Graph

CV	Kernels

Kernel	
1

Kernel	
2

Kernel	
3

Kernel	
4

Different	
Implementations	

Generator Trade-off

1

2
3 4

Design	Evaluator	
+	Throughput	
Calculator

DB	of	Implementations	
for	each	node

1

1

2

2

3

3

4

4

FPGA	Fabric

Area/Throughput/Tile-width
correlation	for	each	node

Many-core	system Heterogeneous

Backend

Figure 1. Tool flow

In this work we introduce a compilation system for OpenVX style compute-graphs. Our tool
is able to automatically explore the space/time tradeoff problem for these compute graphs and
find optimum solutions satisfying different throughput targets and area budgets while targeting
a wide range of FPGAs and programmable many-core systems.

Every node (kernel) in the compute graph is analyzed to find all degrees of parallelism
based on different loop transformation strategies [13, 14], pipeline opportunities and data
dependencies. Based on those, our tool generates different implementations with different area,
IO and throughput characteristics for each node in the compute graph. Moreover, using different
optimization techniques such as node combining and node replication, our tool is able to widen
the problem space by covering more possible solutions. After finding variety of different solutions
for each node in the compute graph, the tool needs to find an optimum overall solution based
on defined area budget or throughput target. Previous research has shown finding the optimum
solution for this space/time tradeoff is an NP-complete optimization problem. It can be defined
as Integer Linear Programming (ILP) problem and solved using ILP solver [15].

Although the ILP approach can be useful in some cases, using the ILP optimization model
within the tool prohibits the use of certain optimizations. In contrast, using heuristic approaches
allows us to perform object coalescing which cannot be done as an ILP formulation. Using
heuristic approach leads to area saving and less runtime compared to the ILP approach [16].

There have been several recent studies on implementing image processing and OpenVX
applications on reconfigurable platforms and exploring the area/throughput trade-off for them
[17, 18, 19, 20]. These existing approaches either use a specific programming model which
requires the user to learn a new programming language, or implement a soft multi-core
platform on FPGA and then schedule and run the application on it. Automatically exploring
area/throughput tradeoffs, automatically finding optimum implementations for different area
budgets or throughput targets as well as achieving better results in faster runtime compared to

the existing ILP approaches, make our approach unique. Moreover our approach can be used for
both FPGA and many-core platforms as well as heterogeneous platforms such as GRVI Phalanx
with accelerators[8].

2. SDFG based HLS for CV applications
Figure 1 illustrates the detailed flow of the proposed tool. Our tool targets two different
backends: 1) a Java-based language inspired by Ambric’s KPN programming model and many-
core architecture [7], and 2) a C-based OpenVX library system built using Xilinx’s Vivado HLS
tool. Since Synchronous Data Flow (SDF) is a restriction of Kahn process networks (KPN) [21],
it is possible to transform any SDFG to a KPN model which means our tool works on SDFG
for both of these backends.

2.1. OpenVX Programming Model
OpenVX is a cross-platform C-based API standard for Computer Vision applications. OpenVX
can be a great programming model for embedded systems since it enables performance and
power-optimized CV processing. It specifies a higher level of abstraction which allows us
targeting different computing architectures. Most CV applications can be described as a set
of vision kernels (nodes) which communicate through input/output data dependencies (e.g.
AXI stream). OpenVX describes this set of vision kernels in a graph-oriented execution model
(Compute Graph) based on Directed Acyclic Graphs (DAGs). Figure 2 shows an OpenVX code
example (Canny) and Figure 3 shows the corresponding graph for it.

//Canny example
vx node nodes [] = {

vxColorConvertNode (graph , rgb , gray) ,
vxGaussian3x3Node (graph , gray , gauss) ,
vxSobel3x3Node (graph , gauss , gradx , grady) ,
vxMagnitudeNode (graph , gradx , grady , mag) ,
vxPhaseNode (graph , gradx , grady , phase) ,
vxNonMaxima(graph , mag , phase ,nm) ,
vxThreshold (grpah ,nm, output)

} ;

Figure 2. OpenVX source code.

Color	
Convert

Gaussian	
3x3gray

Sobel
3x3

gauss

gradx

grady

Magnitude

Phase

rgb

mag

phase

Hyst ThreshnmNon-Maxima output

Figure 3. Canny edge detection
graph representation.

2.2. Finding Different Implementations
Consider an application described as a compute graph with N nodes f1, f2, ..., fN . For
each node fm our tool tries to find different implementations P 1

m, P 2
m, ..., PSm

m where each
implementation P s

m can perform functionality of fm with area cost A(P s
m), number of pixels

it can consume/produce NP (P s
m) each firing, initial interval II(P s

m) and “inverse throughput”
ϑin/out(P

s
m) for each input/output channel [16]. For most CV kernels, their input/output

channels have matched throughput, so we can use a single variable ϑIO(P s
m) which allows us to

define “kernel throughput” Θ(P s
m) as number of pixels consumed/produced in each clock cycle

[2]. The initiation interval is the number of time units before another firing of the inputs is
permitted; it can be just 1 for fully pipelined execution or > 1 for partially pipelined execution.

The Different Implementation Generator (DIG) module in our tool automatically finds the
above mentioned implementations. The DIG needs to be able to automatically find a wide

range of different implementations with different area cost, throughput and tile-width to cover
the solution space as much as possible. DIG uses different loop transformations, data dependency
analysis, pipeline opportunities as well as changing the image tile-size (in both kernel IO and
kernel core). In addition, an Intra-node Optimizer step in the tool generates a wider range
of implementations. Intra-node Optimizer replicates and combines existing implementations of
nodes in order to widen the solution space. Node replication can be used to either increase
the throughput or widen the tile-width [2]. All of the abovementioned techniques are used
find a wide range of implementations for each kernel which, widens the solution space for the
area/throughput scaling problem. Below we discuss our trade-off formulation and solutions.

3. Trade-off Finding Problem Definition and Solutions
The trade-off finding problem can be defined in two different ways.

• Given a throughput target Θtgt, and different implementations for each node fj , which
implementation P i

j should be selected and how many replicas nrij are needed in order to
minimize area cost AA subject to the constraint the application throughput ΘA is bigger
than Θtgt.

• Given an available area on chip AC and different implementations for each node fj , which
implementation P i

j should be selected and how many replicas nrij are needed in order to
maximize application throughput ΘA subject to the constraint the application area cost AA

is not bigger than AC .

For our baseline, we modeled the optimization problem as ILP formulations similar to previous
studies such as Cong et.al. [15] and used the GLPK open-source ILP solver [22]. Although ILP
solvers are able to find an optimum solution for the defined problem, we need to define the
problem beforehand which prohibits the use of certain optimization such as graph manipulation
(node combining/splitting) during runtime. Moreover, as ILP finds the optimum solution by
going through all different possible solutions, finding an optimum solution for a problem with a
large search space is quickly becomes highly time inefficient. Our proposed heuristic approach
addresses both of these shortcomings.

3.1. Using Heuristic Approach for Trade-off Finding Problem
Trade-off finding problem can be solved using heuristic approaches such as Omidian et.al. [16].
Our heuristic approach uses there following steps to find a good tradeoff:

• Throughput Analysis

• Application Throughput Propagation and Balancing

• Bottleneck Optimizer

In contrast to the ILP approach, a heuristic approach enables us to use additional optimization
opportunities such as Inter-node optimization. Using heuristic approach also can improve the
runtime for trade-off finding problem.

4. Experimental Results
Our experiments are carried out in two parts. We evaluate our heuristic approach for both
different throughput target and area budgets (different FPGA architectures as well as different
throughput targets for many-core system) and compare it to the ILP approach. Then we
evaluate the throughput results by implementing CV benchmarks on Zedboard development
platform with a Xilinx Zynq SOC. To show the capabilities of our approach, we have utilized
the following benchmarks implemented as OpenVX compute graph:

• Sobel is a Sobel-filter based edge detection with 5 nodes.

• Canny implements Canny edge detector with 7 nodes.

• Harris implements Harris corner detector with 6 nodes.

• JPEG implements JPEG encoding with 4 nodes.

Table 1. Implementation Library for JPEG encoder.

module Color Conversion DCT Quantization Encoding
Version v1 v2 v3 v4 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1
Inverse Throughput 1 2 4 8 1 2 4 6 32 1 2 4 8 128 512
Area 512 256 128 64 800 400 224 160 50 512 256 128 64 4 22

Table 2. Heuristic vs ILP for many-core system.

Method Inverse Throughput Color Conversion DCT Quantization Encoding Fork/join Overhead Total Area
impl rep impl rep impl rep impl rep

ILP 1 v1 1 v1 1 v1 1 4 512 10880 23968
Heuristic v1 1 v5 32 v5 128 224 512 640 13888
ILP 2 v2 1 v2 1 v2 1 v1 128 5376 11920
Heuristic v2 1 v5 16 v5 64 v1 128 256 7456
ILP 4 v3 1 v3 1 v3 1 v1 64 2688 5984
Heuristic v3 1 v5 8 v5 32 v1 64 128 3600
ILP 8 v4 1 v4 1 v4 1 v1 32 1280 2976
Heuristic v4 1 v5 4 v5 16 v1 32 0 1736

We evaluated our tool by implementing JPEG on the many-core system targeting different
throughput targets. Our tool is able to find 11 different implementations for Color Conversion
and Quantization modules, 17 different implementations for DCT, and only one implementation
for Encoding. Table 1 shows a selection of these implementations. Both ILP and Heuristic
approaches have been used by our tool in order to find a trade off between area and throughput
for different inverse throughput targets for JPEG. Table 2 shows the results generated by these
two approaches for given throughput targets. We list the selected implementation and number
of replicas for each module. As we can see our heuristic approach finds better area/throughput
trade-off compare of the ILP approach. For example, for an inverse throughput target of 2, our
heuristic approach used 37% less area compare to ILP.

We also evaluated our tool with different Xilinx 7-series FPGAs. Both heuristic and ILP
approaches could fill over 95% of the chip area on average. The heuristic approach however is
able to achieve better throughput while improving the runtime up to 3.6x compared to the ILP
approach. Figure 4 shows the runtime result improvement achieved through using our heuristic
approach compared to the ILP for different Xilinx FPGAs. In addition, in order to examine the
area saving achieved through using heuristic approach (using inter-node optimization), we first
used the ILP approach to fill the chip and achieved the best throughput possible for different
Xilinx FPGAs, then we used the achieved throughput on each FPGA as a throughput target for
the heuristic approach. Figure 5 shows the area cost comparison between the heuristic and the
ILP. The heuristic approach saves 19% area on average while decreasing the throughput only by
less than 2%. Figure 6 shows the percentage of throughput reduction for heuristic compared to
ILP and Figure 7 shows the results for setting different throughput targets and implement the
tradeoff solutions on Zedboard development platform. As it’s shown our tool is able to hit all
the throughput targets while increasing the area cost linearly. The tool is able to achieve up to
5.5GigaPixel/sec throughput for implementing Sobel on a small size FPGA.

Figure 4. Heuristic vs ILP runtime speedup
for Harris corner detection.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sc
al
ed

	U
se
d	
Ar
ea
	b
y	
Ch

ip
	S
ize

Xilinx	7	Series

ILP Heuristic

Figure 5. Area cost results for Harris using
Heuristic and ILP approaches.

-2.5

-2

-1.5

-1

-0.5

0

Pe
rc
en

ta
ge
	o
f	T
hr
ou

gh
pu

t	d
ec
re
as
in
g	

He
ur
ist
ic	
vs
.	I
LP

Xilinx	7	Series

Figure 6. Heuristic vs ILP throughput results
for Harris corner detection.

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5 6

Ar
ae
	co

st
(L
UT

)

Throughput	(Giga-Pixel/sec)

Figure 7. Area/Throughput results for
implementing Sobel on Xilinx Zedboard.

5. Conclusion
In this work we introduce a compilation system for OpenVX style compute-graphs. Our tool
is able to automatically explore the space/time tradeoff problem for these compute graphs and
find optimum solutions satisfying different throughput targets and area budgets while targeting
a wide range of FPGAs and programmable many-core systems. Our approach is differentiated
from existing approaches as it automatically investigates finding different implementations, and
it also combines module selection and replication methods as well as changing tile-size with
node combining and splitting in order to automatically find a better area/throughput tradeoff.
This approach was verified with different OpenVX benchmarks targeting different FPGA sizes.
Our tool is able to achieve over 95% of the target area budget while improving the throughput.
Using Inter-node Optimizer step, our heuristic tradeoff finder is able to hit the same throughput
targets while reducing the area cost by 19% on average compared to existing ILP approaches.
Hitting different throughput targets as well as getting up to 5.5 GigaPixel/sec for a small FPGA
target shows our tool is efficient in managing on chip resources efficiently in order to hit different
throughput targets.

References
[1] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richardson, C. Kozyrakis, and

M. Horowitz, “Understanding sources of inefficiency in general-purpose chips,” in Proceedings of the 37th
Annual International Symposium on Computer Architecture, 2010, pp. 37–47.

[2] H. Omidian and G. G. F. Lemieux, “Exploring automated space/time tradeoffs for openvx compute graphs,”
in 2017 International Conference on Field-Programmable Technology (FPT), Dec 2017.

[3] A. Severance, J. Edwards, H. Omidian, and G. Lemieux, “Soft vector processors with streaming pipelines,”
in Proceedings of the 2014 ACM/SIGDA International Symposium on Field-programmable Gate Arrays,
ser. FPGA ’14, 2014, pp. 117–126.

[4] Adapteva-Inc, “Epiphany-iv 64-core 28nm microprocessor,” 2014. [Online]. Available: http://www.
adapteva.com/products/silicon-devices/e64g401/

[5] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: Building an ecosystem for a scalable,
modular and high-efficiency embedded computing accelerator,” in 2012 Design, Automation Test in Europe
Conference Exhibition (DATE), 2012, pp. 983–987.

[6] KALRAY-Corporation, “Massively parallel processor array.” [Online]. Available: http://www.kalray.eu/
[7] M. Butts, A. M. Jones, and P. Wasson, “A structural object programming model, architecture, chip and

tools for reconfigurable computing,” in 15th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM 2007), 2007, pp. 55–64.

[8] J. Gray, “Grvi phalanx: A massively parallel risc-v fpga accelerator accelerator,” International Workshop on
Overlay Architectures for FPGA (OLAF), vol. abs/1606.03717, 2016.

[9] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceedings of the IEEE, pp. 1235–1245, 1987.
[10] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, and O. Temam, “Dadiannao:

A machine-learning supercomputer,” in 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture, 2014, pp. 609–622.

[11] The OpenCV Reference Manual, 2nd ed., Itseez, April 2014.
[12] Khronos-Group, “Openvx,” 2017. [Online]. Available: https://www.khronos.org/openvx/
[13] A. W. Lim and M. S. Lam, “Maximizing parallelism and minimizing synchronization with affine transforms,”

in Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ser. POPL ’97, 1997, pp. 201–214.

[14] V. Sarkar and R. Thekkath, “A general framework for iteration-reordering loop transformations,” SIGPLAN
Not., pp. 175–187, 1992.

[15] J. Cong, M. Huang, B. Liu, P. Zhang, and Y. Zou, “Combining module selection and replication
for throughput-driven streaming programs,” in 2012 Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, pp. 1018–1023.

[16] H. Omidian and G. G. F. Lemieux, “Automated space/time scaling of streaming task graph,” International
Workshop on Overlay Architectures for FPGA (OLAF), vol. abs/1606.03717, 2016.

[17] G. Tagliavini, G. Haugou, A. Marongiu, and L. Benini, “Adrenaline: An openvx environment to optimize
embedded vision applications on many-core accelerators,” in 2015 IEEE 9th International Symposium on
Embedded Multicore/Many-core Systems-on-Chip, 2015, pp. 289–296.

[18] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell, A. Vasilyev, M. Horowitz, and
P. Hanrahan, “Darkroom: Compiling high-level image processing code into hardware pipelines,” ACM
Trans. Graph., pp. 144:1–144:11, 2014.

[19] J. Hegarty, R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz, and P. Hanrahan, “Rigel: Flexible multi-rate
image processing hardware,” ACM Trans. Graph., pp. 85:1–85:11, 2016.

[20] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and M. Horowitz, “Programming
heterogeneous systems from an image processing dsl,” ACM Trans. Archit. Code Optim., pp. 26:1–26:25,
2017. [Online]. Available: http://doi.acm.org/10.1145/3107953

[21] G. Kahn, “The Semantics of a Simple Language for Parallel Programming,” in Information Processing ’74:
Proceedings of the IFIP Congress, 1974, pp. 471–475.

[22] GNU-project, “Gnu linear programming kit,” 2017. [Online]. Available: https://www.gnu.org/software/glpk/

