
Automated Space/Time
Scaling of Streaming Task Graph

Hossein Omidian
Department of Electrical and Computer

University of British Columbia
Vancouver, Canada

hosseino@ece.ubc.ca

Guy G.F. Lemieux
Department of Electrical and Computer

University of British Columbia
Vancouver, Canada
lemieux@ece.ubc.ca

Abstract—In this paper, we describe a high-level synthesis

(HLS) tool that automatically allows area/throughput trade-
offs for implementing streaming task graphs (STG). Our tool
targets a massively parallel processor array (MPPA)
architecture, very similar to the Ambric MPPA chip
architecture, which is to be implemented as an FPGA overlay.
Similar to Ambric tools, our HLS tool accepts a STG as input
written in a subset of Java and a structural language in the
style of a Kahn Processing Network (KPN). Unlike the Ambric
tools, our HLS tool analyzes the parallelism internal to each
Java “node” and evaluates the throughput and area of several
possible implementations. It then analyzes the full graph for
bottlenecks or excess compute capacity, selects an
implementation for each node, and even considers replicating
or splitting nodes while either minimizing area (for a fixed
throughput target), or maximizing throughput (for a fixed
area target). In addition to traditional node selection and
replication methods used in prior work, we have uniquely
implemented node combining and splitting to find a better
area/throughput trade-off. We present two optimization
approaches, a formal ILP formulation and a heuristic
solution. Results show that the heuristic is more flexible and
can find design points not available to the ILP, thereby
achieving superior results.

Keywords—content; Space/Time Trade off; Stream Task
Graph; High-Level Synthesis; MPPA Overlay,

I. INTRODUCTION
Since clock frequency scaling has essentially stopped

due to power issues, the research community has focused on
delivering increased levels of parallelism to improve both
performance and performance per Watt [1]. At one end,
coarse-grained parallelism is achieved with multi-core
processors, usually through a high-level language. At the
other end, fine-grained parallelism is achieved in FPGAs
and ASICs by designing hardware-level solutions. Both of
these extremes can be challenging to program. In software,
it can be challenging to expose sufficient parallelism in C,
and difficult to describe some types of computation in
CUDA or OpenCL. In hardware, RTL languages such as
VHDL and Verilog achieve very good results, but it is
tedious to describe everything at such a low level on a
cycle-by-cycle basis. High-level synthesis (HLS) tools that
convert C to RTL are very compelling, but impose their own
challenging constraints writing C and what can be
parallelized [2,3].

In this work, we wish to explore the design space in
between traditional multi-core CPUs and low-level
FPGA/ASIC solutions. In particular, we will investigate
whether an array of ALUs or very lightweight processors,
described best as a massively parallel processor array or
MPPA, can achieve sufficient levels of performance, and
make design entry sufficiently easy, to make them an
interesting alternative to more traditional design methods.

To explore the MPPA as an alternative target, we need
three things: (a) a tool flow that can compile algorithms into
the target, (b) a detailed architecture description or
implementation, and (c) a set of benchmarks to compile into
the framework. We decided to work on the tool flow first,
with the expectation the tools would help us explore a range
of architectures. However, we need an initial programming
model and an initial target architecture to focus the tools.
The programming model should support the strengths of
FPGAs, especially pipelined parallelism. Although OpenCL
and CUDA allow a programmer to specify thousands of
threads, where one thread is essentially “pipelined” behind
another one in a streaming fashion, we find that
performance can break down when these threads must share
information. Thus, we decided to start with the explicit
streaming model and architecture that was defined by
Ambric [4,5].

In the Ambric model, a Java object is created for each
thread, becoming nodes that communicate together through
explicitly defined blocking FIFO communication channels.
The node can be a primitive node such as an operation or a
composite node such as a thread with more than one
primitive node. The objects and channels are placed and
routed onto an array of 336 processors with a mesh NoC.
Each object contains local state and a processing thread.
Processing in an object can be variable latency, but
computation between objects is synchronized through the
blocking FIFOs. Objects may be replicated, thus facilitating
some re-use of a program, but all instances are explicitly
allocated and defined by the programmer at compile-time.
This is very similar to a Kahn Processing Network (KPN)
[6], except that in a KPN the FIFOs are assumed to be
infinitely deep. The resulting process network exhibits
deterministic behaviour that does not depend on the various
computation or communication delays.

One of the drawbacks of the Ambric framework is the
need for explicit allocation of all objects and channels. The

number of objects, and the computational delays within each
object, define amount of parallelism and the throughput of
the application. Thus, scaling a program to a larger or
smaller processor array requires manually re-programming
all objects and channels. For the Ambric commercial
solution consisting of a single device, this is an acceptable
trade-off. However, for a research platform, we must
investigate a variety of array sizes, as well as simpler or
more complex processors, which requires automatically
transforming a streaming application to use more or less
space, thereby increasing or decreasing throughput.

In this paper, we describe the beginning of a high-level
synthesis tool that can perform such automated space/time
tradeoffs. The user describes an initial program in Ambric-
style Java, and then defines either a throughput target, or an
area budget. The HLS tool analyzes the processing rate of
each object (or thread), and propagates these throughputs
across the entire computational graph (defined by the
communication channels). It also analyzes each thread to
determine the degree of internal parallelism. Using this
information, it transforms the compute graph to meet the
area or throughput target. There are a variety of
transformations such as replicating objects (requiring a
split/join on the data), subdividing objects into a deeper
pipeline (increasing throughput), and merging objects
together (decreasing area). At all times, a whole-program
approach is taken to optimization, so portions of a program
that are not performance-critical will be merged to use less
area, and more area will be allocated to performance-critical
regions. This alleviates some effort from the programmer,
and creates a scalable/retargetable implementation.

Our tool uses two internal optimization approaches. The
first, based upon integer linear programming (ILP), is
similar to previous work on task graph optimizations by
Cong et al [7]. The second, based upon a heuristic approach,
is our own novel contribution. Although the ILP approach
works well, maintaining the ILP optimization model within
the tool prohibits the use of certain optimizations. Instead,
our heuristic approach is able to perform object coalescing,
which cannot be done as an ILP formulation. This leads to
considerable area savings versus the ILP approach.

II. KPN-BASED HLS FOR MPPA OVERLAY
Figure 1 illustrates the detailed flow of proposed tool. It

compiles a program described in Ambric-style Java
(compute) and aStruct (communication), and makes a STG
complete with composite nodes communicating with each
other through channels (edges of the graph). It can handle
STGs without any feedback for now but we will address
handling STGs with feedback as our future work. Our tool
uses Intra-Node Optimizer and Inter-Node Optimizer in
order to find different implementations for each composite
node. It uses Trade-off Finder to find a good trade off
between throughput and area. Later, we will implement
MPPA Overlay Generator to generate a suitable architecture
instance based on the found trade-off and different types of
PE in an Architecture Library. A Back-end module will also
be implemented to generate MPPA instructions and map the
application to the overlay.

Figure 1: Tool flow

A. Finding different implementations
Consider an application with N composite nodes

𝑓!, 𝑓!,… , 𝑓! in its STG. For each composite node 𝑓!, our
tool tries to find different implementations 𝑃!! ,𝑃!! ,… ,𝑃!

!!
where each implementation 𝑃!! can perform the
functionality of 𝑓! with area cost 𝐴(𝑃!!) and initiation
interval 𝐼𝐼(𝑃!!). For node 𝑓! and its implementation 𝑃!! , the
minimal input “inverse throughput” 𝑣!"(𝑃!!) and output
inverse throughput 𝑣!"#(𝑃!!) are calculated as

𝑣!"(𝑃!!) =
𝐼𝐼(𝑃!!)
𝐼𝑛(𝑓!)

 , 𝑣!"#(𝑃!!) =
𝐼𝐼 𝑃!!

𝑂𝑢𝑡 𝑓!
, (1)

Where 𝐼𝑛(𝑓!) and 𝑂𝑢𝑡(𝑓!) equal the number of data
tokens that 𝑓!consume on the input data channel and
produce on the output data channel during each firing
respectively. Note that inverse throughput shows the
number of cycles to consume/produce per datum in its
input/output channel.

Intra-Node Optimizer and Inter-Node Optimizer
modules have been implemented in our tool to automatically
find these above-mentioned implementations for each
composite node.

1) Intra-Node Optimizer
Affine loop transformation strategies in [8,9,10,11,12]

have been used in Intra-Node Optimizer to find the
maximum degree of parallelism for each composite node.
After finding all degrees of parallelism, Intra-Node
Optimizer tries to find the best throughput (minimizing the
inverse throughput) for each node without considering area
cost. Since each operation needs different number of clock
cycles to provide its output (different invers throughput),
Intra-Node Optimizer (a) expands, (b) combines or (c)
pipelines nodes regarding the inverse throughput of
operations inside the composite node in order to find an
implementation with highest throughput for each composite
node.

2) Inter-Node Optimizer
After finding the implementation with the highest

throughput for each node, Inter-Node Optimizer starts a
clustering operation in order to find different
implementations. Each cluster will be mapped to one
Processing Element. Inter-Node Optimizer also sends
operations back and forth between clusters to find optimum
area cost for each overall inverse throughput target.

The example below illustrates how our tool works.

3) Example: N-Body Problem
The traditional N-body Problem simulates a 3D

universe, where each celestial object is a body, or particle,
with a fixed mass. Over time, the velocity and position of
each particle is updated according to interactions with other
particles and the environment. In particular, each particle
exerts a net force (i.e., gravity) on every other particle. The
computational complexity of the basic all-pairs approach we
use is O(n2). The run-time of the N-body is dominated by
the gravity force calculation, shown below:

𝐹!,!= 𝐺
𝑀!𝑀!
𝑟!

= 0.0625
𝑀!𝑀!

𝑃! − 𝑃!
! 𝑃! − 𝑃! , (2)

Where 𝐹!,! is the force particle i imposes on particle j,
𝑃! is the position of particle i, and 𝑀! is the size or ‘mass’ of
particle i. When mapping the force calculation, because of
the dependencies between instructions in this code, our tool
first pipelines it. A simplified 2D pipeline (with latencies) is
shown in Figure 2.

Figure 2: Pipelined Force Calculation

Consider mapping each operation to a simple Processing
Element. We get the highest throughput if and only if each
operation operates in one clock cycle (inverse
throughput=1). As shown in Figure 2, each operation has
different inverse throughput. For example, division needs
eight cycles to provide its output and, because of
dependencies, other operations have to stall for division. It
means the best overall inverse throughput we can get for
force calculation with this mapping is 8. To get the highest
throughput, Intra-Node Optimizer uses an “expansion”
approach to parallelize those nodes with high inverse
throughput. Figure 3 shows an improved pipeline where
inverse throughput equals to 1.

Figure 3: Expanded Force Calculation

After finding the highest possible throughput, Inter-
Node Optimizer tries to cluster and combine nodes again to
find several implementations with different throughput and
area. It means that Inter-Node Optimizer sacrifices the
throughput to save area. Inter-Node Optimizer continues
this procedure until it assigns the entire composite node 𝑓!
to one PE (Area cost = 1). Figure 4 shows inverse
throughput and area relation for different implementations
of the N-Body function. Here, the inverse throughput varies
from 1 to 33. To achieve the best throughput (inverse
throughput = 1), we can either replicate the slowest
implementation (inverse throughput=33) into 33 copies or
use the fastest implementation directly.

Figure 4: Inverse-Throughput/Area relation for different implementations

of N-Body function

B. Trade-off Finding Formulation and Solutions
Trade-off finding has two different modes in our tool.

• Given an available area on chip A! and different
implementations for each node 𝑓!, which
implementation 𝑃!! should be selected and how
many replicas 𝑛𝑟!! are needed in order to minimize
application inverse throughput 𝑣𝒜 subject to the
constraint the application area cost A𝒜 is not bigger
than 𝐴! .

• Given an inverse throughput target 𝑣!"!, and
different implementations for each node 𝑓!, which
implementation 𝑃!! should be selected and how
many replicas 𝑛𝑟!! are needed in order to minimize
area cost 𝐴𝒜 subject to the constraint the application
inverse throughput 𝑣𝒜 is not bigger than 𝑣!"!.

!

!

x

x

x

+ sqrt(/ x x x

x

x

+

+
1"

1"

2"

2"

2"

1" 4" 8" 2" 2" 2"

2"

2"

1"

1"

xi

xj
yi

yj
mi

mj

!

!

x

x

x

+
sqrt(

/

x x x

x

x

+

+sqrt(

sqrt(

sqrt(x

x

/

/

/

/

/

/

/

x x x

x

x

x

33,#1#0#

5#

10#

15#

20#

25#

30#

35#

0# 5# 10# 15# 20# 25# 30# 35#

Re
ve
rs
e&
Th

ro
ug
hp

ut
&

Area&

1) Using Integer Linear Programming
The first approach to tackle this problem was defining

the problem in terms of Integer Linear Programming (ILP).
The goal is to find binary integers 𝑥!,!, 𝑥!,!,… , 𝑥!,!!
indicating the implementations to be selected, and integer
𝑛𝑟!! indicating number of replicas needed. The formulation
of the first problem is:

Minimizing 𝑣𝒜subject to

𝑛𝑟!!𝐴(𝑃!!)𝑥!,!

!!

!!!

!

!!!

< 𝐴! 𝑎𝑛𝑑 ∀𝑗 ∈ 1, . . ,𝑁 : 𝑥!,!

!!

!!!

= 1 (3)

The formulation of the second problem is:

Minimizing 𝐴𝒜 subject to

 ∀𝑗 ∈ 1, . . ,𝑁 :
1
𝑛𝑟!

! 𝑣(𝑃!
!)𝑥!,! <

!!

!!!

𝑣!
!"! 𝑎𝑛𝑑 𝑥!,!

!!

!!!

= 1 (4)

An ILP solver could go through all the possibilities of
𝑥!,! and 𝑛𝑟!! and find the optimum solution for this problem,
subject to the constraints. Although ILP solvers can solve
these problems, the approach does have two shortcomings:

• Lack of flexibility: the problem must be defined in
advance and it’s not possible to change the
problem’s structure while solving it by ILP. In other
words, combining or splitting nodes are not possible
while using ILP.

• Time inefficient: In our experiments, ILP is usually
slower than our heuristic algorithm.

2) Using Heuristic Approach
Before describing our heuristic approach, let us first

define Throughput Analysis, Throughput Propagation and
Bottleneck Optimizer.

a) Throughput Analysis
Each node achieves the maximum output throughput if

and only if all its input data are ready when the node expects
them. To make the throughput analysis more
straightforward we use inverse throughput instead of
throughput. To achieve minimum inverse throughput 𝑣!",
the input data have to be ready with expected inverse
throughput 𝑣!". We define slack 𝑣! for each channel as

𝑣! = 𝑣!" − 𝑣!" (5)

Figure 5 shows a simple example in which two nodes A
and B nodes are connected together. Node A is a potential
bottleneck if it doesn’t provide data fast enough to satisfy
node B’s expectation (𝑣!" > 𝑣!" ⇒ 𝑣! > 0). Node B is a
possible bottleneck if node A provides data faster than what
node B consumes (𝑣!" < 𝑣!" ⇒ 𝑣! < 0).

Figure 5: Minimum and expected inverse throughput

Throughput analysis helps us to find bottleneck nodes in
a system as well as unnecessary high throughput nodes.
Figure 6 shows an example with seven nodes with different

𝑣!" and 𝑣!". We calculated slack 𝑣! for each channel. As
we can see 𝑣! for input channels going to 𝑓! are smaller than
𝑣! for other input channels. Also 𝑣! for output channel from
𝑓! is bigger than 𝑣! for other output channels. This shows 𝑓!
is a potential critical bottleneck. To find potential
bottlenecks in an application, we define weight 𝑊! for each
node 𝑓!as:

𝑊! =
𝑣!" − 𝑣!"

!!"
!!!

!!"#
!!!

𝑁!" + 𝑁!"#
 (6)

where 𝑣!" is the input throughput slacks for incoming
channels and 𝑣!" is the output throughput slacks for
outgoing channels of 𝑓!. 𝑁!" denotes the number of inputs,
and 𝑁!"# denotes the number of outputs for node 𝑓!. A
higher weight means that the node is not able to
provide/consume expected outgoing/incoming data to/for its
neighbors in most of its channels and the throughput
differences between this node and its neighbor are critical.

Figure 6: Throughput Analysis

b) Application Throughput Propagation and
Balancing

Although it seems trade-off finder should select an
implementation for each node in order to increase its
throughput, increasing throughput of a node will not
necessarily increase the overall throughput. For example, as
shown in Figure 7, optimizing the block B doesn’t increase
the throughput of the system (in either case) because the
system always has to wait for block A which takes 9 clock
cycles. In this case, it might be good to sacrifice the
throughput of block B in order to release some area.

Figure 7: Throughput Propagation and Balancing

A" B"
vmo$ vei$

f1#

f2#

f3#

f6#f4#

f5#

f7#

1#

1#

3#

2#

4# 72# 90# 2#

2# 4#

4#

2#

2#

48#

2# 48#

3#

2#

2#

1#

-2#

2#

72#

-68# 88#

-68#

1#

-46#

46#

2#

A=45#

A=24# A=30#

A=6#

A=24# A=3#

A=30#

A

Generator

B

IIA = 9

Collector IIB = 4

A Generator B

IIA = 9

Collector

IIB = 4

IIO = 9

IIO = 9

To balance the throughput for each node we have to
propagate the target inverse throughput to all nodes in the
application. For propagating the input inverse throughput
target to the output inverse throughput target for a single
composite node, we used similar strategy in previous work
[7]. For a composite node 𝑓!, the number of input and
output channels are denoted as 𝑛𝑢𝑚𝐼𝑛(𝑓!) and
𝑛𝑢𝑚𝑂𝑢𝑡(𝑓!) and the inverse throughput target on the
input/output channel is denoted as 𝑣!"

! (𝑓!)/𝑣!"#! (𝑓!), where
1 ≤ 𝑗 ≤ 𝑛𝑢𝑚𝐼𝑛(𝑓!) and 1 ≤ 𝑘 ≤ 𝑛𝑢𝑚𝑂𝑢𝑡(𝑓!). Given the
input inverse throughput target 𝑣!"

! (𝑓!), the output inverse
throughput target 𝑣!"#! (𝑓!) is calculated as

𝑣!"#! 𝑓! =
𝑚𝑖𝑛
!
{𝑣!"

! 𝑓! . 𝐼𝑛!(𝑓!)}

𝑂𝑢𝑡!(𝑓!)
 (7)

Throughput propagation helps the Trade-Off Finder to
balance the throughput of all nodes in the application.

c) Bottleneck Optimizer
Bottleneck Optimizer is very similar to ILP in sense that

it makes replicas of the bottleneck to increase the
throughput. However ILP replicates the bottleneck without
any attention to its neighbouring nodes that could create
opportunities to have a lower area overhead cost. To
overcome this not-so-intelligent approach, we propose a
method that relies on the fact that each node can
send/receive data to/from up to FanIn/FanOut number of
nodes without any area overhead cost. If more than
FanIn/FanOut numbers of replicas are required, overhead
cost is inevitable. In other words, to connect these replicas
to successor/predecessor nodes, new fork/join nodes are
needed to send/receive data to each replica with a round-
robin order are needed.

Let us go through a simple example to show the overall
idea in our Bottleneck Optimizer approach. Figure 8.a
shows an example which two nodes S with inverse
throughput 𝑣! and D with inverse throughput 𝑣! are
connected together and node S is sending data to D over a
channel. Assume the node D is a bottleneck and we want to
match its throughput to node S’s throughput. In order to
match the throughput we have to make 𝑛𝑟 replicas of node
D which is calculated as

𝑛𝑟 =
𝑣!
𝑣!
 (8)

In order to connect node S to 𝑛𝑟 replicas of node D we
have to use several nodes in between to get data and send it
to each replica in round-robin order. Assume each node has
FanIn/FanOut equal to 𝑛𝑓, which means each node can send
data to a maximum of 𝑛𝑓 nodes. We define 𝐻 =
𝑙𝑜𝑔!" 𝑛𝑟 , which shows how many layers of nodes need to

send data from one node to 𝑛𝑟 ≤ 𝑛𝑓! nodes. Assuming
𝑛𝑟 = 𝑛𝑓! (Figure 8.b), the area overhead 𝐴! for connecting
node S to 𝑛𝑟 replicas of node D is calculated as

𝐴! = 𝑛𝑓!
!!!

!!!

 (9)

In our approach, we try to combine nodes together in
order to save area overhead. As shown in Figure 8.b in each
layer ℎ there are 𝑛𝑓!!! nodes with input inverse throughput
𝑣!"! and output inverse throughput 𝑣!"#! , which are
calculated as

𝑣!"! = 𝑣!.𝑛𝑓!!! =
𝑣!

𝑛𝑓!!!!!
 (10)

𝑣!"#! = 𝑣!"! .𝑛𝑓 (11)

So if we can find an implementation S’ of node S with
inverse throughput equal to 𝑣!"! , we can combine node S’
with 𝑛𝑓 copies of node D without any area overhead (Figure
8.c) and name it node C with input inverse throughput 𝑣! .

𝑣! =
𝑡!
𝑛𝑓
 (12)

To match the inverse throughput of node C to 𝑣! we
have to make 𝑛𝑟! replicas of it with area overhead 𝐴!!

𝑛𝑟! =
𝑛𝑟
𝑛𝑓
 (13)

𝐴!! = 𝑛𝑓!
!!!

!!!

 (14)

Assuming that inverse throughput/area relation between
node S and node S’ is linear, we can save 𝑛𝑓!!! nodes. For
example in case 𝑛𝑓 = 4, more than 75% overhead area will
be saved. As shown in this example we are able to save area
by combining nodes, an approach that we cannot model in
the ILP formulation.

Figure 8: Node combining in Bottleneck Optimizer

Now that the key modules of our heuristic approach
have been defined, we will explain how our heuristic
approach works below.

d) Heuristic Approach Description
Trade-off Finder starts by selecting an implementation

with the highest throughput for each node. Throughput
Analyzer analyzes the full application and calculates the
expected input inverse throughput and minimum output
inverse throughput for each channel. Then, it calculates
slacks for all channels and weights for all nodes. Trade-off

S" D

D

D

D

S"
."
."
."."."."

."

."

."

."

."

."

nf#0#

nf#1#

nf#2#

nf#H(1#
nf#H#

vS" vS"

vS" vS" vD"

vS.nf#H#
=vD"

vS.nf#

vS.nf#2#

a)"

b)"

nr
#=
#n
f#H
#

nf#H(2#

vS.nf#H(1#
=vD/nf"

S’" D

C

C

C

."

."

."."."."

."

."

."

."

."

."

nf#0#

nf#1#

nf#2#
nf#H(2#

nf#H(1#

vS"

vS" vD/nf" tD"

vS.nf#H(1#
=vD/nf"

vS.nf#

vS.nf#2#

D

S’"

D

."

."

."

vD"

C"

nr
#=
#n
f#H

(1
#

c)"

Finder finds the most critical bottlenecks using the node
weights. Next, Trade-off Finder calculates the application
area and available area for this implementation. Considering
the available area, Trade-off Finder budgets the most critical
bottleneck and propagates the throughput to other nodes.
After budgeting all nodes, it calculates an approximate area
cost for the application considering new throughput for each
node. Trade-off Finder accepts an area cost bigger than
available area on the chip within a margin. In other words, it
overshoots and hopes to release area later from fast nodes in
the trading-off finding process. If the approximate area cost
is above the margin, Trade-off Finder decreases the target
throughput budget and does the same procedure again. After
finding a reasonable budgeting, Trade-off Finder starts from
the most critical bottleneck on the critical path and uses
Bottleneck Optimizer to make replicas of that bottleneck to
get a better throughput. Trade-off Finder starts from the
optimized bottleneck and goes toward the output until it
reaches a node which is located on another critical path.
After reaching this node, Trade-off Finder goes backward to
visit the other bottleneck and uses Bottleneck Optimizer to
match its throughput to satisfy other nodes throughput
expectations. The process continues until it balances all the
other nodes. Trade-off Finder sees the other nodes in
breadth first search order and makes sure that each node
doesn’t affect nodes in other critical paths. In other words
our tool always plays safe, so it selects the implementation
to satisfy all channel’s throughput for each node.

C. MPPA Overlay Finding Problem
An automated approach for finding area and throughput

trade-off for stream applications has been introduced in
section 2.1 and 2.2. Finding a good trade-off will not
necessarily solve the throughput/area problem. Mapping a
steam application to an unsuitable overlay makes the
throughput and area trade off finding effort ineffective.
Finding a suitable overly is necessary in order to get better
throughput while using less area. The current proposed
MPPA overlay is an array of processing elements and
memories similar to the Ambric architecture. A
programmed PE or memory is called an object. Each object
is encapsulated and it runs independently at its own speed.
All objects intercommunicate through channels. The
proposed layout would be a 2D array of tiles. Each tile has
Processing Unit (PU) and Memory Unit (MU). PU contains
different PEs, which are sharing memory blocks in the MU.
MPPA Overlay Generator will decide which type of PE and
how many of them should be used in each tile. This problem
can be solved by adding another dimension to our trade-off
finding problem.

III. EXPERIMENT RESULTS
Our experiments are carried out in two parts. We first

evaluate our strategies of finding different implementations
using StreamIt benchmarks [13]. Then, we examine our
trade off finding methodology using the JPEG encoder.

A. StreamIt
In order to evaluate our tool, benchmarks in StreamIt

benchmark set such as FFT, Filterbank and Autocor are
implemented as KPN programming model and fed them to
our tool. A simulator has been implemented to validate the
results. Our tool was able to find different implementations
for each benchmark with different area cost and throughput.
The functionality of all the implementations has been
verified with the simulator as well. Since all the StreamIT
benchmarks are small, we just used them for evaluating the
front-end and finding different implementations. We have
JPEG, which is more complex in order to examine our trade
off finder.

B. JPEG
Figure 10 shows the block diagram of the JPEG

compression algorithm. The JPEG compression algorithm
contains four major producer/consumer relationships (4
kernels shown in the figure).

Figure 10: JPEG compression algorithm flow

The tool assumes each kernel is a composite node and,
by using Intra-Node Optimizer and Inter-Node Optimizer
modules, it finds different implementations for each of
them. Our tool found 11 different implementations for Color
Conversion and Quantization modules, 17 different
implementations for DCT, and only one implementation for
Encoding. Table 1 shows a selection of these
implementations. Both ILP and Heuristic approaches have
been used by our tool in order to find a trade off between
area and throughput for different inverse throughput targets
for JPEG. Table 2 gives the results generated by these two
approaches for given throughput targets. We list the selected
implementation and number of replicas for each module. As
we can see our heuristic approach finds better
area/throughput trade-off compare of the ILP approach. For
example, for an inverse throughput target of 2, our heuristic
approach used 37% less area compare to ILP. The ILP
solver we use is GLPK [14] and the area cost unit is
primitive node which can be implemented as a CLB in
FPGA.

Color
Conversion

DCT Quantization Encoding

TABLE I. IMPLEMENTATION LIBRARY FOR JPEG ENCODER

TABLE 2. ILP VS. OUR HEURISTIC METHOD

IV. FUTURE WORK
We mentioned in Section 2 that we will investigate

finding and generating suitable MPPA overlays for the
found trade-off. Different types of PE as a spectrum from a
basic PE to a very complex PE will be implemented as a
library. The above-mentioned MPPA Overlay Generator
will select suitable PEs for the application’s needs. This
selecting process adds another dimension to our trade-off
problem (area, throughput and target architecture), which
can be tackled with both ILP and heuristic approaches.

We mentioned in Section 2.3 that in replication
processing, using fork and join modules is inevitable for a
large number of replicas. Since most of nodes in fork and
join modules are just passing data, they are underutilized
most of the time. We may be able to use resource sharing to
use the stalling time of underutilized nodes for running other
independent computation.

V. CONCLUSION
In this paper, we studied the HLS problem of

automatically finding area/throughput trade-off of streaming
applications being mapped onto MPPA overlays. We
introduce a high-level synthesis tool that compiles an stream
application written in Java as a streaming task graph,
partitions it into composite nodes, finds all degrees of
parallelism for each, uses different approaches in order to
find different implementations for each node, and finally
finds a good trade off between area and throughput. Our
approach differs from existing approaches because 1) it
automatically investigates partitioning and finding different
implementations, and 2) it combines module selection and
replication methods with node combining and splitting in
order to automatically find a better area/throughput trade-
off. This approach has been verified with small designs in
StreamIt and a few larger designs like the JPEG encoder.
This study is also our starting point for finding and
generating suitable MPPA overlays for stream applications.

VI. REFERENCES
[1] J. Parkhurst, J. Darringer, and B. Grundmann, "From Single Core to
Multi-Core: Preparing for a new exponential," in ICCAD, 2006, p. 67-72.

[2] L. Daoud, D. Zydek, and H. Selvaraj, "A Survey of High Level
Synthesis Languages, Tools, and Compilers for Reconfigurable High
Performance Computing," in Advances in Systems Science: Springer,
2014, vol. 240, pp. 483-492.

[3] G. Martin and G. Smith, "High-Level Synthesis: Past, Present, and
Future," IEEE Design & Test of Computers, 2009, pp. 18 - 25.

[4] M. Butts, A. M. Jones, and P. Wasson, "A Structural Object
Programming Model, Architecture, Chip and Tools for Reconfigurable
Computing" in IEEE FCCM, 2007.

[5] M. Butts, B. Budlong, P. Wasson, and E. White, "Reconfigurable
Work Farms on a Massively Parallel Processor Array," in IEEE FCCM,
2008.

[6] G. Kahn, "The Semantics of a Simple Language for Parallel
Programming," in IFIP Congress 74, 1974.

[7] J. Cong, M. Huang, B. Liu, P, Zhang, and Y. Zou, "Combining module
selection and replication for throughput-driven streaming programs," in
DATE, 2012.

[8] A. W. Lim and M. S. Lam, "Maximizing Parallelism and Minimizing
Synchronization with Affine Transforms," in POPL, 1997.

[9] D. F. Bacon, S. L. Graham, and O. J. Sharp, "Compiler transformations
for high-performance computing," ACM Computing Surveys (CSUR), vol.
26, no. 4, pp. 345-420, 1994.

[10] V. Sarkar and R. Thekkath, "A general framework for iteration-
reordering loop transformations," in Conference on Programming
language design and implementation, NY, USA, 1992, pp. 175-187

[11] U. Banerjee, Loop Transformations for Restructuring Compilers: The
Foundations, Kluwer, 1993.

[12] U. Banerjee, "Unimodular transformations of double loops," in Work.
on Prog. Lang. and Compilers for Par. Computing, 1990, pp. 192-219.

[13] StreamIT benchmarks. [Online].

http://groups.csail.mit.edu/cag/streamit/shtml/ benchmarks.shtml

[14] GNU Linear Programming Kit. [Online].

 http://www.gnu.org/software/gl

Module Encoding
Version v1 v2 v3 v4 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v1
v 1 2 4 8 1 2 4 6 32 1 2 4 8 128 512
Area 512 256 128 64 800 400 224 160 50 512 256 128 64 4 22

Color Conversion QuantizationDCT

impl rep impl rep impl rep impl rep
ILP v1 1 v1 1 v1 1 v1 512 10880 23968
Heuristic v1 1 v5 32 v5 128 v1 512 640 13888
ILP v2 1 v2 1 v2 1 v1 128 5376 11920
Heuristic v2 1 v5 16 v5 64 v1 128 256 7456
ILP v3 1 v3 1 v3 1 v1 64 2688 5984
Heuristic v3 1 v5 8 v5 32 v1 64 128 3600
ILP v4 1 v4 1 v4 1 v1 32 1280 2976
Heuristic v4 1 v5 4 v5 16 v1 32 0 1736

Total AreavMethod

8

Color Conversion DCT Quantization Encoding Fork/join
Overhead

1

2

4

