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Abstract—FPGAs allow custom memory hierarchy and flexible
data movement with highly fine-grained control. These capabili-
ties are critical for building high performance and energy efficient
domain-specific architectures (DSAs), especially for workloads
with irregular memory access and data-dependent communica-
tion patterns. Sparse linear algebra operations, especially sparse
matrix vector multiplication (SpMV), are examples of such
workloads and are becoming important due to their use in
numerous areas of science and engineering. Existing FPGA-based
DSAs for SpMV do not allow customization through plug and
play of the building blocks. For example, most of these DSAs
require switching network/crossbar architecture as a building
block for routing matrix data to banked vector memory blocks. In
this paper, we first present an approach where a custom network
is built using simple blocks arranged in a regular fashion to
exploit low-level architecture details. Further, we make use of
this network to replace expensive crossbars employed in GEMX
SpMV engine and develop an end-to-end tool-flow around mixed
IP approach (HLS/RTL). Due to the modularity of our design,
our tool-flow allows us to insert an additional block in the design
to guarantee zero-stall from the accumulation stage. On Alveo
U200, we report performance numbers of up to 4.4 GFLOPS
(92% peak bandwidth utilization) using our accelerator (attached
with one DDR4).

I. INTRODUCTION

Sparse Matrix Vector Multiplication (SpMV) refers to the
multiplication of a sparse matrix A by a dense vector x to
produce a result vector b. There are many application domains
including sparse neural nets [1]–[3], graph analytics [4],
physics simulations [5] where sparse computations, especially
SpMV is a key component of the application. Acceleration
of SpMV is thus becoming increasingly important [6]–[10].
Despite having significant parallelism, SpMV is challenging
to optimize due to irregular memory access patterns and low
memory-to-computation ratio. For real world sparse matrices,
traditional processor architectures fail to effectively utilize the
compute resources and exhibit poor energy efficiency [11].

Domain specific architectures (DSAs) for sparse linear al-
gebra are emerging as a solution since these accelerators have
the capability to boost performance and energy efficiency by
customizing memory hierarchy, communication and compute
logic to suit the needs of application [12]–[17]. FPGAs, which
allow the accelerator to be modified post-deployment, are now
commonly used for rapid prototyping and customization of
DSAs [18], [19].

Existing FPGA based DSAs for SpMV have focused mostly
on one or more of the following features: (a) handling arbitrary
size matrix and vectors by proposing new blocking strate-
gies [20], [21], (b) simplified data movement by proposing

new encoding of non-zeros [22], (c) efficient caching and
maximal reuse of data (especially input/output vectors) to
avoid redundant memory accesses [22], (d) high frequency
compute pipeline to process non-zeros of the matrix in a
streaming fashion [21], (e) use of high-level synthesis (HLS)
for hardware generation [20], [23], (f) efficient utilization of
memory bandwidth [18], (g) avoiding unnecessary replication
of data (mainly vector data) [20], [22], (h) minimizing stalls at
memory interface and within compute pipeline by proposing
special techniques [24].

Most of these DSAs do not provide a flow to allow cus-
tomization through plug and play of the building blocks. Also,
all building blocks within a DSA are described either as RTL
sources or as HLS sources, but not a mix of both. Therefore,
the design either provides high performance or flexibility, but
not both at the same time. In this paper, we develop an end-
to-end tool-flow around mixed IP approach (HLS/RTL) to
introduce modularity and customization opportunities in the
design. Our approach allows one to compose a DSA for SpMV
using modular building blocks. Developers can customize the
DSA by adding, updating or deleting blocks from the design
in order to suit the needs of the application. Our approach
of composing accelerator using modular building blocks is
similar to GraphOps dataflow library [25]. Although GraphOps
relies on HLS to generate the building blocks while we use a
hybrid approach of mixing HLS with RTL for introducing the
FPGA awareness in the implementation. For example, some of
the building blocks in a design can use hard FPGA primitives
more efficiently when implemented in RTL than in HLS [26].

In order to demonstrate the capability of our approach, we
use our tool-flow to compose an efficient DSA for SpMV
(targeting Xilinx Alveo boards) using a number of IP blocks
(standard RTL based IPs; HLS generated IPs for vector
caching, multiplications, reductions and accumulations; and a
parameterizable 2D-mesh NoC overlay). Due to the modularity
of our design, our tool-flow allowed us to insert an additional
block in the design to guarantee zero-stall from the accumu-
lation stage. We demonstrate that by focusing on minimizing
the stalls and utilizing efficient switching networks, our SpMV
DSA can provide competitive performance, close to peak
GFLOPS and memory bandwidth utilization.

The remainder of the paper is organized as follows: Sec-
tion II provides an analysis of some of the existing SpMV
DSAs from the research literature. Section III describes the
proposed approach of composing SpMV DSAs and an exam-
ple DSA built around modular IP blocks. Section IV provides
a comparison of SpMV DSAs from the research literature with
proposed DSA. Finally, Section V concludes the paper.



Year SpMV design Platform (FPGA) Off-chip Memory BW (GB/s) Arithmetic Theoretical Frequency Achieved perf. (GFLOPS)
perf. (GFLOPS) (% BW utilization)

1 2005 [27] Nallatech BenDATA (Virtex-II) 6 ZBT SRAM 8 FP64 1.28 160 MHz 0.35 (40%)
2 2011 [28] Convey HC-1 (Virtex-5) 16 DDR2-667 80 FP64 12.8 150 MHz 4 (30%)
3 2012 [29] BEE3 (Virtex-5) 2 DDR2-400 6.4 FP64 1 100 MHz 0.2 (20%)
4 2013 [30] R3 Convey HC-1 (Virtex-5) 16 DDR2-667 80 FP64 12.8 150 MHz 13.6 (compress.)
5 2014 [22] DE5 (Stratix V) 2 DDR3-1333 21.3 FP32 4.8 150 MHz 2.4 (50%)
6 2016 [31] Convey HC-2 (Virtex-5) 16 DDR2-667 80 FP64 12.8 150 MHz 6.5 (50%)
7 2016 [32] CASK Maxeler Vectis (Virtex-6) NA 40 FP64 6.4 100 MHz ∼sparsity
8 2018 [20] Xilinx GEMX Alveo U200 (VU+) 1 DDR4-2400 20 FP32 4.8 250 MHz 1.9 (40%)
9 2019 [21] HitGraph VU+ Board 4 DDR3-1600 60 FP32 10 200 MHz 6.4 (64%)

TABLE I: Existing FPGA-based SpMV Accelerators

II. EXISTING FPGA BASED SPMV ACCELERATORS

Since SpMV is memory-bound and different hardware plat-
forms have different memory bandwidth, peak performance
alone is not sufficient to capture the efficiency. A more impor-
tant metric than peak performance is the fraction of memory
bandwidth utilized, which captures the overall efficiency of
the architecture. Table I summarizes the key metrics such as
the available bandwidth on the platform, the peak theoret-
ical performance in GFLOPS limited by available memory
bandwidth, the achieved best performance in GFLOPS, the %
bandwidth utilization and the accelerator frequency in previous
work targeting SpMV on FPGAs. We restrict our review to
previous work which directly interfaces to memory and reports
performance numbers on hardware for real matrices.

As shown in the Table I, platforms (BEE3, DE5 and
NallaTech BenDATA) used in early work exhibit low perfor-
mance due to limited available bandwidth [22], [27], [29]. For
double-precision (FP64) CVBV SpMV with 4 Byte indexing
overhead, BEE3 can only provide 6.4GB/s / (12B/2FLOPs)
= ≈1 GFLOPS. Although when processing sparse matrices
using the accelerator, the best reported performance number is
around 0.2 GFLOPS (20% peak bandwidth utilization). Many
research groups have used Convey machines (HC-1 and HC-2)
to implement SpMV because of high memory bandwidth (80
GB/s) available on the platform [28], [30], [31]. For double-
precision (FP64) CSR SpMV with 4 Byte indexing overhead,
Convey platform can provide a peak performance of 80GB/s /
(12B/2FLOPs) = ≈12.8 GFLOPS. Although when processing
sparse matrices, the best reported performance number in [28]
and [31] is around 4 GFLOPS (30% peak bandwidth uti-
lization) and 6.5 GFLOPS (50% peak bandwidth utilization),
respectively. In [30], the authors apply compression on the
data to better utilize the available memory bandwidth and
demonstrate an achievable performance of ≈13.6 GFLOPS.

Apart from poor utilization of bandwidth, another major
concern was the limit on exploitable parallelism in early
proposals. For example in [27], the authors focused mostly
on exploiting the parallelism within a single row. Assuming
32 multipliers in the design, for all of the rows having less than
32 non-zeros, the remaining multipliers would be wasted due
to zero padding. In [22], the authors developed a new encoding
(CISR) and used the Terasic DE5 platform to implement an
accelerator capable of processing non-zeros from multiple
rows to maximize parallelism. Also, while many existing
efforts relied on maintaining a separate copy of the entire
vector x for every multiplier, the authors removed that need
by proposing the concept of Banked Vector Buffer (BVB).

For constructing BVB in [22], the vector x is partitioned into
32 banks of memory blocks and a 32 × 32 crossbar is used
for routing incoming non-zeros to their corresponding vector
banks based on the column indexes. More information about
BVB is available in [22]. On a bank-conflict, requests are back-
pressured into the crossbar’s input queues, and eventually back
to the channel. It was observed that these conflicts contribute
to as much as 30% of the total stalls in the worst case. For
single-precision (FP32) CISR SpMV with 4 Byte indexing
overhead, DE5 platform can provide a peak performance of
21.3GB/s / (8B/2FLOPs) = ≈4.8 GFLOPS. Although when
processing sparse matrices using the accelerator, the best
reported performance number is around 2.4 GFLOPS (50%
peak bandwidth utilization).

The open source Xilinx GEMX SpMV engine [20] targets
Alveo boards and is implemented as an HLS application.
For FP32 arithmetic case in GEMX SpMV, all of the non-
zeros values and vector elements are 4 Bytes while row/col
indexes are 2 Bytes each. Hence, each non-zero is encoded
with 8 Bytes. During execution, kernel requests input vector
elements from DDR and fills the input BVB. Then, 8 non-
zeros every cycle get streamed into the kernel from DDR (64
Byte interface). A crossbar (xBarCol) of size 8×8 is then used
for routing the non-zeros to their corresponding vector banks.
After reaching the correct bank, the column index from the
non-zero is used to read the vector entry which gets multiplied
with the non-zero value. The results of multiplication are then
routed by second crossbar (xBarRow) to their corresponding
accumulators. After all the accumulations are done, the kernel
stores the results back to DDR.

Switching networks coupled with banked vector buffers can
allow very high throughput irregular indexing by keeping the
vector elements on-chip. But the complexity of generally used
crossbar networks and their inefficient mapping on FPGA fab-
rics [20], [22] is one of the factor which limits the performance
of SpMV accelerators. We present an approach where we
replace the crossbar with a 2D-mesh NoC which is built using
simple blocks arranged in a regular fashion that exploit low-
level architecture details and achieve high frequency imple-
mentation. By doing that, we avoid the switching network to
become the performance bottleneck. Although the concept of
NoC overlaid on FPGAs is not new, we demonstrate in this
paper that its applicability to SpMV and similar applications
is of great relevance. Further, we make use of FPGA-friendly
NoC to replace expensive crossbars employed in GEMX
SpMV engine and develop an end-to-end tool-flow around
mixed IP approach (HLS/RTL).



Fig. 1: SpMV Kernel attached with DRAM.

III. PROPOSED APPROACH OF COMPOSING SPMV DSA
USING MODULAR IP BLOCKS

Rapid customization through composition and modularity
remains a major concern preventing the mainstream use of
FPGAs for sparse computations. Our approach uses modular
building blocks (HLS generated IPs and RTL based IPs with
standard AXI interfaces) to compose a DSA for SpMV. Our
design choices are guided to enable the following main fea-
tures: efficient utilization of memory bandwidth by minimizing
stalls at memory interface and within compute pipeline by
proposing high performance routing networks and zero stall
accumulation logic. In the following sections, we first explain
the high-level architecture of the SpMV kernel, and then the
customization for zero-stall accumulations.

A. High-level Architecture
The design of the SpMV kernel is very similar to GEMX

SpMV engine except that we use modular IP blocks (de-
signed/synthesized separately) and stitch them together in
Vivado IP integrator via latency-insensitive channels (AXI-
streams). The instantiation of IP blocks and stitching is
automated using TCL scripts. Fig. 1 shows the high level
block diagram of our approach where the kernel is attached
to the external memory and the data movement is controlled
by a soft-processor (Microblaze) and load-store units (AXI
datamovers). The interfaces between AXI interconnect and
load-store units are full AXI while the rest of them are AXI-
stream channels. In the following sections, we first explain
the IP blocks responsible for data movement and then the IP
blocks used for the composition of the compute pipeline.

1) Load-store units and control processor: Control of data-
movement is critical for the flexibility of our design approach.
In order to keep the design highly flexible and customizable,
we resort to programmable building blocks including a soft-
processor (Microblaze) and load-store units (AXI datamovers).
Microblaze acts as a control processor which manages the
overall data movement by sending commands to load-store
units and to the compute pipeline. It uses stream channels
for sending information (Address and Size) to load-store units
through a set of commands. It then waits for the completion
and moves to the next one. Here is an overview of the control
flow:

• Load x(Addr x, Size x) : Bring vector x from external
memory and load it into input BVB

• Load A(Addr A, Size A) : Bring matrix A from ex-
ternal memory and stream it through pipeline. During
this phase, matrix non-zeros get routed through first NoC,
non-zero values get multiplied with their corresponding
vector entries, multiplication results get routed through
second NoC and reaches output BVB for accumulations.

• Store y(Addr y, Size y) : Microblaze sends store
command (including address and size) to the store unit
which then waits for y to arrive at the input queue.

Finally, Microblaze sends a token to the output BVB to
initialize the drain process. Once the store unit starts receiving
y at the input queue, it sends y into external memory.

2) Compute Pipeline: Fig. 1 shows the composition of
compute pipeline which includes high-speed NoCs and BVB
blocks. We developed a customized RTL IP for the NoC and
use HLS-generated IPs for the BVB-MUL and BVB-ACC
blocks. Fig. 2 shows the high level diagram of our 2D-mesh
NoC including the architecture of each switch. For routing,
we resort to a simple XY algorithm where each non-zero
is routed horizontally first and then vertically. Within each
switch, the column index of the non-zero is checked and if
it does not belong to the corresponding bank, it is routed
further horizontally otherwise, it is moved downwards. The
Split unit (S) within each switch performs the above mentioned
operation and the merge unit (M) arbitrates between the data
coming from the vertical direction and the data coming from
the split unit.

Instead of using a buffer-less NoC architecture and letting
the packets deflect [33], we choose to develop a buffered NoC
architecture built around latency-insensitive dataflow units.
These include elastic buffers (EBs) [34], [35], 2-way split
units and 2-way merge units. The EBs in our NoC architecture
make use of a specific implementation, full bandwidth 2-slot
EB [36], to avoid stalls and pipeline bubbles.

Since an arbitrary number of EBs can be placed within a
switch, we choose to minimize the EB overhead (number of
EBs in a switch and their depth) which affects the resource
requirements of the NoC. We observe that placing only three
EBs in a switch (one at the input of S, one between S and
M, and the last one just at the output of M) is sufficient

Fig. 2: 2D-mesh NoC.



to minimize stalls. Also, we determine the suitable depth of
EBs by modelling the NoC in SystemC and then performing
simulations for 250 matrices under different settings. We found
that the EB depth in the range of 2 − 4 is sufficient enough
to minimize the stalls for most of the matrices.

Microarchitectural features of the NoC include the size of
the NoC (N), width of datapath (DW bits), number of EBs per
switch (NUM EB) and depth of each EB (EB depth). These
features can be sized up and down based on the availability
of the resources. The FF requirements can be calculated from
the equation below:

FF required = N2 ∗DW ∗NUM EB ∗ EB depth (1)

The RTL of the switch (three 64b EBs per switch where
EB Depth = 4) is able to meet timing constraint of 1.35
ns (740 MHz) while only consuming around 50 CLBs (300
LUTs and 800 FFs). Due to the regularity of NoC architecture,
scaling does not affect the implementation frequency. We
explore the efficiency gap between the proposed NoC and the
crossbar network in GEMX SpMV Engine by scaling the size.
Fig. 3 shows the drop in frequency for the crossbar network
while the frequency of our proposed NoC remains immune to
the scale. We also observe that both of the networks consume
an entire SLR on Alveo U200 when scaled to a size of 32×32.
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Fig. 3: Comparison of Fmax between GEMX SpMV xbar
and Proposed NoC.

For input BVBs and multiplications (input BVB-MUL), out-
put BVBs and accumulations (output BVB-ACC), we choose
to describe the hardware in C/C++ and used Vivado HLS to
synthesize the IP blocks. The simplicity of HLS code allows
customization opportunities. For example, the size of BVB can
be selected based on the matrix dimensions. HLS pragma is
used to specify that the URAM should be used to hold vector
entries. This allows URAM cascading for large BVB sizes.

B. Customization of pipeline for Zero-stall accumulations
Once the non-zeros get routed to the input vector banks us-

ing the first NoC and multiplied with the corresponding vector
entries, the results of the multiplications has to be routed to
the output vector banks using a second NoC for accumulation
purpose. A major challenge in achieving high performance
comes from the need to accumulate values that are delivered
in consecutive clock cycles into a deeply-pipelined FP32 adder.
This is because subsequent additions on incoming data can not
be performed until the previous addition has been completed.

Since FP32 adders have certain latency L (4-8 clock cycles)
to run at high frequencies, it could lead to data hazard where
the value from incoming row index is read before the result
of previous accumulation is written back to that row index.
It happens when incoming data packets have same indexes
within a time window of L clock cycles.

In order to avoid these hazards, one possibility is to stall
the incoming stream for L cycles after each accumulation.
This results in poor performance of SpMV pipeline since the
peak throughput now gets reduced by L times. In order to
solve this problem and enable zero-stall accumulations, we
design special reduction trees, referred to as Hazard-resolving
Reduction Tree (HRT). HRT looks at a window of L cycles
and add all of the multiplied results belonging to same indexes.
We implemented these HRTs in C++ and used Vivado HLS to
synthesize them as IP blocks. Our design requires one HRT
at the input of each accumulator so we take the design from
Fig. 1 and insert the IP blocks just between the second NoC
and the output BVB-ACC.

IV. EXPERIMENTS AND RESULTS

We implemented and benchmarked the proposed SpMV
DSA on Xilinx Alveo boards (U200/U250) using Vivado and
Vivado HLS 2019.1 version. Alveo cards support up to 64
GB of DRAM, with four DDR4-2400 supporting an aggregate
peak off-chip bandwidth of 77 GB/s. The FPGA communicates
with the host system using PCIe Gen 3×16. We assume the
input is a COO-encoded sparse matrix, with single precision
floating point values and 16-bit indexes (column and row
indexes). Although it is not a limitation, for our experiments,
we restrict the settings of example DSA to 16-bit indexes.
Hence in order to apply SpMV on a large matrix (size of
more than 64K×64K), one can either change the DSA settings
(index sizes and vector buffer sizes) at design time or a tiling
strategy can be used.

Our tool flow allows one to choose the target Alveo board
(U200/U250), the number of kernels to map and the scale
of the kernel. For experiment purpose, we use a design with
1 kernel on Alveo U200 and observe how much bandwidth
can be utilized from just a single DDR4 (peak = 19.2 GB/s).
Since one DDR allow to bring 8 non-zeros every clock cycle,
we specify scale as 8 and the tool then uses 8×8 NoCs and
rest of the blocks accordingly (8 input/output BVBs and 8
HRTs). The design is able to meet given timing constraints
of 300 MHz while other existing SpMV designs from Table I
run at lower frequencies (100-250 MHz). For our design on
U200, SpMV kernel uses 165K FFs (7%), 60K LUTs (5%),
200 DSP (3%), 32 BRAM (1.5%), 24 URAM (2.5%).

We evaluate the performance of our proposed DSA using
sparse matrices from the University of Florida Sparse Matrix
collection. In our experiments, the COO-encoded matrix is
first loaded into FPGA’s DRAM by the host processor via
PCIe interface. We assume that SpMV is executed iteratively
on FPGA where matrix A gets reused across iterations. This is
common in many use-cases of SpMV such as Pagerank [37]
and HPCG [38].

In order to provide accurate measurements, we instantiate
AXI timer IP within the design to measure accurate cycle
counts. We start the timer just before loading vector x and
stop it just after storing the result vector y. We report GFLOPS



BEE3 [29] HC-1 [28] Tesla S1070 [28] CASK [32] GEMX SpMV [20] This work

DDR BW (GB/s) 6.4 GB/s 80 GB/s 100 GB/s 40 GB/s 20 GB/s 20 GB/s
BW limited GFLOPS 1 GFLOPS 12.8 GFLOPS 16 GFLOPS 6.4 GFLOPS 4.8 GFLOPS 4.8 GFLOPS

Matrix R×C NNZ Sparsity GFLOPS / % Peak Bandwidth Used

dw8192 8192×8192 41746 99.94% 0.10 / 10% 1.7 / 13% 0.5 / 3% 0.7 / 10% 1.4 / 30% 1.9 / 40%
t2d q9 9801×9801 87025 99.91% 0.15 / 14% 2.5 / 19% 0.9 / 6% 0.9 / 14% 1.6 / 34% 4.0 / 85%
epb1 14734×14734 95053 99.96% 0.17 / 17% 2.6 / 20% 0.8 / 5% 0.7 / 10% 1.5 / 32% 2.8 / 60%
raefsky1 3242×3242 294276 97.20% 0.20 / 18% 3.9 / 29% 2.6 / 15% 4.0 / 60% 1.9 / 40% 3.8 / 80%
psmigr 2 3140×3140 540022 94.52% 0.20 / 18% 3.9 / 29% 2.8 / 17% 4.8 / 75% 1.3 / 28% 3.8 / 80%

TABLE II: Quantitative comparison of different SpMV accelerators with ours.

numbers and % Peak Bandwidth Used and compare our results
with the results of other SpMV accelerators. It is difficult
to perform an accurate comparison since DRAM bandwidth,
number of FPGAs, type of FPGAs and arithmetic precision
differ. Because SpMV is memory-bound, a more important
metric than peak performance alone is the fraction of memory
bandwidth utilized, which captures the overall efficiency of
the architecture. Table II shows quantitative comparison of our
SpMV accelerator (1 kernel attached with 1 DDR4) with oth-
ers with a focus on memory bandwidth utilization. As shown
in Table II, bandwidth utlization using the proposed approach
is consistently better than the others. For the benchmark set of
matrices, proposed accelerator shows the bandwidth utilization
ranging between 40− 85% while the bandwidth utilization is
10− 18% for BEE3 [29], 13− 29% for HC-1 [27], 10− 75%
for CASK [32] and 28− 40% for GEMX SpMV engine [20].

Improved utilization is mainly due to minimizing the stalls
in the design. For example, Load A datamover is efficiently
supplying read requests to memory without getting many stalls
from pipeline. The reason is that HRT within the pipeline
guarantees zero-stall from accumulation stage and 2D-mesh
NoC exhibits minimal stalls because back-pressure due to
bank conflicts are getting absorbed in distributed EBs. Also,
since we are using COO-encoded matrix and storing non-
zeros in random order, there are relatively fewer bank conflicts
compared to row-major/column-major traversal. If we sort the
matrix by column, the bank conflicts would be at input-BVB
and if we sort the matrix by row, the bank conflicts would be
at output-BVB. COO-encoded format allowed us to store the
matrix in random order resulting in minimal bank conflicts.

Since CASK framework generates matrix specific architec-
ture and allows aggressive replication of input vector (to allow
parallel indexing with no-stalls) for small dimension matrices,
it shows high performance and utilization for raefsky1 and
psmigr 2 compared to other matrices. raefsky1 and psmigr 2,
both are relatively dense and have less memory requirements
to hold input and output vector on-chip. Our SpMV kernel
uses a generic approach where a single architecture is used
for all the matrices in the benchmark set. Our kernel settings
allows us to hold up to 64K vector entries at a time. For larger
matrices (with more than 64K rows / columns), the kernel
settings can be changed at design time. For example, to handle
a matrix of size 1M×1M, we can use an index size of 20 bits.
Vivado HLS would then synthesize the BVB accordingly to
have more URAMs (cascaded) for every multiplier.

Apart from the benchmark set, we have used several other
matrices from the University of Florida Sparse Matrix collec-
tion. We observe close to 90% memory bandwidth utilization

for most of these matrices. While running a well known prob-
lem of FEM Cantilever (cant matrix, 62451×62451, 2034917
non-zeros, 99.94% sparsity) on SpMV DSA (1 kernel attached
with 1 DDR), we observe a performance of 4.4 GFLOPS
which corresponds to 92% peak bandwidth utilization. We also
used Alveo U250 where 4 kernels are attached with 4 DDR.
By partitioning the matrix in 4 equal partitions and using 4
kernels to process them, we observe quadruple performance
(17.6 GFLOPS). We run the same matrix on HBM-enabled
P6000 GPU using cuSPARSE (CSR) library and observe a
performance of 28.4 GFLOPS which corresponds to 40%
peak bandwidth utilization. It shows that our proposed SpMV
DSA (4 kernel - 4 DDR on U250) performs within about
60% of GPU performance for a given matrix, even though
it has 5.6× lower memory bandwidth. Alveo U250 has 77
GB/s and P6000 GPU has 433 GB/s memory bandwidth.
We expect the performance of our approach to scale linearly
when instantiating multiple SpMV kernels on HBM-enabled
FPGA platforms (Alveo U280/U50). We leave the validation
of performance scaling on HBM-enabled FPGA platforms as
future work.

V. CONCLUSIONS AND FUTURE WORK

We have proposed an approach to compose a DSA for
SpMV using modular building blocks where developers can
customize the DSA by adding/updating or deleting blocks
from the design in order to suit the need of application
and/or design constraints. In addition, we have demonstrated
the practicality of this approach by composing a DSA for
SpMV using a number of IP blocks. Further, we have showed
that this DSA has competitive performances by achieving
high frequency and delivering close to peak GFLOPS and
memory bandwidth utilization when implemented on Xilinx
Alveo boards (U200/U250). On Alveo U200, we report per-
formance numbers of up to 4.4 GFLOPS (92% peak bandwidth
utilization) using proposed SpMV kernel (attached with one
DDR4) for a set of matrices. In the future, we plan to extend
our work to High Bandwidth Memory (HBM) platforms such
as U280/U50 Alveo boards where the available bandwidth is
6× higher than on U200/U250 boards. Also, we plan to run the
SpMV pipeline at more than 300 MHz by separating clock do-
mains. These extensions would allow us to process around 128
non-zeros every cycle at approximately 450 MHz, resulting
in a peak performance of 57.6 billion non-zeros/second (115
GFLOPS). We also plan to evaluate the power consumption
to show that FPGAs can allow deployment of energy efficient
and fully customizable DSAs for sparse computations.
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vector multiplication kernel for energy-efficient sparse-blas on fpgas,”
in Proceedings of the International Symposium on Field Programmable
Gate Arrays (FPGA). ACM, 2014, pp. 161–170.

[18] Y. Umuroglu, “Accelerating sparse linear algebra and deep neural
networks on reconfigurable platforms,” 2018.

[19] J. Fowers, K. Ovtcharov, M. K. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi et al., “Inside
project brainwave’s cloud-scale, real-time ai processor,” IEEE Micro,
vol. 39, no. 3, pp. 20–28, 2019.

[20] Xilinx gemx. [Online]. Available: https://github.com/Xilinx/gemx
[21] S. Zhou, R. Kannan, V. K. Prasanna, G. Seetharaman, and Q. Wu,

“Hitgraph: High-throughput graph processing framework on fpga,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 10, pp.
2249–2264, 2019.

[22] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt,
“A high memory bandwidth fpga accelerator for sparse matrix-vector
multiplication,” in IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM). IEEE, 2014, pp. 36–43.

[23] M. Hosseinabady and J. L. Nunez-Yanez, “A streaming dataflow engine
for sparse matrix-vector multiplication using high-level synthesis,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2019.

[24] S. Sun, M. Monga, P. H. Jones, and J. Zambreno, “An i/o bandwidth-
sensitive sparse matrix-vector multiplication engine on fpgas,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 1,
pp. 113–123, 2011.

[25] T. Oguntebi and K. Olukotun, “Graphops: A dataflow library for graph
analytics acceleration,” in Proceedings of the International Symposium
on Field Programmable Gate Arrays (FPGA). ACM, 2016, pp. 111–
117.

[26] A. K. Jain, S. A. Fahmy, and D. L. Maskell, “Efficient overlay architec-
ture based on dsp blocks,” in IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM). IEEE, 2015, pp. 25–28.

[27] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication
on fpgas,” in Proceedings of the International Symposium on Field
Programmable Gate Arrays (FPGA). ACM, 2005, pp. 63–74.

[28] K. K. Nagar and J. D. Bakos, “A sparse matrix personality for the convey
hc-1,” in IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM). IEEE, 2011, pp. 1–8.

[29] S. Kestur, J. D. Davis, and E. S. Chung, “Towards a universal fpga
matrix-vector multiplication architecture,” in IEEE Symposium on FP-
GAs for Custom Computing Machines (FCCM). IEEE, 2012, pp. 9–16.

[30] K. Townsend and J. Zambreno, “Reduce, reuse, recycle (r 3): A
design methodology for sparse matrix vector multiplication on recon-
figurable platforms,” in Proceedings of the International Conference
on Application-Specific Systems, Architectures and Processors (ASAP).
IEEE, 2013, pp. 185–191.

[31] S. Li, Y. Wang, W. Wen, Y. Wang, Y. Chen, and H. Li, “A data
locality-aware design framework for reconfigurable sparse matrix-vector
multiplication kernel,” in Proceedings of the International Conference
on Computer-Aided Design (ICCAD). IEEE, 2016, pp. 1–6.

[32] P. Grigoras, P. Burovskiy, and W. Luk, “Cask: Open-source custom
architectures for sparse kernels,” in Proceedings of the International
Symposium on Field Programmable Gate Arrays (FPGA). ACM, 2016,
pp. 179–184.

[33] N. Kapre and J. Gray, “Hoplite: A deflection-routed directional torus
noc for fpgas,” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), vol. 10, no. 2, p. 14, 2017.

[34] G. Michelogiannakis and W. J. Dally, “Elastic buffer flow control for
on-chip networks,” IEEE Transactions on computers, vol. 62, no. 2, pp.
295–309, 2011.

[35] I. Seitanidis, A. Psarras, G. Dimitrakopoulos, and C. Nicopoulos,
“Elastistore: An elastic buffer architecture for network-on-chip routers,”
in Proceedings of the Design, Automation and Test in Europe Conference
(DATE). IEEE, 2014, pp. 1–6.

[36] G. Dimitrakopoulos, A. Psarras, and I. Seitanidis, “Link-level flow con-
trol and buffering,” in Microarchitecture of Network-on-Chip Routers.
Springer, 2015, pp. 11–35.

[37] F. Sadi, J. Sweeney, S. McMillan, T. M. Low, J. C. Hoe, L. Pileggi,
and F. Franchetti, “Pagerank acceleration for large graphs with scalable
hardware and two-step spmv,” in Proceedings of the IEEE High Per-
formance extreme Computing Conference (HPEC). IEEE, 2018, pp.
1–7.

[38] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance
conjugate-gradient benchmark: A new metric for ranking high-
performance computing systems,” The International Journal of High
Performance Computing Applications, vol. 30, no. 1, pp. 3–10, 2016.


