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Abstract—In this paper, we describe a high-level synthesis 

(HLS) tool that automatically allows area/throughput trade-
offs for implementing streaming task graphs (STG). Our tool 
targets a massively parallel processor array (MPPA) 
architecture, very similar to the Ambric MPPA chip 
architecture, which is to be implemented as an FPGA overlay. 
Similar to Ambric tools, our HLS tool accepts a STG as input 
written in a subset of Java and a structural language in the 
style of a Kahn Processing Network (KPN). Unlike the Ambric 
tools, our HLS tool analyzes the parallelism internal to each 
Java “node” and evaluates the throughput and area of several 
possible implementations. It then analyzes the full graph for 
bottlenecks or excess compute capacity, selects an 
implementation for each node, and even considers replicating 
or splitting nodes while either minimizing area (for a fixed 
throughput target), or maximizing throughput (for a fixed 
area target). In addition to traditional node selection and 
replication methods used in prior work, we have uniquely 
implemented node combining and splitting to find a better 
area/throughput trade-off. We present two optimization 
approaches, a formal ILP formulation and a heuristic 
solution. Results show that the heuristic is more flexible and 
can find design points not available to the ILP, thereby 
achieving superior results. 

Keywords—content; Space/Time Trade off; Stream Task 
Graph; High-Level Synthesis; MPPA Overlay, 

I. INTRODUCTION 
Since clock frequency scaling has essentially stopped 

due to power issues, the research community has focused on 
delivering increased levels of parallelism to improve both 
performance and performance per Watt [1]. At one end, 
coarse-grained parallelism is achieved with multi-core 
processors, usually through a high-level language. At the 
other end, fine-grained parallelism is achieved in FPGAs 
and ASICs by designing hardware-level solutions. Both of 
these extremes can be challenging to program. In software, 
it can be challenging to expose sufficient parallelism in C, 
and difficult to describe some types of computation in 
CUDA or OpenCL. In hardware, RTL languages such as 
VHDL and Verilog achieve very good results, but it is 
tedious to describe everything at such a low level on a 
cycle-by-cycle basis. High-level synthesis (HLS) tools that 
convert C to RTL are very compelling, but impose their own 
challenging constraints writing C and what can be 
parallelized [2,3]. 

In this work, we wish to explore the design space in 
between traditional multi-core CPUs and low-level 
FPGA/ASIC solutions. In particular, we will investigate 
whether an array of ALUs or very lightweight processors, 
described best as a massively parallel processor array or 
MPPA, can achieve sufficient levels of performance, and 
make design entry sufficiently easy, to make them an 
interesting alternative to more traditional design methods. 

To explore the MPPA as an alternative target, we need 
three things: (a) a tool flow that can compile algorithms into 
the target, (b) a detailed architecture description or 
implementation, and (c) a set of benchmarks to compile into 
the framework. We decided to work on the tool flow first, 
with the expectation the tools would help us explore a range 
of architectures. However, we need an initial programming 
model and an initial target architecture to focus the tools. 
The programming model should support the strengths of 
FPGAs, especially pipelined parallelism. Although OpenCL 
and CUDA allow a programmer to specify thousands of 
threads, where one thread is essentially “pipelined” behind 
another one in a streaming fashion, we find that 
performance can break down when these threads must share 
information. Thus, we decided to start with the explicit 
streaming model and architecture that was defined by 
Ambric [4,5]. 

In the Ambric model, a Java object is created for each 
thread, becoming nodes that communicate together through 
explicitly defined blocking FIFO communication channels. 
The node can be a primitive node such as an operation or a 
composite node such as a thread with more than one 
primitive node.  The objects and channels are placed and 
routed onto an array of 336 processors with a mesh NoC. 
Each object contains local state and a processing thread. 
Processing in an object can be variable latency, but 
computation between objects is synchronized through the 
blocking FIFOs. Objects may be replicated, thus facilitating 
some re-use of a program, but all instances are explicitly 
allocated and defined by the programmer at compile-time. 
This is very similar to a Kahn Processing Network (KPN) 
[6], except that in a KPN the FIFOs are assumed to be 
infinitely deep. The resulting process network exhibits 
deterministic behaviour that does not depend on the various 
computation or communication delays. 

One of the drawbacks of the Ambric framework is the 
need for explicit allocation of all objects and channels. The 



number of objects, and the computational delays within each 
object, define amount of parallelism and the throughput of 
the application. Thus, scaling a program to a larger or 
smaller processor array requires manually re-programming 
all objects and channels. For the Ambric commercial 
solution consisting of a single device, this is an acceptable 
trade-off. However, for a research platform, we must 
investigate a variety of array sizes, as well as simpler or 
more complex processors, which requires automatically 
transforming a streaming application to use more or less 
space, thereby increasing or decreasing throughput. 

In this paper, we describe the beginning of a high-level 
synthesis tool that can perform such automated space/time 
tradeoffs. The user describes an initial program in Ambric-
style Java, and then defines either a throughput target, or an 
area budget. The HLS tool analyzes the processing rate of 
each object (or thread), and propagates these throughputs 
across the entire computational graph (defined by the 
communication channels). It also analyzes each thread to 
determine the degree of internal parallelism. Using this 
information, it transforms the compute graph to meet the 
area or throughput target. There are a variety of 
transformations such as replicating objects (requiring a 
split/join on the data), subdividing objects into a deeper 
pipeline (increasing throughput), and merging objects 
together (decreasing area). At all times, a whole-program 
approach is taken to optimization, so portions of a program 
that are not performance-critical will be merged to use less 
area, and more area will be allocated to performance-critical 
regions. This alleviates some effort from the programmer, 
and creates a scalable/retargetable implementation. 

Our tool uses two internal optimization approaches. The 
first, based upon integer linear programming (ILP), is 
similar to previous work on task graph optimizations by 
Cong et al [7]. The second, based upon a heuristic approach, 
is our own novel contribution. Although the ILP approach 
works well, maintaining the ILP optimization model within 
the tool prohibits the use of certain optimizations. Instead, 
our heuristic approach is able to perform object coalescing, 
which cannot be done as an ILP formulation. This leads to 
considerable area savings versus the ILP approach. 

II. KPN-BASED HLS FOR MPPA OVERLAY 
Figure 1 illustrates the detailed flow of proposed tool. It 

compiles a program described in Ambric-style Java 
(compute) and aStruct (communication), and makes a STG 
complete with composite nodes communicating with each 
other through channels (edges of the graph). It can handle 
STGs without any feedback for now but we will address 
handling STGs with feedback as our future work. Our tool 
uses Intra-Node Optimizer and Inter-Node Optimizer in 
order to find different implementations for each composite 
node. It uses Trade-off Finder to find a good trade off 
between throughput and area. Later, we will implement 
MPPA Overlay Generator to generate a suitable architecture 
instance based on the found trade-off and different types of 
PE in an Architecture Library. A Back-end module will also 
be implemented to generate MPPA instructions and map the 
application to the overlay. 

 
Figure 1: Tool flow 

A. Finding different implementations 
Consider an application with N composite nodes 

𝑓!, 𝑓!,… , 𝑓! in its STG. For each composite node 𝑓!, our 
tool tries to find different implementations 𝑃!! ,𝑃!! ,… ,𝑃!

!! 
where each implementation 𝑃!!  can perform the 
functionality of 𝑓! with area cost  𝐴(𝑃!! ) and initiation 
interval 𝐼𝐼(𝑃!! ). For node 𝑓! and its implementation 𝑃!! , the 
minimal input “inverse throughput” 𝑣!"(𝑃!! ) and output 
inverse throughput 𝑣!"#(𝑃!! ) are calculated as 

𝑣!"(𝑃!! ) =
𝐼𝐼(𝑃!! )
𝐼𝑛(𝑓!)

   , 𝑣!"#(𝑃!! ) =
𝐼𝐼 𝑃!!

𝑂𝑢𝑡 𝑓!
,                                                  (1) 

Where 𝐼𝑛(𝑓!) and 𝑂𝑢𝑡(𝑓!) equal the number of data 
tokens that 𝑓!consume on the input data channel and 
produce on the output data channel during each firing 
respectively. Note that inverse throughput shows the 
number of cycles to consume/produce per datum in its 
input/output channel.  

Intra-Node Optimizer and Inter-Node Optimizer 
modules have been implemented in our tool to automatically 
find these above-mentioned implementations for each 
composite node. 

1) Intra-Node Optimizer 
Affine loop transformation strategies in [8,9,10,11,12] 

have been used in Intra-Node Optimizer to find the 
maximum degree of parallelism for each composite node. 
After finding all degrees of parallelism, Intra-Node 
Optimizer tries to find the best throughput (minimizing the 
inverse throughput) for each node without considering area 
cost. Since each operation needs different number of clock 
cycles to provide its output (different invers throughput), 
Intra-Node Optimizer (a) expands, (b) combines or (c) 
pipelines nodes regarding the inverse throughput of 
operations inside the composite node in order to find an 
implementation with highest throughput for each composite 
node. 



2) Inter-Node Optimizer 
After finding the implementation with the highest 

throughput for each node, Inter-Node Optimizer starts a 
clustering operation in order to find different 
implementations. Each cluster will be mapped to one 
Processing Element. Inter-Node Optimizer also sends 
operations back and forth between clusters to find optimum 
area cost for each overall inverse throughput target. 

The example below illustrates how our tool works. 

3) Example: N-Body Problem 
The traditional N-body Problem simulates a 3D 

universe, where each celestial object is a body, or particle, 
with a fixed mass. Over time, the velocity and position of 
each particle is updated according to interactions with other 
particles and the environment. In particular, each particle 
exerts a net force (i.e., gravity) on every other particle. The 
computational complexity of the basic all-pairs approach we 
use is O(n2). The run-time of the N-body is dominated by 
the gravity force calculation, shown below: 

𝐹!,!= 𝐺
𝑀!𝑀!
𝑟!

= 0.0625
𝑀!𝑀!

𝑃! − 𝑃!
! 𝑃! − 𝑃! ,                                  (2) 

Where 𝐹!,! is the force particle i imposes on particle j, 
𝑃!   is the position of particle i, and 𝑀! is the size or ‘mass’ of 
particle i. When mapping the force calculation, because of 
the dependencies between instructions in this code, our tool 
first pipelines it. A simplified 2D pipeline (with latencies) is 
shown in Figure 2. 

 
Figure 2: Pipelined Force Calculation 

Consider mapping each operation to a simple Processing 
Element. We get the highest throughput if and only if each 
operation operates in one clock cycle (inverse 
throughput=1). As shown in Figure 2, each operation has 
different inverse throughput. For example, division needs 
eight cycles to provide its output and, because of 
dependencies, other operations have to stall for division. It 
means the best overall inverse throughput we can get for 
force calculation with this mapping is 8. To get the highest 
throughput, Intra-Node Optimizer uses an “expansion” 
approach to parallelize those nodes with high inverse 
throughput. Figure 3 shows an improved pipeline where 
inverse throughput equals to 1. 

 
Figure 3: Expanded Force Calculation 

After finding the highest possible throughput, Inter-
Node Optimizer tries to cluster and combine nodes again to 
find several implementations with different throughput and 
area. It means that Inter-Node Optimizer sacrifices the 
throughput to save area. Inter-Node Optimizer continues 
this procedure until it assigns the entire composite node 𝑓! 
to one PE (Area cost = 1). Figure 4 shows inverse 
throughput and area relation for different implementations 
of the N-Body function. Here, the inverse throughput varies 
from 1 to 33. To achieve the best throughput (inverse 
throughput = 1), we can either replicate the slowest 
implementation (inverse throughput=33) into 33 copies or 
use the fastest implementation directly. 

 
Figure 4: Inverse-Throughput/Area relation for different implementations 

of N-Body function 

B. Trade-off Finding Formulation and Solutions 
Trade-off finding has two different modes in our tool. 

• Given an available area on chip A! and different 
implementations for each node 𝑓!, which 
implementation 𝑃!! should be selected and how 
many replicas 𝑛𝑟!! are needed in order to minimize 
application inverse throughput 𝑣𝒜   subject to the 
constraint the application area cost A𝒜 is not bigger 
than 𝐴! . 

• Given an inverse throughput target 𝑣!"!, and 
different implementations for each node 𝑓!, which 
implementation 𝑃!! should be selected and how 
many replicas 𝑛𝑟!! are needed in order to minimize 
area cost 𝐴𝒜 subject to the constraint the application 
inverse throughput 𝑣𝒜 is not bigger than 𝑣!"!. 
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1) Using Integer Linear Programming 
The first approach to tackle this problem was defining 

the problem in terms of Integer Linear Programming (ILP). 
The goal is to find binary integers 𝑥!,!, 𝑥!,!,…    , 𝑥!,!! 
indicating the implementations to be selected, and integer 
𝑛𝑟!! indicating number of replicas needed. The formulation 
of the first problem is: 

Minimizing 𝑣𝒜subject to 

𝑛𝑟!!𝐴(𝑃!!)𝑥!,!

!!

!!!  

!

!!!  

< 𝐴!   𝑎𝑛𝑑  ∀𝑗 ∈ 1, . . ,𝑁 : 𝑥!,!

!!

!!!  

= 1            (3) 

The formulation of the second problem is: 

Minimizing 𝐴𝒜 subject to 

  ∀𝑗 ∈ 1, . . ,𝑁 :
1
𝑛𝑟!

! 𝑣(𝑃!
!)𝑥!,! <

!!

!!!

𝑣!
!"!  𝑎𝑛𝑑 𝑥!,!

!!

!!!  

= 1                  (4) 

An ILP solver could go through all the possibilities of 
𝑥!,! and 𝑛𝑟!! and find the optimum solution for this problem, 
subject to the constraints. Although ILP solvers can solve 
these problems, the approach does have two shortcomings: 

• Lack of flexibility: the problem must be defined in 
advance and it’s not possible to change the 
problem’s structure while solving it by ILP. In other 
words, combining or splitting nodes are not possible 
while using ILP. 

• Time inefficient: In our experiments, ILP is usually 
slower than our heuristic algorithm. 

2) Using Heuristic Approach 
Before describing our heuristic approach, let us first 

define Throughput Analysis, Throughput Propagation and 
Bottleneck Optimizer. 

a) Throughput Analysis 
Each node achieves the maximum output throughput if 

and only if all its input data are ready when the node expects 
them. To make the throughput analysis more 
straightforward we use inverse throughput instead of 
throughput. To achieve minimum inverse throughput 𝑣!", 
the input data have to be ready with expected inverse 
throughput 𝑣!". We define slack 𝑣! for each channel as 

𝑣! = 𝑣!" − 𝑣!"                                                                             (5) 

Figure 5 shows a simple example in which two nodes A 
and B nodes are connected together. Node A is a potential 
bottleneck if it doesn’t provide data fast enough to satisfy 
node B’s expectation (𝑣!" > 𝑣!" ⇒ 𝑣! > 0). Node B is a 
possible bottleneck if node A provides data faster than what 
node B consumes (𝑣!" < 𝑣!" ⇒ 𝑣! < 0). 

 
Figure 5: Minimum and expected inverse throughput 

Throughput analysis helps us to find bottleneck nodes in 
a system as well as unnecessary high throughput nodes. 
Figure 6 shows an example with seven nodes with different 

𝑣!" and 𝑣!". We calculated slack 𝑣! for each channel. As 
we can see 𝑣! for input channels going to 𝑓! are smaller than 
𝑣! for other input channels. Also 𝑣! for output channel from 
𝑓! is bigger than 𝑣! for other output channels. This shows 𝑓! 
is a potential critical bottleneck. To find potential 
bottlenecks in an application, we define weight 𝑊! for each 
node 𝑓!as: 

𝑊! =   
𝑣!" − 𝑣!"

!!"
!!!

!!"#
!!!

𝑁!" + 𝑁!"#
                                                                (6) 

where 𝑣!" is the input throughput slacks for incoming 
channels and 𝑣!" is the output throughput slacks for 
outgoing channels of 𝑓!. 𝑁!" denotes the number of inputs, 
and 𝑁!"# denotes the number of outputs for node 𝑓!. A 
higher weight means that the node is not able to 
provide/consume expected outgoing/incoming data to/for its 
neighbors in most of its channels and the throughput 
differences between this node and its neighbor are critical. 

 
Figure 6: Throughput Analysis 

b) Application Throughput Propagation and 
Balancing 

Although it seems trade-off finder should select an 
implementation for each node in order to increase its 
throughput, increasing throughput of a node will not 
necessarily increase the overall throughput. For example, as 
shown in Figure 7, optimizing the block B doesn’t increase 
the throughput of the system (in either case) because the 
system always has to wait for block A which takes 9 clock 
cycles. In this case, it might be good to sacrifice the 
throughput of block B in order to release some area. 

 
Figure 7: Throughput Propagation and Balancing 
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To balance the throughput for each node we have to 
propagate the target inverse throughput to all nodes in the 
application. For propagating the input inverse throughput 
target to the output inverse throughput target for a single 
composite node, we used similar strategy in previous work 
[7]. For a composite node 𝑓!, the number of input and 
output channels are denoted as 𝑛𝑢𝑚𝐼𝑛(𝑓!) and 
𝑛𝑢𝑚𝑂𝑢𝑡(𝑓!) and the inverse throughput target on the 
input/output channel is denoted as 𝑣!"

! (𝑓!)/𝑣!"#! (𝑓!), where 
1 ≤ 𝑗 ≤ 𝑛𝑢𝑚𝐼𝑛(𝑓!) and 1 ≤ 𝑘 ≤ 𝑛𝑢𝑚𝑂𝑢𝑡(𝑓!). Given the 
input inverse throughput target 𝑣!"

! (𝑓!), the output inverse 
throughput target 𝑣!"#! (𝑓!) is calculated as 

𝑣!"#! 𝑓! =
𝑚𝑖𝑛
!
{𝑣!"

! 𝑓! . 𝐼𝑛!(𝑓!)}

𝑂𝑢𝑡!(𝑓!)
                                                  (7) 

Throughput propagation helps the Trade-Off Finder to 
balance the throughput of all nodes in the application. 

c) Bottleneck Optimizer 
Bottleneck Optimizer is very similar to ILP in sense that 

it makes replicas of the bottleneck to increase the 
throughput. However ILP replicates the bottleneck without 
any attention to its neighbouring nodes that could create 
opportunities to have a lower area overhead cost. To 
overcome this not-so-intelligent approach, we propose a 
method that relies on the fact that each node can 
send/receive data to/from up to FanIn/FanOut number of 
nodes without any area overhead cost. If more than 
FanIn/FanOut numbers of replicas are required, overhead 
cost is inevitable. In other words, to connect these replicas 
to successor/predecessor nodes, new fork/join nodes are 
needed to send/receive data to each replica with a round-
robin order are needed. 

Let us go through a simple example to show the overall 
idea in our Bottleneck Optimizer approach. Figure 8.a 
shows an example which two nodes S with inverse 
throughput 𝑣! and D with inverse throughput 𝑣! are 
connected together and node S is sending data to D over a 
channel. Assume the node D is a bottleneck and we want to 
match its throughput to node S’s throughput. In order to 
match the throughput we have to make 𝑛𝑟 replicas of node 
D which is calculated as 

𝑛𝑟 =
𝑣!
𝑣!
                                      (8) 

In order to connect node S to 𝑛𝑟 replicas of node D we 
have to use several nodes in between to get data and send it 
to each replica in round-robin order. Assume each node has 
FanIn/FanOut equal to 𝑛𝑓, which means each node can send 
data to a maximum of  𝑛𝑓 nodes. We define 𝐻 =
𝑙𝑜𝑔!" 𝑛𝑟 , which shows how many layers of nodes need to 

send data from one node to 𝑛𝑟 ≤ 𝑛𝑓! nodes. Assuming 
𝑛𝑟 = 𝑛𝑓! (Figure 8.b), the area overhead 𝐴! for connecting 
node S to 𝑛𝑟 replicas of node D is calculated as 

𝐴! = 𝑛𝑓!
!!!

!!!

                        (9) 

In our approach, we try to combine nodes together in 
order to save area overhead. As shown in Figure 8.b in each 
layer ℎ there are 𝑛𝑓!!! nodes with input inverse throughput 
𝑣!"!  and output inverse throughput 𝑣!"#! , which are 
calculated as 

𝑣!"! = 𝑣!.𝑛𝑓!!! =
𝑣!

𝑛𝑓!!!!!
                      (10) 

𝑣!"#! = 𝑣!"! .𝑛𝑓                            (11) 

So if we can find an implementation S’ of node S with 
inverse throughput equal to 𝑣!"! , we can combine node S’ 
with 𝑛𝑓 copies of node D without any area overhead (Figure 
8.c) and name it node C with input inverse throughput 𝑣! . 

𝑣! =
𝑡!
𝑛𝑓
                                              (12) 

To match the inverse throughput of node C to 𝑣! we 
have to make  𝑛𝑟! replicas of it with area overhead 𝐴!!  

𝑛𝑟! =
𝑛𝑟
𝑛𝑓
                                    (13) 

𝐴!! = 𝑛𝑓!
!!!

!!!

                (14) 

Assuming that inverse throughput/area relation between 
node S and node S’ is linear, we can save 𝑛𝑓!!! nodes. For 
example in case 𝑛𝑓 = 4, more than 75% overhead area will 
be saved. As shown in this example we are able to save area 
by combining nodes, an approach that we cannot model in 
the ILP formulation. 

 

 
Figure 8: Node combining in Bottleneck Optimizer 

Now that the key modules of our heuristic approach 
have been defined, we will explain how our heuristic 
approach works below. 

d) Heuristic Approach Description 
Trade-off Finder starts by selecting an implementation 

with the highest throughput for each node. Throughput 
Analyzer analyzes the full application and calculates the 
expected input inverse throughput and minimum output 
inverse throughput for each channel.  Then, it calculates 
slacks for all channels and weights for all nodes. Trade-off 
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Finder finds the most critical bottlenecks using the node 
weights. Next, Trade-off Finder calculates the application 
area and available area for this implementation. Considering 
the available area, Trade-off Finder budgets the most critical 
bottleneck and propagates the throughput to other nodes. 
After budgeting all nodes, it calculates an approximate area 
cost for the application considering new throughput for each 
node. Trade-off Finder accepts an area cost bigger than 
available area on the chip within a margin. In other words, it 
overshoots and hopes to release area later from fast nodes in 
the trading-off finding process. If the approximate area cost 
is above the margin, Trade-off Finder decreases the target 
throughput budget and does the same procedure again. After 
finding a reasonable budgeting, Trade-off Finder starts from 
the most critical bottleneck on the critical path and uses 
Bottleneck Optimizer to make replicas of that bottleneck to 
get a better throughput. Trade-off Finder starts from the 
optimized bottleneck and goes toward the output until it 
reaches a node which is located on another critical path. 
After reaching this node, Trade-off Finder goes backward to 
visit the other bottleneck and uses Bottleneck Optimizer to 
match its throughput to satisfy other nodes throughput 
expectations. The process continues until it balances all the 
other nodes. Trade-off Finder sees the other nodes in 
breadth first search order and makes sure that each node 
doesn’t affect nodes in other critical paths. In other words 
our tool always plays safe, so it selects the implementation 
to satisfy all channel’s throughput for each node. 

C. MPPA Overlay Finding Problem 
An automated approach for finding area and throughput 

trade-off for stream applications has been introduced in 
section 2.1 and 2.2. Finding a good trade-off will not 
necessarily solve the throughput/area problem. Mapping a 
steam application to an unsuitable overlay makes the 
throughput and area trade off finding effort ineffective. 
Finding a suitable overly is necessary in order to get better 
throughput while using less area. The current proposed 
MPPA overlay is an array of processing elements and 
memories similar to the Ambric architecture. A 
programmed PE or memory is called an object. Each object 
is encapsulated and it runs independently at its own speed. 
All objects intercommunicate through channels. The 
proposed layout would be a 2D array of tiles. Each tile has 
Processing Unit (PU) and Memory Unit (MU). PU contains 
different PEs, which are sharing memory blocks in the MU. 
MPPA Overlay Generator will decide which type of PE and 
how many of them should be used in each tile. This problem 
can be solved by adding another dimension to our trade-off 
finding problem.  

III. EXPERIMENT RESULTS 
Our experiments are carried out in two parts. We first 

evaluate our strategies of finding different implementations 
using StreamIt benchmarks [13]. Then, we examine our 
trade off finding methodology using the JPEG encoder.  

A. StreamIt 
In order to evaluate our tool, benchmarks in StreamIt 

benchmark set such as FFT, Filterbank and Autocor are 
implemented as KPN programming model and fed them to 
our tool. A simulator has been implemented to validate the 
results. Our tool was able to find different implementations 
for each benchmark with different area cost and throughput. 
The functionality of all the implementations has been 
verified with the simulator as well. Since all the StreamIT 
benchmarks are small, we just used them for evaluating the 
front-end and finding different implementations. We have 
JPEG, which is more complex in order to examine our trade 
off finder. 

B. JPEG 
Figure 10 shows the block diagram of the JPEG 

compression algorithm. The JPEG compression algorithm 
contains four major producer/consumer relationships (4 
kernels shown in the figure). 

 
Figure 10: JPEG compression algorithm flow 

The tool assumes each kernel is a composite node and, 
by using Intra-Node Optimizer and Inter-Node Optimizer 
modules, it finds different implementations for each of 
them. Our tool found 11 different implementations for Color 
Conversion and Quantization modules, 17 different 
implementations for DCT, and only one implementation for 
Encoding. Table 1 shows a selection of these 
implementations. Both ILP and Heuristic approaches have 
been used by our tool in order to find a trade off between 
area and throughput for different inverse throughput targets 
for JPEG. Table 2 gives the results generated by these two 
approaches for given throughput targets. We list the selected 
implementation and number of replicas for each module. As 
we can see our heuristic approach finds better 
area/throughput trade-off compare of the ILP approach. For 
example, for an inverse throughput target of 2, our heuristic 
approach used 37% less area compare to ILP. The ILP 
solver we use is GLPK [14] and the area cost unit is 
primitive node which can be implemented as a CLB in 
FPGA.

Color 
Conversion 

DCT Quantization Encoding 



TABLE I.  IMPLEMENTATION LIBRARY FOR JPEG ENCODER 

 
TABLE 2.  ILP VS. OUR HEURISTIC METHOD 

IV. FUTURE WORK 
We mentioned in Section 2 that we will investigate 

finding and generating suitable MPPA overlays for the 
found trade-off. Different types of PE as a spectrum from a 
basic PE to a very complex PE will be implemented as a 
library. The above-mentioned MPPA Overlay Generator 
will select suitable PEs for the application’s needs. This 
selecting process adds another dimension to our trade-off 
problem (area, throughput and target architecture), which 
can be tackled with both ILP and heuristic approaches. 

We mentioned in Section 2.3 that in replication 
processing, using fork and join modules is inevitable for a 
large number of replicas. Since most of nodes in fork and 
join modules are just passing data, they are underutilized 
most of the time. We may be able to use resource sharing to 
use the stalling time of underutilized nodes for running other 
independent computation. 

V. CONCLUSION 
In this paper, we studied the HLS problem of 

automatically finding area/throughput trade-off of streaming 
applications being mapped onto MPPA overlays. We 
introduce a high-level synthesis tool that compiles an stream 
application written in Java as a streaming task graph, 
partitions it into composite nodes, finds all degrees of 
parallelism for each, uses different approaches in order to 
find different implementations for each node, and finally 
finds a good trade off between area and throughput. Our 
approach differs from existing approaches because 1) it 
automatically investigates partitioning and finding different 
implementations, and 2) it combines module selection and 
replication methods with node combining and splitting in 
order to automatically find a better area/throughput trade-
off. This approach has been verified with small designs in 
StreamIt and a few larger designs like the JPEG encoder. 
This study is also our starting point for finding and 
generating suitable MPPA overlays for stream applications. 
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Module Encoding
Version v1 v2 v3 v4 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1
v 1 2 4 8 1 2 4 6 32 1 2 4 8 128 512
Area 512 256 128 64 800 400 224 160 50 512 256 128 64 4 22

Color Conversion QuantizationDCT

impl rep impl rep impl rep impl rep
ILP v1 1 v1 1 v1 1 v1 512 10880 23968
Heuristic v1 1 v5 32 v5 128 v1 512 640 13888
ILP v2 1 v2 1 v2 1 v1 128 5376 11920
Heuristic v2 1 v5 16 v5 64 v1 128 256 7456
ILP v3 1 v3 1 v3 1 v1 64 2688 5984
Heuristic v3 1 v5 8 v5 32 v1 64 128 3600
ILP v4 1 v4 1 v4 1 v1 32 1280 2976
Heuristic v4 1 v5 4 v5 16 v1 32 0 1736

Total AreavMethod

8

Color Conversion DCT Quantization Encoding Fork/join 
Overhead

1

2

4


