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Summary
A performance regression in software is defined as an increase in an application step’s response
time as a result of code changes. Detecting such regressions can be done using profiling tools;
however, investigating their root cause is a mostly-manual and time-consuming task. This state-
ment holds true especially when comparing execution timelines, which are dynamic function call
trees augmented with response time data; these timelines are compared to find the perfor-
mance regression-causes – the lowest-level function calls that regressed during execution. When
done manually, these comparisons often require the investigator to analyze thousands of func-
tion call nodes. Further, performing these comparisons on web applications is challenging due to
JavaScript’s asynchronous and event-driven model, which introduce noise in the timelines. In
response,weproposeadesign–ZAM – that automatically compares execution timelines collected
from web applications, to identify performance regression-causes. Our approach uses a hybrid
node matching algorithm that recursively attempts to find the longest common subsequence in
each call tree level, then aggregates multiple comparisons’ results to eliminate noise. Our evalua-
tion of ZAM on 10 web applications indicates that it can identify performance regression-causes
with a path recall of 100% and a path precision of 96%, while performing comparisons in under a
minute on average.Wealso demonstrate the real-world applicability of ZAM, which has beenused
to successfully complete performance investigations by the performance and reliability team in
SAP.
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1 INTRODUCTION
Software developers often encounter situations in which the application being developed has slowed down after changes are made to the code,
configuration, or environment in which the application is accessed or executed. Such slowdowns are termed performance regressions. Identifying
and understanding performance regressions is important, as application slowdowns have a significant negative effect on the user experience, and
can therefore deter many users from continuing to use an application. As an example, in their empirical study of browser bugs, Zaman et al. found
that a larger percentage of users threaten to switch browsers due to performance issues, compared to non-performance issues [65]. Similarly,
unresponsive web applicationsmay cause users to abandon their usage of the web application altogether [46, 54].
Prior work – both in research and industry – has focused primarily on automating the process of detecting performance issues, including perfor-

mance regressions [1, 35, 10]. This includes work done by Nistor et al. on detecting performance problems based on memory-access patterns [37],
as well as a proposed detection approach by Shang et al. based on a regression model [55]. There also exists many profilers that can aid in this
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detection, including gprof [16], JSMeter [48], and Dynatrace [11]; modern web browsers such as Chrome and Firefox also include developer tools
that support performance profiling. However, while detecting performance regressions is important, the ultimate goal is to fix these regressions.
Therefore, we also need to investigate the causes of these performance regressions; in this paper, we refer to these causes by the term performance
regression-causes.
Unfortunately, the process of investigating performance regression-causes is very time consuming when done manually. To give a sense of the

effort involved in these investigations, a typical investigation scenario for web applications carried out by performance teams – including those in
SAP andGoogle [5] – involves the following steps:

1. Generate execution timelines for two versions of the application: one version before the performance regression is observed, and another
version after. Here, an execution timeline is a call tree describing the functions that executedwhile the user is interactingwith the application,
where the call tree is augmentedwith information on how long each function took to execute;

2. Analyze and compare the performance results included in the execution timelines. For example, the investigator would usually have to
compare the functions in the call trees one by one, recursively going down the call trees until the lowest-level function that regressed is dis-
covered. Knowing this lowest-level function is an important step in this process, as it either provides a strong lead to the code change that
caused the regression or, in many cases, contains the code change itself.

The above process is further complicated by variance in the performance numbers, which often necessitates multiple execution timelines to be
generated per version, and hence, for multiple timelines to be analyzed and compared.
It is particularly difficult to conduct the above investigationswhenperformance regressions are observed at the client-side ofweb applications, due

to challenges associated with JavaScript – the de facto programming language at the client. For example, modern web applications rely on features
that exploit the asynchronous nature of JavaScript (e.g., timers, promises, callbacks, etc.), which can lead to large execution timelines involving
multiple call trees – one for each asynchronous execution; therefore, these timelineswill be very difficult for the investigator1 to comparemanually,
given their size. In addition, JavaScript is an event-driven language, whichmeans simple user interactions (e.g., mouseouts, hovers, scrolls, etc.) may
trigger event handlers that are irrelevant to the performance regression, thereby introducing noise to the timelines being compared.While difficult,
conducting these client-side investigations is important, because the client-side is what the user directly interacts with, and hence, performance regressions
will be noticeable.
Various approaches have been suggested that attempt to automate the process of finding performance regression-causes [8, 44], including those

that mine source code history to infer source code patterns that may correspond to performance regression-causes [52, 34, 23]. However – in
addition to their lack of explicit support for web applications, which have their own set of unique challenges as discussed above – a huge drawback
to these approaches is that they assume the existence of a repository of past performance regression-causes that have been found, which are not
widely available [61]. In addition, their analyses do not take execution times into account, even though the execution time is the verymetric used to
judge whether a performance regression has been introduced.
To address the above issues, we have come up with an approach – implemented in a tool called ZAM – that automatically finds performance

regression-causes in web applications by comparing the execution timelines of different versions of the web application (e.g., before a code change
and after a code change). In this work, we decided to focus on web applications because of their ubiquity, and because many of the challenges
associatedwith JavaScript described abovearepotentially extensible toother domains andwould thereforebeuseful to address. Further, execution
timelines canbegeneratedautomatically forwebapplications, using, for instance,ChromeDevTools; therefore,webapplications are an ideal testing
ground for our approach.
The main advantage of our approach over others is that it does not presuppose the existence of a repository of past performance regression-

causes, and it works directly with an execution trace of the application under test, and therefore factors the execution times in the analysis. The
latter allows formore precise results, as it aims to reveal code changes based on actual increases in execution time, as opposed to trying to pinpoint
changes based merely on code patterns or counter signatures. In addition, to account for variance in the performance numbers, our approach is
capable of aggregating the results of multiple pairs of execution timelines. Finally, unlike other comparison-based approaches such as Visual Stu-
dio [30], dotTrace [20], JProfiler [12], and Yourkit [64] (which are designed for more traditional languages), our web application-based approach is
designed to handle the presence of asynchrony and large numbers of event handlers in such applications; in particular, it uses a hybrid nodematch-
ing algorithm that allows it to scale to the large number of asynchronous function calls made in web applications, while still maintaining reasonable
accuracy in the presence of noise (e.g., coming from various user events). To the best of our knowledge, ours is the first approach that is capable of
automatically identifying performance regression-causes in web applications, based on a direct comparison of multiple pairs of execution timelines.
In this paper, wemake the followingmain contributions:

1In this paper, we refer to the developer or tester tasked with identifying the performance regression-cause (and is therefore the user of our proposed
design) as the investigator. We use this term to distinguish the users of our design from the users of web applications.
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FIGURE 1 Timelines taken before and after a performance regression

• A fully automated approach for identifying performance regression-causes for web applications by comparing previously generated execu-
tion timelines, using a hybrid node matching algorithm; the output of this approach is a tree that describes the function call path to each
performance regression-cause. As discussed in Section 2, performance regression-causes, in this context, are defined as the lowest-level
functions in the execution timeline that regressed in performance;

• An implementation of the above approach in a tool called ZAM. ZAM has been implemented as a Node.js application;
• An empirical study that evaluates the accuracy, usefulness, real-world applicability, and performance of ZAM. Based on our results, ZAM
performs its comparisons in under aminute on average and has a path recall of 100% in our experiments, as well as a path precision of about
96%. Further, even in scenarios where ZAM is unable to find the exact performance regression-cause, ZAM is still capable of finding part
of the path to the performance regression-cause (called a partial path), which is still very useful as it leads the investigator much closer to
pinpointing this cause. Finally, we also show that ZAM is capable of identifying performance regression-causes of real-world performance
bugs, and it has been applied successfully to performance investigations conducted by our performance and reliability team in SAP.

2 BACKGROUNDANDMOTIVATION
In this section, we introduce a motivating example that we will be using throughout the paper. We also define some terms that are needed to
understand our approach, andwe outline the challenges in designing our approach.
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2.1 Motivating Example
We use the term “execution timeline” in this subsection informally to refer to profiling data, which includes information on the functions that
executed at runtime and the time it took each function to execute (i.e., the response time); however, the term will be defined more formally in
Section 2.2.2
Figure 1 shows two examples of execution timelines that are generatedwhen interactingwith a JavaScript-basedweb application. The execution

timeline in Figure 1bwas generated after a performance regressionwas introduced to theweb application, while the execution timeline in Figure 1a
was generated before this regression was introduced. This running example is based on a performance regression observed in a real-world web
application,3with function names and response times altered for simplicity and illustration. In addition, not all rectangles are drawn to scale tomake
sure the function names are still visible.
As seen in Figure 1a, the execution timeline generated before the regression (i.e., the “old timeline”) reveals that four separate asynchronous

function calls executed at runtime: evHandler, queryRenderedFeatures, hover, and promiseHandler. The rectangles shown below each of these
asynchronous function calls represent the call tree. For example, queryRenderedFeatures called both f and b; in turn, f called rendered, which in
turn called query, and so on. The numbers in parentheses represent the response times of each function; in general, the response time of a function
foo includes both the self-time (i.e., the amount of time taken executing code within foo itself) and the total time it took to execute the functions
that were called by foo.
In contrast, for the execution timeline generated after the regression (i.e., the “new timeline”), only three of the above four asynchronous func-

tion calls were made (hover did not execute). In addition, the order in which these asynchronous function calls executed is also different in the
new timeline compared to the old timeline. Finally, new calls to the function utf are made by the function layer, found underneath the call to
queryRenderedFeatures.
We can compare the old timeline with the new timeline to help us localize the root cause of the performance regression. In this case, based

on a manual analysis of the timelines, we can see that the largest regression among all the asynchronous function calls can be observed at
queryRenderedFeatures, which slowed down by 130ms. Drilling down further on this function, we can see that each of the function calls to d and
layer slowed down by about 70ms. As the timelines show, the reason these functions slowed down is that layermakes a new call to utf that takes
70ms to execute. Therefore, these new calls to utf are the ones that appear to introduce the performance regression. We can then search for the
commit that added these new calls to utf in the source code, which would help the developer who introduced the change to further localize the
regression at the source code level, and eventually, come upwith a fix.
The root cause is deliberately made obvious in this running example to make the example easier to follow; nonetheless, even in these simplified

execution timelines, we can already observe some of the difficulties in analyzing and comparing them manually. For example, the fact that some
asynchronous function calls execute in different orders makes it difficult to visually match which calls in the old timeline correspond to the calls in
the new timeline. Further, even if we peek ahead and notice that new calls to utf are being made at the bottom of the timeline, we cannot imme-
diately assume that these calls introduced the performance regression. This is because higher-level functions may have also seen performance
improvements that would offset the additional time taken by the new calls, which would indicate that the overall performance regression is intro-
duced elsewhere. Therefore, determining the lowest-level function that introduced the regression presupposes finding the path to this function;
in other words, when drilling down on queryRenderedFeatures, for example, it is necessary to analyze the functions one level at a time, which is
tedious as wewould have to constantly switch back and forth between looking at the old timeline and looking at the new timeline.
Finally, while these timelines already highlight someof the difficultieswithmanual analysis, full timelines generated from real-worldweb applica-

tions aremuch bigger andmuchmore complicated, with hundreds of asynchronous calls and thousands of function calls in total, as we demonstrate
later in our evaluation (Section 5.3). In turn, since investigators often look at regressions at the granularity of milliseconds, pinpointing the root
cause will be very difficult to do by simply looking visually at the timelines. These difficulties point to the usefulness of devising an automated approach
for comparing execution timelines for web applications.

2.2 Definitions
Wewill now introduce terminology that will help us explain our proposed approach. First, we define an execution trace as a series of call trees, each
representing an asynchronous function call that executed during a series of user interactions with the application. This series of user interactions
can include anymethod of interactionwith the application’s interface (e.g., clicks, hovers, scrolls, etc.).We also define a top-level function as the start-
ing point of a call tree in the execution trace; since the execution trace can containmultiple call trees, there can also bemultiple top-level functions in
the execution trace. For example, in the running example, the old timeline contains four top-level functions: evHandler, queryRenderedFeatures,

2 For simplicity, we use the terms execution timeline and timeline interchangeably.
3 https://github.com/mapbox/mapbox-gl-js/issues/5648

https://github.com/mapbox/mapbox-gl-js/issues/5648
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hover, and promiseHandler; in contrast, the new timeline contains only three top-level functions: promiseHandler, queryRenderedFeatures, and
evHandler.
Based on the above definitions, we can nowmore formally define an execution timeline as follows:

Definition 1 (Execution Timeline). An execution timeline is a treeT(V,E)whose descendants are the call trees in the execution trace. Therefore,T
is rooted at a node r ∈ Vwhose children represent the top-level functions of each call tree. In addition, each node v ∈ V in the call trees is labeled
with the following:

• v.name: The function name;
• v.component: The component name (i.e., file name);
• v.time: The total response time;
• v.children: An array of v’s child nodes, ordered by time of execution (i.e., timestamp)

Note that for the root r ∈ V, r.name and r.component are both left blank, r.children contains the top-level functions of the call trees (as stated in
the definition), and r.time is defined to be the sum of the response times of all the top-level functions.
As with the running example, when comparing execution timelines, we generally refer to the baseline (i.e., before the regression) as the old

timeline, and we refer to the regressing timeline as the new timeline. Further, if a node vold in the old timeline and a node vnew in the new timeline
correspond to the same function call, vold and vnew are said to bematching nodes.
We can now therefore define a performance regression-cause as follows:

Definition 2 (Performance Regression-Cause). Given a real number µ > 0, an old timelineTold(Vold,Eold), and a new timelineTnew(Vnew,Enew), a
performance regression-cause is a node vnew ∈ Vnew which satisfies all of the following conditions:

1. Either vnew has a matching node vold ∈ Vold, and vnew.time − vold.time ≥ µ, or vnew does not have a matching node in the old timeline and
vnew.time ≥ µ

2. The ancestor nodes of vnew havematching ancestor nodes in theold timeline, and for eachmatching ancestor nodes anew and aold, anew.time−
aold.time ≥ µ

3. If vnew has amatching node vold ∈ Vold, then for eachmatching child node cnew and cold of vnew and vold (respectively), cnew.time− cold.time <

µ. Further, for any child node cnew of vnew with nomatching node in the old timeline, cnew.time < µ

In other words, the performance regression-causes represent the lowest-level function(s) that regressed by at least µ based on a comparison of
the old timeline and the new timeline. Note thatwedefine performance regression-causes in thismanner because the goal of our execution timeline
comparisons is precisely to pinpoint these lowest-level functions, which either contain the code changes introducing the performance regression
themselves, or provide a strong lead that can help developers localize those changes at the source code level.
Lastly, we define the critical graph as follows:

Definition 3 (Critical Graph). Given a real number µ > 0, an old timeline Told(Vold,Eold), and a new timeline Tnew(Vnew,Enew), a subtree
Tsub(Vsub,Esub) ofTnew is a critical graph if and only if the set of all the leaves inTsub is the same as the set of all performance regression-causes in
Tnew .
This means that the critical graph represents the new timeline, but with nodes irrelevant to performance regressions filtered out. The critical

graph therefore provides a summary of all the performance regression-causes when comparing the old and new timelines, as well as the call stacks
of each of these performance regression-causes.
With the above definitions in place, we can state the problem inmore formal terms as follows:Given an old timelineTold and a new timelineTnew , is

there an approach that can generate, with high recall and precision, the critical graph that corresponds to a comparison ofTold andTnew?We propose such
an approach in Section 3.

2.3 Challenges
One of the challenges in automating the comparison of execution timelines of web applications is that additional JavaScript function calls may be
added and the order of function calls may change from one version to another. These changes occur both as a natural byproduct of the changes
made to the source code, and, in the case of web applications, as a result of the asynchronous and event-driven nature of JavaScript. Theymay also
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occur due to timing differences introduced by profiling overhead, when recording execution timelines. As a result, inferring thematching nodes can
be difficult, as a simple sequential mapping of the nodes based on the order of the function calls at each level of the call tree would not suffice.
Another complication is introduced by the fact that execution timelines are often very noisy, i.e., they tend to include many function calls irrele-

vant to the performance regression. This issue is especially present in web applications, due to extraneous event handlers that may be triggered by
the user – perhaps inadvertently – while interacting with the application (as is the case with hover in Figure 1a). More generally, the versions of the
application being compared often encompass multiple commits, since performance regression tests are often done not on a per-commit basis but
after every several commits; the former is simply infeasible given the amount of time it takes to run performance tests (usually hours) and the fre-
quency of commits (multiple commits per hour). The large number of commits makes the execution timelines more susceptible to noise, given the
number of changes that are likely unrelated to the performance regression.
An additional factor that contributes to this noise is the fact that in web applications, which is the primary domain in which JavaScript is used,

there is an inherent interplay between the JavaScript code execution, as well as other components such as renders, paints, and network requests.
This interplay affects the way in which the JavaScript call tree is displayed in the timeline; however, these additional components are difficult to
“filter out” when simply looking at the timelines manually.
Finally, performance varies from execution to execution, which adds further noise to the timelines. Thus, a comparison of an old and a new time-

line may show extraneous regressions that do not appear in other timeline pairs. As a result, multiple pairs of timelines often need to be generated
and compared, which suggests the need for amethod to aggregate the results from each comparison.

2.4 Scope
Before we describe our algorithm, we would first of all like to clarify the scope of our design and of this paper. First, as mentioned previously, our
proposed approach is specifically designed for the client-side of web applications. As mentioned in Sections 1 and 2.3, our choice to focus on web
applications is drivenbyuniquechallenges associatedwith this domain, aswell as theubiquity andwidespreadusageof suchapplications. Therefore,
for the purposes of this research, we do not claim full generality to all application types; nonetheless, in Section 6, we briefly touch upon certain
aspects of our design that may generalize to other application types.
Furthermore, our approach is designed to assist with localizing performance regressions that manifest as increases in response times in theweb

application.Wewould like to note that the term “performance regression” is often used tomore generally refer to regressions not only in response
times, but also other non-functional aspects of the execution such asmemory and CPU usage. Nonetheless, response time increases are commonly
encountered in web applications and are impactful [46, 54]; therefore, finding ways to facilitate the process of localizing them is important and is a
worthwhile research pursuit.
Finally, we understand that there are other important aspects of conducting software performance investigations, including the reproduction of

the environment. Nevertheless, this is not the focus of this paper, but rather, the focus is on finding performance regression-causes given that the
regression can already be reproduced. As explained in Section 1, this is challenging to domanually.

3 APPROACH
Figure 2 shows an overview of our automated approach. As seen in this figure, our approach takes three inputs: (1) the set of old timelines Sold; (2)
the set of new timelines Snew; and (3) a real number µ, which indicates the minimum difference in response time between matching nodes that is
considered a significant regression by our approach (this symbol was introduced in Section 2.2). Note that the number of timelines in Sold must be
equal to the number of timelines in Snew; in other words, |Sold| = |Snew|.
Our approach contains two main modules. The first module is timeline pair comparison (discussed in Section 3.1), which compares pairs of

execution timelines one by one, with each pair consisting of an old timeline and a new timeline. This module contains two main algorithms: (1)
findCriticalGraph(), which traverses the timeline pairs to filter out nodes that are irrelevant to the performance regression, as well as some
“non-useful” nodes (i.e., nodes thatmaymislead the approach and are therefore susceptible to generating false positives, including anonymous func-
tions and some functions withminified names); and (2) findMatchingNodes(), a hybrid algorithm that tries to infer matching nodes among a list of
nodes in the same tree level in the execution timeline pairs. The output of this first module is a set of critical graphs C, where one critical graph is
generated for each timeline pair compared.
The second module is critical graph aggregation (discussed in Section 3.2), which takes the set of critical graphs C generated by the previous

module, and aggregates the graphs. The final output is an aggregated critical graph that takes into account the results of all the timeline pair
comparisons.
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FIGURE 2 Overview of our approach

Algorithm 1: compareTimelinePairs
Input: Sold: The set of old timelinesInput: Snew: The set of new timelines, with |Sold| = |Snew|Input: µ: Theminimum response time difference to trackOutput: C: Set of critical graphs

1 C←∅;
2 Aold← toArray(Sold);
3 Anew← toArray(Snew);
4 for i← 1 to |Sold| do
5 rold← pruneTree(Aold,i);
6 rnew← pruneTree(Anew,i);
7 G← findCriticalGraph((rold, rnew), µ, true);
8 C←C ∪ {G};
9 end

3.1 Timeline Pair Comparison
Our approach begins at the timeline pair comparison module, which takes the sets of execution timelines provided as input by the investigator,
compares the timelines pairwise, and generates a set of critical graphs (defined in Section 2.2) based on each comparison. Algorithm 1 shows the
high-level algorithm for thismodule,which starts by initializing the set of critical graphs thatwill eventually beoutput (line 1) and converting the two
sets of execution timelines Sold and Snew into arraysAold andAnew , respectively (lines 2-3). The latter is accomplished by invoking the toArray()
function, and its purpose is to assign the order in which the timelines are compared, and the pairings. In particular, the old timeline from index i in
Aold (denoted byAold,i) is paired with the new timeline from index i inAnew (denoted byAnew,i), and these timelines are compared; thus, the
total number of comparisons is equal to the number of old timelines provided as input (which itself is equal to the number of new timelines provided
as input). Currently, the timelines are ordered alphabetically based on the name of the file containing the timeline data; this gives the investigator
some freedom to decide the pairing. It is worth noting, however, that (1) the effect of different pairings is out of the scope of our design and of this
paper, and (2) once the pairings have been decided, the order in which the timeline pairs are compared does not actually change the result of our
design.
In lines 4–9, our approach iterates through the indices of theAold andAnew arrays. In each iteration, our approach first takes the execution

timelines in the ith position of each array (i.e.,Aold,i andAnew,i) and passes them as input to the pruneTree() function (line 5). The purpose of the
pruneTree() function is to remove timeline nodes whose name is blank, “(anonymous)”, or consists of only a single character. Nodes representing
anonymous functions are removed from the timeline as they often provide little valuable information to the investigator and, more importantly,
they make the approach more susceptible to false positives since the approach might mistake two different anonymous functions to be the same
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FIGURE 3 Pruned timelines, with some function names abbreviated and response times omitted for simplicity (eH refers to evHandler, qRF refers
to queryRenderedFeatures, and pH refers to promiseHandler)

given that they have the same value for the name.4 Nodes with single-character names are also removed since they often represent the minified
names assigned to some functions, which often change from commit to commit. Whenever a node v is removed from an execution timeline, the
parent of v becomes the parent of the children of v. Figure 3 shows the pruned execution timelines corresponding to the old and new timelines from
the running example (with some function names abbreviated).
Note that the calls to pruneTree() return the roots of the pruned execution timelines. These roots – labeled as rold and rnew – are passed to

the findCriticalGraph() method (line 7), which is responsible for comparing the two (pruned) timelines to which these roots correspond, and
calculating the critical graph for this comparison. Each critical graph generated from each comparison is placed in the set of critical graphsC (line 8),
which is the output of this module.
The pseudocode for findCriticalGraph() is shown in Algorithm 2. This recursive function takes three inputs: (1) a pair of nodes (rold, rnew); (2)

the minimum response time difference µ; and (3) useAlternate, which is used by the findMatchingNodes() algorithm that we will describe later.
The key idea to note here is that the findCriticalGraph() function assumes that the pair of nodes (rold, rnew) representsmatching nodes; this way,
based on the way the algorithm is designed, the burden to decide which nodes are matching is exclusively placed on the findMatchingNodes()
algorithm.
The findCriticalGraph() algorithm starts by creating a new graph that is initialized with only one node – a root node rG that is a copy of the

node rnew (lines 1–3). The algorithm then invokes the findMatchingNodes() algorithm, which outputs an arrayM of node pairs, with each pair
representingmatching nodes between the children of rold and the children of rnew (line 4), where the response time difference is at leastµ. Note that
for some node pairs (vold, vnew) inM, the value of vold may be null; the conditions under which such pairs are included in the array are explained
later in this section whenwe describe findMatchingNodes().
The rest of the algorithm (lines 5–18) consists of a for loop that iterates through each pair of matching nodes (vold, vnew) inM. For each of these

pairs, two possible scenarios are encountered, depending on the value of vold. In particular, if vold is null, this would indicate that the node vnew
represents a new function call with a response time of at least µ that is present in the new timeline, but was not present in the old timeline, and is
therefore a performance regression-cause. As a result, vnew is added as a child of rG (lines 8–10), and no further exploration is done.
On the other hand, if vold is not null, then vold and vnew represent matching nodes where vnew ’s response time is slower than vold’s response

time by at least µ. In this scenario, the findCriticalGraph() function is recursively called with (vold, vnew) as input (line 12) to see if there are any
matching descendant nodes whose response times differ by at least µ; the root node resulting from this recursive call is added as a child of rG, and
the recursion halts once a performance regression-cause is encountered (i.e., there are no longer any matching descendant nodes whose response
times differ by at least µ). Therefore, by the end of the algorithm, the graph G would only consist of the nodes that lead up to the performance

4We considered using the line and column numbers as potential identifiers for anonymous functions, but the problem is that these numbers frequently
change from commit to commit, andwill therefore not be of much use in distinguishing functions.
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Algorithm 2: findCriticalGraph
Input: (rold, rnew): A pair of nodes, where rold is from the old timeline and rnew is from the new timeline. rold and rnew are assumed tobematching nodes.Input: µ: Theminimum response time difference to trackInput: useAlternate: If true, an alternatematching algorithmwill be used instead of “longest common subsequence”Output:G: The critical graphwhen comparing the tree rooted at rold and the tree rooted at rnew

1 rG← copy of rnew;
2 rG.children← [];
3 G(VG, EG)← ({rG}, ∅);
4 M← findMatchingNodes((rold.children, rnew .children), µ, useAlternate);
5 for i← 1 to |M| do
6 (vold, vnew)←Mi;
7 if vold = null then
8 rG.children.add(vnew);
9 VG←VG ∪ {vnew};
10 EG← EG ∪ {(rG, vnew)};
11 else
12 H← findCriticalGraph((vold, vnew), µ, false);
13 rH← root ofH;
14 rG.children.add(rH);
15 VG←VG ∪ {rH};
16 EG← EG ∪ {(rG, rH)};
17 end
18 end

regression-causes, and hence, by definition, is a critical graph. Figure 4 shows the critical graph generated after comparing the timelines from the
running example, with µ set to 50ms (we discuss considerations takenwhen deciding a value for µ in Section 6).
Lastly, Algorithm 3 shows the pseudocode for findMatchingNodes(). This algorithm takes the following as input: (1) a pair of arrays (Bold,

Bnew), where the arrays contain the nodes that need to be matched; (2) the minimum response time difference µ; and (3) the boolean value use-
Alternate, which forces the algorithm to use the “alternate matching algorithm” described shortly. The output is an arrayM of matching node pairs
(vold, vnew), where vold may be null, as discussed above.
The algorithmbegins by initializing the arrayM (line 1) and invoking themainmatching algorithmused by our approach, which finds the “longest

common subsequence” when comparing two arrays (line 2). The longest common subsequence (LCS) between two arrays is defined as the longest
sequence of values found in both arrays, where the values in the sequence are not necessarily positioned consecutively in either array. In this case,
the longestCommonSubsequence() call in line 2 returns a pair of arrays (J,K), whereJ andK contain the indices of thematching nodes inBold and
Bnew , respectively. For example, if the first element of J is 5 and the first element ofK is 7, then the 5th element ofBold and the 7th element of
Bnew have been identified as matching nodes; the same principle applies to the second element of J andK, the third element, the fourth element,
and so on.
We decided to infer the matching nodes based on LCS for various reasons. First, the LCS problem is a well-studied computer science problem,

and in fact, our approach uses an algorithm similar to the ones suggested in Rosetta Code [50]. Second, finding the LCS allows us to preserve the
order in which the functions are called – even in cases where the same function is called in multiple, non-consecutive instances – and it considers
the possibility of function calls being added or removed across versions.
There is a caveat to finding the LCS, however: the LCS problem applied to arrays with arbitrary lengths and values is NP-complete [24], and the

speedof the algorithmdepends on the values in the arrays and the array’s sizes. In the case of execution timelines forweb applications, function calls
in the same level of the timeline tend to followmore or less the same sequence from version to version, with only slight alterations that are mostly
due to function calls that have been added or removed; in such cases, the LCS algorithm tends to execute very quickly. Nonetheless, there may still
be cases where some functions are refactored to the point that the function call sequence becomes drastically different, and the LCS algorithm
often does not scalewhen encountering such situations. In addition, the order of execution for top-level functions often changes inweb applications
– as is the case in our running example where the evHandler and promiseHandler functions executed in different orders in different executions –
which, again, will make the LCS algorithm execute slowly.
To account for the above scalability issue, we have devised a simpler alternate matching algorithm (lines 3–22) which, though potentially less

accurate than LCS, is much more scalable. This alternate matching algorithm only considers the order of functions with the same component and
name, and not the overall order of the functions. Further, it only executes under two conditions. First, it always executes when matching top-level
functions, for the reasons just discussed; this is the reasonwhy the compareTimelinePairs() function in Algorithm1 sets the value of useAlternate
to truewhen calling findCriticalGraph() (whereas the recursive call to findCriticalGraph() in Algorithm 2 sets this same variable to false).
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FIGURE 4 Critical graph generated by our approach for the running example. Grey-filled nodes are performance regression-causes.

Second, the alternate matching algorithm also executes when the execution time of the LCS algorithm exceeds a threshold, at which point J andK
are both set to null; the value we have set for this threshold is discussed in Section 4.
The alternatematching algorithm sets the values of the arraysJ andK in a way similar to the LCS algorithm. After initializing the values of these

arrays to empty arrays (line 4), the alternate algorithm iterates through the nodes inBold and places the index that the node appears inBold in
a hash map hmold (lines 6–12). The hash map keys are defined by the component and the function name of the node, and the hash map values are
arrays of integers containing the indices toBold. Once the hash map has been populated, the algorithm iterates through the nodes inBnew (lines
13–21). If a node’s component and function name matches a key in the hash map, the index of that node inBnew is added to the arrayK, and the
matching index from the hashmap is added to the array J. This process continues until all nodes inBnew have been analyzed.
Once the arrays of indicesJ andK have been populated by our hybrid nodematching algorithm (i.e., either by the LCS algorithm or the alternate

matching algorithm), our approach iterates through the indices ofBnew (lines 23–34) and adds pairs of matching nodes to the output arrayM. In
each iteration, the approach determines whether the current index i is inK. If so, it retrieves the index – called kIndex – in which the value i appears
inK (line 26), and it subsequently retrieves the index values that appear in the kIndexth position of both J andK. These index values are then
used to retrieve the corresponding matching nodes fromBold andBnew , respectively, and these matching nodes are added as a pair toM if their
difference in response time is at least µ (line 29). On the other hand, if the value i does not appear inK, this would indicate that the corresponding
node inBnew has no matching node inBold. The node is still added as a pair toM if its response time is at least µ, albeit it is paired with the null
value (line 32).

3.2 Critical Graph Aggregation
Once the timeline pair comparison module has generated a set of critical graphs, these graphs are fed as input into the critical graph aggregation
module. As the name suggests, the purpose of this module is to put together the intermediate critical graphs generated by the previous module in



OCARIZA ET AL 11

Algorithm 3: findMatchingNodes
Input: (Bold,Bnew): A pair of arrays containing the nodes that need to bematched, whereBold is an array of child nodes fromthe old timeline andBnew is an array of child nodes from the new timeline.Input: µ: Theminimum response time difference to trackInput: useAlternate: If true, an alternatematching algorithmwill be used instead of “longest common subsequence”Output:M: An array of matching nodes, represented as pairs (vold, vnew). Note that for some pairs in this array, vold may be null if

vnew has nomatching node but vnew .time≥ µ
1 M← [];
2 (J,K)← longestCommonSubsequence(Bold,Bnew);
3 if J is null∨ useAlternate then

/* Either longestCommonSubsequence took too long to execute or top-level functions are being
compared, so try alternate matching. */

4 (J,K)← ([], []);
5 hmold← hashmap of (key, value) pairs (k, v);
6 for i← 1 to |Bold| do
7 next←Bold,i;
8 if (next.component, next.name) /∈ hmold.keys then
9 hmold[(next.component, next.name)]← [];
10 end
11 hmold[(next.component, next.name)].add(i);
12 end
13 for i← 1 to |Bnew| do
14 next←Bnew,i;
15 if (next.component, next.name)∈ hmold.keys then
16 oldIndex← hmold[(next.component, next.name)]1;
17 J.add(oldIndex);
18 K.add(i);
19 hmold[(next.component, next.name)].remove(oldIndex);
20 end
21 end
22 end
23 for i← 1 to |Bnew| do
24 next←Bnew,i;
25 if i is in the arrayK then
26 kIndex←K.indexOf(i);
27 oldIndex← JkIndex;
28 if next.time -Bold,oldIndex.time≥ µ then
29 M.add((Bold,oldIndex, next));
30 end
31 else if next.time≥ µ then
32 M.add((null, next));
33 end
34 end

order to generate an “aggregated critical graph”,which is thefinal output of our approach. This aggregated graph includes all thenodes that appear in
all the intermediate critical graphs, and excludes all other nodes. Hence, this is an important step that aims to decrease the number of false positives
reported by our approach (where a false positive, in this context, refers to a function call that is reported as a performance regression-cause, but is
actually not a performance regression-cause) and therefore attempts to eliminate the noise often seen in execution timelines, which is listed as one
of the challenges in Section 2.3. Incorporating this step in our approach alsomeans that the number of execution timelines included in the input will
have an effect on the final output. In our evaluation in Section 5, we test the effect of varying the number of execution timelines.
Our algorithm for aggregating two critical graphs is similar to our alternate matching algorithm from lines 3–22 of Algorithm 3. That is, when

comparingeach level of the critical graph, theapproachfirst iterates through thenodes in that level fromthefirst critical graphand stores the indices
in a hashmap. Afterwards, the approach iterates through the nodes from the second critical graph and, whenever a nodewith the same component
and function name is encountered based on the hash map, that node is added to the aggregated critical graph and further explored recursively.
This comparison is done for each subsequent critical graph. In other words, the first and second critical graphs are compared, which generates an
aggregated graph; this aggregated graph is then comparedwith the third critical graph, which generates another aggregated graph; and so on, until
all critical graphs have been included in a comparison.5 In essence, our algorithm looks for the largest common subtree among all the critical graphs.

5The response times displayed in the aggregated critical graph are the averages of the corresponding response times across all the intermediate critical
graphs
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4 IMPLEMENTATION
The approach described in the previous section has been implemented in a tool called ZAM,6 and this tool has helped SAP’s performance and relia-
bility team in investigating and localizing many performance regressions, as we demonstrate in Section 5; in particular, running execution timelines
by ZAM has now been incorporated as one of the core steps when trying to investigate client-side performance regressions in SAP Analytics Cloud
(SAC) [53]. We have implemented the tool as a Node.js application. It takes two folders as input – one containing the old timelines, and the other
containing the new timelines; these timelines are saved as JSON files that have been recorded using Chrome DevTools [15]. In addition, the inves-
tigator is required to specify the value for the minimum response time difference µ in milliseconds. Finally, ZAM allows the investigator to specify
other optional parameters, such as themaximum number of execution timeline pairs to compare, as well as an output file name. The output of ZAM
is a filewritten in theDOTdescription language [17, 13]; the contents of this file can be viewed usingDOTviewers such asGraphviz [49] or viz-js [9].
Note that the execution timelines have to be recorded manually by the investigator. Further, when running ZAM, there is no need for the inves-

tigator to have the web application itself open, so the analysis can be done offline. The process of recording an execution timeline is quite simple –
the investigator simply needs to open Chrome DevTools, click on the “Performance” tab, and then start recording any action from there. Although
the steps themselves are simple, the process is admittedly time-consuming.While the process of recording these timelines is completely out of the
scope of our approach, we nonetheless provide a brief discussion of this process in Section 6, including some requirements needed if one were to
consider automating it.
ZAM uses a Node.js module called DevTools Timeline Model [19] to extract call tree information from the input JSON files. Using this module,

ZAM extracts the top-down aggregated call tree from the JSON files. Using the top-down call tree allows ZAM to identify regression-causes that
result from repeated runs of the same function that accumulate into larger response times; note, however, that using the top-down call tree does
not significantly simplify the matching of nodes at each level, given the sheer number of unique function calls to be matched in the first place. In
Section 5, we show that the nodes and the unique function names found in typical execution timelines number in the hundreds or thousands, even
when already aggregated top-down.
From experience in using the tool, we find that 10 seconds is a reasonable threshold to set when determining whether to switch to the alternate

matching algorithm if the LCS algorithm is taking too long to execute (see Section 3.1 and Algorithm 3).While exploring the effects of changing this
threshold is out of the scope of this paper, our evaluation results in Section 5 corroborate our current threshold choice, as our results demonstrate
that ZAM does not take a significant amount of time to execute even for large call trees, while still retaining good accuracy.

5 EVALUATION
Here, we conduct an evaluation of ZAM to assess its accuracy, usefulness, and performance. We are particularly interested in answering the
following research questions:

RQ1 (Accuracy): How accurate is ZAM in identifying performance regression-causes in web applications?
RQ2 (Effects of Aggregation): What are the effects of varying the number of aggregated timeline pairs in ZAM?
RQ3 (Effects ofMatching Algorithms): How often is eachmatching algorithm used by ZAM andwhat are the effects on the accuracy?
RQ4 (Usefulness): How useful is ZAM in pruning out irrelevant functions from the timelines tominimizemanual inspection by the investigator?
RQ5 (Real Bugs): Is ZAM capable of finding the performance regression-cause in real-world bugs involving performance regressions?
RQ6 (Real-World Applicability): How helpful is ZAM in conducting real-world performance investigations?
RQ7 (Performance): How quickly can ZAM generate its output?

Note that while a comparison with analogous tools (e.g., YourKit, Visual Studio, etc.) could be potentially useful, carrying out such a comparison
is not currently possible, not only because these tools are proprietary and closed-source, but also because they do not support web applications.
Nonetheless, we believe the above research questions allow us to conduct a thorough evaluation on ZAM.

6ZAM is named after the character Zam Wesell from the Star Wars movies. She is a “changeling” who can alter her appearance, in the same way the
appearance of timelines changes from execution to execution
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5.1 Experimental Subjects
We chose our subjects from among an online list of over 600 self-hosted web applications [21]. We chose ten web applications from this list in
uniformly random fashion, by assigning a random ranking to each application and choosing the ten highest-ranked applications. In our selection, we
filter out any applications that are not web applications (since the list also includes network services, for which ZAM is not designed). Further, since
we are conducting our evaluation on a Windows environment, we ignore any applications that require non-Windows environments to be set up.
We decided to limit the number of subject web applications to ten because as we describe in Section 5.2, we will be capturing a large number of
timelines for each application, which takes a lot of effort; we feel that this number allows us to conduct our evaluationwith reasonable effort, while
still providing us statistically significant results. The subject applications are listed in Table 1.
The subject applications are deployed as locally hosted web applications on a Microsoft Surface runningWindows 10, with 4 GB of RAM and a

1.60GHz Intel Atom x7-Z8700 processor. As described in Section 5.2, we also collect execution timelines from the subject applications; the subject
applications are executed and timelines are collected from this samemachine.

5.2 EvaluationMethodology
This section describes ourmethodology for answering each of our research questions.
Accuracy (RQ1).To answerRQ1,we conduct a fault injection experiment. Note that the goal of RQ1 is tomeasure the accuracy of ZAM in finding the
performance regression-cause. To do so, we perform the following injections, which are based on the most common JavaScript performance issue
root causes identified by Selakovic and Pradel [54]:

• Injection 1 (Inefficient API function): A function that performs at least one call to an external API is randomly chosen from the subject applica-
tion, andwithin this function, an external API call is randomly chosen. A sleep time between 100ms and 200ms is then injected in the chosen
external API call. The root causes corresponding to this injection apply to over 50% of the performance issues analyzed in [54];

• Injection 2 (Long-running loops): A function is randomly chosen from the subject application, and a for loop that executes multiple iterations
(amounting to a slowdown of 100-200ms per call to the function) is injected at the beginning of the function. The root causes corresponding
to this injection apply to at least around 20% of the performance issues in [54];

• Injection 3 (Repeated checks of the same condition): A function that is called multiple times is randomly chosen from the subject application,
and within this function, a boolean expression expr used as the condition for an if statement or a loop is randomly chosen. The expression
is modified to dummyZam() && expr, where dummyZam() is a custom function that always evaluates to true and executes for about 10ms
per call. The execution time of dummyZam() is deliberately made small, as the corresponding patternmentioned in [54] refers to cases where
the code slows down as a direct result of multiple evaluations of the same conditional. Note also that if no conditional exists in the chosen
function, the body of the function is wrappedwith an if, where the if condition is dummyZam(). The root cause corresponding to this injection
applies to around 10% of the performance issues in [54].

Note thatmultiple root causesmap to the first two injections above (e.g., all the API-related root causes identified in [54] are simply variations of
the first injection pattern, in which a slowdown is observed in an API function). Some root causes from [54] are ignored as they are both too general
and only apply to a small percentage of performance issues.
Weperform two injections for each of the injection types listed above, for a total of six distinct injections per application. Thismeans that in total,

we collect 40 execution timelines for each application. More specifically, we collect 10 execution timelines for the baseline case (i.e., no functions
modified); we then perform the six distinct injections to the application one at a time, and we collect 5 execution timelines for each injection, for an
additional 30 execution timelines. The timelines are collected using Chrome DevTools (via Chrome v. 80.0.3987.132), and for each application, we
perform the same series of user interactions to generate all the timelines. The user interactions carried out to generate the timelines are common
use cases for each application, and are listed in Table 1.
Each of the six injections requires a function to randomly be chosen from the application, as stated in the injection specifications above. The

functions chosen for each application are also listed in Table 1. The functions are chosen by extracting a list of functions recorded in the baseline
timelines, and randomly choosing six functions from this list. Note that we ignore anonymous functions and functions whose name contains fewer
than two characters, as these functions are pruned out by ZAM as discussed in Section 3.1.
Once we have the execution timelines, we run ZAM on these execution timelines as follows. For each app, we run ZAM with one set of baseline

timelines used as the old timelines, and another set of baseline timelines used as the new timelines; this run constitutes our base case, where the
result is expected to be empty. Once this is done, we then run ZAMwith the first set of baseline timelines used as the old timelines, and the timelines
generated from the first injection as the new timelines.We repeat the same comparisonwith the timelines generated from the second, third, fourth,
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TABLE 1 The subject web applications used in our evaluation. Note that the “App Size” column only includes the size of actual code (HTML, CSS,
and JavaScript) in the web application; other static assets such as images and documents are excluded.

Application Application App Modified UserName Type Size (KB) Functions Interactions
Read the Docs Documentation Generator 86323 hide_dropdown,

open_dropdown, grep,
matches, find, show

Expand the “ViewDocs” dropdown,type “stable”, andtype away fromthe dropdownResource Space FileManager 70246 hideMyCollectionsCols,
SlideshowChange,
showInvisibly, map,
dispatch, extend

Logon to thehomepage

GNU Social Social Communication 61440 beforeSend, CheckBoxes,
superMatcher, nodeName,
handle, fix

Add the noticeto favourites,remove the noticefrom favourites,click settings, andclick on “EMAIL”Live Helper Chat Communication System 30310 simulate, Ee, unary,
instantiate, unary, select Logon to thehomepageAntville Blogging Platform 87142 set, promise,
setRequestHeader, remove,
compile, component

Logon to thehomepage, click“Create a site”, andclick “Cancel”FlaskBB Forum 111616 show_toolbar, lt,
removeClass, cookie, each,
compile

Logon to thehomepage andclick on the rightbutton to showthe toolbar
Searx Search Engine 186368 searchInputFocus,

removeFocus, promise,
nameToUrl, _data, on

Search “star wars”,and press the fol-lowing hotkeys: i,Esc, f, b, j, k, n, r, h,hh5ai FileManager 289 getLostPoint, rmAttr,
getErrorCorrectPolynomial,
exports, each, appTo

Click on thecheckmark besidethe “private”folder twice, clickon the “private”folder, and click onthe “_h5ai” folderJSBin Debugging Tool 181248 render, setCode, run,
getRenderedCode, cancel,
handleMessage

Show the JS panel,paste a functiondefinition in thispanel, modify thesample code in theHTML pane, press“Run with JS”, andhide the JS panelSelfoss Feed Reader 10209 getResponseHeader,
domManip, param,
isPlainObject, select,
merge

Click on the firstitem in the feed,mark the item asread, mark theitem as unread,star the item,unstar the item,and deselect theitem

fifth, and sixth injections used as the new timelines, for a total of seventy comparisons (i.e., seven comparisons per subject application, including the
base case run). For this particular research question,wewill only be aggregating three pairs of execution timelines per comparison; however, in RQ2,
we will be exploring the effects of altering the number of aggregated pairs. In addition, we have chosen to set the value of the minimum response
time difference µ to 50ms.We decided to assign a small value for µ because in realistic scenarios, the investigator running ZAMwill not know how



OCARIZA ET AL 15
the observed performance regression is “distributed” across the different functions in the timeline; in other words, theywould not know howmuch
individual functions in the timelinemay have regressed, and it is therefore safer to use a numbermuch smaller than the observed regression.
Note that the injections described above are applied to a version of the subject application different from the version from which the baseline

timelines were taken. More specifically, in eight out of the ten subject applications, the injections are applied to a version that is twenty GitHub
commits ahead of the baseline commit. The only exceptions areResource Space,whereweused a build that is oneminor version away from the base
build, as it did not have a GitHub repository; and JSBin, where the injected version is only 17 commits away, as there were fewer than 20 commits
ahead of the baseline build. This methodology is applied to more accurately reflect real-world investigation scenarios, where code changes apart
from the regressing change are present; and as we will later highlight in Section 5.3, the impact of these extraneous code changes on the accuracy
of ZAM is minimal.
For this research question, wemeasure four mainmetrics, described below
• Node recall: The number of ZAM outputs that correctly identify the modified function as the performance regression-cause, divided by the
total number of ZAM outputs;

• Path recall: The number of ZAM outputs that correctly identify at least part of the call path that eventually calls the performance regression-
cause (we call these partial paths), divided by the total number of ZAM outputs;

• Node precision: The number of leaf nodes in the ZAM output that match the modified function, divided by the total number of leaf nodes in
the ZAM output;

• Path precision: The number of leaf nodes in the ZAM output that either match the modified function or are part of the partial path to the
modified function, divided by the total number of leaf nodes in the ZAM output.

As a further clarification, consider the critical graph in Figure 4, and note that one of the full paths to a performance regression-cause found in
this critical graph is as follows: root→ queryRenderedFeatures→ rendered→ query→ layer→ utf. Any subpath of this path rooted at root is
considered a partial path. Hence, path recall refers to the percentage of critical graphs generated by ZAM in our experiment that contain either a full
path or a partial path to the performance regression-cause. In addition, path precision refers to the percentage of all paths across all critical graphs
generated by ZAM that correspond to either a full path or a partial path to the performance regression-cause. Node recall and node precision are
defined similarly, albeit only considering full paths.
Wemake a distinction between node recall/precision and path recall/precision because even if a regressing function is not exactly identified as a

performance regression-cause by ZAM, identifying the path that leads to this function still points the investigator to the right direction and there-
fore, could still potentially be useful in helping the investigator identify the performance regression-cause more quickly. In this case, the value of
identifying a partial path depends on how close it leads the investigator to the performance regression-cause, and for this reason, we also mea-
sure the average distance of all valid paths to the performance regression-cause, with smaller values interpreted as better (we call this metric the
“average distance to cause”).
Finally, we also determine the longest path from a top-level function to the performance regression-cause in each ZAM result, and we calculate

the average of these longest paths. This metric provides an indication of how much effort the investigator may have had to exert if he or she had
attempted to find the performance regression-causemanually, without the help of ZAM.
Effects of Aggregation (RQ2). For RQ2, we conduct the same experiment described above to answer RQ1, but with the number of aggregated
timeline pairs varied, and ranging from 1 to 5.
Effects of Matching Algorithms (RQ3). For each run of ZAM performed in RQ1, we keep track of the number of times the LCS algorithm is used to
perform node matching, versus the number of times our alternate matching algorithm is used. Our goal for this particular research question is to
highlight the purpose served by eachmatching algorithm in our design.
Usefulness (RQ4). To answer RQ4, we measure the ratio of the number of nodes in each ZAM output to the total number of nodes in the execu-
tion timelines. For simplicity, the total number of nodes in the execution timelines is calculated from the first baseline timeline captured for each
application.
Real Bugs (RQ5). In order to assess howZAM fareswhen attempting to localize real-world performance regressions, we perform a small case study.
In particular, we ran ZAM on three real-world performance regressions reported for three different GitHub projects: deck.gl7, highlight.js8, and
async9. We chose a small number of performance regressions to give us more time to analyze in depth how ZAM behaves when used on these
real-world regressions.

7 https://github.com/uber/deck.gl/issues/1126
8 https://github.com/isagalaev/highlight.js/issues/1031
9 https://github.com/caolan/async/issues/883

https://github.com/uber/deck.gl/issues/1126
https://github.com/isagalaev/highlight.js/issues/1031
https://github.com/caolan/async/issues/883
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TABLE 2 Evaluation results for ZAM, with the minimum response time difference µ set to 50 ms and the number of timeline pairs compared and
aggregated set to 3.

Application Node Path Node Path Average Distance Average Total Paths in
Name recall (%) recall (%) precision (%) precision (%) to Cause Longest Path Base Comparison

Read the Docs 33.33 100.00 15.38 92.31 1.25 4.67 0
Resource Space 100.00 100.00 65.38 100.00 0.85 14.5 1
GNU Social 100.00 100.00 45.00 85.00 0.76 5.17 0
Live Helper Chat 100.00 100.00 28.22 99.59 5.48 22.17 0
Antville 100.00 100.00 71.43 100.00 1.11 6.17 0
FlaskBB 66.67 100.00 29.17 75.00 1.56 6.50 1
Searx 100.00 100.00 68.42 100.00 0.53 4.83 0
h5ai 66.67 100.00 62.32 89.86 1.35 3.00 0
JSBin 100.00 100.00 34.18 92.41 1.95 10.50 0
Selfoss 100.00 100.00 33.82 98.53 1.36 8.17 0
All 86.67 100.00 41.16 96.09 2.92 8.57 2

The performance regressions were selected by doing a GitHub search using the keyword performance regression label:bug

language:JavaScript. To ensure that we have an oracle with which to compare the results output by ZAM, we only considered closed bug reports
where the regression-introducing code change is either directly identified or can be inferred fromeither the initial report or the comments. Further,
we only considered bug reports that sufficiently describe the user interactions that would reproduce the performance issue. The performance
regressions eventually selected were the first three to appear in the search, not including issues that were filtered out using the conditions just
described.
Note that the new timelines are generated using the build (or version) identified by the initial reporter as having the regression. Similarly, the old

timelines are generated using either the build identified by the initial reporter as being a recent good build before the regression was introduced,
or, if the reporter does not provide this information, any prior version of the product.
Real-World Applicability (RQ6). For this research question, we collect issues that SAP Analytics Cloud’s performance and reliability team has
worked on, in which ZAM was used. Each of these issues corresponds to a performance investigation (i.e., a performance regression is observed
in our daily regression test, and we have to determine what caused this regression), and they are all archived in a bug tracking system. The issues
collected span the period between September 2017 and May 2019, with the vast majority coming from the latter half of this time period as the
tool became more mature for our team to use. To find these issues, we use the following filter: description ∼ “Zam” OR summary ∼ “Zam” OR

component in (“Zam”) OR comment ∼ “Zam”. In other words, we look for all the issues in which the keyword “Zam” appears in the description,
summary, component value, or comment. Once we have all the issues satisfying this filter, we qualitatively analyze each matching issue to deter-
minewhether the resolution of the issuewas client-side related; this is necessary, as our teamgenerally runs ZAM at the beginning of a performance
investigation as a sanity check, in case the root cause ends up being client-side related. We then categorize the remaining issues either as a Suc-
cess if ZAM was able to find the performance regression-cause or a partial path to it, or a Failure if ZAM was not able to identify the performance
regression-cause or a partial path to it.
Performance (RQ7).We added some instrumentation to the ZAM code to measure the execution time of each of ZAM’s main modules. For each
measurement, we report the average, median, 90th percentile, andmaximum.Note that we executed ZAM on amachine that runsWindows 10 on a
3.60 GHz Intel Core i7-4790 processor, with 32GB of RAM.

5.3 Results
Accuracy (RQ1). Table 2 shows the results of our evaluation when ZAM is run on the subject applications, with the number of timeline pairs com-
pared and aggregated set to 3. The results in this table show that overall in our experiment, ZAM had a node recall of 86.67% and a path recall of
100%. These results indicate that ZAM was able to exactly identify the performance regression-cause in the vast majority of its runs. In addition,
ZAM was able to identify at least a partial path to the performance regression-cause in all of its runs. Based on our analysis of the ZAM outputs, the main
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source of inaccuracy likely comes from noise introduced by various factors, such as the reordering of some function calls and variance in perfor-
mance numbers in some areas of the code, both of which lead to nodemismatches. Nonetheless, in such cases, the identification of the partial path
will at least provide a strong hint as to where the performance regression-cause is located.
The results in Table 2 also show that ZAM has an overall node precision of 41.16% and an overall path precision of 96.09%, with the number

of timeline pairs compared and aggregated set to 3. These results indicate the following: while the leaf nodes identified by ZAM as a perfor-
mance regression-cause do not always correspond to an actual performance regression-cause, nearly all of these leaf nodes are either a performance
regression-cause, or are a part of a partial path that leads to a performance regression-cause. Therefore, the investigator will not have to waste much
time having to “debunk” false positives, since the vast majority of the leaf nodes in ZAM’s output will point the investigator to the performance
regression-cause eventually. The false positives observed in our experiment belong to three separate categories:

• Most of the false positives that appear in the ZAM output correspond to the “(program)”, “(idle)”, and “(garbage collector)” markers, which
can safely be ignored for the purposes of investigating client-side performance issues; these markers are functions artificially introduced
by Chrome DevTools to help the investigator assess the application’s end-to-end performance, and we decided to keep them as they can
still help the investigator localize performance changes resulting from non-scripting-related causes (e.g., slower network requests, slower
rendering, etc.);

• Some false positives are introduced by actual differences between the baseline commits and the injection commits; while these results are
treated as false positives in this experiment by definition, the fact that they represent legitimate performance regressions corroborate the real-
world applicability of ZAM, which is a question that we discuss further in RQ5 and RQ6;

• A small number of false positives also occurwhen the response time of an irrelevant function call varies by 50ms ormore, as this is the value
we have set for µ.

It is also worth noting the results of the baseline comparison, in which one set of baseline timelines is compared against another set of baseline
timelines, as described in Section 5.2. These baseline comparisons are expected to have zero paths in the critical graph generated by ZAM, so any
path that appears is automatically a false positive. Overall, only two of the baseline comparisons had false positives – one for Resource Space and
another for FlaskBB. ForResource Space, the false positive corresponds to the first type described above (i.e., the “(idle)”marker), while for FlaskBB,
the false positive corresponds to the third type described above; in the latter case, the false positive eventually disappears when an aggregation of
five timeline pairs is performed.
To estimate themanual effort required for the investigator to arrive at the performance regression-cause after looking at ZAM’s output, we also

measured the average distance from a leaf node in the partial path to the corresponding performance regression-cause (see “Average Distance to
Cause” in Table 2). Our results indicate that on average, the leaf nodes in the ZAM output are only 2-3 nodes away from the performance regression-cause.
This finding further corroborates our earlier assertion that partial paths are still useful in leading the investigator much closer to the performance
regression-cause.
The second-last column in Table 2 shows the “average longest path”, which is defined as the average length of the longest paths in each critical

graph that lead to a performance regression-cause. In this case, the average longest path when considering all subject applications is 8.57 nodes; in
other words, if the investigator were to compare the timelinesmanually, he or shewould have potentially had to dig an average of 8-9 function calls
deepormore, before arriving at theperformance regression-cause; someapplications have anevenhigher average,with LiveHelperChat at a depth
of 22 function calls. Therefore, finding theperformance regression-cause is not trivial, and requires one tonotmerely look at the top-level functions,
but to actually dig deeper into the execution timelines. As our results indicate, ZAM is capable of automating this process, with high accuracy.
Lastly, the recall and precision values per injection type are very similar to the overall values in Table 2, and are therefore not included in this

paper for simplicity.
Effects of Aggregation (RQ2).We now discuss the effects of varying the number of timeline pairs that are compared and aggregated. The results
are summarized in the graphs in Figure 5, where the horizontal axes represent the number of timeline pairs. Based on the results, the node recall
decreases as the number of pairs increases (Figure 5a), while the path recall remains completely flat at 100% (Figure 5b). The node recall result
indicates that adding additional timeline pairs to the comparison may prevent some performance regression-causes to be exactly identified by our
design because some may get filtered out inadvertently due to noise; however, based on the path recall result, the partial paths that lead to these
performance regression-causes still remain in the critical graph, even when the exact performance regression-causes are filtered out.
With respect to the precision values, we can see in Figure 5c that the node precision decreases as more timeline pairs are compared; however,

the path precision increases asmore pairs are compared and aggregated, going from91%when comparing only one pair of timelines, and increasing
monotonically to 97%when comparing five pairs of timelines (Figure 5d). These two results indicate that addingmore timeline pairs to the comparison
substantially reduces the number of false positives (i.e., leaf nodes that are neither performance regression-causes nor leading to one) while still retaining



18 OCARIZA ET AL

1 2 3 4 5

75
80

85
90

95
10
0

Number of Timeline Pairs Aggregated

N
od

e 
R

ec
al

l (
%

)

(a)

1 2 3 4 5

75
80

85
90

95
10
0

Number of Timeline Pairs Aggregated

P
at

h 
R

ec
al

l (
%

)

(b)

1 2 3 4 5

35
40

45
50

55
60

Number of Timeline Pairs Aggregated

N
od

e 
P

re
ci

si
on

 (%
)

(c)

1 2 3 4 5

75
80

85
90

95
10
0

Number of Timeline Pairs Aggregated

P
at

h 
P

re
ci

si
on

 (%
)

(d)

1 2 3 4 5
0

1
2

3
4

5

Number of Timeline Pairs Aggregated

D
is

ta
nc

e 
to

 C
au

se
 (#

 o
f N

od
es

)

(e)
FIGURE 5 Graphs showing how accuracy changes with the number of timeline pairs compared. The following metrics are shown: (a) Node recall;
(b) Path recall; (c) Node precision; (d) Path precision; (e) Average distance to the performance regression-cause. Note how the range of the vertical
axes for (a), (b), and (d) is 75%-100%, while the range of the vertical axis for (c) is 35%-60%.

TABLE 3 Results showing the frequency of usage of each of the twomatching algorithms used by ZAM.

Matching Total Average Uses Percentage of
Algorithm Uses Per Run Uses
LCS 6583 109.72 95.88%
Alternate 283 4.72 4.12%

almost all of the true positives.Notice, also, that the average distance to the performance regression-cause only increases slightly (Figure 5e), in this
case ranging from 2.43 nodes when only one pair is compared to 3.10 nodes when five pairs are compared.
To summarize our findings in this subsection, adding more timeline pairs to compare and to aggregate will likely decrease the number of perfor-

mance regression-causes that are exactly identified by ZAM as such; however, adding more pairs also increases the percentage of leaf nodes in the
ZAM output that, at the very least, eventually leads to a performance regression-cause. Finally, increasing the number of pairs also does not signifi-
cantly increase the average distance of the leaf nodes to the performance regression-cause in the ZAM output, if applicable. Therefore, when going
from one pair to five pairs, ZAM’s aggregation technique filters out many false positives (about 61% filtered out), while still retaining all of the true
positives, at the small cost of slightly increasing the average distance to the performance regression-cause by around 0.7 nodes. We believe this
result points to the overall effectiveness of our aggregation technique.
Effects ofMatching Algorithms (RQ3).We summarize in Table 3 the overall usage of the twomatching algorithms used by ZAM: LCS and the alter-
natematching algorithm. From this table, we can see that LCS succeeds in around 96%of all the nodematchings, which in turnmeans that ZAM falls
back to the alternate matching algorithm around 4% of the time. Note also that ZAM falls back to the alternate matching algorithm at least once in
each run of the tool during our experiment. These results indicate that (1) the more accurate LCS algorithm, while computationally complex, is still
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TABLE 4 Spearman correlation of each accuracymetric per injection versus the percent usage of the alternatematching algorithm per injection.

vs. Node vs. Node vs. Path
Recall Precision Precision

Spearman ρ value
(compared to% usage of -0.2280 0.1917 -0.1043

alternatematching algorithm)

useful, as it is still used very frequently by the tool, and (2) our alternatematching algorithm is a necessary addition to our overall design, as it is able
to act as a fallback in cases where LCS blows up.
To give us an idea of howmuch the usage of the alternate matching algorithmmay have impacted the accuracy of the results, we computed the

Spearman rank correlation’s ρ value when comparing each of three accuracy measurements (node recall, node precision, and path precision) with
the percent usage of the alternatematching algorithm, which is calculated as follows:

# of Times AlternateMatching Algorithm is Used
(# of Times AlternateMatching Algorithm is Used)+ (# of Times LCS is Used) × 100%

This expression, along with the three accuracy metrics mentioned above, are calculated for each run of ZAM during our RQ1 experiment, which
gives us arrays of data thatwe can correlate.Note that path recall is ignored as all its results are 100%, and a non-zero standard deviation is required
to generate a Spearman ρ value. A positive correlation value indicates that an increase in usage of the alternate matching algorithm corresponds
with an increase in accuracy, as defined by the specific metric; similarly, a negative correlation value indicates that an increase in usage of the same
algorithm corresponds with a decrease in accuracy, again, as defined by the specificmetric.
The results are summarized in Table 4. Themain observation tomake here is that the absolute correlation values themselves are not statistically

significant, ranging from0.10 to0.23. Thenegativeρ valueswhen comparing against node recall andpathprecision indicate (albeit not very strongly,
given the small magnitudes of the correlations) that using the alternate algorithmmay indeed have brought down the values of these two metrics.
Such a result is expected, as the alternate matching algorithm is a more simplified version of LCS that trades off accuracy for speed, by virtue of the
fact that the algorithm ignores the order of execution of the nodes to be matched. With that said, the low correlation values indicate that this impact
may not be as significant in practice.
Usefulness (RQ4). Table 5 shows our evaluation results for RQ4. The second column represents the total number of function nodes in the execution
timelines,while the third column represents thenumberof functionnodes that appear in the critical graphsoutputbyZAM. Note that thenumbers in
these columns are summed over the results from the six injections in RQ1; hence, the average number of nodes per critical graph is not represented
by the numbers on the second column, but rather, the numbers on the second column divided by 6. In addition, the fourth column represents the
compression ratio, which we define in this context as follows:

# of Function Nodes in the Critical Graphs
Total # of Function Nodes in the Timelines × 100%

Therefore, the compression ratio gives an indication of how well ZAM is able to filter out irrelevant nodes from the execution timelines. Hence,
smaller compression ratios mean the investigator will have to inspect fewer function nodes from the execution timeline, percentage-wise.
From Table 5, we can see that the compression ratio seen in most of our subject applications is less than around 2%, and the overall compres-

sion ratio is 2.34%. Therefore, paired with the results of RQ1, our design is able to significantly cut down the amount of effort required for the
investigator to find the performance regression-causes – i.e., a much smaller number of nodes will need to be inspected after using ZAM.
Real Bugs (RQ5).Wenow present the results of our case study on real-world performance regressions.
Deck.gl: For this bug, the reporter observed that clicking on one of the settings (fp64) for polygon layers takes longer to process in the then-

current version used by the reporter. Based on his manual investigation, the reporter determined that the performance regression-cause is related
to the compilation of the shader, which, in this case, occurs at the getProgramParameter function. After running ZAM to localize this performance
regression, it was able to find a partial path containing the same performance regression-cause. Furthermore, this partial path is only 8 nodes away
from the performance regression-cause; in this case, none of these 8 nodes had any sibling nodes, which would allow the investigator to instantly
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TABLE5 Comparison of the total number of function nodes in the captured timelineswith the number of nodes that appear in theZAM output (with
the minimum response time difference µ set to 50 ms and the number of timeline pairs compared and aggregated set to 3). The compression ratio
is defined as third column divided by the second column, listed as a percentage. Smaller percentages indicate that ZAM is able to filter out a larger
percentage of irrelevant functions nodes.

Application Total # # of Function Compression
Name of Function Nodes in Ratio (%)

Nodes ZAMOutput
Read the Docs 480 30 6.25
Resource Space 14412 272 1.89
GNU Social 3570 70 1.96
Live Helper Chat 25836 644 2.49
Antville 4752 107 2.25
FlaskBB 2490 49 1.97
Searx 3726 56 1.50
h5ai 5556 131 2.36
JSBin 13524 241 1.78
Selfoss 2478 194 7.83
All 76824 1794 2.34

pinpoint the performance regression-cause based on the partial path output by ZAM. Two false positives appeared in the output - the “(program)”
and “(idle)”markers, which can be easily dismissed as discussed in the results for RQ1.Wenote a fewmore observations from this run of ZAM, listed
below:

• The length of the partial path is 73 nodes, which is much longer than the average partial path length reported in Table 2. Given that the
timelines captured for this application containmanybranches and thedifference in response timeobserved is under a second (around900ms
reported in the bug report, and around 100ms in our machine), localizing the performance regression by comparing 70+ node levels is very
tedious and time-consuming. ZAMwas able to perform the analysis in less than aminute;

• The builds fromwhich the old and new timelines were captured are separated by 54 commits, which means many changes have been intro-
duced to the application that are unrelated to the performance regression, and could therefore introduce noise. The fact that ZAM was
able to locate the performance regression-cause under this condition demonstrates that ZAM works well even when there is a huge gap in
commits between the builds being compared. This result also corroborates our results from RQ1, where the old and new timelines being
compared are separated by 20 commits in most of the subject applications;

• The application contains hover events that encompass large portions of the viewport, thereby increasing the chances of additional noise
being introduced as a result of these events. Again, ZAMwas able to filter out these noises as a result of its aggregation;

• The performance regression-cause in this case does not correspond to the final root cause, which is in one of the path-layer shader files.
However, setting a debugger breakpoint at the performance regression-cause and looking at the variable values for the shader types imme-
diately reveals that the shader being used is related to path-layer. Therefore, the performance regression-cause provides a strong lead on
the final root cause, eventually leading to the fix.

Highlight.js: The performance regression in this syntax highlighter application is observed when writing long class names – used as generics – in
Java code. The reporter does not provide any suggestions for possible root causes in his initial description of the issue, but one of the developers
eventually found that the root cause is a suboptimal regular expression in one component of the Java parser. When running ZAM for this perfor-
mance regression, our approach was able to pinpoint the exec() function – which is responsible for evaluating the class name against the regular
expression – as the performance regression-cause. The “(program)” marker described above once again appears in this run as a false positive. The
following are some other valuable observations from this run:

• The developerwas able to reproduce the issue on the same day the regressionwas reported, but no acknowledgement of the root causewas
made until 15 days later, when the fix was provided. Of course, given the limited information the bug report comments provide, we cannot
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definitively conclude that this gap was caused primarily by difficulties in finding the performance regression-cause. However, in any case,
ZAMwas able to pinpoint the exact performance regression-cause in under a minute, which would have allowed the developer to quickly fix
the issue the same day it was reproduced;

• The builds from which the old and new timelines were captured are separated by version updates, which contain plenty of commits in
between. Once again, this result demonstrates ZAM’s flexibility in finding the performance regression-cause even when many commits
separate the old and the new timelines;

• TheZAM output also identifies the “(garbage collector)”marker as having regressed (sinceChromeabstractly treats thismarker as a function
call), which helps the developer understand that the performance regression has an effect not only on the response time, but also onmemory
usage.

Async: Finally, for this performance regression, the reporter observed that the response time of calls to the eachSeries() function has increased
significantly, by about 6 seconds. Once again, ZAM was able to exactly identify the performance regression-cause, as described in the bullet points
that follow. The two false positives are once again the “(idle)” and “(program)” markers, which are easily dismissible as discussed earlier.

• Even though the regression is quite large in this example, the captured execution timelines themselves do not immediatelymake obvious the
performance regression-cause, since the execution structure has changed after four minor version updates, and plenty of noise exists par-
ticularly in the timelines for the old build. However, ZAMwas able to instantly pinpoint the _delay() function –which is aliased as “nextTick”
in the code – as the performance regression-cause, since ZAM filters out extraneous noises from the timelines; this result matches up with
the results eventually arrived at by the developers;

• In addition to the new execution structure, the additional six seconds in the response time are actually spread out over hundreds of calls to
_delay(), which demonstrates why it is beneficial to use the top-down aggregated call tree when ZAM is running.

Real-World Applicability (RQ6). Here, we demonstrate the usefulness of ZAM in resolving real-world performance investigations. After applying
the filter described in Section 5.2, we were able to collect a total of 73 tracked issues, corresponding to performance investigations in which ZAM
was used by our performance and reliability team at SAP. Furthermore, after a qualitative analysis of each collected issue, we found that 22 of
these had root causes unrelated to client-side JavaScript; thus, even though we ran ZAM for these 22 issues somewhere along the investigation for
reasons described in Section 5.2, ZAMwould not have been able to pick up on their root cause as ZAM is specifically designed to localize client-side
JavaScript performance issues.
We therefore focused our analysis on the remaining 51 issues, and in doing so, we were able to categorize 43 as Success and 8 as Failure, where

these categorizations are defined in Section 5.2; thus, ZAM was able to successfully find the performance regression-cause, or a partial path to it, in over
84% of pertinent performance investigations. We looked at all the issues labeled as Failure and found that ZAM did not succeed in localizing them for
the following reasons:

• In 4 of the failed cases, the performance change was spread out across multiple distinct functions, with a small change in each function that
accumulated to a larger onewhen all the performance changes are combined.We explore this limitation further in Section 6.1;

• In 2 of the failed cases, the performance regression-cause was located in the worker thread, which ZAM did not support at the time these
investigations were conducted. Since then, we have addedworker thread support in ZAM;

• For the remaining 2 failed cases, the reasons for failure are inconclusive, butwe suspect that it is due to the fact that the response times only
regressed by a very small amount in each issue (around 40-70ms), and the threshold µmay have been set to a value that is too large.

We should also note that in one of the issues labeled as Success, ZAM output a partial path to the performance regression-cause thatwas only one
node in length; in this case, the investigatorwas not able to recognize it as a partial path, thereby causing him to abandon theZAM result and find the
performance regression-cause through some other means (it was only realized after the fact that ZAM did indeed output a partial path). However,
for the remaining issues, the output of ZAM – the majority of which are partial paths – directly led the investigator to discover the performance
regression-cause, and this information was used to find the regressing commit. These results indicate that ZAM is capable of helping investigators
to accurately localize performance regressions.
Performance (RQ7). Finally, Table 6 shows the performance results for each major component of ZAM, with response times displayed in millisec-
onds (ms). As the table shows, most of the steps in ZAM take less than a millisecond to around 2ms to execute, on average. The exception is the
“Comparison” phase, which takes around 9-10 seconds to execute on average; nonetheless, the maximum amount of time taken to complete this
step was only a little over a minute (69.79s). Therefore, ZAM executes reasonably quickly, allowing the investigator to get results in under a minute
on average per comparison.
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TABLE 6 Performance results for ZAM. Note that 90th refers to the 90th percentile, andMax refers to themaximum.

Step Response Times (ms)
Name Average Median 90th Max

File Extraction 0.75 1.00 2.00 3.00
Comparison 9186.43 3581.00 18726.80 69785.00
Aggregation 1.47 1.00 2.00 4.00
Output Generation 2.20 2.00 3.00 4.00

6 DISCUSSION
Herewe discuss some considerationswhen using ZAM, after whichwe discuss some of the limitations of our technique and some threats to validity.
With respect to the choice for the number of timeline pairs to input into our tool for comparison, our results for RQ2 suggest that increasing

this number has an effect on accuracy; that is, including more pairs leads to greater path precision, albeit at the slight cost of being further away in
node distance from the performance regression-cause. However, one additional factor that needs to be taken into consideration is the amount of
time and effort it takes to record the execution timelines. From our experience, it generally takes about aminute to record one timeline if the series
of user interactions are applied to the initial state of the web application (e.g., logon), which means it will take about two minutes to record a pair
of timelines. In addition, there are many scenarios in which the investigator may have to apply the series of user interactions to some non-initial
state, and the process of getting theweb application to this non-initial state will take evenmore time, especially for large applications. Based on the
results for RQ2, as well as our experience in recording execution timelines, we recommend that investigators using ZAM record anywhere between
2-4 timeline pairs as input. In particular, the numbers in this range would allow ZAM to generate outputs with around 95% path precision and near-
perfect path recall (Figures 5d and 5b), while also allowing the investigator to record all the timeline pairs within only about 5-15 minutes or less,
from experience.
Furthermore, the fact that ZAM is capable of handling noise in the timelines does allow some room for error on the investigator’s part when

interacting with the web application to record the timelines; as a matter of fact, some of the timelines we recorded in our evaluation did include
some event handlers inadvertently being triggered (e.g., due to accidental hovers and clicks), although as the RQ1 and RQ2 results suggest, most of
these errors got masked after the aggregation. Therefore, when recording timelines, investigators will be able to interact with the web application
“normally”, i.e., they would not have to worry too much about what handlers get triggered in their interaction, as ZAM is capable of filtering out the
noise.

6.1 Limitations
Currently, ZAM’s analysis stops at finding the performance regression-cause.While this information is very useful in helping the investigator debug
the performance regression, it does not directly inform the investigator how to fix the regression. It would beworthwhile to conduct some research
on ways to automate the process of finding a repair for a performance regression, by analyzing the body of the functions identified by ZAM as a
performance regression-cause.We include this consideration as part of future work.
In addition, as discussed earlier in this section, recording execution timelines can be effort-intensive. Extending ZAM to have the ability to auto-

matically record these execution timelines given some pre-set workflow is ideal, as it would allow our tool to automate the full timeline comparison
process. Themain challenge here is in ensuring that the automated approach for recording the timelines does not interfere or tamperwith the rela-
tive performance measurements for the function calls included in the timeline, particularly if an instrumentation-based approach were to be used.
Once again, we leave this extension to future work.
While ZAM has been specifically implemented to analyze execution timelines captured from web applications, we believe certain aspects of

the design may be applied to other domains and programming languages, as long as function call trees can be generated for them; for instance,
the aggregation algorithm is agnostic to the execution characteristics of the application. As a matter of fact, designing our approach to work for
JavaScript-basedweb applications allows it to be amore generalizable approach in someways, since the call trees ofmajor programming languages
often start at only one top-level node and are less noisy, thereby making them “simplified versions” of the types of call trees generated from client-
side JavaScript code.
With regards to our results for RQ6, while we found that ZAM was beneficial to the vast majority of real-world performance investigations we

have conducted in our team, there were still occasions in which it was not able to identify the performance regression-cause. Half of these failed
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cases were due to the performance change being spread out across multiple distinct functions. One way to mitigate this issue is decreasing the
threshold µ; however, this will come at the cost of potentially irrelevant functions being included in the output, especially if the variances for the
response times are high. For future work, we will consider alternate ways of aggregating timeline data, such that these changes become more
recognizable (e.g., aggregating by timeline region instead of just function names).
Lastly, ZAM is currently only capable of comparing the response times of functions; however, other performance metrics exist that may benefit

from such a comparison, including CPU usage and memory usage. This limitation, however, pertains more to the implementation of ZAM rather
than its design, as the design should be similar to the one described in Section 3. The only difference, in this case, will be the numbers compared.
Furthermore, note that while the focus of our study is on analyzing end-to-end response times, which pertain to a single pass through a specific
workflow/interaction per timeline taken, ZAM can still be used as a supplement when performing other types of performance tests. For example,
when doing load testing, the investigator can runmultiple instances of the sameweb application using tools such as LoadRunner [29] or Jmeter [3],
and then take the execution timelines bymanually interacting with one of those instances; ZAM can then be used to compare the timelines that are
taken from this process.

6.2 Threats to Validity
An external threat to validity is always presentwhen considering a small – albeit reasonable – sample size for the subject applications. Nonetheless,
we did our best to ensure generalizability by selecting our subjects froma large list containingmany different types ofweb applicationswith various
sizes, as Table 1 shows. In addition, note that we performed multiple injections per application, belonging to different injection types based on
common performance issues identified in prior work [54], which allowed us to test on a greater variety of execution timelines.
In termsof internal threats to validity,we apply the samenumber of injections for each injection type (i.e., twoeach), insteadof applying a number

proportional to how frequently they appear in real scenarios among all issue types. From a purely theoretical standpoint, this may skew the overall
recall and precision values; however, based on our results, no significant differences are observed across each injection type in terms of path/node
recall and precision, and hence, we do not anticipate a significant difference in the overall results even if the proportions were altered. It is also
worth noting that finding a precise ratio of the number of injections is difficult to do, given that multiple issue types can map to the same injection,
and the study fromwhich the injection types are based [54] provides no data on any overlaps.
Furthermore, in some cases, the end-to-end performance regressions observed in real-world web applications is spread out across multiple

functions that regressed, and not just one, which may call into question our choice to inject only one function at a time. However, note that in our
evaluation, there were many scenarios in which the function to which the for loop has been injected is called multiple times by multiple functions,
and indeed, ZAM succeeded in findingmany suchmultiple calls.
A construct threat to validity is in the node recall calculation, in whichwe consider a run of ZAM as successfully finding the injected performance

regression if it identifies at least one call of the function as a performance regression-cause. In this case, if the modified function is called multiple
times, and only one of those calls has been identified as a performance regression-cause, ZAM is still considered to have a node recall of 100%.
Nonetheless, there are two thingswewould like to note. First, if a certain function regressed in performance, all the investigator really needs inmost
cases is for one call of that function to be identified as having regressed; once the function has been fixed, every call to that function – regardless
of whether ZAM identified all of them or not – will most likely go back to its original performance. Second, we showed in our evaluation that ZAM is
capable of findingmultiple performance regression-causes pointing to the same regressing function.
Finally, another construct threat to validity is in the correlation measurements between the percent usage of the alternate matching algorithm

when compared to accuracymetrics (RQ6). In particular, the correlation values themselves do not necessarily reflect the individual accuracy of each
usage of the alternate matching algorithm; unfortunately, this individual accuracy is very difficult to quantify as no oracle is available, which would
necessitate a manual inspection of all ~7000 node matching operations performed throughout the experiment. Nonetheless, it does point to how
much the alternatematching algorithmmay have contributed to the overall accuracy (i.e., precision and recall) of ZAM.

7 RELATEDWORK
Wenowdescribe prior work – both from research and industry – related to our proposed approach.We divide this section into four parts. First, we
describe prior designs that attempt to localize the root cause of software bugs, with particular emphasis on performance issues. Next, we describe
some industrial tools that carry out call tree comparisons. Lastly, we describe prior research on detecting performance issues in web applications.
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7.1 Localizing Software Bugs
Due to the largebodyofworkon software fault localization for functional bugs, this section focusesmainly on fault localization forwebapplications.
In prior research, the first author of this work has proposed AUTOFLOX and VEJOVIS, which are automated techniques for localizing and repairing
functional issues in client-side JavaScript, particularly those involving the DOM [38, 39]. Furthermore, the first author has worked on designs for
detecting inconsistencies in JavaScript-based web applications that use Model-View-Controller (MVC) frameworks [40, 41]. In addition, Artzi et
al. [4] and Samimi et al. [51] have bothworked on techniques for automatically localizatingHTML validation errors, while Pradel et al. [47] proposed
an approach for analyzing type inconsistency in JavaScript. Other recent works have focused on memory leak localization in JavaScript [43] and
race condition localization and detection [66, 32, 42]. Unlike our approach, these techniques do not look at performance issues in terms of web
application response times, which generally use more complicated correctness metrics compared to functional bugs due in part to variance in the
response time numbers.

7.2 Localizing Performance Issues
The goal of performance issue localization is to help the investigator find the root cause of a performance issue, or find information that leads the
investigator closer to to this root cause. Several researchers have proposed various designs for performance issue localization, including Syer et al.’s
approach for diagnosing memory-related performance issues using performance counters and logs [58] and Altman et al.’s technique for localizing
the root cause of idle time in server applications [2]. Xu [63] has also proposed an approach for localizing performance issues, but with the analysis
carried out at the design level instead of the code level. Unlike ZAM, none of thesemethods propose ways to localize performance regressions.
In terms of the localization of performance regressions, Malik et al. [25] previously worked on analyzing performance deviations in load tests;

this analysis is not carried out at the code level, but rather, at the level of performance signatures of load test data. Heger et al. [18] also proposed
an approach to isolate performance regression-causes based on performance-aware unit test cases. Finally, Nguyen et al. [34] and Luo et al. [23]
designed their ownautomated techniques for findingperformance regression-causes at the code level.UnlikeZAM, the aforementionedapproaches
rely on either a repository of past performance regression-causes or a suite of performance-aware unit tests, which are not always available. In
addition, these approaches rely onaheuristic to pinpoint theperformance regression-causes,whileZAM reasons itsway through the timeline tofind
the cause. In this sense, ZAM’s methodology is consistent with the results of an empirical study by Nistor et al. [36], which found that performance
issues are fixedmainly through code reasoning.

7.3 Comparing Call Trees
While there are plenty of papers proposing designs for call tree construction, prior research on call tree comparisons is scarce. The only research
papers we could find that compare call trees are those by Lhoták [22] and by Murphy et al. [31]; the latter comparison was done manually, while
the former paper proposes an approach which performs an automated comparison. In both cases, the goal was to compare the effectiveness of
various programanalysis tools, and not to compare performance. In addition, the comparisons are done onlywith respect to the structure of the call
trees, and the comparisonsmade are unidirectional, whichmeans the structure of one graph is assumed to be the correct structure, while the other
graph is compared against it, making themapping of nodes simpler. In contrast, ZAM’s comparisons are donewith respect to both the structure and
the content (e.g., performance numbers). Further, our comparison is not unidirectional, as the concept of a single correct execution does not apply
to performance call trees, especially for an asynchronous language like JavaScript which can yield different call trees for different executions as
demonstrated earlier.
In industry, there exists production tools that are able to compare performance profiling data, including Visual Studio [30], dotTrace [20],

Yourkit [64], and JProfiler [12]. Visual Studio’s comparator only compares functions or modules specified by the investigator in table view, and,
unlike ZAM, does not analyze the performance call tree. The dotTrace, Yourkit, and JProfiler tools analyze performance call trees, but they differ
from ZAM significantly in various ways. First, they do not perform filtration, which means they do not identify the performance regression-causes,
but simply output the differences in performance numbers for functions in the call tree, in graph form; while this simplifies manual analysis in that
only one graph needs to be considered instead of two, the number of functions to be analyzed remains roughly the same as in the purely manual
case. Second, they donot performaggregation,making themmoreprone to false positives, as demonstrated in Section5. Lastly, they are designed to
compare call trees generated from the execution traces of traditional programming languages (e.g., Java),which follow stricter programming seman-
tics compared to JavaScript, are not event-driven, and are not minified; this makes noise coming from extraneous function calls practically non-existent
in these applications, therebymaking the nodematchingmuch simpler compared to web applications.
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7.4 Detecting Performance Issues
There is a large body of work on detecting performance bottlenecks in software [35, 7]. These works include techniques for finding bottlenecks
basedon repeatingmemory accesses [37],memoization opportunities [10], and low-utility data structures [62]. Shen et al. also propose an approach
to find these bottlenecks using search-based profiling [56]. Similar techniques also exist forweb applications, including those proposed by Selakovic
and Pradel [54] andGong et al. [14]. Further,Wang et al. have conducted empirical studies to analyze the bottlenecks of web page performance [59,
60]. While evidently useful, these approaches perform neither diagnosis nor localization of performance issues. Further, they do not specifically
consider performance regressions, which differ from performance issues in the way their root causes are ascertained (i.e., the goal is not merely
to find slow code, but to find code that became slower with respect to a baseline). ZAM, on the other hand, has localization as its main goal, and
specifically targets performance regressions.
Maplesden et al. [28] introduce a technique that looks for repeated patterns in execution timelines, which allows their approach to reduce the

size of an execution timeline. While both their approach and ZAM take similar inputs (i.e., execution timelines), their approach does not specifi-
cally identify the performance regression-cause when comparing pairs of timelines. In addition, their technique is focused on finding performance
optimizations given one specific version of an application, as opposed to dealing with performance regressions between two versions of the same
software, which tend to have smaller granularities in response time, and can therefore bemore difficult to localize.
Lastly, there are many techniques that have been proposed whose aim is to automatically detect performance regressions [33, 57]. These

techniques includeNguyen et al.’s approach for detecting regressions using statistical process control [33] andMalik et al.’s designs for tracking per-
formance deviations from load test data [26, 27]. In some cases, the search for performance regressions is conducted in specific parts of the code,
such as concurrent classes [45], thread pools [57], and I/O [6]. All of these approaches perform detection of performance regressions, but, unlike
our proposed approach, they do not diagnose them to find performance regression-causes.

8 CONCLUSION
In this paper, we presented ZAM, whose design allows for automated comparisons of execution timelines to localize performance regression-causes
inwebapplications. ZAM takes pairs of execution timelines recorded fromthe client-sideofwebapplications as input, and it outputs a graph showing
the performance regression-causes, or partial paths to them. In our evaluation,wedemonstrated that ZAM has high accuracy, achieving perfect path
recall and a very high path precision (96.09%), even in the presence of noise coming from asynchronous function calls and event handlers in web
applications. Further, ZAM succeeded in filtering out false positives from the critical graphs through its aggregation mechanism, thereby achieving
greater path precision as more timeline pairs are included as input. ZAM is also useful in pruning out irrelevant function nodes from execution
timelines, workswell when applied to real-world performance regressions and investigations, and executes in under aminute on average. For future
work, wewould like to extend our approach to go beyond identifying performance regression-causes, and carry out source code analysis thatwould
help the investigator easily identify fixes for the regression. We will also look into approaches for automatically generating execution timelines,
which can be used to complement ZAM.
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