100% Visibility At MHz Speed: Efficient Soft
Scan-Chain Insertion on AMD /Xilinx FPGAs

Hossein Omidian, Eddie Hung, and Dinesh Gaitonde

AMD, San Jose, USA

Abstract. FPGA-based prototyping has become an increasingly impor-
tant part of the overall integrated circuit design and verification flow,
providing the ability to test an integrated circuit running at (near) speed
with realistic inputs and outputs. The reconfigurable aspect of FPGA
technology makes them suitable for hardware emulation and prototyping,
plus their nature of having over-provisioned resources — inherently neces-
sary to support the late-binding of a wide range of applications — allows
support for ‘out-of-band’ functionality such as debug. It is imperative
that as much visibility into the inner state of the circuit is accessible in
order for debugging to be effective. Full visibility for functional debug can
be achieved by building a soft scan-chain out of LUTs and flip-flops, or
by using hardened device readback capabilities that use the configuration
network to exfiltrate circuit state. In this paper, we show how soft scan-
chains can be efficiently and intelligently inserted to give 100% visibility
into all user flip-flops of a design and demonstrate how performing parallel
scan dumps can be more than 10x faster (reaching 1 MHz) than hardened
readback when evaluated on industrial emulation designs in excess of
200K flip-flops.

Keywords: Emulation - Prototyping - Debug - Scan Chain - Readback

1 Introduction

Since the cost of fabricating a custom ASIC is so time-consuming and expensive
after which changes (for example, to fix a design error or to insert some debug
infrastructure) are not always possible, reconfigurable technology such as FPGA is
widely used in this area. FPGAs are inherently flexible devices that are composed
of programmable logic cells, memory and interconnect. This allows them to be
customized and used in a broad range of applications including ASIC prototyping
and hardware emulation [1].

A problem common to ASIC and FPGA technology is the lack of on-chip
visibility for diagnosing erroneous behaviour. In ASICs, such errors can be caused
by (a) fabrication defects or (b) functional bugs. Fabrication defects are caused
by the imperfect nature of silicon fabrication process whereby, for example, a
metal wire or a transistor is randomly manufactured incorrectly. To identify these
cases, ASICs often employ ‘scan flops’ in place of regular flip-flops to enable
manufacturing tests. A scan-flop behaves just as a regular flip-flop but with the

2 H. Omidian et al.

Configuration Network

ASIC User Design

Scan
Enable

S“’"'"—[+ FPGA Resources _ -

Clk

Fig.1: (left) ASIC scan flops (scan-mux and regular flop) arranged into a chain.
(right) Hardened FPGA config. network allowing both write and read back.

optional capability (achieved using a scan mux) that new values can instead be
sequentially shifted in and existing values shifted out when arranged into a scan-
chain as shown in Figure 1. The utility of a scan-chain is that post-fabrication, a
known test pattern can be shifted into all flip-flops of a design, the clock advanced
to capture the next state computed by the device, and then this newly captured
state can be shifted out and compared with a known golden value. Deviations
from this golden value would indicate a manufacturing failure.

After manufacturing tests, these same ASIC scan-chains can be reused to
investigate functional bugs by following the same shift out method: halt the
design at the clock cycle of interest and proceed to shift out all values on the
scan-chain to gain a complete picture of all design state to aid debugging.

In contrast, even though FPGAs may suffer from the same issue of fabri-
cation defects, their reconfigurable nature provide alternate ways to perform
manufacturing tests without the overhead of hardened scan-chains as for ASICs.
An unavoidable overhead that FPGAs do have to pay, however, is that of a
configuration network. The purpose of this network is to transport all of the
configuration necessary to implement a user design, such as all LUT contents,
flip-flop initialization values, interconnect switch states, etc. to all locations of
the device. Some FPGA vendors, such as Xilinx, allow this same configuration
infrastructure to be re-purposed as a method of extracting user-state to aid in
the investigation of functional bugs, in the same way as ASIC scan-chains. We
refer to this FPGA capability as ‘hardened readback’.

Hardened readback for functional debug shares the same limitations as for
ASIC scan-chains: the design must be halted during the shift out procedure,
for a length of time proportional to that necessary to perform configuration
readback of all used flip-flop resources in the design or to unload the longest
ASIC scan-chain. In this work, we show how the use of multiple soft scan-chains
(i.e. scan-chains created out of regular LUT logic) can be used to dramatically
reduce this overhead for functional debug; our main contributions are:

1. An approach for the efficient insertion of multiple soft scan-chains capable
of acquiring 100% visibility into all flip-flops of a user design while still
allowing such designs to continue operating in excess of 1 MHz while a typical
emulation design operates between 1 to 10 KHz.

100% Visibility At MHz Speed: Efficient Soft Scan-Chain Insertion 3

2. Integration of our techniques into a production quality and fully timing-driven
commercial FPGA toolflow, one mindful of real-world considerations such as
hold time requirements, clock skew, etc.

3. Robust evaluation on 29 industrial emulation designs containing multiple
clock domains and more than 200,000 user flops, finding a 10x speedup over
a hardened readback solution.

The remainder of the paper is organized as follows: Section 2 explains back-
ground and related studies. Section 3 describes the proposed approach of inserting
soft scan-chains into a user’s design. Section 4 provides experimental results and
comparison of our approach with hardened readback. Finally, Section 5 concludes
the paper.

1.1 Related Work

The novelty of our work is not in using soft-logic to implement scan functionality.
Prior work from Wheeler et al. [2] examined the application of ASIC-style scan-
flops (as per Fig. 1) to replace existing flip-flops (as opposed to our proposal
of shadowing existing flops) to allow design state to be both observed as well
as modified (where our shadow approach is unable to modify). The cost of this
prior work is a reported 20% reduction in Fmax during normal operation, a
2.3x increase in LUT count, and the need to halt the design during the scan out
procedure. Wheeler et al. state that is an acceptable overhead during development
since this handicap is removed for the final production design. In contrast, our
approach focuses on this development phase and we show that there is no Fmax
degradation when scan functionality is not used, a temporary Fmax slowdown
during scan-out, and no effect on the size of FPGA required, when evaluated on
industrial designs from the emulation domain.

Work from Tiwari and Tomko [3] explores the use of soft scan-chains to
implement software-like ”watch-point” functionality to detect when specific
values appear on predetermined internal signals, after which the clock can be
halted and the state of the design examined. Here, scan-chain functionality is
used to update watch-point values efficiently. However, both prior works [2, 3]
do consider using FPGA device readback to reduce the area overhead and for
providing observability respectively, recognizing as we do, that readback is a slow
operation.

2 Background

When a hardware design does not behave as expected, debugging is required
to find the root cause of this erroneous behaviour. Key to the effectiveness of
the functional debugging process is the visibility that the designer has into the
internal signals of their circuit. Using software simulation, unlimited visibility
is available but the speed at which large complex designs can be simulated is
often many orders of magnitude slower than their target frequency. With real

4 H. Omidian et al.

silicon, this frequency gap is significantly narrowed on FPGAs and may even
be eliminated on ASICs, but the tradeoff is that visibility becomes severely
limited. To overcome this limited visibility, designers must repurpose existing or
insert new infrastructure to expose internal signal activity. There are two main
categories for visibility infrastructure: scan-based and trace-based.

As described in Section 1, ASICs are often built with scan-chain capabilities
to test that the silicon was manufactured correctly. Post manufacturing test, such
functionality can be repurposed for debug. As long as the design can be halted
at precisely the clock cycle of interest, by unloading all values of the scan-chain
a designer can determine of all flip-flops in the design (and consequently, all
intermediate combinatorial signals too). Equivalently, the same concept can be
applied to FPGAs that support a hardened readback capability once the design
is halted, its configuration network can instead be repurposed to read/scan
out all flip-flop state. The design can then be advanced to the next state by
single-stepping the clock, and further scan dumps performed to understand how
the design evolves over time.

The disadvantage of a traditional scan-based approach is the time required
to dump its contents. For FPGA technology, the max frequency of a user design
with full readback Fmaxp_ith—rp is proportional to the number of flip-flop
values that need to be dumped N F, s, the efficiency of hardware readback Eff,
as well as output bandwidth of the configuration controller (on Xilinx devices,
this is referred to as ICAP [4], BW(;cap)):

BWicap
Fmazp—win-rp < Eff - — 7 (1)
Eff here is a (0, 1] scaling factor that reflects the overhead of using hardened
readback. In Xilinx UltraScale+ devices, the configuration network operates at
a frame granularity where each frame contains 2,976 bits of configuration data
that must be atomically written or read [5]. Using hardened readback to extract
the value of just one flip-flop value requires the entire frame to be read back,
leading to an efficiency of 0.00034. The efficiency is improved, up to a limit, when
multiple user flops that happen to be placed into the same frame are read back.
Trace-based approaches require the insertion of trace buffers and supporting
logic to non-intrusively record a small subset of signal activity into on-chip
memory [6]. The advantage of this method is that a design-under-trace need
not to be halted in order to gain visibility, as well as being able to capture
behaviour of the circuit over time without single stepping the clock. However,
the disadvantages of trace infrastructure is that it does occupy precious on-chip
memory and logic resources which can limit the amount of information that can
be traced — both in terms of the number of signals that can be traced in parallel
(corresponding to the width of the trace memory) as well as how many cycles of

history can be captured (the depth of the trace memory).
Recent work by Attia and Betz [7] has demonstrated a compelling need to
export the entire state of the design — that stored in user flip-flops as well as
RAM contents — so that a faulty subset of the design already executing in an

100% Visibility At MHz Speed: Efficient Soft Scan-Chain Insertion 5

User Design User Design

user clk

scan clk

(a) Add_FlopLoad (1): Duplicating the user-(b) Add_FlopLoad (2): Attaching a scan-
flop into a shadow-flop with separate clock. mux to the shadow-flop input.

User Design

capture/scan sel

(¢) Add_ScanChain: Forming a chain of scan-mux to shadow-flop connections.
Fig. 2: Two-step scan-chain insertion: Add_FlopLoad followed by Add_ScanChain.

FPGA can be migrated into the much-slower (but more familiar and productive)
software simulator to continue debug. To achieve this, they use Xilinx’s hardened
readback [4] capabilities, making it closer to the scan-based approach than a
trace-based one.

In this work, we propose that a soft scan-chain approach be used to overcome
the performance penalty incurred by continuously applying a hardened readback
solution, yet without restricting the visibility available to a designer as would be
necessary with a trace-based approach.

3 Soft Scan-Chain Methodology

The implementation and requirements of a soft FPGA scan-chain are very different
to those in ASICs. Firstly, ASIC scan flops are typically highly optimized macro
cells that can be used as drop-in replacements to regular flop cells with only a
small area impact. For an FPGA, it is not practical to make all customers pay this
area cost (along with even more area to expose the additional pins to the routing
network) for a feature that many would not need, especially since manufacturing
test is a FPGA vendor responsibility. Secondly, since an FPGA scan-chain is not
used for manufacturing test there also does not exist the requirement to load
new values into user-flops.

Add_FlopLoad: Instead, FPGAs can use soft logic resources — lookup tables —
to implement the 2:1 scan multiplexer functionality. Rather than add an extra
3-input LUT to every path leading into a flip-flop, we propose that each flop
in the user design (henceforth referred to as a user flop) be replicated into a
shadow flop, as shown in Fig 2a. Importantly, this shadow flop must be sensitive

6 H. Omidian et al.

to a different clock than that used by the user flop for reasons explained in the
following paragraph. A scan-mux can then be attached in front of the shadow
flop, as per Fig 2b. Since user-flop controllability is not a necessity in FPGAs,
along with the over-provisioning of flip-flop resources on FPGAs, a shadow flop
is suitable here. Furthermore, adding an extra fanout to the output of the user
flop, as opposed to adding extra logic to its input, also minimizes the impact on
compilation quality and runtime. Both the shadow-flop and scan-mux insertion
is accomplished in the Add_FlopLoad stage of our flow.

After capturing a design’s state into shadow flops, all those captured values
need to be stored or exported at every user clock cycle so that it may be analyzed
or post processed. This can be done connecting the shadow flops into a serial
chain (Fig. 2¢) similar to a shift register; once the user clock is halted, advancing
the scan clock will cause its contents to be dumped out one value at a time.
Attaching the shadow flops to an separate scan clock independent from the user
design is both necessary so that the scan-chain can be dumped without interfering
the user design, and also beneficial since the scan dump procedure can also be
safely operated at a higher frequency.

Figure 3a. shows a design with 6 flip-flops FFy, FFs,..., FFg with values
Dy, Do, ..., Dg. After each user design clock cycle, the Capturing_Value process
starts by saving each user flip-flop’s value into their respective shadow flops. This
step is done by selecting the top input of all scan-muxes. The Capturing_Values
step was also shown as “Read” in the Figure 3a. waveform. After capturing values
into the shadow flops, we move to the Scan_Dump mode to send the values out
serially.

In the Scan-Dump mode, the bottom input for all scan-muxes are selected to
enable shift out functionality!. As one can see in the waveform from Figure 3a.
when scan functionality is desired the user clock period needs to exceed the time
necessary to perform a scan dump when operating the scan clock at a different,
faster period. Hence, the maximum frequency of a design with continuous scan
dumps (Fmax) will be always dependent on the Fmax of the scan-chain as well
as the number of scan flops that need to be unloaded.

With NFjseqn as the number of scan flops on the scan-chain (which in this
work is equivalent to the number of user flops NF,..) Equation 2 shows the
relationship between the Fmax of the slowed user design (Fmaxp _with_sc) and
the scan-chain’s Fmax (FmaZscan)-

Fmazseqn
Fmaxp _with.s¢ = o5 (2)

NFSCGTL + 2
The 42 factor in the denominator represents a cycle to first read (capture) the
user flop values into the shadow flops, and a cycle at the end to export the last
value in the chain.
To improve the user-design-with-scan Fmax (Fmazp_witnh_sc), it is possible
to have more than one scan-chain and read out multiple in parallel. In other

! Scan_Dump can be done every cycle or once in while. For this study we focus on capturing and
reading back flops every cycle since it covers both cases.

100% Visibility At MHz Speed: Efficient Soft Scan-Chain Insertion 7

Scan-Chain output 7777)Read(D6 X D5 }(04 X D3 |02 X D1 ¥77)

(a) Scan-Dump of a single chain, and its waveform.

User clk m
scan-chainck [| [[L[LT LI 1.
Scan-Chain output //////17/////1
Scan-Chain output
Scan-Chain output
serdesck [L[L] LI LI LILTLTL
Serdes output

Rl
o
-n
<

19z||el9g

(b) Parallel Scan_Dump into a high-bandwidth transceiver.

User clk m
Scan-Chain clk I_I_I_I_I_I_I_I_]_[_‘_L
Scan-Chain output
Scan-Chain output 7777//\Read(_ D4 X D3 X7/
Scan-Chain output 777//Read(D6 X D5 X7/
Axivaid []

ainyde) weans XY

[=h
[=}
(=)

(c) Parallel Multiple Scan-Dump into an AXI stream.

Fig. 3: Single and multiple/parallel Scan-Dump in which the scan clock operates
at a multiple of the user clock.

words, we divide the set of all shadow flops into different scan-chains. Having
more than one scan-chain leads us to have less number of flops in each chain
(N Fscan) which leads to a higher F'mazp_with_sc- Figures 3b. and 3c. have three
scan-chains instead of one, with each containing 1/3 of all flops. This means we
can shift out all scan flop values in only 2 cycles instead of 6 cycles, and Fmax
can be increased almost 3x.

When To Insert Scan-Chains: In our flow, the Add_FlopLoad step is followed
by Add_ScanChain. The method taken by this latter step depends on when in the
compilation flow it is applied, which we shall discuss first. Each of these previous

8 H. Omidian et al.

steps can be applied to the user design at different stages of the flow: synthesis,
placement or routing as illustrated in Figure 4.

°
]

o
o

Synthesis
Placement

Add_Flo
Add_ScanChain

slsBshg
H
aiclzls

pload

Synthesis
Placement

Add_ScanChain

Add_Flo

(b) Scenario 2: applying Add_FlopLoad before placement and Add_ScanChain after.
(proposed approach)

Synthesis
Placement
_Flopload

Add_ScanChain

Add_Flo

(c) Scenario 3: applying Add_FlopLoad, Add_ScanChain after both placement and routing.

Fig. 4: Scenarios 1-3: scan application at various points of the compilation flow.

Scenario 1: apply both Add_FlopLoad and Add_ScanChain steps after synthesis
and before placement. In this scenario, the place and route tool will have maximum
flexibility to find optimum overall placement of the combined design (user design
and the scan-chain). Since the placement algorithm places the design considering
its routability, finding a performant routing will be more likely. For example,
in case of possible routing congestion, the placer might spread out the design
throughout the chip to ensure the router can find a high quality routing solution.
On the other hand, there are two shortcomings in this approach. First, adding
the full scan-chain to the user design before placement will bias the placer to give
the user design and the scan-chain equal priority, which may lead to a subpar
placement for the user logic. Second, the placer is given exactly one scan-chain
ordering, with zero flexibility, which can also lead to a subpar placement for one
or more scan-chain connections thus lowering F'mazxs.., and affecting overall
system performance.

Scenario 2: applying Add_FlopLoad before placement, letting the tool place
the design, and then applying Add_ScanChain to the placed result. In this
scenario since all the shadow flops are only connected to user flops, the placer is
going to place the design without being significantly affected by any scan-chain
connections. The placer algorithm will simply see the shadow flops and scan
muxes as floating logic attached only to the user flop’s output, thus place the

100% Visibility At MHz Speed: Efficient Soft Scan-Chain Insertion 9

user flop as it would do normally and then place the shadow flop at a nearby
location. Since Add_ScanChain is done after placement, the exact location of
each shadow flop is known and this information can be used to find an efficient
scan-chain order that minimizes the routing distance between shadow flops.

Scenario 3: performing Add_FlopLoad and Add_ScanChain both after place-
ment/before routing, into just the FPGA resources left unused by the design.
This scenario comes handy when the user design was anchored or floor-planned
with a specific criteria. Adding the scan-chain after the placement technically
doesn’t affect user design’s placement and will try to add scan logic into any
unused resources left behind. However, finding unused LUT and compatible
flip-flop resources near to user flops is far from guaranteed.

Experimentally, we have found that Scenario 2 performs best and is the focus
for the remainder of this paper.

Add_ScanChain: For Scenarios 2 and 3, Add_ScanChain is to be applied post
placement. The main goal of this step is to maximize Fmaxscqn by reducing
the total wirelength and worst-case delay of all shadow-flop to scan-mux paths
across all connections within and between all scan-chains. Given a placed result
where all scan-mux and shadow-flop locations are known, the problem is almost
exactly that of the travelling salesman — starting at any shadow flop, determine
the order in which all other scan-mux/shadow-flops are to be visited before
finishing at a particular input pin, with no flop visited more than once and with
the objective of minimizing the total travelled distance (equivalent to routed
wirelength, minimizing which will improve the likelihood of finding a legal routing
solution). An additional objective on top of the travelling salesman problem is to
also minimize the maximum distance between any two flops, as that determines
Fmaxscqn-

Despite the (NP) difficulty of optimally solving the travelling salesman variant,
experimentally we have found that a simple greedy heuristic was sufficient to
achieve high performance. Starting from top-left of the chip, go down and find
the nearest shadow flop and connect that to the scan-chain repeating until we hit
the bottom of the chip. Then move right by one column and this time move to
the top of the chip continuing to connect shadow flops in this way. This zig-zag
move continues until all shadow flops are visited. Figure 5 shows an example
of adding one scan-chain to 1% of the flops in a design. We picked 1% of flops
randomly through out the design; 1% simply to make the figure clearer. The
scan-chain is shown in purple color.

Similar to top-down approach, a left-right approach was also implemented.
Experimentally, we observed that a top-down approach had slightly better results
compared to left-right approach. We believe that top-down is more suitable for
columnar FPGA architectures such as those from Xilinx.

Partitioning: So far we have talked about the two main steps for adding scan-
chains to a user design and the different scenarios for when to do so. We also
talked about the benefits of having more than one scan-chain In the following, we

10 H. Omidian et al.

Fig. 5: Device view visualizing the connections made by one scan-chain visiting
just 1% of the shadow flops in the design, using the top-down approach.

will explain different ways to break a single scan-chain into multiple and explain
the tradeoffs in doing so.

As discussed, one dimension that can improve Fmazp_yith_sc is by increasing
the number of scan-chains, thus decreasing the amount of time required to dump
their values (in parallel). Partitioning techniques can be used to cut the design
into smaller partitions and assign a scan-chain for each partition. Partitioning
can be define based on different parameters. One way of partitioning a design is
considering the FPGA architecture and partition based off that. For example,
Xilinx’s latest FPGA devices use Stacked Silicon Interconnect (SSI) technology,
which creates high-capacity FPGAs by combining multiple dies called Super
Logic Regions (SLRs) [8]. Considering that crossing from one SLR to another
incurs a significant wire delay, partitioning can be done along these lines.

Partitioning based on design hierarchy would be another method that gener-
ates multiple scan-chains within each hierarchical sub-tree. Under the assumption
that the FPGA placer typically tries to place elements within the same hierar-
chy close to each other, partitioning along hierarchy lines can be beneficial for
Fmaxscqn as well, and especially so for Scenario 1. Moreover, having scan-chains
which stay within the same hierarchy can help the eventual post-processing and
analysis steps too.

Both approaches were employed in this work.

Exporting Scan Data: Lastly, we must consider what to do with data from
the scan-dump: sending it off-chip or to another module to do post-processing.

100% Visibility At MHz Speed: Efficient Soft Scan-Chain Insertion 11

We consider two different ways to do it in this study. One approach is using a
hardened high speed on-chip serializers such as Xilinx GT transceivers [9] to
export this device off-chip. In this approach, F'max p_witn_sc is also dependent on
the serializer’s bandwidth (BWserdes) as shown Figure 3b. Equation 3 captures
this new consideration:

Fmazxscen BWerdes > (3)

F . =
MAarp_with_SC = Max (NFscan +27 NFscan

Another approach to capture multiple scan-chain outputs is by having a
soft logic shim implemented on the FPGA fabric which gathers their outputs,
buffers them, and transmits it using the AXI stream protocol. In this study
we also implemented a parameterized soft logic shim that our tool flow uses to
receive all scan outputs. This soft logic shim uses the AXI Capture module. One
shortcoming of this approach however is its area overhead, which scales with the
number of parallel scan-chains that exist.

Trade-off and Optimization: As discussed before, overall system performance
Fmaxp _with_sc is a function of Fmaxscq, and the maximum number of shadow
flops across all scan-chains. Therefore to improve system performance, it’s possible
to break down a big scan-chain into multiple smaller ones to reduce the maximum
number of shadow flops in any one scan-chain. Although having several scan-
chains can increase Fmazp_ywith_sc, it also adds complexity to output capturing
logic at the end. Moreover, having too many parallel scan-chains unloading at
the same time might saturate the off-chip bandwidth. Our scan-chain insertion
tool flow explores this problem space to find a trade off between number of
parallel chain and the number of shadow flops in each while considering area
usage/bandwidth capabilities of export logic. During scan-out, the Fmax of the
user design must be slowed to Fmaxp_witnh_sc as defined in Equation 2, which
describes the frequency if the state of all user flops is to be scanned out at every
cycle. Relaxing this requirement to a complete state dump every N cycles would
improve F'maxp_with_sc by the same factor — in this mode, software simulation
(along with a trace of any external stimulus) could be used to interpolate missing
user flop values.

4 Experimental Results

Our experiments are carried out using the Xilinx Vivado toolflow (version 2021.2)
targeting Xilinx UltraScale+ devices. We have developed a tool that analyzes
post-synthesis, post-place or post-route netlist and finds a good tradeoff between
area/speed for adding soft scan capability to the user design to enable hardware
testing/emulation. Our tool flow explores area/speed tradeoffs to find how many
scan-chains should be implemented, how many flops in each scan-chains are
needed and how the design needs to be partitioned. After finding a good tradeoff,
it applies the Add_Flopload and Add_ScanChain steps described in the previous

12 H. Omidian et al.

section. Moreover, the tool determines an appropriate value for Fmaxscq, (and
thus, computing F'mazp_with_sc) and constrains both clocks accordingly. After
adding the soft scan-chain, our tool flow adds all the necessary control units and
soft IPs for parallel capture to send the test flops’ values off-chip. We examined
29 industrial emulation designs ranging from approximately 100,000 flops to over
200,000 flops. In those 29 designs, we targeted a different numbers of user flops
using a different number of scan-chains and let our tool insert the necessary logic
and connections.

1.200

= |CAP Frequncy ~—¢—SC# 2 SC#4 SCH8 ——SCH16 —*—SCH#32

1.000

o
o
S
=3

0.600

Freq (MHz)

0.400

0.200

SIS IS N N N 2P I N
NGO OO
S o 8 & o8 &
P FF P

>
&
9
‘o

S S o PIIITI IS PSPPI
S S S S ST TS S ST ST
FF 0“&0“&0“&06&06'&0“& © &0“&06’\%0“&&\ F

3

Fig. 6: Achievable user design Fmax with full per-cycle visibility — our work using
soft-scan-chains being dumped continuously: SC#x (F'maxp_with_sc); baseline
using hardened readback?: ICAP (Fmaxp_with_RrB)-

Figure 6 shows the Fmazp_yith_sc for different numbers of scan-chains while
continuously dumping out all flop values in the design. To compare with the
baseline approach, we also show an optimistic hardened readback approach?
using the ICAP (Fmazp_witn_rp) and the configuration network to do so. As we
can see after adding only four scan-chains to the design, Fmaxp_yith_sc exceeds
that possible with the ICAP approach. By adding 32 scan-chains, on average the
improvement over F'maxp_with_rp is 10x.

The bandwidth results for 29 designs in our design suite are shown in Figure 7.
As discussed in the prior section, scan data needs to be transferred off-chip to be
analyzed. We considered two approaches in this study to send the design status
off-chip; 1) using GT ports and 2) dumping the values into DDR memory. Our
tool flow, analyzes the bandwidth needed for sending the data off-chip and adds
the necessary IP to the design. As mentioned, having more scan-chains is desirable
to achieve higher Fmaxp_.ith_sc but also requires more bandwidth to send the
data off-chip. At 64 scan-chains, we exceed the bandwidth available supported by
one GT resource. This means the tool flow needs to assign appropriate number
of scan-chains to each GT based on the bandwidth. We face a similar limitation
for DDR as well. A user needs to consider these limitations and force our tool
2 The ICAP/Fmazp_with_rB results presented assume an optimistic but unrealistic value of

Efficiency = 1 within Eqn. 1, meaning that hardened readback is capable of returning only user

flop values. Even though this result is not attainable in current devices, we believe this reflects
the upper-bound of what a configuration network based approach is capable of.

100% Visibility At MHz Speed: Efficient Soft Scan-Chain Insertion 13

50,000
45,000
40,000
35,000
30,000 AededededededededadadattatatatatatbababobL_L -
25,000

20,000

Bandwidth (Mbps)

15,000

10,000

0 - R o R R xR R R R R i o R R s R e

SN I S I SRR DD DD P

o P
N

I STV A T R S Y VA T

S s S O o S S S I
RAERR T 9T 9T T ¥ o 0¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o o ¥ F T S
—— SCH#1 e SCH 2 SC#4 wmmmmm SCHS wmmm—mSCH16 NN SCH32 HEEEESCHGC/ emmmm|CAP === GTbandwidth

Fig. 7: Achievable soft scan/hardened readback? bandwidth, along with achievable
off-chip bandwidth using GT transcievers.

to partition accordingly. This can be automated and will be addressed in future
work.
700

600
500
40
30 I
200
1 2 4 8 16 32

Number of Scan Chains

Freq (MHz)
o

o

Fig. 8: Relationship of Fmazseq, and number of scan-chains.

The average F'max scqy results for different numbers of scan-chains is shown
in Figure 8. As we can see, by breaking a big scan-chain into a number of small
chains, our tool flow can find a set of shadow flops closer to each other and create
chains with lower delay.

Lastly, we added one long scan-chain using our tool flow, once for half of
the flops in the design and once for all the flops in the design. We measured
the placement and routing runtime and compared it with baseline (with no
no scan-chains). We observed that place and route runtime for one long scan-
chain is higher than having multiple shorter chains and we report the worst
case scenario for runtime. Results of placement and routing runtime is shown in
Figures 9 and 10 respectively. As we can see even for the worst case, the effect of
adding scan-chains on place and route runtime is acceptable when gaining a 10x
improvement for Fmazp_yith_sc with only 32 scan-chains.

14 H. Omidian et al.

1.60 . 5,0, e 1 00%
gl.40
= 1.20
c
3
2 1.00
2 080
N
= 060
£ 040
[=]
Z 0.20
0.00
NN S N W00 A NS N ON0N 0 AN M S WO~ 0,
c c cccccc < | 1t v
00 G0 o0 GO OO GO Q0 B0 B € € € € £ £ £ €C £CE £ c £ £ c c c £ cc ¢©
™| ® @@ E @ @8 % L o G G OO OO GO GO GO GO RO DO DO GO GO OO OO LD D oo
v U @ @ Q@ Qoo oeowTEEE @ " E®EE®EE®®®® ™
o000 00 9OY 9 Q99 QR Q@R 9@ @ 9@ 9@ a9 @@ @ @
[== T = T s T = I . o Y o Y o [e T o T o T o T o T o s = I = I = I = |

Fig.9: Placement runtime, normalized to runtime for original user design.

1.8
o 5,00 w1 00%
16
-1}
E 14
E 12
é.
Bl
N 08
]
EO.6
=
o 04
=
0.2
0
=N ST N W N0 0 H NMS N O NN H NS N O N0
(A A S U T A B S I O A A T O I O ST o A o A o A o A o Y S A o Y SV A
c eccecc c e cc 0 U b b 0 bt 0 000
b ob OO b ob O B B B0 € £ £ £ £ £ £ £ £ £ £ £ £ £ € £ € £ £ £
‘B ;% ? ;B ;i ;% ;P OO OO Ob Db b oD OO Ob Db OO Db Op OO b DD Ob Op Db oo Bb
[T V- R T TR TR TR TR T - - - - T R - T - - T - I - - - T -]
o000 O00000 9 9 9 9 9 9 9w 9w W 9w W e @ e 9w W w o w
oo oooco0oco0o0o0co0oco0o0o0co0oo0oo o

Fig. 10: Routing runtime, normalized to runtime for original user design.

Conclusion

FPGA prototypes have become an increasingly important part of the overall
integrated circuit design and verification flow, providing the ability to test an
integrated circuit running at (near) speed with realistic inputs and outputs. This
make FPGAs great platforms for hardware emulation and provides visibility
into many signals. This paper presents a soft scan-chain methodology for FPGA
technology which can be applied to user design to give full and continuous visibility
into all flop values, in a way that reduces its Fmax impact drastically compared to
a hardened readback approach using the FPGA’s built-in configuration network.
Our tool flow analyzes the user design, explores its area/time tradeoffs, and
partitions the scan connections into multiple parallel chains automatically in
order to obtain an efficient solution. We evaluated our tool flow on a production-
quality toolflow, using realistic industrial designs, and across a variety of different
scan configurations to find the approach with the highest Fmax. Our findings
show that by inserting only 32 parallel scan chains, post-placement, we can

100% Visibility At MHz Speed: Efficient Soft Scan-Chain Insertion 15

achieve a 10x higher Fmax compared to the baseline readback approach, allowing
100% visibility into designs able to continue running beyond 1 MHz.

Future Work: We plan to extend our work to the AMD /Xilinx Versal FPGA
architecture [10] and leverage its high-bandwidth hardened Network-on-Chip
(NoC) for on- and off-chip movement of scan data. Also, we plan to add and
evaluate an automatic pipeline insertion to improve long connections within scan-
chains, improving F'mazxs.., at the expense of efficiency-loss due to redundant
flops, as well as to modify the insertion methodology to be congestion-aware so
that routing runtime can be reduced.

A second direction would be to examine Scenario 3 (post routing insertion)
in more detail since this scenario provides the benefit of leaving the user design
fully untouched — such a concept that may require different algorithms could be
explored using the open-source RapidWright framework [11]. Lastly, we intend to
investigate how a hybrid implementation of using hardened readback (for reading
Block RAM contents as well as any hard-to-reach shadow flops) in combination
with our proposed soft scan-chain can lead to an even more efficient solution.

References

1. W. Lo, C. Choy, and C. Chan, “Hardware emulation board based on fpgas and pro-
grammable interconnections,” in Proceedings of IEEE 5th International Workshop
on Rapid System Prototyping, 1994, pp. 126-130.

2. T. Wheeler, P. Graham, B. Nelson, and B. Hutchings, “Using Design-Level Scan to
Improve FPGA Design Observability and Controllability for Functional Verification,”
in Field-Programmable Logic and Applications, 2001.

3. A. Tiwari and K. Tomko, “Scan-chain based watch-points for efficient run-time
debugging and verification of fpga designs,” in Proceedings of the ASP-DAC Asia
and South Pacific Design Automation Conference, 2003., 2003, pp. 705-711.

4. Xilinx, “LogiCORE IP AXI HWICAP,” 2020. [Online]. Available:
https://docs.xilinx.com/v/u/en-US/pgl34-axi-hwicap

5. Xilinx-Inc, “UltraScale Architecture Configuration,” 2022. [Online]. Available:
https://docs.xilinx.com/v/u/en-US /ug570-ultrascale-configuration

6. D. Holanda Noronha, R. Zhao, Z. Que, J. Goeders, W. Luk, and S. Wilton, “An
Overlay for Rapid FPGA Debug of Machine Learning Applications,” in 2019
International Conference on Field-Programmable Technology (ICFPT), 2019.

7. S. Attia and V. Betz, “StateMover: Combining Simulation and Hardware Execution
for Efficient FPGA Debugging,” in FPGA ’20: The 2020 ACM/SIGDA International
Symposium on FPGA, Seaside, CA, USA, February 23-25, 2020.

8. K. Saban, “Xilinx stacked silicon interconnect technology delivers breakthrough
FPGA capacity, bandwidth, and power efficiency,” Xilinz, White Paper, 2011.

9. Xilinx, “UltraScale Architecture GTY Transceivers,” 2020. [Online]. Available:
https://docs.xilinx.com/v/u/en-US /ugh78-ultrascale-gty-transceivers

10. AMD, “Versal: The First Adaptive Compute Acceleration Platform (ACAP),” 2022.

11. C. Lavin and A. Kaviani, “RapidWright: Enabling Custom Crafted Implemen-
tations for FPGAs,” in 2018 IEEE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2018, pp. 133-140.

