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Abstract—Context: Client-side JavaScript is widely used in web
applications to improve user-interactivity and minimize client-
server communications. Unfortunately, web applications are
prone to JavaScript faults. While prior studies have demonstrated
the prevalence of these faults, no attempts have been made to
determine their root causes and consequences.
Objective: The goal of our study is to understand the root causes
and impact of JavaScript faults and how the results can impact
JavaScript programmers, testers and tool developers.
Method: We perform an empirical study of 317 bug reports from
12 bug repositories. The bug reports are thoroughly examined
to classify and extract information about the fault’s cause (the
error) and consequence (the failure and impact).
Result: The majority (65%) of JavaScript faults are DOM-related,
meaning they are caused by faulty interactions of the JavaScript
code with the Document Object Model (DOM). Further, 80% of
the highest impact JavaScript faults are DOM-related. Finally,
most JavaScript faults originate from programmer mistakes
committed in the JavaScript code itself, as opposed to other web
application components such as the server-side or HTML code.
Conclusion: Given the prevalence of DOM-related faults,
JavaScript programmers need development tools that can help
them reason about the DOM. Also, testers should prioritize
detection of DOM-related faults as most high impact faults belong
to this category. Finally, developers can use the error patterns we
found to design more powerful static analysis tools for JavaScript.

Index Terms—JavaScript, Document Object Model (DOM),
empirical study

I. INTRODUCTION

Web developers often rely on JavaScript to enhance the
interactivity of a web application. For instance, JavaScript is
used to assign event handlers to different web application com-
ponents, such as buttons, links, and input boxes, effectively
defining the functionality of the web application when the user
interacts with its components. In addition, JavaScript can be
used to send HTTP requests to the server, and update the web
page’s contents with the resulting response.

Client-side JavaScript contains several features that set it
apart from other traditional languages. First of all, JavaScript
code executes under an asynchronous model. This allows event
handlers to execute on demand, as the user interacts with the
web application components. Secondly, much of JavaScript
is designed to interact with an external entity known as the
Document Object Model (DOM). This entity is a dynamic
tree-like structure that includes the components in the web
application and how they are organized. Using DOM API calls,
JavaScript can be used to access or manipulate the components
stored in the DOM, thereby allowing the web page to change
without requiring a page reload.

While the above features allow web applications to be
highly interactive, they also introduce additional avenues for
faults in the JavaScript code. In a previous study [1], we
collected JavaScript console messages from fifty popular web
applications to understand how prone web applications are to
JavaScript faults and what kinds of JavaScript faults appear in
these applications. We found that an average of four JavaScript
console messages appear even in popular production web
applications, and that most JavaScript console messages fall
under five different categories. While the study pointed to
the prevalence of JavaScript faults, it did not explore their
impact or root cause, nor did it analyze the type of failures
they caused. Understanding the root cause and impact of the
faults is vital for developers, testers, as well as static and
dynamic analysis tool builders to increase the reliability of
web applications.

In this study, our goal is to discover the causes of JavaScript
faults (the error) in web applications, and analyze their con-
sequences (the failure and impact). Towards this goal, we
conduct an empirical study of over 300 publicly available
JavaScript bug reports. We choose bug reports as they typically
have detailed information about a JavaScript fault and also
reveal how a web application is expected to behave; this is
information that would be difficult to extract from JavaScript
console messages or static analysis. Further, we confine our
search to bug reports that are marked “fixed”, which further
eliminates spurious or superfluous bug reports.

A major challenge with studying bug reports, however, is
that few web applications make their bug repositories publicly
available. Even those that do, often classify the reports in ad-
hoc ways, which makes it challenging to extract the relevant
details from the report [2].

Our work makes the following main contributions:
• We collect and systematically categorize a total of 317

bug reports, from eight web applications and four
JavaScript libraries;

• We categorize the JavaScript faults into multiple classes.
We find that one class dominates the others, namely
DOM-related JavaScript faults (more details below);

• We quantitatively analyze the nature (i.e., cause and
consequences) and the impact of JavaScript faults; and

• We analyze the implications of the results on developers,
testers, and tool developers for JavaScript code.

Our results show that around 65% of JavaScript faults
are DOM-related faults, which occur as a result of a faulty
interaction between the JavaScript code and the DOM. A



simple example is the retrieval of a DOM element using an
incorrect ID, which can lead to a null exception. Further, we
find that DOM-related faults account for about 80% of the
highest impact faults in the web application. Finally, we find
that the majority of faults arise due to the JavaScript code
rather than server side code/HTML, and that there are a few
recurring programming patterns that lead to these bugs.

II. BACKGROUND AND MOTIVATION

This section provides background information on the struc-
ture of modern web applications, and how JavaScript is used
in such applications. We also define terms used throughout
this paper such as JavaScript error, fault, failure, and impact.
Finally, we describe the goal and motivation of our study.

A. Web Applications

Modern web applications – commonly known as Web 2.0
applications – contain three client-side components: (1) HTML
code, which defines the webpage’s initial elements and its
structure; (2) CSS code, which defines these elements’ initial
styles; and (3) JavaScript1 code, which defines client-side
functionality in the web application. These client-side com-
ponents can either be written manually by the programmer, or
generated automatically by the server-side (e.g., PHP) code.

The Document Object Model (DOM) is a dynamic tree data
structure that defines the elements in the web application,
their properties including their styling information, and how
the elements are structured. Initially, the DOM contains the
elements defined in the HTML code, and these elements are
assigned the styling information defined in the CSS code.
However, JavaScript can be used to manipulate this initial
state of the DOM through the use of DOM API calls. For
example, an element in the DOM can be accessed through its
ID by calling the getElementById() method. The attributes
of this retrieved DOM element can then be modified using the
setAttribute() method. In addition, elements can be added
to or removed from the DOM by the JavaScript code.

In general, a JavaScript method or property that retrieves
elements or attributes from the DOM is called a DOM ac-
cess method/property. Examples of these methods/properties
include getElementById(), getElementsByTagName(), and
parentNode. Similarly, a JavaScript method or property that
is used to update values in the DOM (e.g., its structure, its
elements’ properties, etc.) is called a DOM update method-
/property. Examples include setAttribute(), innerHTML,
and replaceChild(). Together, the access and update meth-
ods/properties constitute the DOM API.

B. JavaScript Bugs

JavaScript is particularly prone to faults, as it is a weakly
typed language, which makes the language flexible but also
opens the possibility for untyped variables to be (mis)used
in important operations. In addition, JavaScript code can be
dynamically created during execution (e.g., by using eval),

1JavaScript is a scripting language based on the ECMAScript standard, and
it is used in other applications such as desktop widgets and even web servers.

Error: The programmer forgets to initialize the
value of the cmi.evaluation.comments variable.

Fault: The cmi.evaluation.comments variable
– which is uninitialized and hence has the value

null – is used to access a property X
(i.e., cmi.evaluation.comments.X) during

JavaScript execution.

Failure: Since cmi.evaluation.comments is
null, the code attempting to access a property

through it leads to a null exception, which
terminates JavaScript execution.

Fig. 1. Example that describes the error, fault, and failure of a JavaScript
bug reported in Moodle.

which can lead to faults that are only detected at runtime.
Further, JavaScript code interacts extensively with the DOM,
which makes it challenging to test/debug, and this leads to
many faults as we find in our study.

JavaScript Bug Sequence. The following sequence describes
the progression of a JavaScript bug, and the terms we use to
describe this sequence:

1) The programmer makes a mistake at some point in the
code being written or generated. These errors can range
from simple mistakes such as typographical errors or
syntax errors, to more complicated mistakes such as
errors in logic or semantics. The error can be committed
in the JavaScript code, or in other locations such as the
HTML code or server-side code (e.g., PHP).

2) The error can propagate, for instance, into a JavaScript
variable, the parameter or assignment value of a
JavaScript method or property, or the return value of
a JavaScript method during JavaScript code execution.
Hence, by this point, the error has propagated into a fault.

3) The fault either directly causes a JavaScript exception
(code-terminating failure) or a corruption in the output
(output-related failure). This is called the failure.

Figure 1 shows a real-world example of the error, fault,
and failure associated with a JavaScript bug report from
the Moodle web application. Note that for output-related
failures, the pertinent output can be one or a combination of
many things, including the DOM, server data, or important
JavaScript variables. We will be using the above error-fault-
failure model to classify JavaScript bugs, as described in
Section III.

If a JavaScript error propagates into the parameter of a
DOM access/update method or to the assignment value for
a DOM access/update property – thereby causing an incorrect
retrieval or an incorrect update of a DOM element – then the
error is said to have propagated into a DOM-related fault.



For example, if an error eventually causes the parameter of
the DOM access method getElementById() to represent a
nonexistent ID, and this method is called during execution
with the erroneous parameter, then the error has propagated
into a DOM-related fault. However, if the error does not
propagate into a DOM access/update method/property, the
error is considered to have propagated into a non-DOM-
related fault.
Severity. While the appearance of a failure is clear-cut and
mostly objective (i.e., either an exception is thrown or not;
either an output contains a correct value or not), the severity
of the failure is subjective, and depends on the context in
which the web application is being used. For example, an
exception may be tolerable and non-severe if it happens in
a “news ticker” web application widget; but if the news ticker
is used for something important – say, stocks data – the same
exception may now be classified as severe. In this paper, we
will refer to the severity as the impact of the failure.

C. Goal and Motivation

Our overall goal in this work is to understand the sources
and the impact of JavaScript faults in web applications. To
this end, we conduct an empirical study of JavaScript bug
reports in deployed web applications. There are several factors
that motivated us to pursue this goal. First, understanding the
root cause of JavaScript faults could help make developers
aware of programming pitfalls to be avoided, and the results
could pave the way for better JavaScript debugging techniques.
Second, analyzing the impact could steer developers’ and
testers’ attention towards the highest impact faults, thereby
allowing these faults to be detected early. Finally, we have
reason to believe that JavaScript faults’ root causes and
impacts differ from those of traditional languages because of
JavaScript’s permissive nature and its many distinctive features
(e.g., event-driven model; interaction with the DOM; dynamic
code creation; etc.)

Other work has studied JavaScript faults through console
messages or through static analysis [3], [4], [5], [6]. However,
bug reports contain detailed information about the root cause
of the faults and the intended behaviour of the application,
which is missing in these techniques. Further, they typically
contain the fix associated with the fault, which is useful in
further understanding it.

III. EXPERIMENTAL METHODOLOGY

We describe our methodology for the empirical study on
JavaScript faults. First, we enumerate the research questions
that we want to answer. Then we describe the web applications
we study and how we collected their bug reports. All our
collected empirical data is available for download.2

A. Research Questions

To achieve our goal, we address the following research
questions through our bug report study:

2http://ece.ubc.ca/∼frolino/projects/js-bugs-study/

RQ1: What types of faults exist among reported JavaScript
faults, and how prevalent are these fault types?

RQ2: What is the nature of failures stemming from
JavaScript faults? What is the impact of the failures on the
web applications?

RQ3: What is the root-cause of JavaScript faults? Are there
specific programming practices that lead to JavaScript faults?

RQ4: Do JavaScript faults exhibit browser-specific be-
haviour?

RQ5: How long does it take programmers to triage a
JavaScript fault reported in a bug report to a developer? How
long does it take programmers to fix these JavaScript faults?

B. Experimental Objects

To ensure representativeness, we collect and categorize bug
reports from a wide variety of web applications and libraries.
Each object is classified as either a web application or a
JavaScript library. We made this distinction to see if there are
any differences between JavaScript faults in web applications
and those in libraries; we did not, however, find any substantial
differences after performing our analysis. In total, we collected
and analyzed 317 bug reports from 8 web applications and 4
libraries.

Table I lists the range of the software versions considered for
each experimental object. The web applications and libraries
were chosen based on several factors, including their popu-
larity, their prominent use of client-side JavaScript, and the
descriptiveness of their bug reports (i.e., the more information
its bug reports convey, the better). Another contributing factor
is the availability of a bug repository for the web application
or library, as such repositories ware not always made public.
In fact, finding web applications and libraries that satisfied
these criteria was a major challenge in this study.

C. Collecting the Bug Reports

For each web application bug repository, we collect a total
of min{30, NumJSReports} JavaScript bug reports, where
NumJSReports is the total number of JavaScript bug reports in
the repository. We chose 30 as the maximum threshold for each
repository to balance analysis time with representativeness. To
collect the bug reports for each repository, we perform the
following steps:
Step 1 Use the filter/search tool available in the bug repos-

itory to narrow down the list of bug reports. The filters
and search keywords used in each bug repository are
listed in Table I. In general, where appropriate, we
used “javascript” and “js” as keywords to narrow down
the list of bug reports (in some bug repositories, the
keyword “jQuery” was also used to narrow down the list
even further). Further, to reduce spurious or superfluous
reports, we only considered bug reports with resolution
“fixed”, and type “bug” or “defect” (i.e., bug reports
marked as “enhancements” were neglected). Table I also
lists the number of search results after applying the filters
in each bug repository. The bug report repositories were
examined between January 30, 2013 and March 13, 2013.



TABLE I
EXPERIMENTAL OBJECTS FROM WHICH BUG REPORTS WERE COLLECTED.

Application Version Type Description Size of Bug Report Search Filter # of Reports
Range JS Code (KB) Collected

Moodle 1.9-2.3.3 Web Application Learning Management 352 (Text contains javascript OR js OR jquery) AND
(Issue type is bug) AND (Status is closed) -
Number of Results: 1209

30

Joomla 3.x Web Application Content Management 434 (Category is JavaScript) AND (Status is Fixed)
- Number of Results: 62

11

WordPress 2.0.6-3.6 Web Application Blogging 197 ((Description contains javascript OR js) OR
(Keywords contains javascript OR js)) AND
(status is closed) - Number of Results: 875

30

Drupal 6.x-7.x Web Application Content Management 213 (Text contains javascript OR js OR jQuery)
AND (Category is bug report) AND (Status is
closed(fixed)) - Number of Results: 608

30

Roundcube 0.1-0.9 Web Application Webmail 729 ((Description contains javascript OR js) OR
(Keywords contains javascript OR js)) AND
(status is closed) - Number of Results: 234

30

WikiMedia 1.16-1.20 Web Application Wiki Software 160 (Summary contains javascript) AND (Status is
resolved) AND (Resolution is fixed) - Number of
Results: 49

30

TYPO3 1.0-6.0 Web Application Content Management 2252 (Status is resolved) AND (Tracker is bug) AND
(Subject contains javascript) (Only one keyword
allowed) - Number of Results: 81

30

TaskFreak 0.6.x Web Application Task Organizer 74 (Search keywords contain javascript OR js) AND
(User is any user) - Number of Results: 57

6

jQuery 1.0-1.9 Library — 94 (Type is bug) AND (Resolution is fixed) - Num-
ber of Results: 2421

30

Prototype.js 1.6.0-1.7.0 Library — 164 (State is resolved) - Number of Results: 142 30
MooTools 1.1-1.4 Library — 101 (Label is bug) AND (State is closed) - Number

of Results: 52
30

Ember.js 1.0-1.1 Library — 745 (Label is bug) AND (State is closed) - Number
of Results: 347

30

Step 2 Once we have the narrowed-down list of bug reports
from Step 1, we manually examine each report in the
order in which it was retrieved. Since the filter/search
features of some bug tracking systems were not as
descriptive (e.g., the TYPO3 bug repository only allowed
the user to search for bug reports marked “resolved”, but
not “fixed”), we also had to manually check whether the
bug report satisfied the conditions described in Step 1. If
the conditions are satisfied, the bug report is analyzed.
Otherwise, the bug report is discarded. A bug report is
also discarded if its fault is found to not be JavaScript-
related – that is, the error does not propagate into any
JavaScript code in the web application. This step is
repeated until min{30, NumJSReports} reports have been
collected in the repository. The number of bug reports
we ended up collecting for each bug repository is shown
in Table I. Note that Joomla and TaskFreak had only
11 and 6 reports, respectively, which satisfied the above
criteria. For all remaining applications, we collected 30
bug reports each.

Step 3 For each report, we created an XML file that describes
and classifies, the error, fault, failure, and impact of the
JavaScript bug reported. The XML file also describes
the fix applied for the bug. Typically this data is pre-
sented in raw form in the original bug report, based
on the bug descriptions, developer discussions, patches,
and supplementary data; hence, we needed to thoroughly
read through, understand, and interpret each bug report
in order to extract all the information included in the
corresponding XML file. We also include data regarding

the date and time of each bug being assigned and fixed
in the XML file. We have made these bug report XML
files publicly available for reproducibility.2

D. Analyzing the Collected Bug Reports

The collected bug report data, captured in the XML files,
enable us to qualitatively and quantitatively analyze the nature
of JavaScript bugs.

Fault Categories. To address RQ1, we classify the bug reports
according to the following fault categories that were identified
through an initial pilot study:
• Undefined/Null Variable Usage: A JavaScript variable

that has a null or undefined value – either because the
variable has not been defined or has not been assigned a
value – is used to access an object property or method.
Example: The variable x, which has not been defined in
the JavaScript code, is used to access the property bar
via x.bar.

• Undefined Method: A call is made in the JavaScript code
to a method that has not been defined. Example: The
undefined function foo() is called in the JavaScript code.

• Incorrect Method Parameter: An unexpected or in-
valid value is passed to a native JavaScript method, or
assigned to a native JavaScript property. Example: A
string value is passed to the JavaScript Date object’s
setDate() method, which expects an integer. Another
example is passing an ID string to the DOM method
getElementById() that does not correspond to any IDs
in the DOM. Note that this latter example is a type of
DOM-related fault, which is a subcategory of Incorrect



TABLE II
IMPACT TYPES.

Type Description Examples
1 Cosmetic Table is not centred; header is too

small
2 Minor functionality loss Cannot create e-mail addresses

containing apostrophe characters,
which are often only used by spam-
mers

3 Some functionality loss Cannot use delete button to delete
e-mails, but delete key works fine

4 Major functionality loss Cannot delete e-mails at all; cannot
create new posts

5 Data loss, crash, or security issue Browser crashes/hangs; entire ap-
plication unusable; save button
does not work and prevents user
from saving considerable amount
of data; information leakage

Method Parameter faults where the method/property is a
DOM API method/property (as defined in Section II-B).

• Incorrect Return Value: A user-defined method is re-
turning an incorrect return value even though the param-
eter(s) is/are valid. Example: The user-defined method
factorial(3) returns 2 instead of 6.

• Syntax-Based Fault: There is a syntax error in the
JavaScript code. Example: There is an unescaped apos-
trophe character in a string literal that is defined using
single quotes.

• Other: Errors that do not fall into the above categories.
Example: There is a naming conflict between methods or
variables in the JavaScript code.

Failure Categories. The failure category refers to the observ-
able consequence of the fault. For each bug report, we marked
the failure category as either Code-terminating or Output-
related, as defined in Section II-B. This categorization helps
us answer RQ2.

Impact Types. To classify the impact of a fault, we use
the classification scheme used by Bugzilla.3 This scheme is
applicable to any software application, and has been also used
in other studies [7], [8]. Table II shows the categories. This
categorization helps us answer RQ2.

Error Locations. The error location refers to the code unit or
file where the error was made (either by the programmer or
the server-side program generating the JavaScript code). For
each bug report, we marked the error location as one of the
following: (1) JavaScript code (JS); (2) HTML Code (HTML);
(3) Server-side code (SSC); (4) Server configuration file (SCF);
(5) Other (OTH); and (6) Multiple error locations (MEL). In
cases where the error location is marked as either OTH or
MEL, the location(s) is/are specified in the error description.
This categorization helps us answer RQ3.

Browser Specificity. In addition, we also noted whether a
certain bug report is browser-specific – that is, the fault
described in the report only occurs in one or two browsers,
but not in others – to help us answer RQ4.

Time for Fixing. To answer RQ5, we define the triage time as

3http://www.bugzilla.org/
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Fig. 2. Pie chart of the distribution of fault categories.

the time it took a bug to get assigned to a developer, from the
time it was reported (or, if there is no “assigned” marking, the
time until the first comment is posted in the report). We also
define fix time as the time it took the corresponding JavaScript
fault to get marked as “fixed”, from the time it was triaged.
We recorded the time taken for each JavaScript bug report
to be triaged, and for the report to be fixed. Other studies
have classified bugs on a similar basis [9], [10]. Further, we
calculate times based on the calendar date; hence, if a bug
report was triaged on the same date as it was reported, the
triage time is recorded as 0.

IV. RESULTS

In this section, we present the results of our empirical
study on JavaScript bug reports. The subsections are organized
according to the research questions in Section III-A.

A. Fault Categories

Table III shows the breakdown of the fault categories in
our experimental objects. The pie chart in Figure 2 shows
the overall percentages. As seen from the table and the
figure, approximately 74% of JavaScript faults belong to the
“Incorrect Method Parameter” category. This suggests that
most JavaScript faults result from errors related to setting up
the parameters of native JavaScript methods, or the values
assigned to native JavaScript properties.

Finding #1: “Incorrect Method Parameter” faults
account for around 74% of JavaScript faults.

In our earlier studies of JavaScript console messages [1]
and fault-localization of JavaScript bugs [11], we also noticed
many “Incorrect Method Parameter” faults, but their preva-
lence was not quantified. Interestingly, we also observed in
these earlier studies that many of the methods and properties
affected by these faults are DOM methods/properties – in other
words, DOM-related faults, as defined in Section II. Based on
these prior observations, we became curious as to how many of
these “Incorrect Method Parameter” faults are DOM-related.



TABLE III
FAULT TYPES OF THE BUG REPORTS ANALYZED. LIBRARY DATA ARE SHOWN IN ITALICS.

Application Undefined/Null Undefined Incorrect Return Syntax-Based Other Incorrect Method Percent
Variable Usage Method Value Fault Parameter DOM-related

DOM-related Not DOM-related Total
Moodle 3 3 0 7 0 15 2 17 50%
Joomla 1 0 0 3 0 6 1 7 55%
WordPress 1 2 0 3 1 21 2 23 70%
Drupal 0 1 0 5 0 23 1 24 77%
Roundcube 3 0 0 4 0 22 1 23 73%
WikiMedia 2 4 0 5 0 15 4 19 50%
TYPO3 2 2 0 7 1 18 0 18 60%
TaskFreak 1 0 0 0 0 4 1 5 67%
jQuery 0 0 1 0 0 26 3 29 87%
Prototype.js 0 1 2 0 0 22 5 27 73%
MooTools 3 1 3 0 1 19 3 22 63%
Ember.js 2 1 4 0 2 16 5 21 53%
Overall 18 15 10 34 5 207 28 235 65%

We further classified the “Incorrect Method Parameter”
faults based on the methods/properties in which the incorrect
values propagated, and found that 88% of these faults are
DOM-related faults. This indicates that among all JavaScript
faults, approximately 65% are DOM-related faults (see right-
most pie chart in Figure 2). We find that DOM-related faults
range from 50 to 87% of the total JavaScript faults across
applications, as seen on the last column of Table III.

Finding #2: DOM-related faults account for 88%
of “Incorrect Method Parameter” faults. Hence, the
majority – around 65% – of JavaScript faults are
DOM-related.

B. Consequences of JavaScript Faults

We now show the failure categories of the bug reports we
collected, as well as the impact of the JavaScript faults that
correspond to the reports.

Failure Categories. Table IV shows the distribution of failure
categories amongst the collected reports; all faults are classi-
fied as either leading to a code-terminating failure or an output-
related failure (these terms are defined in Section III-D). As
the table shows, around 56% of JavaScript faults are code-
terminating, which means that in these cases, an exception
is thrown. Faults that lead to code-termination are generally
easy to detect, since the exceptions have one or more cor-
responding JavaScript error message(s) (provided the error
can be reproduced during testing). On the other hand, output-
related failures do not have such messages; they are typically
only detected once the user observes an abnormality in the
behaviour or appearance of the application.

Since the majority of JavaScript faults are DOM-related, we
explored how these failure categories apply to these DOM-
related faults. Interestingly, we found that for DOM-related
faults, most failures are output-related (at 61%), while for
non-DOM-related faults, most failures are code-terminating
(at 88%). This result suggests that DOM-related faults may
be more difficult to detect than non-DOM-related faults, as
most of them do not have error messages.

TABLE IV
NUMBER OF CODE-TERMINATING FAILURES COMPARED TO

OUTPUT-RELATED FAILURES. LIBRARY DATA ARE SHOWN IN ITALICS.

Application Code-terminating Output-related
Moodle 21 9
Joomla 8 3
WordPress 11 19
Drupal 12 18
Roundcube 18 12
WikiMedia 19 11
TYPO3 21 9
TaskFreak 3 3
jQuery 17 13
Prototype.js 10 20
MooTools 21 9
Ember.js 16 14
Overall 177 140

Finding #3: While most non-DOM-related
JavaScript faults lead to exceptions (around 88%),
only a small percentage (39%) of DOM-related
faults lead to such exceptions.

Impact Types. The impact indicates the severity of the failure;
Hence, we also classify bug reports based on impact types as
defined in Section III-D (i.e., Type 1 has lowest severity, and
Type 5 has highest severity).

The impact type distribution for each web application and
library is shown in Table V. Most of the bug reports were
classified as having Type 3 impact (i.e., some functionality
loss). Type 1 and Type 5 impact faults are the fewest, with
around 30 bug reports each. Finally, Type 2 and Type 4 impact
faults are represented by 92 and 43 bug reports, respectively.
The average impact of the collected JavaScript bug reports is
close to the middle, at 2.83.

Table V also shows the impact distribution for DOM-related
faults in parentheses. As seen in the table, each impact type
is comprised primarily of DOM-related faults. Further, almost
80% (23 out of 29) of the highest severity faults (i.e., Type
5 faults) are DOM-related. Additionally, all but two of the
experimental objects contain at least one DOM-related fault



TABLE V
IMPACT TYPES OF THE BUG REPORTS ANALYZED. LIBRARY DATA ARE
SHOWN IN ITALICS. IMPACT TYPES DATA FOR DOM-RELATED FAULTS

ONLY ARE SHOWN IN PARENTHESES.

Application Type 1 Type 2 Type 3 Type 4 Type 5
Moodle 10 (5) 12 (5) 0 (0) 6 (3) 2 (2)
Joomla 2 (2) 2 (0) 4 (2) 2 (1) 1 (1)
WordPress 4 (4) 7 (3) 12 (9) 3 (2) 4 (3)
Drupal 3 (3) 2 (1) 17 (12) 1 (1) 7 (6)
Roundcube 2 (2) 5 (4) 14 (9) 5 (3) 4 (4)
WikiMedia 2 (1) 8 (6) 15 (6) 1 (0) 4 (2)
TYPO3 0 (0) 4 (2) 20 (13) 5 (2) 1 (1)
TaskFreak 2 (1) 1 (1) 1 (0) 2 (2) 0 (0)
jQuery 3 (3) 13 (13) 1 (1) 11 (8) 2 (1)
Prototype.js 0 (0) 7 (6) 19 (12) 2 (2) 2 (2)
MooTools 0 (0) 16 (8) 10 (8) 3 (3) 1 (0)
Ember.js 2 (0) 15 (10) 10 (4) 2 (1) 1 (1)
Overall 30 (21) 92 (59) 123 (76) 43 (28) 29 (23)

with Type 5 impact. This result suggests that high severity
failures often result from DOM-related faults. We find that
these high-impact faults broadly fall into three categories.

1) Application/library becomes unusable. This occurs be-
cause an erroneous feature is preventing the user from
using the rest of the application, particularly in DOM-
related faults. For example, one of the faults in Drupal
prevented users from logging in (due to incorrect attribute
values assigned to the username and password elements),
so the application could not even be accessed.

2) Data loss. Once again, this is particularly true for DOM-
related faults, which account for 9 out of the 10 data-
loss-causing faults that we encountered. One example
comes from Roundcube; in one of the bug reports, the
fault causes an empty e-mail to be sent, which causes the
e-mail written by the user to be lost. As another example,
a fault in WordPress causes server data (containing posts)
to be deleted automatically without confirmation.

3) Browser hangs and information leakage. Hangs often
occur as a result of a bug in the browser; the type 5
faults leading to browser hangs that we encountered are
all browser-specific. Information leakage only occurred
once, as a result of a JavaScript fault in TYPO3 that
caused potentially security-sensitive code from the server
to be displayed on the page.

Finding #4: About 80% of the highest severity
JavaScript faults are DOM-related.

C. Causes of JavaScript Faults

Locations. Before we can determine the causes, we first need
to know where the programmers committed the program-
ming errors. To this end, we marked the error locations of
each bug report; the error location categories are listed in
Section III-D. The results are shown in Table VI. As the
results show, the vast majority (86%) of the JavaScript faults
occur as a result of programming errors in the JavaScript
code itself. If only DOM-related faults were considered, a

TABLE VI
ERROR LOCATIONS OF THE BUG REPORTS ANALYZED. LIBRARY DATA ARE

SHOWN IN ITALICS.

Legend: JS = JavaScript code, HTML = HTML code, SSC = Server-side code, SCF =
Server configuration file, OTH = Other, MEL = Multiple error locations

Application JS HTML SSC SCF OTH MEL
Moodle 22 2 6 0 0 0
Joomla 9 0 1 0 0 1
WordPress 24 0 6 0 0 0
Drupal 29 0 1 0 0 0
Roundcube 26 0 4 0 0 0
WikiMedia 25 0 5 0 0 0
TYPO3 18 1 9 2 0 0
TaskFreak 6 0 0 0 0 0
jQuery 30 – – – 0 0
Prototype.js 25 – – – 4 1
MooTools 30 – – – 0 0
Ember.js 30 – – – 0 0
Overall 274 3 32 2 4 2

similar distribution of fault locations was observed; in fact, the
majority is even larger for DOM-related faults that originated
from the JavaScript code, at 92%. For these bug reports
where the error location is in the JavaScript code itself, the
fix involved the manual modification of the corresponding
JavaScript file(s). This observation suggests that JavaScript
faults typically occur because the programmer herself writes
erroneous code, as opposed to server-side code automatically
generating erroneous JavaScript code, or HTML.

Finding #5: Most JavaScript faults (86%) originate
from manually-written JavaScript code as opposed
to code automatically generated by the server.

Patterns. To understand the programmer mistakes associated
with JavaScript errors, we manually examined the bug reports
for errors committed in JavaScript code (which were the dom-
inant category). We found that errors fell into the following
common patterns:

1) Erroneous input validation. Around 18% of the bugs
occurred because inputs passed to the JavaScript code
(i.e., user input from the DOM or inputs to JavaScript
functions) are not being validated or sanitized. The most
common mistake made by programmers in this case is
neglecting valid input cases. For example, in the jQuery
library, the replaceWith() method is allowed to take
an empty string as input; however, the implementation of
this method does not take this possibility into account,
thereby causing the call to be ignored.

2) Error in writing a string literal. Approximately 14%
of the bugs were caused by a mistake in writing a string
literal in the JavaScript code. These include forgetting
prefixes and/or suffixes, typographical errors, and includ-
ing wrong character encodings. Half of these errors relate
to writing a syntactically valid but incorrect CSS selector
(which is used to retrieve DOM elements) or regular
expression.

3) Neglecting differences in browser behaviour. Around



TABLE VII
BROWSER SPECIFICITY OF THE BUG REPORTS ANALYZED. LIBRARY DATA

ARE SHOWN IN ITALICS.

Legend: IE = Internet Explorer, FF = Firefox, CHR = Chrome, SAF = Safari, OPE =
Opera, OTH = Other, NBS = Not browser-specific, MUL = Multiple

Application IE FF CHR SAF OPE OTH NBS MUL
Moodle 4 0 0 0 0 0 25 1
Joomla 1 0 0 0 0 0 10 0
WordPress 1 0 0 0 0 1 28 0
Drupal 2 0 1 1 0 0 26 0
Roundcube 5 0 1 0 1 1 22 0
WikiMedia 6 0 0 0 0 0 24 0
TYPO3 7 1 0 0 1 0 20 1
TaskFreak 1 0 0 1 0 0 4 0
jQuery 7 0 0 0 0 0 22 1
Prototype.js 8 1 1 2 1 0 14 3
MooTools 10 2 0 0 1 0 17 0
Ember.js 2 0 0 0 0 0 28 0
Overall 54 4 3 4 4 2 240 6

9% of the bugs were caused by differences in how
browsers treat certain methods, properties or operators in
JavaScript. Of these, around 60% pertain to differences
in how browsers implement native JavaScript methods.
For example, a fault occurred in WikiMedia in Internet
Explorer 7 and 8 because of the different way those
browsers expect the history.go() method to be used.

4) Forgetting null/undefined check. Around 9% of the
bugs resulted from missing null/undefined checks for a
particular variable, assuming that the variable is allowed
to have a value of null or undefined.

5) Error in syntax. Interestingly, around 7% of bugs re-
sulted from syntax errors in the JavaScript code that
were made by the programmer. Note, also, that we found
instances where server-side code generated syntactically
incorrect JavaScript code, though this is not accounted
for here.

Finding #6: There are several recurring error
patterns – causing JavaScript faults – that arise
from JavaScript code.

D. Browser Specificity

We analyzed the browser specificity of the bug reports we
collected. A bug is browser specific if it occurs only in a
certain browser. As Table VII shows, most JavaScript faults
(74%) are non-browser specific. However, among the browser-
specific faults, about 69% are specific to Internet Explorer (IE).

After analyzing the IE-specific faults, we found that most
of them (44%) were due to the use of methods and properties
that were not supported in that browser (particularly in earlier
versions, pre-Internet Explorer 8). This is likely because the
use of browser-specific method and property names (which
may not be standards-compliant) is more prevalent in IE than
in other browsers. In addition, IE has low tolerance of small
errors in the JavaScript code. For example, 24% of the IE-
specific faults occurred because IE could not handle trailing
commas in object-creation code; while these trailing commas

TABLE VIII
AVERAGE TRIAGE TIMES (T) AND FIX TIMES (F) FOR EACH

EXPERIMENTAL OBJECT. LIBRARY DATA ARE SHOWN IN ITALICS.

Application All Faults DOM-Related Non-DOM-Related
Faults Only Faults Only

T F T F T F
Moodle 248 9.5 204.5 11.5 291.5 7.5
Joomla 4.1 57.1 0.7 66.7 8.2 45.6
WordPress 1.1 137.5 1.5 150.3 0.3 107.7
Drupal 7.0 66.2 2.6 46.7 21.7 130.1
Roundcube 18.4 118.3 25.1 160.0 0 9.3
WikiMedia 18.4 25.9 35.5 44.3 1.3 7.5
TYPO3 6.9 54.7 7.2 67.2 6.3 35.8
TaskFreak 22.8 16.5 31.5 22.5 5.5 4.5
jQuery 1.2 32.5 1.3 36.0 0.5 10.3
Prototype.js 28.0 343.4 33.2 294.3 13.6 478.4
MooTools 9.5 48.1 9.9 48.5 8.8 47.4
Ember.js 0.4 11.4 0.7 14.3 0.1 8.1
Overall 32.7 82.5 26.4 90.8 44.4 66.8

are technically syntax errors, other browsers can detect their
presence and remove them.

Finding #7: Most JavaScript faults (74%) are not
browser-specific.

E. Triage and Fix Time for JavaScript Faults

We calculated the triage time and fix time for each bug
report and found that on average, the triage time for JavaScript
faults is 32.7 days, while the average fix time is 82.5 days (see
Table VIII).

As before, we made the same calculations for DOM-related
faults and non-DOM-related faults. We found that DOM-
related faults have an average triage time of 26.4 days,
compared to 44.4 days for non-DOM-related faults. On the
other hand, DOM-related faults have an average fix time
of 90.8 days, compared to 66.8 days for non-DOM-related
faults. This suggests that developers find DOM-related faults
important enough to be triaged more promptly than non-DOM-
related faults. However, DOM-related faults take longer to fix,
perhaps because of their inherent complexity.

Finding #8: On average, DOM-related faults
get triaged more promptly than non-DOM-related
faults (26.4 days vs. 44.4 days); however, DOM-
related faults take longer to fix than non-DOM-
related faults (90.8 days vs. 66.8 days) .

F. Threats to Validity

An internal validity threat is that the classifications were
made by multiple individuals (i.e., two of the co-authors),
which may introduce inconsistencies and bias, particularly
in the classification of the impacts. In order to mitigate any
possibilities of bias, we conducted a review process in which
each person reviews the classifications assigned by the other
person. Any disagreements were discussed until a consensus
on the classification was reached.



In terms of external threats, our results are based on bug
reports from a limited number of experimental objects, which
calls into question the representativeness; unfortunately, public
bug repositories for web applications are not abundant, as
previously mentioned. We mitigated this by choosing web
applications that are used for different purposes, including
content management, webmail, and wiki.

A construct validity threat is that the bug reports may not be
fully representative of the JavaScript faults that occur in web
applications. This is because certain types of faults – such as
non-deterministic faults and faults with low visual impact –
may go unreported. In addition, we focus exclusively on bug
reports that were fixed. This decision was made since the root
cause would be difficult to determine from open reports, which
have no corresponding fix. Further, open reports may not be
representative of real bugs, as they are not deemed important
enough to fix.

For the triage and fix times, we did not account for possible
delays in marking a bug report as “assigned” or “fixed”, which
may skew the results. In addition, the triage time is computed
as the time until the first developer comment, when there is
no “assigned” marking; although we find this approximation
reasonable, the developer may not have started fixing until
some days after the first comment was posted. These are
likewise construct validity threats.

V. DISCUSSION

In this section, we discuss the implications of our findings
on web application developers, testers, developers of web
analysis tools, and designers of web application development
frameworks.

Findings 1 and 2 reveal the difficulties that web application
developers have in setting up values passed or assigned to
native JavaScript methods and properties – particularly DOM
methods and properties. Many of these difficulties arise be-
cause the asynchronous, event-driven JavaScript code must
deal with the highly dynamic nature of the DOM. This
requirement forces the programmer to have to think about
how the DOM is structured and what properties its elements
possess at certain DOM interaction points in the JavaScript
code; doing so can be difficult because (1) the DOM frequently
changes at runtime and can have many states, and (2) there
are many different ways a user can interact with the web
application, which means there are many different orders in
which JavaScript event handlers can execute. This suggests the
need to equip these programmers with appropriate tools that
would help them reason about the DOM, thereby simplifying
these DOM-JavaScript interactions.

With regards to Findings 3, 4, and 8, these results suggest
that web application testers should prioritize emulating DOM-
related faults, as most high-impact faults belong to this cate-
gory. One possible way to do this is to prioritize the creation of
tests that cover DOM interaction points in the JavaScript code.
By doing so, testers can immediately find most of the high-
impact faults. This early detection is useful because, as Finding
3 suggests, DOM-related faults often have no accompanying

error messages and can be more difficult to detect. Further, as
Finding 8 suggests, DOM-related faults take longer to fix on
average compared to non-DOM-related faults.

As for Findings 5 and 6, these results can be useful for
developers of static analysis tools for JavaScript. Many of
the current static analysis tools only address syntactic issues
with the JavaScript code (e.g., JSLint,4 Closure Compiler,5

JSure6), which is useful since a few JavaScript faults occur
as a result of syntax errors, as described in Section IV-C.
However, the majority of JavaScript faults occur because of
errors in semantics or logic. Some developers have already
started looking into building static semantics checkers for
JavaScript, including TAJS [12], which is a JavaScript type
analyzer. However, the programming mistakes we encountered
in the bug reports (e.g., erroneous input validations, erroneous
CSS selectors, etc.) call for more powerful tools to improve
JavaScript reliability.

Finally, while Finding 7 suggests that most JavaScript faults
are non-browser specific, we did find a few (mostly IE-
specific) faults that are browser-specific. Hence, it is useful
to design JavaScript development tools that recognize cross-
browser differences and alerts the programmer whenever she
forgets to account for these. Some Integrated Development
Environments (IDEs) for JavaScript have already implemented
this feature, including NetBeans7 and Aptana.8

VI. RELATED WORK

There has been a large number of empirical studies con-
ducted on faults that occur in various types of software appli-
cations [13], [14], [15], [16], [17]. Due to space constraints,
we focus on those studies that pertain to web applications.

Server-Side Studies. In the past, researchers have studied
the causes of web application faults at the server-side using
session-based workloads [18], server logs [19], and website
outage incidents [20]. Further, there have been studies on the
control-flow integrity [21] and end-to-end availability [22],
[23] of web applications. Our current study differs from these
works in that we focus on web application faults that occur
at the client-side, particularly ones that propagate into the
JavaScript code.

Client-Side Studies. Several empirical studies on the charac-
teristics of client-side JavaScript have been made. For instance,
Ratanaworabhan et al. [24] used their JSMeter tool to analyze
the dynamic behaviour of JavaScript in web applications.
Similar work was conducted by Richards et al. [25] and
Martinsen et al. [26]. A study of parallelism in JavaScript
code was also undertaken by Fortuna et al. [27]. Finally, there
have been empirical studies on the security of JavaScript.
These include empirical studies on cross-site scripting (XSS)
sanitization [28], privacy-violating information flows [29],

4http://www.jslint.com
5http://code.google.com/closure/compiler/
6https://github.com/berke/jsure
7http://netbeans.org/
8http://www.aptana.com/



and remote JavaScript inclusions [30], [31]. Unlike our work
which studies functional JavaScript faults, these related works
address non-functional properties such as security and perfor-
mance.

Our earlier work [1] looked at the characteristics of failures
caused by JavaScript faults, based on console logs. However,
we did not study the causes or impact of JavaScript faults,
nor did we examine bug reports as we do in this study.
To the best of our knowledge, we are the first to perform
an empirical study on the characteristics of these real-world
JavaScript faults, particularly their causes and impacts.

VII. CONCLUSIONS AND FUTURE WORK

Client-side JavaScript contains many features that are at-
tractive to web application developers and is the basis for
modern web applications. However, it is prone to errors that
can impact functionality and user experience. In this paper,
we perform an empirical study of over 300 bug reports from
various web applications and JavaScript libraries to help us
understand the nature of the errors that cause these faults, and
the failures to which these faults lead. Our results show that
(1) around 65% of JavaScript faults are DOM-related; (2) most
(around 80%) high severity faults are DOM-related; (3) the
vast majority (around 86%) of JavaScript faults are caused by
errors manually introduced by JavaScript code programmers;
(4) error patterns exist in JavaScript bug reports; and (5) DOM-
related faults take longer to fix than non-DOM-related faults.

For future work, we plan to use the results of this study to
design static and dynamic analysis tools that would simplify
how programmers write reliable JavaScript code.
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