
Greed in Resource Scheduling 
Donald W. Gillies and Jane W.-S. Liu 

1304 W. Springield Avenue 
Department of Computer Science 

University of Illinois 
Urbana, Illinois 61801 

ABSTRACT 
We examine the worst-case performance of a class of 

scheduling algorithms commonly known as priority-driven or list- 
scheduling algorithms. It is well known that these algorithms 
have anomalous, unpredictable performance when used to sub- 
optimally schedule nonpreemptive tasks with precedence 
constraints. We present a general method for deriving the worst- 
case performance of these algorithms. This method is easy to use, 
yet powerful enough to yield tight performance bounds for many 
classes of scheduling problems. We demonstrate the method for 
several problems to show it has wide applicability. We also 
present several task systems for which list-scheduling algorithms 
have worst-case performance and discuss the general 
characteristics of these task systems. We believe that these task 
systems are sometimes ignored in simulation studies; 
consequently, the results of these studies may be overly 
optimistic. 

1. Introduction 

It is important in real-time systems to minimize the 
unpredictability in the completion time of every real-time task. 
Unpredictability arises when two or more tasks contend for shared 
resources, such as processors, memory pages, or communication 
channels. Tasks that compete for shared resources may block 
until other tasks holding the resources release them. The length of 
time a task stays blocked depends on the resource requirements 
and execution times of the other tasks, making it hard to predict 
the task completion time. One way to eliminate this unpredictable 
behavior is to allocate dedicated resources to every task, but this 
is expensive and in some applications impossible. Another way to 
eliminate this unpredictability is to dynamically pre-allocate 
resources, so that when a task begins execution, it is guaranteed 
to have the resources it needs for the duration of its execution. 
This is accomplished by solving the resource contention problem 
together with the task scheduling problem. These combined 
problems are called real-time resource scheduling problems. 

This work supported in part by a contract from the ONR 
(NVY -NO001 4-8941 181). 

Unfortunately, most resource scheduling problems encountered 
in practice are NP-hard; yet fast algorithms are typically needed. 
We are concemed with a class of simple heuristic algorithms that 
never leave resources idle intentionally. These algorithms are 
lcnown as priority-driven or list-scheduling algorithms. Whenever 
sufficient resources are available, these algorithms schedule the 
ready task with the highest priority according to a priority list. The 
priority of a task may be assigned statically or dynamically; 
commonly used criteria for priority assignment include the task's 
programmer-defined priority, relative criticalness, deadline, 
execution time, or resource requirements [1,5,7,8,15]. Because 
they try to make the best local choice at each scheduling decision 
point, list-scheduling algorithms are also called greedy algorithms. 
They are particularly suited to real-time scheduling because they 
can often be implemented to run in time O(n log n). 

As illustrated by Graham's well-known examples [7], a list 
schedule, produced by a list-scheduling algorithm, may increase in 
length when task execution times decrease, when more resources 
are made available, or when the task dependency graph is relaxed. 
Therefore, list-scheduling algorithms generate a new source of 
unpredictability. This paper addresses the problem of bounding 
the worst-case performance of these algorithms, and hence, 
bounding this new unpredictability. 

To bound this unpredictability we find the maximum length of a 
aub-optimal list schedule using linear programming. This method 
is powerful enough to yield tight performance bounds for many 
classes of problems, such as those analyzed in [6,7,9,10,11,12]. 
We illustrate the method by working several sample problems. 
The performance bounds we obtain allow us to determine the 
schedulability of a task system according to some list-scheduling 
algorithm. We present several task systems which cause list- 
scheduling algorithms to exhibit their worst-case performance and 
discuss the general characteristics of these tasks systems. 

The remainder of this paper is organized as follows: Section 2 
describes our assumptions about the scheduling problems 
considered here and introduces the terminology used in later 
sections. Section 3 outlines the linear-programming method of 
analysis. Section 4 works four sample problems and presents task 
systems for which the worst-case bounds are tight. We also plot 

CH2803-5/89/oooO/0285/$01.00 0 1989 IEEE 
285 



performance curves to aid in understanding the bounds. Section 5 
discusses greedy algorithms in general, presents several lower 
bounds for independent task systems (no precedence constraints), 
and partially characterizes the problems that can be solved 
optimally by greedy algorithms. Section 6 summarizes our results. 

2. Assumptions 

Resources come in many types. For instance, message 
buffers, procesvors, communication channels, database locks, and 
memory pages can all be thought of as resources. The resources 
we consider in this paper have four qualities. 

1. Resources are renewable - Renewable resources are a 
standard assumption in scheduling problems. In other words, the 
resources are not consumed as they are scheduled. (For 
information on scheduling with nonrenewable resources, see [3].) 
Hence, resources assigned to a task can be reassigned to other 
tasks when the task completes. 

2. Resources are nonpreemptable - We consider only the case 
of nonpreemptive tasks. Resources are assigned to a task when it 
is scheduled and are unavailable until it completes. 

3. Resources need not be contiguously allocated - This implies 
that memory must be managed by compaction or page-based 
allocation. This assumption reduces the complexity of the 
scheduling problem. Other researchers have considered the 
problem of scheduling resources that must be contiguously 
allocated [4,13]. 

4. Resources come in fixed integer quantities - Our models 
are discrete. Each type of resource is available in an integer 
amount, and tasks request integer amounts of one or several 
resource types. We further assume that for every resource type, 
there are upper and lower bounds on the number of resources 
requested by any task. This allows us to model processors as 
resources, by d e f i i g  a separate type of resource as "processors" 
and setting the upper and lower bounds to one, if every task needs 
exactly one processor. If tasks need several processors, then the 
upper bound may be greater than one. 

All the scheduling problems considered here are extensions of 
the following problem: We are given a system of tasks T = { TI, 
T2, ..., T ,  }, and every task has ready time equal to zero. We wish 
to schedule these tasks in a system with r identical resources to 
minimize the overall completion time of all tasks in T. Each task 
requires R(Ti)  resources for p(Ti) units of time. We refer to 
R(TJ as the width of Ti and p(Ti) as the length of Ti. Among all 
tasks, let k = 2~ { R ( T i ) }  be the maximum width and 1 
= rnk {R(Ti)} be the minimum width. There is also a partial order 
< defiied over T. If Ti < Tj , then Ti must complete before Tj 
may begin, and Ti is a predecessor of Tj . A task is ready when all 

its predecessors have completed. A schedule produced by a list- 
scheduling algorithm is known as a list schedule, and the time at 
which all tasks in T are complete is the length of the schedule. 

An example of a task system is depicted in Figure la. 

Individual tasks are represented by the vertices in a directed 
graph. There is an edge from Ti to T, if Ti < T, .  Tasks are 

labeled by their (name, length, width), so (T5, E, 4) indicates that 
task T5 requires 4 resources for E units of time. Task sizes are 

approximated with ovals. Figure lb  shows a list schedule of the 
task system in Figure la. The length of this schedule is 8. For 

simplicity, we will omit axis divisions and labels in future 

schedules. 

a 

4 

1 3  

4 2  

1 

1 2 3 4 5 6 7 8 T i m e  

(b) 
Figure 1. Sample Task System 

In many problems there are multiple resource types. When 
discussing these problems, we will index each type by a number, 
and each variable will be qualified by the subscript j .  Thus, a task 
Ti requires Rj(T;) resources of type j ,  from a total of rj type-j 
resources, and the maximum and minimum widths are kj and l j  
respectively. In the special case when the resources are 
processors and every task requires only one processor, we say 
that there are m processors, and the maximum and minimum 
widths are understood to be one. 

Again, we want to find the worst-case performance of list- 
scheduling algorithms. Let W be the length of an optimal schedule, 
and W' be the length of any list schedule. We observe that the 
time in any schedule may be divided into two disjoint parts. 
During busy time all the resources are fully utilized. On the other 
hand, during idle time, at least one resource is not fully utilized, so 
that a task could conceivably start in this time. By bounding the 
lengths of these times, we will obtain an upper bound on W'IW 
which will often be tight. 

286 



3. A Method for Deriving Worst-case Performance 

We will use linear-programming [14] to derive ,the worst-case 
performance of list-scheduling algorithms. In a linear programming 
problem we are given a set of s linear inequalities (known as 
constraints), in n variables, of the form: 

where 1 < i 5 s and the a i j  and C i  are all constants. In our 
problems the x / s  denote the lengths of different types of idle times, 
depending on the problem. We will give more details later. The 
problems we solve in this paper will have no more than 6 
constraints, but much larger problems can be solved by commercial 
software packages. There will be one constraint equation for each 
type of resource, and several simple constraints to make all the 
xis non-negative. Each equation partitions n-dimensional space 
into a half that satisfies the inequality and one that does not. The 
intersection of all the satisfying halves is known as a simplex, 
which can be thought of as a geometric shape in n dimensions 
having flat faces and sharp comers. We are also given a linear 
equation (called the objective function) of the form: 

The problem is to find a set of x i  within the simplex that 
maximizes the objective function. For our problems, bj = 1 for all i. 
The objective function will tell us the length of a worst-case 
schedule, and each xi will be the length of the corresponding idle 
time in such a schedule. A simple bixte-force algorithm to solve a 
linear programming problem is to convert all the inequalities to 
equalities, solve them simultaneously to obtain the simplex comer 
points, and take the point that maximizes the objective function. 
The point in space that maximizes the sum of the idle time 
corresponds to the worst-case performance. 

As we stated earlier, all time in a schedule can be divided into 
busy time and idle time. The length of the busy time is denoted by 
wb, and the intervals of time during which all resources are busy is 
referred to as Wb-time. The idle time can further be. divided into 
many types. Sometimes resources are left idle because 
precedence constraints prevent the remaining tasks from being 
ready. This time is called the idle time due to precedence 
constraints, and the total duration is denoted by W,. At other 
times, some tasks are ready but cannot begin because there are 
not enough free resources of type j. This time is called the idle 
time due to resource constraints, and the total duration is denoted 
by W,, or by Wrjwhen there are several types of resource. When 
two or more types of resources are unavailable in sufficient 
quantities to start any task, we arbitrarily attribute this time to the 
resource type of least index j .  We speak of the Wp-time and the 
Wrtime as the intervals of time when resources are idle because 
of precedence or resource constraints, respectively. The two forms 
of idle time are depicted in Figure 2. In [7], it was shown that the 

Wp-time lasts for no more than W time units, the length of an 
optimal schedule. This is because there is a chain of tasks 
executing during Wp-time, and this chain is no longer than the 
length of an optimal schedule. Hence, W, 5 W. 

.T 
Too few resomes 

? 
2's successors cannot 

start here to startT here. 

(a) W,-time (b) Wr-time 

Figure 2. Different Types of Idle Time 

The following method is used to derive the worst-case 
performance of list-scheduling nonpreemptive tasks with 
precedence constraints. 

STEP 1: 

STEP2 

Defme a variable for each type of idle time in a worst- 
case schedule. 
For each type of resource, write a linear inequality 
relating idle-time resource utilization rates to the length 
and the maximum resource utilization of an optimal 
schedule. 
Add the following constraints: 
(a) Each idle time variable is non-negative. 
(b) The duration of Wp-time is less than W (W, I W). 
Solve the linear program to maximize the sum of all the 
types of idle time. This is the maximum length of a list 
schedule. 
Construct a worst-case schedule, employing the solution 
from step 4, to show the bound is tight. 

STEP 3 

STEP 4: 

STEPS: 

Some care is required to apply step 2 of this method in order to 
get a tight bound. In an optimal schedule, tasks utilize at most r, 
type-j resources for at most W units of time. A worst-case 
schedule is divided into disjoint types of time. If during these 
times type-j resources are utilized at some constant minimum 
rates, then a linear constraint can be written to bound the type-j 
resource usage in a worst-case schedule by the usage in an 
optimal schedule. After applying the method a task system should 
be constructed to verify that this minimum utilization rate can be 
maintained. We will illustrate these steps in the next section. 

4. Sample Problems 

In this section we solve four scheduling problems to illustrate 
our method. Fust, we solve the simplest version of our problem, 
where just m processors are to be scheduled. Second, we extend 
the problem to the scheduling of r resources where the task 

281 

1 



widths may vary. Then, we use the method to get tight bounds on 
the combined scheduling of m processors and r resources. This 
problem originally motivated us to develop the method. It is a 
simple extension to add several resource types to this problem; 
however, a closed form solution is too complex to derive. Finally, 
we consider an intricate problem involving two resources that are 
used in several ways, by two kinds of tasks. This problem 
stretches the method to its limit and generates O(r)  variables, 
where r is the amount of resource available. 

4.1 Scheduling Simple Tasks 

We consider scheduling m processors alone, and use our 
method to obtain the bound of 2-l/m, an early result in scheduling 
theory [7]. The only type of idle time in this problem is the 
Wp-time. During this time, at least one processor is executing. 
During Wb-time, m processors are executing. Therefore, we have 
the following inequalities from steps 1-3. 

Processors are the only resource in this problem. The left- 
hand side of (la) is the sum of the resources in use times the 
lengths of the idle times in a list schedule. In other words, it is a 
lower bound on the work done on a task system by the processors 
in a worst-case schedule. The right hand side is an upper bound 
on the work done on a task system by the processors in an optimal 
schedule. The rest of the equations are standard. By inspection of 
(la), we see that Wp+Wb is maximized when wp is as large as 
possible; hence Wp = W, a limiting value from (lb). From (la) we 
get Wb I (m - l)W/m, so W' = wp+wb I (2 - l/m)W. 

4.2 Scheduling Resources of a Single Type 

In this problem we are given r resources and a task system T. 
Task widths may vary in the range 1 I R(TJ I k. This problem 
models computations on massively parallel machines where each 
task executes on many processors at once. 

During the Wp-time, at least one task of width 1 uses 
resources. During W,-time, at most k - 1 resources are idle; 
otherwise a ready task could start, and such a task always exists 
during W,-time. Therefore, at least r - (k - 1) resources are in use 
during this time. This bound is simple but not as tight a possible. 
What follows is a better bound that results in a tight bound when 
all the tasks have a common width greater than one. 

Let g = ,f& {R(Ti)} be the greatest common divisor of all the 
task widths. At any time the number of resources in use must be 
an integer multiple of g. Let rxlb = b . $1 denote the least 

integer multiple of b that is larger than or equal to x. Note that 
rxi, = rxi. 

Lemma 1. During the W,-time, the maximum amount of free 
(idle) resource is & = r - r r - (k - 1) 18, 

Proof. During W,-time, at most k - 1 resources are idle, 
otherwise any ready task may be scheduled and such a task 
always exists during W,-time. However, r - (k - 1) may not be a 
multiple of g; it may be impossible for k - 1 resources to be idle. 
In fact, the least multiple of g that exceeds r - (k - 1) is 
r r - ( k - i ) l g n  

If all the tasks have a width that is a multiple of some g > 1, 
then at most (r - r mod g) resources can be in use at any time in an 
optimal schedule. Thus, the linear equations are 

We observe that & I r - I , because 1 I k. By inspecting (2a) 
we see that Wp + W, is maximized when W p  = W. Hence (2a) 
gives a value for W,, Wp = W, and we have 

The example shown in Figures 3-5 demonstrates that this 
upper bound is tight. This example is complex because it handles 
all possible values of r and k simultaneously. We assume that 
g = 1. (An example for g > 1 can be obtained from our example 
by multiplying all the task widths and the number of resources by 
g and adding r mod g resources.) In this example, I = 1. When I 
> 1, we may widen all the unit-width tasks to width I ,  if 1 divides 

r. We do not consider the case when I does not divide r. 

(Note.: x = fir-1)) 

Figure 3. Tasks for a System with r Resources 

288 



Figure 3 depicts the precedence graph of a worst-case task 
system. Figure 4 shows an optimal schedule of length (2r(r - 
1) + 1)s + r. This is not a list schedule because resources are 

intentionally left idle for r(r - I)& units of time at the beginning of 
the schedule. Figure 5 depicts a worst-case list schedule. The 
overall performance ratio for these two schedules is 

W‘ 
W 

&-(r - 1) + 1) + r(r - l ) / (r  - 4 ) + r _ -  
E(%(r - 1) + 1) + r 

- ( ~ ( r - l ) + l ) ( ~ - ~ ) + r ( ~ - l - 4 )  --f 2+&2 
(E(>@ - 1) + 1) + - 4 ) 7.- & 

Thus the upper bound (2b) is tight. The schedule in Figure 5 
is dictated entirely by the greedy nature of list scheduling; each 

task must start at the indicated time, because resources are free 
and only certain tasks are ready. We call this type of task system 
perfectly tight, because its list schedule cannot be shortened by a 
better priority list. Hence, no priority assignment can nvoid this 

worst-case performance bound. Figure 6 plots the worst-case 

performance for tasks systems where the task width varies in the 

range 1 5 R(Ti) 5 k, and k is expressed as some percentage of r. 
If all tasks use less than half the resources, list scheduling is 

guaranteed to produce schedules that are within three times the 
length of an optimal schedule. 

0 20 40 60 80 100 
M a x i ”  Task Width (100Wr) 

Figure 6. Asymptotic Scheduling Performance for One Resource 

4 3  Scheduling Processors and Resources of a Single Type 

Consider the list-scheduling of tasks in a system with m 
processors and r resources. Every task Ti requires one processor 
and R(Ti) resources. The bounds k and I apply to the resources, 
and 4 is the maximum number of idle resources during W,-time, 
as given by Lemma 1. In this system a new type of idle time, 
called the W,-time, occurs when all the processors are utilized. In 
other words, if more processors were available during W,-time, 
then additional tasks could be scheduled in this time. Altogether 
there are three types of idle time in this system, Wp-time, W & n e ,  
and W,-time. The linear inequalities are: 

m.W, + [?].W. + l.wp 5 m.W (3a) 
mLW, + ( r -  &).W,+ 1.Wp 5 (r-rmodg).W (3b) 

w, 2 0 
w, 2 0 
wp 2 0 
wp 5 w (3c) 

The first inequality is written for the processors. It states that 
in a worst-case list schedule no more processor time is used than 
in an optimal schedule. In a worst-case schedule during W,-time, 
m processors are in use; during Wr-time, at least (r  - I#Jr) 
resources are in use, and hence [ ( r  - &T)/k1 processors must be in 
use; and during Wp-time, at least one processor is in use. In an 
optimal schedule, at most m processors are in use for W time 
units. 

The second inequality is written for the resources. It states 
that in a worst-case list schedule no more resources are used than 
in an optimal schedule. During the W,-time, at least m 1 

resources are in use; during the W,-time, at least (r - I # J T )  
resources are in use; and during Wp-time, at least 1 resources are 
in use. In an optimal schedule, at most r - r mod g resources are in 
use for W units of time. 

These inequalities determine a simplex in 3 dimensions, with 
Since the (non-axis) faces given by (3a) (3b) and (3c). 

289 



coefficients before Wp in both (3a) and (3b) are minimal among all 
coefficients, we conclude that the maximum value occurs when Wp 
= W. This will almost always happen in practice. By setting 
W, = 0 or setting W, = 0, we obtain bounds similar to those in 
Sections 4.1 and 4.2 since this problem is a generalization of both 
these problems. By converting (3a) and (3b) to equalities and 
solving for an intersection point on the surface of the simplex, we 
get a complicated formula. The formula and a task systems for all 
three possible solutions are presented in [6]. Here we only 
calculate the bound and present a task system for one value of the 
parameters r, m, I, k, and g. 

As an example, we consider a system with m = 5 processors, r 
= 20 resources, and tasks that vary in width from 1 = 1 to k = 6. 
Hence& =5,g= l,rmodg=O,and 

5w,+3w,+wp I 5w 
5W,+15W,+Wp I 20w 

Setting W, = 0 yields a bound of W’IW = 34/15 (2.2666 ...), and 
setting W, = 0 yields W’/W = 2.25. The largest value of the three 
points is at the simplex intersection point, which yields W, /W= 
.25, Wp/W = 1, and WJW = 1.05, hence W’/W = 2.30. Figure 7 
shows a task system for which this bound is tight, to within some 
arbitrarily small E .  Tasks are numbered by their priorities, 
because the task system is not perfectly tight. Figure 8 gives one 
of several optimal schedules for this task system. Processors are 
not depicted, but it is evident that no more than 5 tasks are 
Iunning at once. Figure 9 shows a worst-case list schedule for 
this task system. The task system was constructed by 
decomposing an optimal schedule into pieces of appropriate sizes, 
given by W,/W, W,/W, and Wp /W. 

Figure 7. Tasks for a System with 5 processors and U) resources. 

Figure 9. A Worst-case Schedule 

In [6] a closed-form performance bound was derived. Figure 
10 and 11 depict the performance plots, with I = g = 1, for r = 20 
and r = 102 respectively. Both plots begin at 2 resources since the 
performance bound is degenerate for one resource and one 
processor. The second plot is truncated for k 2 92, since the curve 
cliibs rapidly to 102 in this range, dwarfing the rest of the figure. 
Asymptotic performance resembling Figure 6 appears at the 
outside edge of Figure 1 1. 

Figure 10. Perf0r”Ce 
with 20 Resources $ 

2 

290 



4.4 Scheduling Processors, Resources, and a Matrix facility 

In this problem we are again given m processors and r 
resources. However, two kinds of tasks exist in this system. A 
type-1 task requires 1 processor and R(Tj) resources, as in the 
previous problem. A type-2 task makes use of a parallel matrix- 
manipulation facility. This facility requires m12 processors to be. 
available. A type-2 task must have its own processor to issue 
requests to the facility. Furthermore, up to q type-2 tasks may 
use the facility at once. 

In this system Wp-time, W,-time and W,-time exist, as in the 
previous problem. However, we divide the Wp-time into W,;time, 
where i = 1 or i = 2, and i is type of task in the chain that executes 
during Wp-time. We also divide the W,-time into several types. 
First, there is W,-time, as in the previous problem, when all 
processors are occupied by type-1 tasks. Then for 1 I h S q there 
is a new type of W,-time that occurs when h type-2 tasks occupy 
the matrix manipulation facility and h processors, and m/2 - h 
type-1 tasks occupy the rest of the processors. This time is 
denoted by Wmh. There is also idle time that occurs when the 
matrix manipulation facility is completely utilized by q tasks; this 
is called W,-time. 

As a final constraint, suppose we know that in an optimal 
schedule, no more than a fraction f of the processing power of the 
matrix facility is used. We have the following inequalities from 
steps 1-3. 

(r-&).Wr +I.Wp,+ $(:- h)-Wmh.I I (r-rmodg).W(4a) 

h =  1 
a 

(4a) ensures that in a worst-case schedule the task system 
uses no more resources than in an optimal schedule. (4b) ensures 
that in a worst-case schedule, the task system uses no more 
processor the than in an optimal schedule. (4c) ensures that in a 
worst-case schedule, the task system spends no more time using 
the matrix manipulation facility than it does in an optimal schedule. 
In these inequalities, the use of the matrix manipulation facility is 
modeled as a request to use - processors. All three inequalities 
have O(q) variables, because of the Wmh-time. Therefore, it is 
impractical to solve this problem analytically, but performance 
bounds may still be computed using a linear programming software 

m 
2q 

package. This example demonstrates that the solution method can 
handle complex problems. 

5. Performance Limitations of Greedy Algorithms 

List-scheduling, that is, greedy algorithms are commonly used 
in real-time scheduling. In this section, we investigate some 
inherent performance limitations of greedy algorithm. We want to 
answer the question, 'Which problems can be optimally solved 
using a greedy algorithm?" For these problems greedy algorithms 
can obtain better performance by spending more time to find a 
better priority list. Some problems that can be optimally solved by 
a greedy algorithm include scheduling independent tasks on a 
multiprocessor, most preemptive scheduling problems, scheduling 
dependent unit-length tasks on 2 processors, and scheduling unit- 
length tasks with integer release times, integer deadlines, and 
precedence constraints, on a single processor. 

Unfortunately, in several problems optimal schedules contain 
intentionally inserted idle time, which cannot be generated by 
greedy algorithm. These problems include scheduling unit-length 
tasks with real-valued release times and deadlines and all the 
problems considered in Section 4. The problem of scheduling 
independent tasks in a system with a single resource (as in 
Section 4.2, but independent tasks) belongs to this class, as we 
now show. 

This problem is similar to some 2-dimensional (2-D) bin- 
packing problems. In 2-D bin packing, independent rectangles are 
packed into a bin of width r and unlimited height. The goal is to 
minimize the height of the packing. It is evident that the problem 
of scheduling independent tasks on r resources can be formulated 
as a 2-D bin packing problem. However, the problems are not 
identical; resource scheduling is easier than 2-D bin packing 
because tasks need not occupy contiguous resources. One of the 
F i t  algorithms proposed for 2-D bin packing was the greedy 
bottom-left algorithm, which packs each rectangle as low as 
possible, then slides it leftwards as much as possible. Brown has 
shown in [2] that no bottom-left 2-D bin packing algorithm can 
guarantee a packing that is within 5/4 times the height of an 
optimal packing. The optimal bin packing in Figure 12, which is the 
unique packing of height 4 and width 7 (except for symmetry), was 
used to obtain this result. 

1 2 3 4 5 6 7  

Figure 12. Worst-case Example for Bottom-Left 2-D Bin Packing 

In the appendix, we consider a bottom-leftlright algorithm, 
which may choose to slide each block left or right after packing it 

29 1 

1 



as low as possible. We 
than 615 times the length 

show that this algorithm cannot do better 
of an optimal schedule. 

We have noticed that Brown’s example provides a lower 
bound for our scheduling problem Consider resource scheduling 
the tasks in Figure 12 sideways on 4 resources, from left to right. 
These tasks may be scheduled non-contiguously. It is shown in 
the appendix that in all schedules of length 7 the given tasks start 
at the same times as in Figure 12 (except for symmetry). If we 
shorten both shaded tasks by E, the opposite of widening them in 
Brown’s proof, the optimal schedule still has length 7, although 
now there are two slices of idle time of length E and width 1 and 2, 
respectively. Suppose that a greedy scheduler produces this 
schedule, from either end. Regardless of whether the schedule is 
produced from left-to-right or right-to-left, one or two resources are 
intentionally idle for €time units (after a shaded task completes), 
while a [3,1] task is ready. Hence, no greedy algorithm can 
produce this schedule. Therefore, as E + 0, no greedy algorithm 
for independent tasks can produce resource schedules shorter than 
8/7 times the length of an optimal schedule. 

The remainder of this section gives hints about how to identify 
scheduling problems that require inserted idle time. For such 
problems, there is a lower bound that is perfectly tight, and no 
greedy algorithm can be improved beyond a certain point. In the 
following, we decompose a greedy algorithm is into two steps: the 
priority-assignment step, which may take arbitrarily long, and the 
control step, which removes tasks from the priority list, schedules 
them, and runs in polynomial time. 

Theorem 1. If a scheduling problem has complexity outside 
NP, then no greedy algorithm can always produce optimal 
schedules. 

Proof. Suppose that there is a scheduling problem with 
complexity outside NP, which can always be solved optimally by a 
greedy algorithm. Then clearly, for every solution, there exists a 
priority list that leads to the necessary solution. If such a priority 
list always exists, then it can be guessed in nondeterministic 
polynomial time. This implies the greedy algorithm is in NP, a 
contradiction. 0 

Thus, if a problem has complexity outside NP, then any greedy 
algorithm has a lower bound that is perfectly tight. This theorem 
is useless for many of the above example problems because they 
are in NP. We now give a rule-of-thumb for determining when 
greedy algorithms can produce optimal schedules if given unlimited 
time to produce an optimal priority list. When a greedy algorithm 
runs it gradually schedules tasks from a set. At any time, some 
unscheduled tasks in the set may not be available for scheduling, 
because there are insufficient processors or resources, or because 
a precedence constraint has not been satisfied, or for other 
reasons. We call a decision point a point in time in a greedy 

schedule when a task becomes available for scheduling. In a 
preemptive problem, a greedy algorithm always has the option of 
stopping all the lunning tasks at a decision point. 

Heuristic: If a task can monopolize any processor or resource 
beyond the time of the next decision point, then the greedy 
algorithm may not be optimal. 

This implies that greedy algorithms are optimal for most types 
of preemptive scheduling, since all tasks may be stopped 
whenever a decision point occurs. It also separates the two 
problems of scheduling unit-length tasks with release-times and 
deadlines, under integer-valued and real-valued inputs. This rule 
also lead us to discover the 8/7 lower bound for resource 
scheduling. 

When empirically evaluating greedy algorithms, it is important 
to know if a problem can be optimally solved by a greedy 
algorithm. If the problem cannot be optimally solved, then 
problems requiring intentionally-inserted idle time should be 
included in the evaluation set. Otherwise, the empirical results 
could be overly optimistic, leading the researcher to draw the 
wrong conclusion about the performance of the greedy algorithm. 

6. Conclusion 

This paper shows how to analyze the worst-case behavior of a 
large class of scheduling algorithms applied to nonpreemptive 
tasks with precedence constraints, using a simple linear 
programming method. It demonstrates lower bounds that are 
perfectly tight, i.e. they could not be improved by devising clever 
priority lists. It partially characterizes the class of problems that 
are amenable to optimal solution by greedy algorithms. This 
characterization helps in two ways. First, it gives the algorithm 
designer a hint about when he can trade off more computation time 
for a better greedy solution. Without this knowledge, he might 
waste time attempting to improve a greedy algorithm when, in fact, 
such improvements are impossible. Second, it tells the empirical 
evaluation team when to include task systems requiring inserted 
idle time in their test cases. 

In the future we plan to compare greedy resource-scheduling 
algorithms to optimal greedy algorithms, not optimal algorithms 
themselves. Many bin packing algorithms such as First-Fit- 
Decreasing and Next-Fit-Decreasing provide good performance on 
independent tasks. We are searching for a way of modeling these 
algorithms using hear programming. Fmally, we are looking for a 
more precise characterization of the scheduling problems that can 
be optimally solved by greedy algorithms. 

7. References 

[ l ]  Biyabani, Sara R., John A. Stankovic and Krithi 
Ramamritham. The Integration of Deadline and 

292 



Criticalness in Hard Real-Time Scheduling. Proceedings of 
the IEEE Real Time Systems Symposium (1988) pp. 152- 
160. 
Brown, Donna J. An Improved BL Lower Bound. 
Information Processing Letters (29 August 1980) vol. 11, 
no. 1, pp. 37-39. 
Carlier, J. and A. H. G. Rinnooy-Kan. Scheduling Subject to 
Nonrenewable-Resource Constraints. Operations Research 
Letters (1982) vol. 1, pp. 52-55. 
Cofkan, E. G., M. R. Garey, D. S .  Johnson and R. E. Tarjan. 
Performance Bounds for Level-Oriented Two-Dimensional 
Packing Algorithms. SIAM Journal on Computing (1980) vol. 

Coffman,E. G., Jr. and R. L. Graham Optimal Scheduling 
for Two-Processor Systems. Acta Informatica (1972) vol. 1, 
pp. 200-213. 
Gillies, Donald W. and Jane W. S .  Liu. Performance of List 
Scheduling with Resource Constraints. Manuscript (1989). 
Graham, R. L. Bounds on Multiprocessing Timing 
Anomalies. SIAM J .  Appl. Math. (March 1969) vol. 17, no. 

Liu, C. L. and James W. Layland. Scheduling Algorithms for 
Multiprogramming in a Hard-Real-Time Environment. 
Journal of the ACM (January 1973) vol. 20, no. 1, pp. 46-61. 
Liu, J. W. S., and C. L. Liu. Performance Analysis of 
Multiprocessor Systems Containing Functionally Dedicated 
Processors. Acta Informatica (1978) vol. 10, pp. 95-104. 
Liu, J. W. S., and C. L. Liu. Bounds on Scheduling 
Algorithms for Heterogeneous Computing Systems. 
Technical Report UIUCDCS-R-74632 (1974), Department of 
Computer Science, University of Illinois at Urbana- 
Champaign. 
Lloyd, E. L. Concurrent Task Systems. Operat ions 
Research (1981) vol. 29, pp. 189-201 
Lloyd, E. L. List Scheduling Bounds for UET Systems with 
Resources, Information Processing Letters (12 February 
1980) vol. 10, no.1, pp. 28-31 
Sleator, Daniel D. A 2.5 Times Optimal Algorithm for 
Packing in Two Dimensions. Information Processing 
Letters (12February 1980) vol. 10, no. 1, pp. 37-40. 
Strang, Gilbert. Linear Algebra With Applications. 
Academic Press, New York, 1980. 
Zhao, Wei, Krithivasan Ramamritham and John A. 
Stankovic. Preemptive Scheduling Under Time and Resource 
Constraints. IEEE Transactions on Computers (August 
1987) vol. 36, no. 8, pp 949-960. 

9, pp. 808-826. 

2, pp. 416-429. 

Appendiv 1. 

m , . , . , . , . , , . . , , , ,  

1 2  3 4 5 6 7 8 9 1 0 1 1  1 2 1 3 1 4 1 5  16 

Figure A.l. Worst-case Example for Bottom-LIR 2-D Bin Packing 

Theorem 1 shows this is the unique packing (discounting flips) 
of width 16 and height 5. We now widen each shaded rectangle by 
E, and widen the bin by 3 ~ .  The optimal packing still has height 5 
and looks the same. But to get an optimal packing the third row 
must be packed correctly. However, in any optimal packing, two 
separate idle-time gaps must exist at the bottom row of the 

packing, because the [1,4] or [2,3] block "hangs down" from the 
fully-occupied third row. Yet a greedy 1eWright heuristic cannot 
produce two non-adjacent gaps on the bottom row. Thus, this 
packing cannot be obtained. Therefore, no bottom-left/right 
heuristic can pack 2-D bins with a worst-case height less than 6/5 
times the height of an optimal packing. 

Theorem 1. The packing in Figure A.2 of height 5 and width 
16 is unique (discounting symmetry) . 

Proof. Consider row 3. Since blocks [2,3], [2,3], [1,41, [1,3] 
and [5,4] are all at lest 3 units tall, they are horizontally disjoint in 
a packing of height 5. Since their total width is 11, we cannot have 
[7,2], [6,2], or [6,1] overlap row 3, or else this row sum would be 
17. Hence [7,2], [6,2], and [6,1] must be at the top/bottom or 
bottomhop of any packing. Along any of the 5 rows in a packing, 
there is a sequence of blocks with a total width of 16. Let (x,y, ...) 
denote the the widths of individual blocks on a given row, totalling 
16. The block widths will be reordered to appear in decreasing 
order. 

Lemma 1. (6,6,~1,..) cannot occur on any row 

Proof. (6,6,5 ,...) is too wide for a single row, so if (6,6 ,...) 
occurs, then [6,1] is completely abovelbelow [5,4]. Without loss 
of generality assume (6,6, ...) occurs on row 5, with [5,4] resting 
below, as in the picture. Then we have: 

case 1: (6,6,4) or (6,6,3,1) on row 5. Then because row 5 
of the packing is filled, we must have [5,4], [7,21, [2,31, [2,31, 
[ 1,4] overlapping row 2, but the total width is 17. 

case 2: (6,6,2,2) on row 5. Then [1,4] must be packed 
beneath [6,1]; recall [7,2] must be packed on the bottom. The 
remaining row space from row 5 to row 1 is {0,0,6,3,3}. [4,11 and 
[ 1,3] must be packed on rows 3 and 1, leaving space of {0,0,1,2,2}, 
which clearly cannot support the [3,1] block. 

case 3: (6,6,2,1,1) on row 5. Because the leftover space is 
{O,l,x,x,x) row 1 contains (7,5,2,..) and hence [7,21 r5.41 [2,31. 
However, this sequence cannot end with a 2 (impossible; the other 
[2,3] block is at the top), or a 1.1 (impossible, 2 of 3 blocks of 
width 1 have been used at the top). Hence the row 1 s u m  cannot 
be 16. 

Hence [6,2] rests on the bottom of the packing, and [7,2] rests 
at the top (discounting flips). Even after this simplification, there 
are 23 row sequences totalling 16, so the problem is not easily 
solved using the algebraic equation method in [2]. The free space 
at this point is {3,4,11,5,5). 

Lemma 2. There must be 3 separate rows with (..., 6 ,..., 2 ,... ) 

293 



Proof .  We establish this by showing there is a [2,3] 
completely below [7,2] (resting at the top of a packing), and a 
[2,3] completely above [6,2] (resting at the bottom of a packing). 

Case 1: Assume no [2,3] is completely below [7,2]. Then on 
row 4 the following blocks are horizontally disjoint: [5,4] [7,2] 
[2,3] [2,3] [1,4], and the horizontal sum is 17. Assume both 
[2,3]'s are completely below [7,2], then (depending on [I,4]) we 
have either free space of {3,3,6,0,0) (can't accommodate [4,1] 
[3,1] and [1,3] in this space) or {2,3,6,0,1) (impossible to pack 
row 1). Hence exactly one [2,3] is completely below [7,2] 

Case 2: Assume no [2,3] is completely above [6,2]. From the 
previous case we conclude one [2,3] must rest on row 1 of the 
packing, and the other must rest on row 2 for the theorem to be 
false. This leaves {3,2,7,1,3) in free space since both [2,3]'s are 
determined This free space indicates that packing the [1,4] block 
will completely fill row 2, hence [1,4] must rest on row 2 to allow 
row 1 to be fully packed with the [3,1] block leaving free space of 
{2,1,6,0,0). But then remaining [1,21 and [1,3] blocks cannot both 
be packed because of row 4. 

Theorem 3. No packing (up to isomorphism) besides the 
given one exists. 

Proof. We sight along the rows, having established the base 
rows of [5,4] [1,6] [7,2] [6,2] and both [2,3]'s to be the same as 
in the figure. The free space is {1,2,7,3,3). Block [4,1] must be on 
row 3, giving (1,2,3,3,3). Block [1,3] completely fills row 1.2, or 3; 
to also accommodate block [1,4] it must rest on row 1 row; 
subtracting both yields {0,1,2,2,0) in free space. Therefore, blocks 
[1,2] and [1,3] must rest on the second row. 

This establishes that in all valid packings blocks rest on rows 
given in the picture. We consider sliding blocks along their rows 
to obtain a different packing. Considering [5,4] and [6,1]. we find 
they must be neighbors in any packing. By flipping them once or 
twice, we obtain the same relationship as in the figure. The 
following sequence of grid points (actually, blocks below & right of 
these points) inductively determines the packing in Figure A.l: 
( 1 A ;  (6J); (72); (82); ( 8 3 ;  (163;  (16.2); (142). 

Theorem 3. The following packing is the unique packing of 
width 4 und length 7: 

1 2 3 4 5 6 7  

Figure A.2 A Schedule for a System of Independent tasks 

294 

Proof. Consider the resources in a schedule of length 7 
decomposed into strips of width 4 and length 1. If all the resources 
in a strip are busy, then this can happen in three possible ways a, 
b, c, depending on the widths of the tasks that fill a strip. 

a = (2,2) 

c = (2,1,1) 
b = (3,l) 

The following equations ensure the number of tasks of width 
1, 2, and 3 are the same as the number of tasks available in the 
task system in Figure A.2 

2 c i b  = 7  (1's equation) 
(2's equation) Z u i c  = 6 

b = 3  (3's equation) 

Hence the unique solution is a = c = 2, b=3. Since c = 2, both 
[3,1] tasks cannot start at the same time, otherwise we would 
have c = 3. If they start one time unit apart, no matter when the 
[1,1] task executes, we have either c > 2 or b > 2. The [3,1] 
tasks must start no more than two time units apart, otherwise c I 
1. This and b implicitly determine relative starting times for the 
[3,1], [3,1], and [2,3] tasks, except for vertical or horizontal flips, 
to look like the picture Consider that a = 2 and some task of width 
2 must execute during the overlap between the two [3,1] tasks, 
and the fact that [1,3] and [3,2] must execute at disjoint times in a 
schedule of length 7. This determines the relative starting time for 
the [1,2] task, and a determines the relative starting times 
between the [2,2] and [3,2] tasks, except for horizontal flips. 
Thus we have determined the relative starting times of the [2,2] & 
[3,2] tasks, the [2,3] & [1,3] & [1,3] & [1,3] tasks -- the [1,3] 
and [1,1] tasks are yet to be determined. Now the values of a, b, 
and c, or simple exhaustive enumeration, suffice to show that any 
schedule of length 7 has tasks starting at the same times as in 
Figure A.2. 


