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Abstract Performance regressions can have a drastic impact on the usability of a
software application. The crucial task of localizing such regressions can be achieved
using bisection, which attempts to find the bug-introducing commit using binary
search. This approach is used extensively by many development teams, but it is
an inherently heuristical approach when applied to performance regressions, and
therefore, does not have correctness guarantees. Unfortunately, bisection is also
time-consuming, which implies the need to assess its effectiveness prior to running
it. To this end, the goal of this study is to analyze the effectiveness of bisection
for performance regressions. This goal is achieved by first formulating a metric
that quantifies the probability of a successful bisection, and extracting a list of
input parameters – the contributing properties – that potentially impact its value; a
sensitivity analysis is then conducted on these properties to understand the extent
of their impact. Furthermore, an empirical study of 310 bug reports describing
performance regressions in 17 real-world applications is conducted, to better un-
derstand what these contributing properties look like in practice. The results show
that while bisection can be highly effective in localizing real-world performance
regressions, this effectiveness is sensitive to the contributing properties, especially
the choice of baseline and the distributions at each commit. The results also re-
veal that most bug reports do not provide sufficient information to help developers
properly choose values and metrics that can maximize the effectiveness, which im-
plies the need for measures to fill this information gap.
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1 Introduction

A software performance regression1 occurs when, after applying a series of code
changes, the response time or resource usage metrics of an application degrades.
Detecting and understanding such regressions is important, as they severely im-
pact user experience (Zaman et al, 2012; Pradel et al, 2014; Selakovic and Pradel,
2016). While crucial, this investigation process is time-consuming, and many so-
lutions have been proposed that aim to minimize the effort involved, both in
research (Ocariza and Zhao, 2021; Graham et al, 1982; Ahmed et al, 2016; Nistor
et al, 2015; Della Toffola et al, 2015) and in industry (YourKit, 2018; Microsoft,
2015; Dynatrace, 2018; Google, 2018). One such solution that is used in industry
is bisection, which performs a binary search on the list of commits by testing the
middle commit and recursively halving the list of commits depending on the result
of the test. The search ranges from the last commit observed to not include the
regression (the good commit) to the first commit observed to include the regression
(the bad commit), and continues recursively until the first commit to manifest the
regression (the root cause or the bug-introducing commit) is found.

Bisection is typically performed in the context of localizing functional regres-
sions. It is useful for such regressions because the comparison metric is binary –
i.e., the middle commit being tested is either functioning correctly based on some
well-known specification, or it is not. In addition, due to the simplicity of this
comparison metric, its behaviour is typically monotonic – i.e., the relevant com-
ponent functions correctly from the good commit to the commit right before the
root cause, and functions incorrectly from the root cause to the bad commit.

Unlike functional regressions, the metrics used to assess if a particular commit
has a performance regression are neither binary nor monotonic, due to variance in
the performance numbers. Nonetheless, bisection can still be intuitively applied to
performance regression localization; in particular, the performance of a particular
commit can still be measured and thereby compared to some baseline number. For
instance, if logging on to a web application used to take around 2 seconds, but
now takes around 10 seconds after a performance regression has been introduced,
a commit can be tagged as “buggy” if its logon response time exceeds some value,
say, 2 seconds. In fact, several companies already use bisection to localize perfor-
mance regressions, including our performance team at SAP (Ocariza, 2020), as
well as Google (2021a) and Microsoft (2018), among others. Unfortunately, while
commonplace, no studies have been conducted that attempt to understand the effec-

tiveness of bisection when applied to real-world performance regressions, to the best of

our knowledge.

Understanding the effectiveness of bisection in real-world settings is beneficial,
for various reasons. First, as mentioned above, there is variance in performance
numbers, which means that bisection, when applied to performance regressions,
is inherently heuristical; thus, due to its probabilistic nature, it would be useful
to both quantify the likelihood that bisection will output the correct commit, and
understand the conditions under which this likelihood is high. Practitioners can
then use these findings to determine whether bisection is a suitable solution when
localizing specific performance regressions, and if so, determine the parameters

1 For simplicity, we will also refer to software performance regressions simply as performance
regressions
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with which to configure the bisection. Second, understanding the effectiveness also
has research value, as it can allow researchers to formulate enhancements to the
base bisection algorithm based on the results.

In this paper, an empirical study of over 300 bug reports from 17 popular
GitHub projects is conducted, with each bug report describing a software per-
formance regression. The goal of the study is to understand the most important
properties that lead to an effective bisection, and to analyze how well these prop-
erties translate in real-world settings. In particular, the following contributions are
made:

– The formulation of an effectiveness measure that can be used to quantify the
probability of a successful bisection. This measure can be used to quantify the
effectiveness of any bisection that involves performance regressions;

– An analysis of the main input properties that contribute to the effectiveness
of a performance regression bisection. We call these the contributing properties;

– A quantitative and qualitative analysis of these contributing properties in prac-
tice, based on 310 bug reports describing software performance regressions.

The results from the above analysis show that the effectiveness of a bisec-
tion on performance regressions is impacted primarily by the choice of baseline
value and the characteristics of the probabilistic distributions describing the good
commit and the bad commit. Unfortunately, the study on the bug reports also in-
dicates that most performance regressions reported in real-world applications do
not contain sufficient information to make a proper baseline assessment. To a lesser
degree, the length of the commit range is also shown to impact the effectiveness;
however, based on the empirical study, bug reports tend to provide version num-
bers for the commit range instead of hashes, and these version numbers typically
correspond to longer commit ranges as the results also show. Lastly and somewhat
counter-intuitively, the study also reveals that the effectiveness can be sensitive to
the transition index – i.e., the suspected location of the bug-introducing commit
– which implies that it would be useful to measure the effectiveness of a bisection
both before and after it executes.

2 Background and Motivation

This section goes into greater detail on what bisection is in the context of localizing
software regressions in general, and describes the benefits of using it to localize
performance regressions in particular. It also describes the challenges involved
with bisecting such performance regressions; these challenges provide the primary
motivation for this study.

2.1 Bisection

In order to understand how bisection can help localize software regressions in
general, we will use an example. Suppose a software developer is running daily
regression tests on an application. On Day 1, the regression test runs on Commit
1, which is the then-latest commit, and reports no failures. However, on Day 2,
the regression test runs on Commit 99, and reports a failure, as shown in Figure 1.
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Commit 1 Commit 2 Commit 3

.........

Commit 50 Commit 98 Commit 99

.........
Buggy!

? ? ? ?

Test the middle commit

Fig. 1: An example of a software regression localization problem, with Commit
1 known to function properly, Commit 99 known to be buggy, and the rest of the
commits untested. The goal is to find the first commit to manifest the bug. When
performing bisection, Commit 50 – the middle commit – will be the first commit
to test, and the search will continue recursively either on the left side or the right
side, depending on the test results.

Having made this observation, the goal of the developer is to determine which
commit introduced the bug, with the initial range of possible bug-introducing
commits ranging from Commit 2 to Commit 99, inclusive.

One way to conduct this search is by using bisection. In binary search fashion,
bisection will first take the middle commit – in this case, Commit 50 – and run
the regression test on it. If the regression test passes, this likely indicates that the
bug-introducing commit can be found on the right side of the array of commits,
so the search space will be reduced to Commits 50-99. If, on the other hand, the
regression test fails, this likely indicates that the bug-introducing commit can be
found on the left side, and the search space will be reduced to Commits 1-50. This
entire process will proceed recursively until there are only two commits remaining,
at which point the second of these two commits is output as the bug-introducing
commit.

The metric used to determine whether to continue the search on the left side of
the array or the right side of the array is called the bisection metric. In the case of
functional regressions, the metric used is “correctness” (i.e., does the test output
the correct value or not, based on the specifications?). On the other hand, for
performance regressions, the metric used is numerical, and the decision to either
take the left side or the right side of the array is based on a comparison with a
baseline value.

2.2 Bisecting Performance Regressions

Using bisection to localize performance regressions has found its way into indus-
try (Ocariza, 2020; Google, 2021a; Microsoft, 2018), which is not too surprising as
it provides many advantages. First of all, performance regressions are often difficult
to localize using traditional debugging techniques, as many of these techniques are
intrusive with respect to performance; for instance, setting breakpoints will change
the underlying response time of an application. In contrast, bisection is minimally
intrusive, as it simply runs performance regression tests without any external in-
terference (e.g., from the developer). In addition, as with functional regressions,
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performance regression bisection only cares about the final result of the regression
test, which allows the developer to abstract out the details of why the perfor-
mance regressed, and defer answering that question until the bisection provides
an output; thus, the human effort required is reduced from a search-and-validation
problem to simply a validation problem, which itself is simpified by a post-facto
analysis of the code changes in the commit output by the bisection. Further, bi-
section is simple and intuitive when applied to performance bugs, with bisection
paths taken based on a simple comparison with a baseline value; this simplicity
is particularly important when validating the output of the bisection. Lastly, per-
formance regression tests – especially end-to-end tests – often take a long time to
execute since many samples of a performance metric need to be collected in order
to generate a statistically significant result; as a result, performance regression
tests often cannot be run on a per-commit basis, which means a search needs to
be conducted across multiple commits when localizing a performance regression;
bisection provides an efficient (i.e., O(log n)) way to conduct this search.

While advantageous, bisection also introduces additional challenges when ap-
plied to performance regressions. Unlike functional regressions, the bisection met-
ric used to determine the bisection path is a numerical value with (often high)
variance. Therefore, the choice of a bisection metric is much more crucial for per-
formance regressions, both in terms of its stability and the baseline value used. As
a corollary to the high variance, while monotonicity of the bisection metric is not
guaranteed even for functional regressions, the bisection metric for performance
regressions is almost guaranteed to not be monotonic, which once again makes
choosing the baseline value crucial. Finally, as discussed further in Section 2.3, the
amount of time it takes to run a performance regression bisection can be very high;
hence, it would be useful to know if running a bisection is worth the investment,
and if so, what parameters are needed to minimize the chances of a failed bisec-
tion. These challenges in accuracy and time cost point to the need for a better
understanding of the effectiveness of bisection on performance regressions.

2.3 Goal and Motivation

The main goal of the study is twofold. First, it aims to identify and analyze the
main properties that contribute to the effectiveness of a bisection; in this paper,
we refer to these properties as the contributing properties. Second, the study also
aims to understand what these contributing properties look like in reported, real-
world performance regressions, both qualitatively (i.e., does the bug report provide
information regarding these properties?) and quantitatively (i.e., if the information
is provided, what is the magnitude?).

Addressing the first goal will help developers easily assess whether bisection is
a suitable technique to use for specific performance regression localization prob-
lems. Making this assessment is very important, as performance regression tests –
especially end-to-end regression tests – can take a long time to run, which means
bisection itself takes a long time to execute, as it will have to run several of these
tests; thus, running a failed bisection can be very costly. For instance, in recent
test parallelization work conducted by Olianas et al (2021), their evaluation results
show single iteration end-to-end tests running anywhere between 30-160 seconds
without test parallelization, and 15-71 seconds with test parallelization. Since per-
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82.3 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 87.0Commit

Index 1 2 3 4 5 6 7 8 9 10 11 12 13

Distribution X X X X Y Y Y Y Y Y Y Y Y

a13 a14

Y Y

14 15

Fig. 2: An example of a performance regression, represented by 15-tuple
T (82.3, 87.0, 1, 15)

formance regression tests require multiple iterations in order to establish statis-
tically significant values to compare against the baseline, these numbers will be
even higher – e.g., with 50 iterations, the tests will take 25-133 minutes without
test parallelization, and 12.5-59 minutes with test parallelization. Of course, these
values also do not take into account the amount of time it takes to deploy or install
a particular version of an application – which can take several minutes for large
applications – as well as the fact that these tests have to be run multiple times for
multiple versions of the application throughout the bisection. In this case, given a
particular performance regression to localize, having a deeper understanding of the
effectiveness of bisection and its contributing parameters will allow the developer
to know whether bisection is an appropriate solution in the first place, and if so,
what bisection metric and baseline to use that will maximize the effectiveness.

With regards to the second goal, it will allow us to identify information gaps in
reported performance regressions that would prevent developers from making the
above assessment. From these findings, recommendations on how to best fill these
gaps can then be provided, based on the qualitative and quantitative analyses.

2.4 Scope and Running Example

To lay out the scope of this study and to help explain the effectiveness measure
and its derivation in the next section, this subsection introduces a running example
based on a real-world performance regression (Microsoft, 2021). This performance
regression was found in .NET Runtime, with the response time of one of the
tests (System.Text.Encodings.Web.Tests.Perf Encoders) increasing from a mean
of 82.3 ns to a mean of 87.0 ns, based on multiple iterations of the same test.
Here, the historical data show the pre-regression standard deviation to be 0.42 ns,
and after the regression, the standard deviation increased to 1.59 ns. Furthermore,
there are a total of 15 commits between the good commit and the bad commit,
inclusive. This regression is represented as an array in Figure 2.

In this study, we consider applications that run in variable execution environ-
ments. As seen in the running example above where the variance is comparatively
high – especially after the regression is introduced – this can lead to variations in
individual performance measurements, thereby necessitating multiple iterations of
the same test. It is assumed that in such a system, either the aggregate measures
(e.g., mean, 90th percentile, etc.) are stable enough for the developer or tester
to manually recognize that a performance regression has occurred, or the devel-
opment team has at their disposal some mechanism to automate this assessment
(e.g., change point detection).
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The running example also does not adhere to any performance specifications,
and the same applies to all applications included as part of this study. In prac-
tice, this sitution arises when such specifications (e.g., service level objectives) do
not exist; however, more commonly, it also arises when the development team is
doing daily monitoring to ensure that specific performance measurements do not
unnecessarily deviate from an established baseline, in order to remain as far away
as possible from specified performance boundaries, if any.

With regards to bisection itself, note that the algorithm introduced in Sec-
tions 2.1 and 2.2 is the simplest type of bisection – i.e., näıve bisection. Perform-
ing the analysis on a version of bisection that is stripped to its bare essentials
is beneficial, as it allows development teams to make practical decisions on what
enhancements to the base bisection algorithm apply best for them, and therefore
expend their resources on improving. For instance, suppose a team is working on
an application that is more prone to large performance changes than smaller ones,
but whose performance tests suffer from long execution times. In this scenario,
it would be more reasonable for them to inherit the simple baseline comparison
used in näıve bisection, as it makes the results easier to interpret, and then spend
time trying to minimize the bisection runtime by using techniques such as selec-
tive bisection debugging (Saha and Gligoric, 2017). If, on the other hand, the test
runtime is fast, but the application itself is more prone to small, gradual regres-
sions, then it may be more worthwhile trying to enhance the baseline comparison,
especially in light of the results presented in Section 5. In this case, the team can
consider using more probabilistic algorithms such as noisy binary search (Karp
and Kleinberg, 2007) or multisection (Keenan, 2019), at the cost of a potentially
longer bisection. In summary, we offload these decisions to the development team,
while providing the results as an aid to this practical assessment.

3 Effectiveness Measure

We will now derive a metric that measures the effectiveness of a bisection when
applied to a performance regression, which we will refer to in this paper as the
effectiveness measure. We first discuss some intuitions that directly lead to an in-
formal definition of effectiveness. Thereafter, we will formalize the concepts of
performance regression and bisection, which also naturally lead to a formal defini-
tion for effectiveness that is in line with the intuition presented. Finally, we will
derive an algorithm to compute this effectiveness measure using Bayesian analysis.

3.1 Intuitions

In order to formulate a useful definition for effectiveness, we first go over two
basic intuitions. The first intuition is that when we speak of a particular bisection
being “effective”, the context in which we make this claim is that the bisection has
provided the correct bug-introducing commit; this context of course is in line with
and follows directly from the goal of performance regression localization, which is
precisely to find this bug-introducing commit. Based on this intuition alone, we
can provisionally define the “effectiveness” of a bisection as the probability that the

bisection outputs the correct commit. However, this definition remains ambiguous,
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and we still need to define what it means for the bisection to “provide the correct
commit”. In order to arrive at this more refined definition, we turn to the second
intuition.

In this case, the second intuition is that when localizing performance regres-
sions, the bisection metric for each commit – which is a numerical metric as dis-
cussed in Section 2.1 – will follow a specific distribution given repeated measure-
ments of that same metric, with some aggregate value of interest that describes
this distribution – say, the mean, for illustrative purposes. Now, bisection assumes
in the first place that everything before the bug-introducing commit has roughly
the same mean M or smaller, and everything from the bug-introducing commit
onwards will have a mean greater than M . Given that this property required by
bisection holds, the goal of bisection would then be to find the first commit where
the distribution changes – in particular, from one with a mean of M or smaller, to
one with a mean greater than M .

Therefore, taking the above two intuitions together, we can refine our provi-
sional definition for effectiveness as follows: the probability that the bisection outputs

the first commit (in the array of commits) where the distribution shifts. The definition
can be rewritten more concretely in terms of a conditional probability: the prob-

ability that the first commit (in the array of commits) where the distribution shifts is

commit C, given that bisection output C. This informal definition will form the basis
for our more formal definition presented in the remainder of the section.

3.2 Definitions

As is evident in the running example in Figure 2, a performance regression can be
modeled as a tuple (i.e., array) of real numbers, with the good commit indexed
at p and the bad commit indexed at q. We will denote such tuples as T (s, t, p, q),
where s is the baseline value to compare against, stored at index p; and t is the
performance measure at index q. The remaining elements in the middle are equal
to real numbers of unknown value, as the commits represented by those elements
are untested.

Definition 1 (Performance Regression) A performance regression is an n-tuple

T (s, t, p, q) such that t > s and q − p + 1 = n ≥ 2. Each element of a performance

regression will also be referred to in this paper as a commit.

In the running example, the baseline s can be set to any value less than 87.0
ns, but for illustrative purposes, we will set s = 83.6, which is around standard
deviations away from the mean performance at the good commit. Furthermore,
the value t is equal to 87.0, and n is equal to the number of commits, which is 15.
The index p can be initialized to 1, and the index q can be initialized to 15.

Before we define bisection, we first make the following definitions to simplify
our notation.

Definition 2 Let A = {T (s, t, p, q) | t > s, q > p} ∪ {[r] | r ∈ R}. In other words, A is

the set of all performance regressions and 1-tuples.

Definition 3 (Halving Function) Let the halving function be a function h : A →
A, such that, for all x ∈ A where x is either a 1-tuple or a performance regression

T (s, t, p, q):
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h(x) ≡


T (s, am, p,m) am > s and q − p > 1

T (s, t,m, q) am ≤ s and q − p > 1

[t] q − p = 1

x x is a 1-tuple

where am is the value of the element in the tuple T (s, t, p, q) at the middle index

m =
⌊p+q

2

⌋
.

Intuitively, one can think of the halving function as one iteration of a bisection.
For instance, in the running example, if the middle element a8 has a performance
measurement greater than the baseline 83.6, the left half of the array remains; oth-
erwise, the right half remains, with the value on the left-most index replaced with
the baseline, to ensure that we are always comparing against the same baseline.

On the above note, we formally define bisection as follows.

Definition 4 (Bisection) A bisection is a function B : A → Z+ such that for all

x ∈ A where x is either a 1-tuple or a performance regression T (s, t, p, q):

B(x) ≡


B(h(x)) q − p > 1

q q − p = 1

i x is a 1-tuple indexed at i

In other words, bisection is basically a repeated application of the halving
function on a performance regression x. This process continues recursively until
the input to the bisection is either a 2-tuple (in which case it outputs the index of
the second element) or a 1-tuple indexed at i (in which case it outputs i).

Lastly, based on our discussion in Section 3.1, we need to model the distribu-
tion (of a given bisection metric) for each commit in the performance regression.
Recall from Section 3.1 that one of the underlying properties required by bisec-
tion, when applied to a performance regression, is that all commits prior to the
bug-introducing commit follow roughly the same distribution with mean M (for
example), and all commits from the bug-introducing commit onwards also follow
another distribution with mean greater than M . Based on this intuition, given a
performance regression T (s, t, p, q), we will model the distribution of the commits
from index p to index r − 1 with the same continuous random variable X, and
we will model the distribution of the commits from index r to index q with the
same continuous random variable Y , where r is the index of the bug-introducing
commit. However, note that the goal of bisection is to find the bug-introducing
commit, so its location is initially unknown. Naturally, we can formally define the
bug-introducing commit as a random variable, as follows:

Definition 5 (Bug-Introducing Commit) Given a performance regression x =
T (s, t, p, q), we define the bug-introducing commit Dx of x as a discrete random

variable whose value represents the index of the first element in x where the distribu-

tion shifts from X to Y – i.e., the index of the first element in x that has distribution

Y . This means that Dx has {p+ 1, ..., q−1, q} as its sample space, as the first element

of the performance regression (indexed at p) is assumed to follow distribution X.

Once again, we turn to the running example in Figure 2 to concretize the
definition just presented. In this example, the distribution from index 1 to index
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4 is X, and the distribution shifts to Y at index 5. Thus, if we represent this
performance regression with the variable x, then by Definition 5, Dx = 5 in this
example. To reiterate, the bug-introducing commit is unknown to us initially, so
Dx = 5 is simply one of several – in this case, fourteen – possible values for the
random variable Dx.

Based on the above definitions, as well as the provisional definition presented
in Section 3.1, we can formally define effectiveness as follows.

Definition 6 (Effectiveness Measure) Given a performance regression x =
T (s, t, p, q), the effectiveness measure (or simply, effectiveness) ϵx,c of x with respect

to a bisection output c is defined as

ϵx,c ≡ P (Dx = c |B(x) = c)

As stated in Section 3.1, the above measure corresponds to the probability
that the bug-introducing commit in the performance regression occurs at index c,
given that bisection itself output index c. Note that this effectiveness measure is
applicable only to a very specific output c of the bisection. In the next subsection,
we will eventually define an aggregated measure that is averaged over all possible
outputs of the bisection, which is useful as it allows us to measure the effectiveness
of a particular bisection independent of the bisection output. However, we will use
the above definition for effectiveness as the starting point of our derivation.

3.3 Derivation of the Effectiveness Measure

Now that we have formally defined the effectiveness measure, our next task is to
derive an algorithm to compute it. As a preliminary observation, note that we can
rewrite the effectiveness measure as follows, using Bayes’ theorem:

ϵx,c =
P (B(x) = c |Dx = c)P (Dx = c)

P (B(x) = c)
(1)

This rewritten form provides us with a general strategy and framework for our
derivation, as it suffices to compute the following individual probabilities, which
are taken from the right-most side of the above identity.

P (B(x) = c |Dx = c) Likelihood (λ)

P (Dx = c) Shift Probability (σ)

P (B(x) = c) Output Probability (ω)

Likelihood. First, we will compute λ = P (B(x) = c | Dx = c) for a given perfor-
mance regression x = T (s, t, p, q); here, we refer to λ as the likelihood. This value
represents the probability that bisection outputs an index c, given that the bug-
introducing commit is at that same index. To get an intuitive understanding of
how to derive this value, we turn once again to the running example. Figure 3
shows a probability tree diagram of the running example, depicting the different
possible branches that bisection can take, given that the bug-introducing commit
is at index 5. Notice that at each step of the bisection, the branch taken depends
on the value of the middle commit. For instance, in the first step, the left branch
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Fig. 3: Probability tree diagram showing different branches that the bisection
algorithm can take, given that the bug-introducing commit is at index 5. Solid
arrows represent branches that lead to index 5. Note that the value at index 1 is
the baseline used in the comparison.

is taken if the middle commit at index 8 exceeds the baseline value – which has
probability P (Y > 83.6), since index 8 has distribution Y – while the right branch
is taken otherwise, with probability P (Y ≤ 83.6). The tree diagram can be com-
pleted recursively using this same process, with leaves representing the final output
of the bisection.

In this particular scenario, given that the bug-introducing commit is at index 5,
we are interested in computing the probability that bisection also outputs index 5.
To compute this value, we can take the branches in the tree that lead to this index,
which are represented by solid arrows in Figure 3, and find the product of their
corresponding probabilities – i.e., the product of P (Y > 83.6), P (X ≤ 83.6), P (Y >

83.6), etc. Thus, the likelihood λ will take on the form of a recursive product of
cumulative distribution function (CDF) values of each subsequent middle commit.

Based on this intuition, it would be useful to have some way to refer to the
distribution at each commit, so we introduce the following notation.

Definition 7 Consider a performance regression x = T (s, t, p, q). We define ZDx=c
i

as the distribution at commit i of x, given that Dx = c (i.e., given that the distribution

shifts from X to Y at commit c, as per Definition 5), where p ≤ i ≤ q. In other words:

ZDx=c
i ≡

{
X p ≤ i < c

Y c ≤ i ≤ q

We can now proceed with the derivation for the likelihood. First, from elemen-
tary probability, we can rewrite λ as follows, noting that ZDx=c

m > s and ZDx=c
m ≤ s

are mutually exclusive events, where m =
⌊p+q

2

⌋
is the midpoint.
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λ = P (ZDx=c
m > s |Dx = c)P (B(x) = c |Dx = c, ZDx=c

m > s)

+P (ZDx=c
m ≤ s |Dx = c)P (B(x) = c |Dx = c, ZDx=c

m ≤ s)

In essence, the above expression splits the probability into two mutually ex-
clusive cases: one in which the result of the middle commit is greater than the
baseline s, and another in which the result of the middle commit is less than or
equal to s, as illustrated earlier in the running example.

Now, given that the value of the middle commit exceeds the baseline (i.e.,
ZDx=c
m > s), we know from Definitions 4 and 3 that the following holds, where am

is the value at the middle commit.

B(x) = B(T (s, t, p, q)) = B(h(T (s, t, p, q))) = B(T (s, am, p,m))

Similarly, given that the value of the middle commit is less than or equal to
the baseline (i.e., ZDx=c

m ≤ s), then we have the following case, by Definitions 4
and 3.

B(x) = B(T (s, t, p, q)) = B(h(T (s, t, p, q))) = B(T (s, t,m, q))

Thus, in the expression for λ, we can expand B(x) = c according to the relevant
case.

λ = P (ZDx=c
m > s)P (B(T (s, am, p,m)) = c |Dx = c)

+ P (ZDx=c
m ≤ s)P (B(T (s, t,m, q)) = c |Dx = c)

Note that some conditionals have been removed, as ZDx=c
m > s and ZDx=c

m ≤ s

are independent from Dx = c (based on Definition 7), and the values of B(T (s, am, p,m))
and B(T (s, t,m, q)) no longer depend on the value of the commit at index m, as
is evident from Definitions 4 and 3.

Finally, from Definition 4, we know that the bisection function always outputs a
value between the two endpoints of the performance regression tuple, not including
the left endpoint. This means that if c ≤ m, then the index c would lie outside
the possible values of B(T (s, t,m, q)); hence, in this scenario, P (B(T (s, t,m, q)) =
c |Dx = c) = 0. Similarly, if c > m, then c would lie outside the possible values of
B(T (s, am, p,m)) and thus, in this scenario, P (B(T (s, am, p,m)) = c |Dx = c) = 0.
Given these observations, we can rewrite λ piecewise, with P (ZDx=c

m > s) and
P (ZDx=c

m ≤ s) written in terms of the cumulative distribution function F
ZDx=c

m
(s).

λ = P (B(T (s, t, p, q)) = c |Dx = c)

=

{
(1 − F

Z
Dx=c
m

(s))P (B(T (s, am, p,m)) = c | Dx = c) c ≤ m

(F
Z

Dx=c
m

(s))P (B(T (s, t,m, q)) = c | Dx = c) c > m
(2)

Note how unrolling the above recursive expression leads to the product of
probabilities encountered earlier when discussing the running example. Program-
matically, Equation 2 allows us to compute λ recursively, taking either the first
case or the second case depending on the value of the midpoint m.
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Shift Probability. Next, we turn our attention to the shift probability, which we
denote by σ = P (Dx = c). In this case, given no additional information, we will
model Dx as a uniformly distributed random variable, with each of its possible
values having equal probability. As mentioned in Definition 5, the sample space of
Dx is {p + 1, ..., q − 1, q} for a given performance regression T (s, t, p, q). Thus, we
can compute σ as follows.

σ = P (Dx = c) =

{
1

q−p p < c ≤ q

0 otherwise
(3)

Output Probability. Lastly, we need to compute the output probability, denoted by
ω = P (B(x) = c). The main observation to make here is that, given x = T (s, t, p, q),
the events Dx = p+1, Dx = p+2, ..., Dx = q−1, Dx = q are all mutually exclusive
and encompass the entirety of the sample space for Dx (Definition 5). Thus, we
can write ω as follows.

ω = P (B(x) = c) =

q∑
i=p+1

P (Dx = i)P (B(x) = c |Dx = i) (4)

In the above equation, the value of P (Dx = i) for each i can be computed
using Equation 3. The value of P (B(x) = c | Dx = i) can be computed using the
following equation, whose derivation is omitted here as it is very similar to the
derivation for the likelihood (i.e., Equation 2).

P (B(T (s, t, p, q)) = c |Dx = i)

=

{
(1− F

Z
Dx=i
m

(s))P (B(T (s, am, p,m)) = c |Dx = i) c ≤ m

(F
Z

Dx=i
m

(s))P (B(T (s, t,m, q)) = c |Dx = i) c > m

It is worth noting that if Dx is modeled to be uniform, as we have done in
Equation 3, then P (Dx = i) stays constant for all p < i ≤ q. Therefore, combining
Equations 1 and 4, we can also simplify the effectiveness measure calculation as
follows.

ϵx,c =
P (B(x) = c |Dx = c)∑q

i=p+1 P (B(x) = c |Dx = i)

Average Effectiveness. Given Equations 2, 3, and 4, we can now compute the
effectiveness ϵx,c for a given output index c. In the running example for instance,
given an output index of 5 and a baseline of 83.6, the effectiveness ϵx,5 is 95.3%.
However, since we do not know the output of the bisection prior to running it,
it would be more desirable to measure the overall effectiveness of bisection on a
given performance regression x regardless of the output. In this paper, we will use
the average effectiveness as our aggregate measure, and it is defined as follows.

Definition 8 (Average Effectiveness) Given a performance regression x = T (s, t, p, q),
we denote the average effectiveness of bisection B(x) by ϵx,avg, and define it as follows:

ϵx,avg ≡
q∑

i=p+1

ϵx,iP (B(x) = i)
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The above definition is based on the expected value of the effectiveness, given
the probability of each possible output of B(x); note that P (B(x) = i) can be
computed for each i using the equation for the output probability (Equation 4).
The following simplification, based on Equation 1 and the fact that Dx is uniform,
can help speed up the computation of ϵx,avg.

ϵx,avg =
1

q − p

q∑
i=p+1

P (B(x) = i |Dx = i)

From the above expressions, the average effectiveness for the running example
computes to 96.9%, which happens to be a bit higher than the effectiveness only
for output index 5.

In the empirical study presented in subsequent sections, we will be comput-
ing the effectiveness of a particular bisection based on the average effectiveness.
Thus, in the remaining sections, we will use the terms “effectiveness” and “average
effectiveness” interchangeably, whenever the context is clear.

3.4 Contributing Properties

With a formal definition of effectiveness in place, we can now identify the con-

tributing properties, which are the properties of a performance regression that can
potentially impact the effectiveness of a bisection. These contributing properties
provide the skeleton for the empirical evaluation, whose methodology is described
in Section 4 and whose results are presented in Section 5.

Contributing Property #1: Baseline. As seen in Equations 2 and 4, the values
of the likelihood and the output probability depend on the cumulative distribution
function (CDF) of the distribution at each commit (e.g., Equation 2 depends on
F
ZDx=c

m
(s)). The CDF calculations have, as their input, the value of the baseline

s. This dependency indicates that the baseline value is a contributing property.

Contributing Property #2: Distributions. Since the likelihood and output
probability both depend on the CDFs as just mentioned, then the value of ef-
fectiveness is also potentially impacted by the characteristics of the distribution
before the regression (i.e., X) and the distribution after the regression (i.e., Y ).
In turn, this observation implies that the distributions X and Y are contributing
properties. Note that the characteristics of the distribution that are primarily an-
alyzed in this study are the mean and the standard deviation, as these are used
to compute the CDF.

Contributing Property #3: Commit Range Length. The length of the commit
range is also a contributing property as it affects the value of the likelihood and the
output probability. In particular, note that Equation 2 is computed recursively,
and the number of recursive iterations depends on the commit range length. The
commit range length also affects the value of the shift probability, as is evident in
Equation 3; however, as discussed earlier, the shift probability gets cancelled out
from the effectiveness measure computation when Dx is uniform.

Contributing Property #4: Transition Index. Lastly, from Equations 2 and 4,
we can see that the value of the bisection output c also has an impact when
computing the likelihood and the output probability. We will call this value the
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transition index. Note that this value will not affect the average effectiveness, as the
bisection output is abstracted out from the average effectiveness calculation as per
Definition 8. However, it is still worthwhile studying the effect that this value has
on the “per bisection output” effectiveness ϵx,c, as ϵx,c can still be used for post-
facto analysis. In particular, while ϵx,avg can help developers answer, “How effective
will this bisection be?” prior to running the bisection, ϵx,c can help developers
answer, “How effective was the bisection that just ran?”

4 Experimental Methodology

This section describes in detail the methodology used to achieve the goals enu-
merated in Section 2.3. We will start by going over the overall strategy, and then
a description of the research questions follows thereafter.

4.1 Overall Strategy

For each of the contributing properties identified in the previous section, we ask the
following two overarching questions, which correspond to the two goals discussed
in Section 2.3. These overarching questions are further broken down into more
granular research questions in Section 4.2.

1. What impact does this contributing property have on the effectiveness of the
bisection?

2. What characteristics does this contributing property have in practice?

To answer the first question, a more thorough analysis of the effectiveness
measure is performed, studying the effects of varying the value of the contributing
property. In this particular study, we use a one-at-a-time (OAT) sensitivity analy-
sis to determine the impact of each individual contributing property. This analysis
entails choosing nominal values for each contributing property; thus, when ana-
lyzing a particular contributing property, the value for that contributing property
is varied, and the other contributing properties are set to their nominal values.
These values are chosen based on (1) common values encountered in practice, us-
ing ranges seen by our performance and reliability team at SAP as a guideline,
and (2) computation speed, as larger values tend to make the computation of the
effectiveness measure take longer. The nominal values are listed below.

– For the commit range length, we choose a nominal value of 100. As a point of
comparison, the twenty most recent bisections conducted in our team for which
we still have data on the commit range had a median commit range length of
136.5, which is very close to the chosen nominal value. These bisections were
run by seven members of our team, four of whom have at least 5 years of expe-
rience each in performance engineering, one with about 2 years of experience,
and two with 7 months of experience.

– For the distributions, the nominal value for the mean is randomly chosen be-

tween 1000 and 10000, and the nominal value for the standard deviation is
randomly chosen between 100 and 1000. Of the 32 core operations that our
team is primarily monitoring, 25 have means that fall within the specified
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Table 1: Software applications from which bug reports were collected, listed al-
phabetically

Application Application # of Bug Search Source
Name Type Reports Term

Collected

ansible IT Automation System 10 performance regression is:closed Red Hat (2021a)
cockroach Database 26 performance regression is:closed Cockroach Labs (2021)
elasticsearch Search Engine 20 performance regression is:closed Elastic NV (2021)
flutter Mobile SDK 30 performance regression is:closed Google (2021b)
kubernetes Container Management 30 performance regression is:closed Google (2021c)
moby Container Management 8 performance regression is:closed Moby Project (2021)
nixpkgs Software Packages 6 performance regression is:closed NixOS (2021)
node Runtime Environment 30 performance regression is:closed type:issue Dahl (2021)
origin Container Management 10 is:closed label:area/performance Red Hat (2021b)
roslyn Compiler 7 performance regression is:closed type:issue Microsoft (2021b)
runtime Runtime Environment 30 performance regression is:closed Microsoft (2021a)
rust Programming Language 30 performance regression is:closed The Rust Foundation (2021)
servo Web Browser Engine 8 is:closed label:I-perf-slow Mozilla Corporation (2021)
tensorflow Machine Learning Framework 21 performance regression is:closed Google (2021d)
tgstation Role Playing Game 15 is:closed label:Performance type:issue Exadv1 (2021)
vscode Source Code Editor 24 performance regression is:closed Microsoft (2021c)
wp-calypso Web Application Front-End 5 is:closed label:Performance type:issue Automattic (2021)

range (in units of milliseconds), with the remaining 7 just above or just below
the boundaries, based on a week’s worth of data. Similarly, 26 of the 32 core
operations fall within the range chosen for the standard deviation, with the
remaining 6 falling just below 100, within the same time span. These values
were observed by 11 members of our team, six of whom have at least 5 years of
experience each in performance engineering, two with 2-3 years of experience,
and three with 3-7 months of experience.

Note that randomly choosing the distribution parameters from a range of values
instead of fixing them simulates what one would normally encounter in practice,
where the distribution shapes are quite varied; with that said, to increase gener-
alizability, we consider multiple pairs of distributions in our analysis. We do not
need to set a nominal value for the transition index for any of our analyses, as most
of the research questions consider average effectiveness, where this property is ab-
stracted out. In addition, we do not need to set a nominal value for the baseline,
because in most research questions, we only consider the baseline that produces
the maximum effectiveness value; the set of baseline values considered when trying
to ascertain this maximum ranges from the mean of distribution X to the mean
of distribution Y , in intervals of 10.

For the second question, we base our answers on an analysis of performance
regression bug reports for real-world software applications. These software appli-
cations are taken from the list of the top 100 most valuable GitHub repositories, as
compiled by Hacker Noon and ranked based on a reputation algorithm by Gaviar
(2019). More specifically, the highest ranked applications were taken from this list,
omitting any applications that did not contain an “Issues” tab in GitHub, as well
as any applications that did not have any performance regressions reported, based
on the search criteria described shortly. A maximum of 30 bug reports were col-
lected for each application, and the collection was halted once the total exceeded
300 bug reports. The number of bug reports was capped, as analyzing each one
required significant effort, with each bug report requiring 10-20 minutes to be an-
alyzed on average; thus, a balance between the effort involved and the number of
samples analyzed needed to be made. Following this process, a total of 310 bug re-
ports were collected from 17 applications, which are listed in Table 1. To be clear,
the goal of this second overarching question is not to evaluate the effectiveness of
bisection on real-world bug reports, but to understand the contributing properties
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that would help developers assess how effective a bisection will be for their specific
use case.

In most cases, the search term used to find the bug reports was performance

regression is:closed. However, in cases where this search term did not provide
too many results, it was altered either by relaxing some of the keywords or in-
cluding labels or tags as part of the search. Table 1 shows the search terms used
for each application’s repository. Furthermore, only closed bug reports that are
acknowledged by the developers as a performance regression are considered; this
acknowledgement can either be explicitly made in the comments, or implicitly
made by the presence of a fix or a recommended resolution that still implies a
regression (e.g., fixed in a later version, accepting the performance hit, etc.).

4.2 Research Questions

We break down the two overarching questions from Section 4.1 into the following
research questions.

RQ1 (Impact of Baseline): What impact does the choice of baseline have on the
effectiveness?

RQ2 (Baselines in Practice): Do real-world performance regression bug reports
provide enough information to assess a proper baseline value?

RQ3 (Impact of Distributions): What impact do the distributions have on the ef-
fectiveness?

RQ4 (Distributions in Practice): How close (or far apart) are the pre-regression
distribution X and the post-regression distribution Y from each other in real-
world performance regressions?

RQ5 (Impact of Commit Range Length): What impact does the length of the com-
mit range have on the effectiveness?

RQ6 (Commit Range Lengths in Practice): How long are the commit ranges pro-
vided in real-world performance regression bug reports?

RQ7 (Impact of the Transition Index): Does the position of the transition index
affect the effectiveness?

RQ8 (Transition Indices in Practice): How much does effectiveness vary per tran-
sition index in real-world performance regressions?

RQ9 (Effectiveness in Practice): How effective will bisection be when applied to
real-world performance regressions?

The first eight questions are based on the strategy laid out in Section 4.1. In
this case, the real-world analysis of a particular contributing property is asked
immediately after the analysis on its impact; the research questions are organized
in this manner in order to make it easier to link the theoretical analysis with its
corresponding real-world analysis. The last research question allows us to assess
the overall effectiveness of the real-world performance regressions from a black-box
perspective (i.e., without looking at the contributing properties).

Note that in this study, we consider three different types of distributions for
the pre-regression distribution X and the post-regression distribution Y , namely
(1) normal, (2) log-normal, and (3) Pareto. We consider normal distributions in
this list as they are well-studied, potentially making the analysis simpler and more
interpretable. Furthermore, normal distributions are often used in scenarios where
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the distribution is not known, which applies to this experiment as none of the
bug reports provide raw performance data, but only aggregated metrics (e.g., this
applies to the running example). Having said this, prior research has shown that
performance measurements tend to be more heavy-tailed than normal (Crovella
et al, 1998; Sasaki et al, 2017; Crovella, 2000; Chen et al, 2014). For this reason,
we also consider two common heavy-tailed distribution types as part of the anal-
ysis, namely log-normal and Pareto. The latter, in particular, has been observed
in various workload scenarios (Harchol-Balter, 2013; Akinshin, 2019). While the
experiments were conducted on all three distribution types for all pertinent re-
search questions, the full results for log-normal and Pareto are presented only for
RQ1, as the three distribution types yielded very similar results for the remaining
research questions.

Impact of Baselines (RQ1). To analyze the impact of the choice of baseline,
we keep the commit range length and the distributions to their nominal values,
as described in Section 4.1, while varying the baseline from the mean of X to the
mean of Y , which allows us to plot a graph of the baseline value versus the average
effectiveness. We consider 1000 different pairs of distributions, applied to each of
the three distribution types.

Baselines in Practice (RQ2). In order to identify the choice of baseline that
maximizes the effectiveness (the properties of which are analyzed in the preceding
research question), developers need to be provided enough information to compute
the effectiveness in the first place. Thus, the goal of this research question is to
determine if the information provided in bug reports is sufficient to make a proper
baseline assessment, and if not, find ways to either fill in or mitigate these gaps.
To answer this research question, we first categorize the commit range provided
in each bug report as follows:

– Full (F): Version information (i.e., commit hash, version number, or test num-
ber) is provided for both the good commit (i.e., the first commit in the perfor-
mance regression) and the bad commit (i.e., the last commit in the performance
regression);

– Half (H): Version information is provided only for the good commit or the
bad commit, but not both;

– None (N): Version information is not provided at all

Correspondingly, we also categorize the distribution provided in each bug re-
port as follows:

– Full (F): Complete distribution information (i.e., mean and standard devia-
tion) is provided for both the good commit and the bad commit

– Half (H): Complete distribution information is provided only for the good
commit or the bad commit, but not both;

– None (N): Complete distribution information is not provided at all

Based on the above categories, we classify a bug report based on the nine pos-
sible combinations, each labeled as AB, where A is the commit range category and
B is the distribution category. For example, a bug report classified as FF means its
commit range is categorized as “Full” and its distribution is categorized as “Full”;
the running example falls under this classification, as complete information is in-
cluded. On the other hand, a bug report classified as HN means its commit range
is categorized as “Half”, and its distribution is categorized as “None”.
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Lastly, note that version information or distribution information is considered
“provided” if the information comes from the reporter of the bug, either by explic-
itly including the information in the report, or by including data that allows the
developer to easily infer the information (i.e., links that contain the information,
or raw numbers and graphs that allow the developer to easily compute the mean
and/or standard deviation).

Impact of Distributions (RQ3). Here, we perform three analyses. First, we per-
form the OAT analysis on the distance between the means. To do this, we keep the
commit range length and the standard deviation to their nominal values (which
include a randomly chosen standard deviation as described in Section 4.1). Fur-
ther, we fix the mean of X at 1000, and we vary the mean of Y from 1000 to 10000.
Based on these values, we can generate a graph of the distance between the means
of the distributions versus the maximum effectiveness (i.e., the largest effectiveness
value from any baseline). In total, we analyze the results for 1000 randomly chosen
pairs of standard deviation values, for each of the three distribution types.

Second, we perform another OAT analysis, this time on the standard devi-
ations. In this case, we keep the commit range length and the means at their
nominal values (with a distance of 1000 between the mean of X and the mean of
Y , for simplicity), with the standard deviation varied in three ways: (1) vary only
the standard deviation of X; (2) vary only the standard deviation of Y ; (3) vary
the standard deviations of both X and Y . In each case, the standard deviation
value will vary between 100 and 1000, similar to its range of nominal values.

Third, we keep the commit range length at its nominal value, and we randomly
generate the means and the standard deviations for both X and Y ; from these
values, we then calculate both the maximum effectiveness and the overlapping
coefficient. The overlapping coefficient is defined as the area of overlap between
two distributions (Inman and Bradley Jr, 1989; Weitzman, 1970) – in this case,
between the distribution X at the good commit and the distribution Y at the
bad commit. This procedure is repeated 200 times, after which we compute the
correlation between the maximum effectiveness and the overlapping coefficient.

Distributions in Practice (RQ4). For this question, we gather all the bug reports
whose distributions are categorized as “Full”, and we compute the overlapping
coefficient for each one. Doing so allows us to measure the “closeness” of the
distributions, which we can interpret in the context of the results from RQ3.

Impact of Commit Range Length (RQ5). To assess the impact of the length
of the commit range, we randomly generate the parameters for the distributions
X and Y according to their range of nominal values, and vary the length of the
commit range from 2 to 300, after which we compute the maximum effectiveness.
This procedure is carried out for 1000 different pairs of distributions for each of
the three distribution types.

Commit Range Lengths in Practice (RQ6). The goal of this research question
is twofold. First, we would like to determine typical commit range lengths in real-
world performance regressions. Second, we would like to analyze the various ways
in which developers provide commit ranges, and determine whether they correlate
in any way with the commit range length. To perform this analysis, we gather all
bug reports whose commit range is categorized as “Full”, and categorize them as
follows.

– Hash: The commit range is given by the reporter as GitHub commit hashes;
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– Version: The commit range is given by the reporter as software version num-
bers;

– Test Run Number: The commit range is given by the reporter as build num-
bers of a regression test;

– Mix: The commit range is given by the reporter as any combination of the
above types

In addition, for each bug report whose commit range is “Full”, we also record
the commit range length wherever it is possible to do so. For the running example,
the commit range categorization is “Hash” as the GitHub commit hashes are
provided, and the commit range length is 15. Note that in some cases, the commit
range length can no longer be computed due to lost information resulting from
repository migration, version no longer being available, etc. Thus, only bug reports
for which the commit range length can be computed are included in this specific
analysis.

Impact of the Transition Index (RQ7). Unlike the other contributing proper-
ties, the sensitivity analysis on the transition index focuses on its impact on the
“per bisection output” effectiveness ϵx,c, instead of the average effectiveness ϵx,avg.
To carry out this analysis, we will keep the commit range length and the distri-
butions to their nominal values, while varying the value of the transition index
from 2 to 100 (i.e., the range of possible transition index values, according to the
sample space of Dx). In addition, the baseline is set to the optimal baseline – i.e.,
the baseline that produces the maximum average effectiveness. As with previous
research questions, this procedure is carried out for 1000 different pairs of distri-
butions for each of the three distribution types, thereby producing different graphs
showing the transition index c versus the value of ϵx,c.

Transition Indices in Practice (RQ8). To conduct this analysis, we gather all
the FF bug reports (i.e., bug reports with full commit range and distribution
information provided by the reporter) whose commit range length can be inferred,
and generate the “transition index versus ϵx,c” graphs for each one, similar to what
is done for RQ7.

Effectiveness in Practice (RQ9). Finally, for this research question, we gather all
the FF bug reports whose commit range length can be inferred and compute the
maximum (average) effectiveness for each one. The results are presented in a table,
and any interesting patterns observed are identified. In addition, to demonstrate
the real-world applicability of the effectiveness measure, the bisections conducted
in our performance and reliability team are gathered; as of writing, there are 40
bisections for which we still have corresponding data on the effectiveness measure.
The effectiveness measure is then compared against the success (or failure) of the
bisection, and the comparison is presented in a chart.

5 Results

The results of the analyses described in the preceding section are now presented.
The focus of this section is to present observations from the results, with a more
thorough discussion on their implications in Section 6. Raw data for the results
have also been made available.2

2 https://people.ece.ubc.ca/frolino/projects/perf-bisect-effectiveness/

https://people.ece.ubc.ca/frolino/projects/perf-bisect-effectiveness/
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Fig. 4: Results of the OAT analysis for the impact of the baseline on the average
effectiveness, for ten randomly chosen pairs of normal distributions X and Y . The
horizontal axis refers to the baseline, ranging from the mean of X to the mean of
Y . The vertical axis refers to the effectiveness measure, ranging from 0% to 100%.
The axis labels for all graphs are similar to those in (a).

5.1 Impact of Baseline

Figure 4 shows the results of the OAT sensitivity analysis on the baseline (RQ1); in
particular, it shows the graph of the baseline versus the average effectiveness for the
first ten randomly chosen pairs of distributions, as described in Section 4.2. Only
the results for normal distributions are shown here, as the graphs for log-normal
and Pareto yielded similar ranges of results, with the Pareto graphs making sharper
turns at the peak. From these graphs, we can clearly see that the effectiveness is
very sensitive to the choice of baseline, with a large range of effectiveness measures.
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Table 2: Range of effectiveness measures over different baseline values, for ten
randomly chosen pairs of normal distributions X and Y . Each distribution is pre-
sented in the first two columns as (µ, sd), where µ is the mean and sd is the
standard deviation. For the third and fourth columns, the numbers in parenthe-
ses are the baseline values corresponding to the effectiveness measures; percentage
values that round up to 100 in two decimal places are shown as ∼100. The last
column shows how far the optimal baseline is from the mean of X, in terms of the
number of standard deviations of X.

Distribution of Distribution of Minimum Maximum Standard Deviations
Good Commit (X) Bad Commit (Y ) Effectiveness Effectiveness Away

(8627, 931) (8743, 336) 1.43 (8737) 2.30 (8627) 0
(1846, 347) (3525, 120) 13.50 (1846) 99.90 (3066) 3.52
(3884, 772) (9955, 328) 13.50 (3884) ∼100 (8114) 5.48
(3765, 309) (5148, 707) 12.14 (3765) 58.78 (4325) 1.81
(4352, 886) (7687, 159) 13.50 (4352) 99.63 (7112) 3.12
(4523, 896) (8050, 342) 13.50 (4523) 98.66 (7003) 2.77
(1835, 195) (9477, 153) 13.50 (1835) ∼100 (3415) 8.10
(3194, 685) (9855, 491) 13.50 (3194) ∼100 (7064) 5.65
(1615, 533) (9774, 993) 13.50 (1615) ∼100 (4515) 5.44
(4656, 918) (6369, 181) 13.50 (4656) 72.57 (5966) 1.43

Table 3: Comparing the effectiveness at the midpoint with the maximum effec-
tiveness, for each corresponding distribution type. Each difference is relative to
the effectiveness at the midpoint.

Normal Log-Normal Pareto

Avg. Percentage Point Difference 2.07 2.23 5.85
Compared to Midpoint Effectiveness
# of Pairs with At Most 5 867 867 578
Percentage Point Difference
# of Pairs with Greater Than 133 133 422
5 Percentage Point Difference
# of Pairs with Greater Than 65 67 187
10 Percentage Point Difference
# of Pairs with Greater Than 9 3 54
20 Percentage Point Difference

This behaviour is made more evident by Table 2, which shows the exact range of
effectiveness measures for each of the ten distribution pairs. In 9 out of the 10
pairs listed in this table, the effectiveness ranges from a value below 14% to a
value above 58% (and above 98% in 7 out of the 10 scenarios).

Looking more closely at the graphs in Figure 4, we can observe that the effec-
tiveness monotonically increases in value until it reaches a peak; thereafter, the
effectiveness plateaus in some graphs, and then monotonically decreases in value.
When considering all 1000 distribution pairs, the minimum effectiveness occurs
at one of the endpoint mean values in all of the pairs (this applies to all three
distribution types). Intuitively, this result makes sense – for example, most mea-
surements of the bisection metric when testing a pre-regression commit will be
very close to the mean of X, and choosing a baseline that is too close to that mean
increases the chances of the measurement going just above the chosen baseline,
thereby causing it to be mislabelled as a post-regression commit.

While the above result is expected, a more interesting question to ask is whether
the midpoint of the means of distributions X and Y constitutes a reasonable
estimate for the optimal baseline value. Table 3 shows the results. On average,
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Table 4: Comparing the maximum effectiveness when assuming a normal distri-
bution with the maximum effectiveness when assuming heavy-tailed distributions.
Each difference is relative to the maximum effectiveness when assuming a normal
distribution.

Log-Normal Pareto

Avg. Percentage Point Difference 0.97 9.48
Compared to Normal
Maximum Percentage Point Difference 12.06 50.14
Compared to Normal
# of Pairs with At Most 5 978 616
Percentage Point Difference
# of Pairs with Greater Than 22 384
5 Percentage Point Difference
# of Pairs with Greater Than 2 319
10 Percentage Point Difference
# of Pairs with Greater Than 0 237
20 Percentage Point Difference

Table 5: Comparing the effectiveness values when using the optimal baseline of the
normal distribution case as the baseline for each distribution type. Each difference
is relative to the maximum effectiveness when assuming a normal distribution.

Log-Normal Pareto

Avg. Percentage Point Difference 1.03 7.29
Compared to Normal
Maximum Percentage Point Difference 11.27 49.03
Compared to Normal
# of Pairs with At Most 5 973 628
Percentage Point Difference
# of Pairs with Greater Than 27 372
5 Percentage Point Difference
# of Pairs with Greater Than 2 216
10 Percentage Point Difference
# of Pairs with Greater Than 0 137
20 Percentage Point Difference

the effectiveness at the midpoint comes within around 5 percentage points of the
maximum effectiveness for all three distribution types, with a Mann-Whitney U
Test p-value very close to 0% due to the large sample size. The small average
percentage point difference provides some evidence that the midpoint value can
be used as a rough estimate of the optimal baseline. However, many deviations
are still observed, with 13.3% deviating by more than 5 percentage points for
normal distributions, 13.3% for log-normal distributions, and 42.2% for Pareto
distributions. There are also several scenarios where the difference exceeds 10
percentage points, or even 20 percentage points, especially for Pareto.

Finding 1: The choice of baseline has a significant impact on the effectiveness of a

bisection. The midpoint between the means can be used as a rough estimator of the

optimal baseline, but it can be inaccurate especially for some heavy-tailed distributions

Lastly, Table 4 compares the maximum effectiveness at the heavy-tailed distri-
butions (i.e., log-normal and Pareto) with the maximum effectiveness at normal
distributions. As seen in this table, the effectiveness for the log-normal case is
very similar to the effectiveness for the normal case, differing by only around 1
percentage point on average. On the other hand, the effectiveness for the Pareto



24 Frolin S. Ocariza, Jr.

Table 6: Number of bug reports that belong to each classification on the infor-
mation provided, as defined in Section 4.2 (RQ2)

Application FF HF FH HH FN NF HN NH NN Total

ansible 1 - - - 9 - - - - 10
cockroach 3 1 - - 12 1 4 1 4 26
elasticsearch 2 - - - 13 - 2 - 3 20
flutter - - - - 13 - 12 - 5 30
kubernetes - - 1 1 15 - 8 - 5 30
moby - - - - 7 - 1 - - 8
nixpkgs - - - - 3 - 3 - - 6
node 5 - 1 - 19 - 5 - - 30
origin - - - - 1 - 3 - 6 10
roslyn - - - - 1 - 2 - 4 7
runtime 15 1 - - 10 - 4 - - 30
rust 3 - - - 22 - 3 - 2 30
servo - - - - - - 5 - 3 8
tensorflow 1 - - - 15 - 5 - - 21
tgstation - - - - - 1 4 - 10 15
vscode 2 - 1 - 9 - 8 - 4 24
wp-calypso - - - - - - 3 - 2 5

Overall 32 2 3 1 149 2 72 1 48 310

case differs considerably more on average (i.e., by 9.48 percentage points), and
sometimes differs by more than 50 percentage points. Nonetheless, most of the
Pareto results are very close to the results from the normal case, with 61.6% com-
ing within 5 percentage points and 68.1% coming within 10 percentage points.
Table 5 shows a similar comparison, but this time, we examine the effectiveness
for each distribution type with the baseline fixed to the optimal baseline of the
normal case. The results are very similar to those seen in Table 4, except with
considerably fewer Pareto results exceeding the normal results by 10 percentage
points. Taken together, these numbers provide some evidence that setting X and Y

as normal distributions may be a reasonable simplification to make when assessing
the effectiveness, especially in the absence of raw performance data.

Finding 2: When assessing the effectiveness of a bisection and computing an opti-

mal baseline, estimating the pre-regression and post-regression distributions as nor-

mal may be a suitable simplification, particularly if the real distribution is log-normal

or Pareto. However, some differences are to be expected, especially if the true distri-

bution is closer to Pareto

5.2 Baselines in Practice

Based on Finding 1, it is important to choose a suitable baseline that will yield
high effectiveness. In order to make this assessment, the developer – or whoever is
investigating the performance regression – needs to know the full commit range,
as well as the distribution parameters (both pre-regression and post-regression),
as required by the effectiveness measure calculation. Here, we go over the results
on how much of this information is provided to real-world developers when per-
formance regression bug reports are filed.

Table 6 shows the classification of each bug report, based on the classification
scheme defined in Section 4.2 (RQ2). As the table shows, only 32 out of 310 bug
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Fig. 5: Breakdown of the information provided: (a) Breakdown of version in-
formation provided; (b) Breakdown of complete (i.e., both mean and standard
deviation) distribution information provided; (c) Breakdown of mean provided,
among all bug reports labelled as “None” for complete distribution information;
(d) Breakdown of standard deviation (SD) provided, among all bug reports la-
belled as “None” for complete distribution information.

reports belong to the FF category, which means that only around 10% of the bug
reports analyzed provide the full version and distribution information needed to
compute an optimal baseline. Looking more closely at the bug reports demystifies
this result a bit, as in most cases, the person reporting is an end user who is
not running thorough performance regression tests, as one would expect from a
tester or a developer. As a matter of fact, the only application where reporters
provided full distribution information in the majority of bug reports is runtime,
where two qualities immediately stand out: (1) The runtime developers use a
reporting system that automatically sends bug reports to an external repository,
which a human can then validate and thereafter report as a performance regression
in the main repository; and (2) the majority of performance regression bug reports
sent to runtime are sent by developers themselves, and are based on the reports
generated by the reporting system.

Finding 3: Performance regression bug reports often do not contain sufficient infor-

mation to compute an optimal baseline

Going back to Table 6, we can likewise see that the classification that takes
up the largest percentage is FN (i.e., full version information provided, but no
complete distribution information provided). This classification also takes up the
largest percentage in 11 out of the 17 applications. These observations seem to indi-
cate that performance regression bug reports are more likely to include full version
information than they are to include full distribution information. To corroborate
this claim, Figure 5 shows a breakdown of the classifications, with Figure 5a show-
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ing the version classifications, and Figure 5b showing the distribution classifica-
tions. From these charts, it is clear that while the majority of reporters provide full
version information (around 59%), an even more overwhelming majority (around
86%) provides no complete distribution information at all. Furthermore, of the 269
bug reports that provide no complete distribution information (i.e., those labelled
as “None”), around 71% provide the mean for at least one commit; however, 100%
of these 269 bug reports provide no information at all on the standard deviation.
Once again, this observation meshes with the fact that most of the bug reports are
reported by end users who are more motivated to send out a bug report quickly
than to make thorough performance measurements.

Finding 4: Most performance regression bug reports provide full version information;

however, most of these bug reports do not provide complete distribution information

at all, primarily due to missing standard deviations

In the discussion section, some suggestions on ways to help developers fill the
information gap are presented, as observed in the above results.

5.3 Impact of Distributions

We start our analysis of the distributions by conducting the OAT sensitivity anal-
ysis on the means. Note that it suffices to conduct the analysis on the distance

between the means, as the CDF functions (i.e., in Equations 2 and 4) evaluate
to the same probability for distributions of the same shape, for all inputs with
corresponding standardized scores (i.e., z-scores). Figure 6 shows the maximum
effectiveness for a range of distance values between the means; while the results
for 1000 randomly chosen pairs of standard deviations were generated, only two
graphs are shown based on a sample of ten results, as the remaining graphs are
very similar to Figure 6a, with the same sigmoid shape. The only exception among
the pairs that were graphed is Figure 6b, which has two different inflection points –
one between distance 0 and distance 300, and the other between distance 300 and
distance 9000. Further, only the graphs for the normal distribution case are shown,
as the log-normal and Pareto graphs were found to be very similar. Nonetheless,
in all scenarios, the graph is monotonically increasing, which suggests that the
maximum effectiveness increases as the distance between the means of X and Y

increases.

Next, we vary the standard deviation values as described in Section 4.2. The
results are shown in Figure 7; note that in these graphs, the base standard de-
viation value used for the distribution that is not varied in Figures 7a and 7b is
100, but similar results are observed for other base values. In general, regardless
of the type of variation method, it is evident from these graphs that the maximum
effectiveness decreases as the standard deviation increases. Note that in Figure 7,
the range of effectiveness values is larger when the standard deviation of distri-
bution X is varied, than when the standard deviation of distribution Y is varied.
However, this pattern seems to be specific to normal and Pareto distributions, as
the log-normal results are more senstive to the value of Y .

The above results are consistent with earlier findings on a noisy variant of
binary search, in which the oracle that decides whether to take the left or right
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Fig. 6: Impact of the mean on the maximum effectiveness. The horizontal axis
represents the distance between the means, while the vertical axis represents the
maximum effectiveness attained. These results are computed using normal dis-
tributions, but the log-normal and Pareto results are very similar. Results were
computed for 1000 different pairs of standard deviations, and graphs were gener-
ated for the first 10 pairs; the ones not shown here have the same sigmoid shape
as the first graph.

side of the array is incorrect with a known and fixed probability. For example, Pelc
(1989) theoretically demonstrated that in the discrete bounded version of this noisy
binary search – which is the closest analogue to performance regression bisection –
an error probability less than 50% is needed in order to guarantee that the correct
target element is found. Our results above can be seen as a corollary to this, as
intuitively, smaller mean gaps and larger standard deviations would increase the
error probability.

Finding 5: In line with prior findings, the maximum effectiveness increases with the

mean, and decreases as the standard deviation of any of the distributions increases

Lastly, Figure 8 shows a scatter plot of the maximum effectiveness versus the
overlapping coefficient, which is a measure of the amount of overlap between dis-
tributions X and Y ; this graph only shows the normal distribution results, but
similar results are observed for log-normal and Pareto. In this case, the Pearson
correlation coefficient is -0.4799, with a p-value less than 0.01 (p = 6.44× 10−13),
indicating a significant negative correlation. While the correlation value itself is
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Fig. 7: Impact of the standard deviation on the maximum effectiveness: (a) Only
the standard deviation of X is varied; (b) Only the standard deviation of Y is
varied; (c) The standard deviations of X and Y are varied simultaneously. In all
three graphs, the horizontal axes represent the standard deviation, and the vertical
axes represent the maximum effectiveness. Note that for (a) and (b), the base value
of the standard deviation that is not varied is 100.

quite weak when considering the data holistically, a couple of important observa-
tions can be made.

– The only distribution pairs that attained a maximum effectiveness score greater
than 80% are those that have less than 30% overlap;
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Fig. 8: Scatter plot of the maximum effectiveness versus the overlapping coeffi-
cient, for 200 randomly chosen pairs of distributions.

– Distribution pairs that have an overlap greater than 40% have low maximum
effectiveness, with almost all of these having a maximum effectiveness of less
than 20%

Thus, Figure 8 suggests that even though the overlapping coefficient is not
an exact predictor of the maximum effectiveness even for a fixed commit range
length value, it can nonetheless be used as a rough indicator. For example, in this
particular setup where the commit range length is 100, the two observations stated
above strongly indicate that distribution pairs with greater than 40% overlap is
almost guaranteed to yield low maximum effectiveness, and that the distribution
pairs should have less than 30% overlap in order for the bisection to even have a
strong chance of yielding a maximum effectiveness that exceeds 80%.

Finding 6: The overlapping coefficient has a significant negative correlation with

the maximum effectiveness, and can be used as a rough predictor of the effectiveness

measure

5.4 Distributions in Practice

Having analyzed the impact of the distributions on the effectiveness, we will now
look at distribution pairs from real-world performance regressions. In total, full
distribution information is provided in 36 bug reports, and for each one, the over-
lapping coefficient was computed. The results are shown in Figure 9. From this
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Fig. 9: Number of bug reports with a particular overlapping coefficient, among
those where full distribution information is provided.

figure, we can see that the vast majority of distribution pairs overlap in the 0-5%
range (29 out of 36). In addition, all 36 distribution pairs overlap by less than 30%;
as per the results from Section 5.3, this means that all of these distribution pairs
have a much greater chance of yielding a high maximum effectiveness measure.

Finding 7: Distribution pairs in reported performance regressions tend to have small

overlap, making them more amenable to bisection

Care must be exercised when interpreting this particular finding, with a more
thorough discussion presented in Section 6.

5.5 Impact of Commit Range Length

Figure 10 shows graphs of the maximum effectiveness per commit range length
value for four randomly chosen distributions; the remainder of the distributions
that are not shown are very similar to the ones shown in this figure. Looking at
these graphs, two features can be readily observed. First, the maximum effective-
ness decreases as the commit range length increases. This behaviour makes sense
intuitively, as longer commit range lengths imply a larger search space, thereby
making it more difficult to find the bug-introducing commit. It also meshes with
the intuition behind prior research on commit reduction (Najafi et al, 2019; An and
Yoo, 2021; Saha and Gligoric, 2017), although these prior works were done in the
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Fig. 10: Impact of the commit range length on the maximum effectiveness, for
four randomly chosen distribution pairs. The horizontal axis represents the com-
mit range length (ranging from 2 to 300), while the vertical axis represents the
maximum effectiveness.

context of functional debugging, where bisection runtime was the main motivator
for reducing the commits, as opposed to effectiveness. Second, the rate of decrease
in the maximum effectiveness as the commit range length increases gets slower
with longer lengths, which aligns with the logarithmic nature of binary search.

From the results, it is also evident that the decrease rate of the maximum
effectiveness depends on the other inputs, notably the distribution pair. For in-
stance, the distribution pair for Figure 10d is X : (2767, 790) and Y : (2917, 210),
which consists of two means that are very close to each other and an overlapping
coefficient of 44.34%; this particular feature translated to a larger overall rate of
decrease for the maximum effectiveness, as the graph makes apparent.

Finding 8: The maximum effectiveness decreases as the commit range length in-

creases, at a rate that gets slower with longer lengths

5.6 Commit Range Lengths in Practice

Table 7 contains information about the number of bug reports where a particular
type of commit range is provided (“Count”) and the average length of the commit
range for each of these types (“Avg. Length”). Looking at the “Count” columns,
we can see that among those bug reports where full version information is provided,
the majority of these reporters provided the version number (106 out of 184). After
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Table 7: Type of version information provided among those where full version
information is provided (see Section 4.2), and the average length of the commit
range for each type. In some cases, the length can no longer be inferred, for reasons
outlined in Section 4.2; those for which none of the lengths can be inferred are
marked with a dash.

Commit Range Type
Hash Version Test Run Number Mix Overall

Application Count Avg. Length Count Avg. Length Count Avg. Length Count Avg. Length Count Avg. Length

ansible 0 - 10 3097.50 0 - 0 - 10 3097.50
cockroach 7 254.14 7 4151.29 1 - 0 - 15 2202.71
elasticsearch 5 7 10 3007 0 - 0 - 15 2007
flutter 12 2.22 0 - 0 - 1 - 13 2.22
kubernetes 6 80 2 1382 8 - 0 - 16 514
moby 0 - 7 2099.14 0 - 0 - 7 2099.14
nixpkgs 1 300 2 12642 0 - 0 - 3 6471
node 2 7 23 3296.83 0 - 0 - 25 3033.64
origin 0 - 1 3439 0 - 0 - 1 3439
roslyn 0 - 1 3154 0 - 0 - 1 3154
runtime 13 88.54 12 144 0 - 0 - 25 92.5
rust 15 120.20 6 2161.60 3 - 1 2350 25 712.43
servo 0 - 0 - 0 - 0 - 0 -
tensorflow 0 - 14 3782.14 0 - 2 1152 16 3453.38
tgstation 0 - 0 - 0 - 0 - 0 -
vscode 1 621 11 1767.50 0 - 0 - 12 1663.27
wp-calypso 0 - 0 - 0 - 0 - 0 -
Total 62 106.02 106 3089.14 12 - 4 1551.33 184 1940.12

this, the second-most frequently provided type of commit range is the commit hash
value, with 62. The remaining bug reports either had the test run number provided,
or some mix of the three types.

Furthermore, not including servo, tgstation, and wp-calypso, which had no
bug reports that had full version information, the bug reports with version numbers
provided comprise the majority in 9 applications, while those with hashes provided
comprise the majority in only 4 applications (one application – cockroach – has 7
of each of these two types). Additional analysis of the four applications for which
the majority had hashes provided reveals the following:

– For flutter, most of the bug reports link to a publicly available test result
querying system that contains commit hashes;

– For runtime, a large number of bug reports are based on an automatically-
generated report, where the reporting system includes hash information;

– For kubernetes and rust, reporters either simply provided the hashes directly,
or provided information that contain hash information (e.g., link to a GitHub
diff page, test logs, etc.)

Finding 9: In cases where full version information is provided, most reporters of

performance regressions provide the version number for the commit range

Now, looking at the “Avg. Length” columns, we can readily observe that the
average commit range length when hashes are provided is around 106, while the
average commit range length when version numbers are provided is aroud 3089 (the
average length when these are mixed is around 1551, although this number is only
based on three bug reports). This pattern also holds on a per-application basis,
where the average length of the version numbers exceeds the average length of the
hashes in all applicable scenarios. It is therefore clear from this result that the
commit range length tends to be much higher when version numbers are provided
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than when commit hashes are provided. Intuitively, this result can be understood
in light of the fact that version numbers are conceptually less granular than commit
hashes. It also strongly implies that most of the commit hashes provided by the
reporters in the subject applications are not simply based on the version numbers
themselves, but are based on commits that occur between version numbers.

Finding 10: The commit range length tends to be much shorter when hashes are

provided compared to when version numbers are provided

5.7 Impact of Transition Index

As mentioned in Section 4.2, this analysis on the transition index will focus on its
impact, not on the average effectiveness measure, but on the “per bisection out-
put” effectiveness measure – i.e., the value of ϵx,c as c is varied. Figure 11 shows
the results for this analysis, from a sample of ten distributions out of the 1000
analyzed. There are a few interesting observations that can be made. First, the
graphs are fractal-like, with each one having an almost symmetrical shape. Second,
and more importantly, these graphs show that the effectiveness can actually vary
significantly for different transition indices; for instance, in Figure 11e, the effec-
tiveness is over 90% for several transition indices, but goes as low as 30.29% when
the transition index is 51. At first glance, this result may seem counter-intuitive
– i.e., it seems odd that bisection would have a high probability of success given
that it outputs one particular suspected bug-introducing commit, but has a low
probability of success given it outputs another. However, the effectiveness measure
computation can provide some insight on why we are observing this result. For
one, some transition indices require more recursive iterations than others; as an
example, with 100 commits, a transition index of 2 requires only 6 iterations, while
a transition index of 3 requires 7 iterations. From this standpoint, the variation of
the effectiveness makes more sense intuitively, as more recursive iterations implies
more tests to run, which in turn implies more room for error. In addition, for the
same reason just stated, certain output probabilities can also be larger than oth-
ers, and since the effectiveness is inversely proportional to the output probability
(Equation 1), this can cause the effectiveness measure to lower.3

Finding 11: The effectiveness of a bisection varies with different transition indices

5.8 Transition Indices in Practice

The third to fifth columns of Table 8 show the minimum and maximum “per
bisection output” effectiveness ϵx,c, as well as the difference between these two
values, for all FF bug reports where the commit range length is known. What
immediately stands out is that there are 21 bug reports whose minimum and
maximum effectiveness round up to 100 in two decimal places. Of the remaining
nine bug reports, eight have a minimum and maximum that differ by more than one

3 In fact, this turns out to be the main reason the effectiveness measure tends to be low
when the transition index is somewhere in the middle, for all three distribution types
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Fig. 11: Results of the OAT analysis for the impact of the transition index on the
effectiveness, for a sample of ten randomly chosen pairs of normal distributions X

and Y , out of 1000 pairs analyzed. The results for log-normal and Pareto exhib-
ited similar behaviour. The horizontal axis refers to the transition index, and the
vertical axis refers to the “per bisection output” effectiveness measure. The axis
labels for all graphs are similar to those in (a).

percentage point, with most of these differing by more than 20 percentage points;
the largest difference is seen in ELASTICSEARCH-8, with a 94.54 percentage
point difference.

Finding 12: Reported performance regressions often have low sensitivity to the tran-

sition index, but a significant number are still very sensitive to this parameter
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Table 8: Bug reports with full information provided (i.e., those classified as FF),
and whose commit range length can still be inferred. This table shows the mini-
mum and maximum “per bisection output” effectiveness (i.e., ϵx,c), as well as the
difference in percentage points between the minimum and the maximum. It also
shows the average effectiveness ϵx,avg. Percentage values that round up to 100 in
two decimal places are shown as ∼100 (for RUST-6, the average effectiveness is
exactly 100, as there are only two commits).

Application Bug Report ID Min ϵx,c Max ϵx,c Diff in Percentage Points Avg. Effectiveness (ϵx,avg)

ansible ANSIBLE-1 ∼100 ∼100 ∼0 ∼100
cockroach COCKROACH-1 99.85 99.87 0.02 99.86

COCKROACH-10 9.63 88.85 79.22 34.14
COCKROACH-23 ∼100 ∼100 1.90e-12 ∼100

elasticsearch ELASTICSEARCH-2 33.16 99.91 66.75 98.43
ELASTICSEARCH-8 0.48 95.02 94.54 45.91

node NODE-6 ∼100 ∼100 ∼0 ∼100
NODE-12 ∼100 ∼100 6.77e-11 ∼100
NODE-13 ∼100 ∼100 ∼0 ∼100
NODE-21 ∼100 ∼100 ∼0 ∼100
NODE-23 ∼100 ∼100 ∼0 ∼100

runtime RUNTIME-1 91.94 99.53 7.59 97.43
RUNTIME-2 ∼100 ∼100 7.38e-7 ∼100
RUNTIME-6 ∼100 ∼100 3.60e-11 ∼100
RUNTIME-8 ∼100 ∼100 3.63e-5 ∼100
RUNTIME-10 ∼100 ∼100 ∼0 ∼100
RUNTIME-11 ∼100 ∼100 ∼0 ∼100
RUNTIME-12 ∼100 ∼100 9.95e-14 ∼100
RUNTIME-20 ∼100 ∼100 ∼0 ∼100
RUNTIME-21 ∼100 ∼100 ∼0 ∼100
RUNTIME-25 ∼100 ∼100 8.19e-8 ∼100
RUNTIME-26 ∼100 ∼100 1.57e-9 ∼100
RUNTIME-27 97.24 99.90 2.66 99.33
RUNTIME-28 ∼100 ∼100 ∼0 ∼100
RUNTIME-29 ∼100 ∼100 1.14e-13 ∼100

rust RUST-6 100 100 0 100
RUST-15 70.80 99.79 28.99 95.86
RUST-23 ∼100 ∼100 ∼0 ∼100

tensorflow TENSORFLOW-18 0.39 75.47 75.09 11.13
vscode VSCODE-2 0.70 40.27 39.56 4.06

5.9 Effectiveness in Practice

The last column of Table 8 shows the average effectiveness for all FF bug reports
for which the commit range length can still be inferred. Of the 30 such bug reports,
26 exceed 95%. The main insight that can be gathered from this observation is that
bisection is often a highly effective approach to localizing real-world performance
regressions. It is, however, not a perfect approach, as 4 of the 30 bug reports fell
well below 50% in terms of effectiveness; given how costly a bisection can be as
discussed in Section 2.3, the fact that these performance regressions for which
bisection is generally ineffective exist in real-world applications implies that a pre-
assessment would still be useful prior to running the bisection.

Finding 13: Reported performance regressions often have high bisection effectiveness

measures, although the effectiveness can still be quite low for some

We also corroborate the above results with an analysis of real-world bisections,
which also serves as an evaluation of the effectiveness measure itself. Figure 12a
shows the breakdown of successful and failed bisections per effectiveness range, for
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Fig. 12: Frequency of successful and failed bisections for different effectiveness
ranges. The data is taken from the 40 most recent bisections conducted by the
performance and reliability team at SAP, for which bisection results data are
still available. The first graph shows the results when only considering these 40
bisections. The second graph shows the results for the forty bisections, with results
extrapolated based on the path taken by four successful bisections for which we
still have full data.

40 recent bisections conducted by our team for which full or partial results data are
still available. There are two main observations that stand out from this graph.
First, the vast majority (75%) of the bisections we conducted were successful,
which aligns with expectations set by Finding 13. Second, all but one of the bisec-
tions with effectiveness over 75% succeeded, while the majority of bisections with
effectiveness 25% or below failed; this result suggests at a rather coarse-grained
level that the effectiveness measure can accurately predict the success or failure of
a bisection.
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In order to better appreciate the second observation above, we extrapolate the
successful bisections for which we still have the full path to the correct commit,
where a path consists of successive results at each bisection step. In particular,
note that the 40 bisections above all used the optimal baseline; thus, to extrapolate
the results, we take all other possible baselines (in increments of 10), compute the
effectiveness at each of these baselines, and then check whether the bisection would
still succeed had these alternative baselines been used, based on the full path to
the correct commit. Any deviation from this full path will be counted as a failure.
The results are shown in Figure 12b, and here, the accuracy of the effectiveness
measure becomes more pronounced. More specifically, note how the success to
failure ratio increases with higher effectiveness ranges.

Finding 14: The effectiveness measure is a reliable predictor of the success or failure

of real-world bisections

6 Discussion

We now discuss the implications of our findings. The discussion is organized based
on action items that developers can take, based on the findings in Section 5.

Compute the effectiveness before and after the bisection. Finding 1 implies
the usefulness of computing an optimal baseline prior to bisecting a performance
regression, and Finding 14 provides empirical evidence that the effectiveness mea-
sure derived in Section 3 can be useful in this assessment. There are two notable
decision points that developers need to take when implementing this computation.
First is the type of distribution to use for X and Y . In general, the distribution
type will be difficult to ascertain as the intermediate commits are, by definition,
untested. The distribution types can be estimated if raw performance measure-
ments are available for the two endpoints (i.e., the good commit and the bad
commit). If these measurements are not available, Finding 2 suggests that nor-
mal distributions may be a suitable estimate, even in scenarios where the real
distribution is not normal.

The second decision point is the manner in which optimal baseline search is
conducted. Given n commits, and given that m possible baselines are considered
(depending on the interval chosen), a linear search for the optimal baseline will
take O(mn log n). However, since the effectiveness increases towards a peak and
then decreases (Figure 4), a binary search can be carried out, which will reduce
the time complexity to O(n log(m + n)); this binary search approach is therefore
the suggested way to compute the effectiveness measure.

Lastly, while most of the reported performance regressions have low sensitiv-
ity to the transition index (Finding 12), a significant number of these reported
regressions are still quite sensitive to this contributing property. In such a case,
the average effectiveness measure will not always be completely representative of
the actual effectiveness based on the actual bisection output. Thus, in light of
Finding 11, it would also help to compute the “per bisection output” effectiveness
measure at the end of the bisection. Note also that the effectiveness measure de-
fined in this paper is an external measure, in that it only takes into account input
parameters to the bisection, and not what actually happens during the bisection
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(e.g., How significant are the results of the individual tests? Are any of the results
exhibiting multimodal behaviour?). An internal effectiveness measure that takes
these execution characteristics into account may also be a helpful metric to mea-
sure at the end of a bisection, and devising such a metric can therefore be a useful
problem for researchers to tackle. Having said all of this, it is of course still recom-
mended that the average effectiveness be computed prior to running the bisection
to help assess apriori the probability that it will provide the correct result; this
is especially relevant given that bisection, while typically highly effective, can still
have low effectiveness in practice (Finding 13).

Fill information gap through pre-emptive measures. Regarding the gap for the
information needed to compute the effectiveness and ascertain the optimal base-
line (Finding 4), two types of mitigative measures are suggested: (1) pre-emptive
measures, whose goal is to increase the chance that reporters of performance re-
gressions will provide the information needed, and (2) post-facto measures, which
accept the information gap and attempt to fill that gap after the fact. Based on
an analysis of the bug reports in the empirical study, the following pre-emptive
measures are recommended:

– Create a bug report template that is customized for performance regressions. Many
of the repositories already provide bug report templates; however, almost all
of these are generic templates applicable to any regression, which explains
why full version information is provided for a large number of bug reports
(since this information is needed not just for performance regressions, but any
type of regression), whereas complete distribution information is very scarcely
provided. This suggestion is supported by data from the results, as the only
repository that uses customized templates is runtime, which is also the only
repository where full distribution information is provided in the majority of
bug reports;

– Provide an easy-to-use test command that a potential reporter can run on a par-
ticular component of the application, on a specific commit. This test can be
designed so that it runs a small number of measurements from which the mean
and the standard deviation can be estimated. The reporter can then copy the
results of this run and paste it into the bug report; the template suggested
above can even be designed to ask for this information. Of course, it is infeasi-
ble to create a test for every component of an application, particularly for large
applications, but it would be useful to create some for at least a representative
set. This feature appears to be available to some degree in some of the appli-
cations that were analyzed in this study, including cockroach and node (both
of which had several bug reports providing full distribution information).

Fill information gap through post-facto measures. In terms of post-facto mea-
sures, the following are recommended:

– Run regular performance regression tests. Doing this is good practice to begin
with as it allows developers to regularly monitor performance changes in the
product. It also has an additional benefit from the standpoint of bisection: if
the reporter of a performance regression only specifies commit range informa-
tion, developers can map that information with the test history to infer the
distribution, thereby allowing the developer to compute the effectiveness. Ad-
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ditionally, if the commit range provided is not granular enough (cf. Findings 9
and 10), test information can also reduce the search space;

– Do a baseline run of each end of the commit range. Doing this will allow the
developers to fill the information gap on the distributions as the baseline runs
will naturally provide that information. At the same time, it is also a required
step in scenarios where the performance numbers are sensitive to certain hard-
ware specifications; in particular, note that in most cases, the developers will
be testing the application and trying to replicate the performance regression
on a different set of hardware compared to what was used by the reporter.

– Use rough estimators for effectiveness. If means are provided but standard de-
viations are not, the midpoint may be sufficient in estimating the maximum
effectiveness (Finding 1). On the other hand, if distribution information is pro-
vided, but the commit range is not, the overlapping coefficient exhibits a fairly
significant negative correlation with the effectiveness, and can therefore also
be used as an estimator (Finding 6).

Note that the pre-emptive and post-facto measures suggested above are not
mutually exclusive, but instead complement each other. The pre-emptive measures
can help developers get a quick sense of the effectiveness of the bisection prior to
running any tests, while the post-facto measures will help developers get more
concrete numbers applicable to the environment being used to run the bisection,
and thus make a final assessment on the effectiveness.

Implement a mechanism to find the best bisection metric. The goal here is to
find a bisection metric that maximizes the distance between the pre-regression and
post-regression means, and minimizes the standard deviations (Finding 5). This
recommendation is feasible, as regressions in one metric (e.g., response time) often
correspond to regressions in other metrics (e.g., memory usage, CPU utilization,
throughput, etc.), thereby providing the developer a choice on which bisection met-
ric to use. Development teams that keep track of a large number of metrics (e.g.,
componentized performance logs) can consider automating this search process by
computing the effectiveness for different metrics and finding the one yielding the
highest effectiveness, although the time complexity considerations above should
be taken into account.

As per Finding 6, it would also be useful to use the overlapping coefficient
to pre-assess whether a particular bisection metric has a good chance of yielding
high maximum effectiveness, and ultimately assess which bisection metric to use.
This information will come in handy in a couple of scenarios: (1) in cases where
the reporter provides complete distribution information, but incomplete version
information (which, admittedly, does not happen too often based on the empir-
ical study results, but nonetheless is still applicable to a few of the bug reports
analyzed); and (2) in cases where the developer notices a regression between two
test runs, and wants a quick way to predict what the effectiveness of a potential
bisection might be before making the effort to gather all the other necessary inputs
to compute the final effectiveness value.

On the surface, Finding 7 seems to render the advice just provided practi-
cally moot, as the finding states that distribution pairs tend to have small overlap
in practice. However, this is not at all the case. In particular, recall that the
distribution pairs considered in Finding 7 are all based on reported performance
regressions; since reporters tend to be users of the application, who are more
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likely to report human-detectable performance changes as opposed to very small
performance changes, it makes sense that the distributions from these reported
regressions are usually far apart. However, bisection is not only run to localize
user-reported bugs, but also performance regressions observed in, for instance, au-
tomated regression tests, where the trend graphs can make even small regressions
noticeable. To give an anecdotal example, our performance team at SAP typically
investigates performance regressions in the order of milliseconds, oftentimes as low
as 100 milliseconds, even for operations that take over a second to complete. In
such a case, the overlap can vary significantly, and the pre-assessment described
above will be useful.

Use variants of performance regression bisection. Depending on which re-
quirements are not met, development teams can consider enhancing the version
of bisection they are using, although note that there is often a tradeoff between
accuracy and test execution time. Performance test systems that are prone to large
distribution overlaps (cf. Findings 5 and 6) should consider using algorithms based
on “noisy binary search”, while systems that are prone to long commit ranges (cf.
Finding 8) should consider implementing commit reduction techniques. Both of
these areas are well-studied in prior research, and some existing techniques are
described in Section 8.1.

7 Threats to Validity

We now discuss the internal, external, and construct threats to the validity of the
present research.

7.1 Internal Threats

One limitation of the effectiveness measure is that it inherently assumes that every-
thing before the bug-introducing commit has roughly the same distribution X and
everything from the bug-introducing commit onwards also has roughly the same
distribution Y . From experience, this assumption holds true in many practical sit-
uations, and it is precisely what makes it useful to monitor trend graphs to detect
performance regressions. In addition, for large applications with a large number of
components, many of the commits that happen around the bug-introducing com-
mit touch unrelated components, and will usually have minimal impact on the
component that regressed. Furthermore, the fact that around 75% of all bisections
(and 89% of all bisections with at least 50% effectiveness) successfully found the
bug-introducing commits for real-world performance regressions encountered by
our team – as shown in Section 5.9 – provide some evidence that this assumption
is warranted when applied to bisection. Having said these, there can of course
still be situations where this assumption does not hold, as exhibited by prior re-
search (Bezemer et al, 2014; Alcocer and Bergel, 2015; Sandoval Alcocer et al,
2016). As part of future research, it would be interesting to see how the effective-
ness measure behaves given alternative permutations of the distributions at each
commit.

Another internal threat to validity is that the effectiveness measure models the
list of commits as an array, although in general, commits can take the form of any
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directed acyclic graph (DAG). Nonetheless, this simplification is warranted, for a
couple of reasons. First, even if the commits were modeled as a DAG, the computa-
tions are not expected to be drastically different, since DAGs can be topologically
sorted as an array based on the midpoints taken during the bisection (i.e., take the
midpoint chosen by the bisection in the DAG, then recursively sort the subgraph
to its left and the subgraph to its right). Granted, the midpoints chosen in the
DAG are not always guaranteed to have a balanced number of commits to its left
and to its right in the topological sorting, but they usually do, as the midpoints
are chosen such that the two sides are as balanced as possible (Couder, 2009).
Second, this simplification allowed us to make more intuitive judgments about the
sensitivity of the effectiveness to the contribution properties, as the data structure
is simpler.

Finally, note that all of the bug reports were analyzed and categorized by
one person (i.e., the author), which can also be seen as an internal threat. To
minimize bias, two mitigative measures were put in place. First, categorization
rules were clearly laid out, as outlined in Section 4, to ensure consistency. Second,
the analysis was carried out over two separate passes, to correct any mistakes
and to clear up any ambiguities that may have arisen in the first pass. Note
that the present author has over five years of experience in software performance
engineering, and has previously published empirical research that involved bug
report categorization (Ocariza et al, 2017).

7.2 External Threats

As described in the experimental methodology, the number of applications and
bug reports considered in this study is limited. While this is acknowledged as an
external validity threat, it was necessary to make a tradeoff between the number
of bug reports analyzed and the effort it takes to analyze them. The number of bug
reports in this study (310) is reasonable, as it is large enough to make statistically
significant claims, and small enough to allow for a reasonably thorough analysis of
each bug report. Indeed, there is also precedence from prior research, including one
conducted by the present author, where 317 bug reports were analyzed (Ocariza
et al, 2013); and those conducted by Nistor et al (2013) and Selakovic and Pradel
(2016), each of which analyzed fewer than 300 performance-related bug reports.

In the same vein as above, the sample sizes of the data collected to motivate
the choice for the nominal values and to evaluate the accuracy of the effectiveness
measure are relatively small. Unfortunately, our team regularly deletes old data in
order to save costs, which consequently limited this sample size. While our team
can anecdotally attest to the representativeness of the data presented if extrap-
olated towards a longer time period, it is nonetheless necessary to acknowledge
this limitation as an external threat on the basis of the amount that actually is
available and shown in the paper.

Limiting the analysis to three parametric distributions (normal, log-normal,
and Pareto) can also be seen as an external validity threat. Narrowing down the
scope in this manner is useful as it allows for more focused analyses of the results.
In addition, the distributions that were chosen are reasonable to analyze, with
the rationales provided in Section 2.4. Nonetheless, it would be interesting to see
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how similar (or different) the results may be for other distribution types, including
non-parametric ones.

7.3 Construct Threats

Lastly, in terms of construct validity threats, the OAT sensitivity analysis in-
herently does not capture interactions between the contributing properties. This
limitation does not in itself invalidate the results, but it highlights the possibility
that there are important insights that may have been missed, and could provide
additional context to the findings in Section 5. Some of these interactions did make
their way into our analysis, such as the impact of the distributions on the rate of
decrease of the effectiveness when varying the commit range length (Section 5.5).

8 Related Work

Prior work related to the current research is now discussed. In addition to research
already known to the current author, a literature search was conducted using
keywords pertinent to the topic, discussed shortly. Each keyword is used as a
search term in Google Scholar, and for each keyword, at least the first five pages
of results are scanned for any related papers.

We divide related work according to three main topics, with the first two topics
relating to the non-empirical aspects of the paper, and the last topic relating to its
empirical aspects. First, we discuss prior research on bisection, gathered in part
using the keywords “bisection debugging”, “noisy binary search”, and “git bisect”.
Second, we discuss work previously done on the more general problem of perfor-
mance regression localization, gathered in part using the keywords “performance
regression”, “software performance regression localization”, and “performance re-
gression debugging”. Third, we discuss work related to empirical studies conducted
on performance issues, gathered in part using the keywords “software performance
bug reports” and “software performance regression empirical study”.

8.1 Bisection

To begin, we discuss prior work on bisection in both research and industry. We start
by outlining work on bisection in the context of regression localization. Thereafter,
we discuss more general techniques that perform binary search in the presence of
noise.

There are many blog posts and unpublished work online that discuss the topic
of bisection, including those that discuss it in the context of performance regres-
sions (Couder, 2009; Murphy, 2018). However, these posts primarily discuss the
functionality of bisection, as opposed to its effectiveness. A column that appears
in ACM Queue (Neville-Neil, 2021) very briefly addresses certain concerns and
limitations regarding the use of bisection, although its concern is not so much
regarding effectiveness, but regarding the blind usage of bisection, and the pos-
sibility that developers will take its results at face value without attempting to
understand why the regression was introduced.
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In terms of tooling, version control systems such as Git (2009), Mercurial
(2005), and Fossil (2006) natively support bisection, and some third-party soft-
ware and plugins exist that take advantage of these existing technologies. Perhaps
the most relevant to this present work is Phoronix Test Suite (Larabel, 2009a),
which contains a module that uses git bisect to try to isolate performance re-
gressions. Documentation is lacking for this feature, but based on other articles in
their website (Larabel, 2009b), it appears to be testing the statistical significance
of the results from each recursive iteration and making decisions based on the
outcome of this significance test. If so, this significance test pertains more to an
internal effectiveness measure similar to the one alluded to in Section 6, as opposed
to an external effectiveness measure, which is what this paper focuses on, and is
more relevant in pre-assessing whether to run a bisection in the first place.

Although a very popular approach in practice, research publications pertaining
to bisection are quite scarce. The concept of bisection – in the context spoken of
in this paper – was first introduced by Gross (1997). Twenty years later, Saha and
Gligoric (2017) would propose an approach that reduces the amount of recursive
iterations (i.e., what the authors call “bisection steps” in their paper) using test
and commit selection. A technique that can be seen as a generalization of bisection
is delta debugging (Zeller, 1999; Artho, 2011), which localizes at different levels
of granularities, and not just commits. Unlike this present work, these papers do
not analyze the theoretical and practical effectiveness of bisection – whether it be
in its more specific form or in a generalized form – when applied to performance
regressions.

Bisection is a specialized case of the binary search algorithm, and here, we
focus on discussing prior work on a variant of this algorithm called “noisy bi-
nary search”. Similar to performance regression bisection, the goal of noisy binary
search is to find a target element using the regular binary search algorithm, but
with each query having a certain probability of being incorrect. This is a well-
studied domain (Nowak, 2009; Ben-Or and Hassidim, 2008; Dereniowski et al,
2021; Bittner et al, 2018; Epa et al, 2019; Rivest et al, 1980). Of particular note
is the work done by Waeber et al (2013) that analyzes certain theoretical prop-
erties of this noisy variant; however, unlike performance regression bisection, the
analysis is carried out for bisection over a continuous domain, and the focus is
primarily on understanding the residual convergence of the algorithm. Many stud-
ies have been conducted on discretized variants of noisy binary search (Jedynak
et al, 2012; Karp and Kleinberg, 2007; Tsiligkaridis, 2016), but these studies focus
primarily on understanding theoretical bounds (e.g., bounds on the error proba-
bility at each step of the search) as opposed to providing an overall effectiveness
measure. In addition, many of these studies assume a known per-iteration error
probability, which does not apply to performance bisections where the intermedi-
ate probability distributions are not known in advance. Lastly, they also do not
explore any practical considerations regarding the specific use-case of regression
localization, which the present study does.
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8.2 Performance Regression Localization

Next, we discuss approaches that have been previously proposed to simplify the
process of localizing performance regressions. These include automated localization
techniques, as well as techniques that act as aids in the localization process.

In prior work by our performance and reliability team (Ocariza and Zhao,
2021), we proposed a tool that automatically localizes performance regressions
in client-side JavaScript by comparing execution call trees (i.e., timelines). Along
the same lines, Bezemer et al (2015) proposed a tool for these timelines that out-
puts a visualization diff. Various other techniques have been proposed in research
to automate this localization process, including general techniques (Malik et al,
2010; Heger et al, 2013; Nguyen et al, 2014; Luo et al, 2016; Shang et al, 2015;
Sandoval Alcocer et al, 2016), as well as techniques applied to specific domains
such as database systems and machine learning systems (Tizpaz-Niari et al, 2018;
Jung et al, 2019; Tizpaz-Niari et al, 2020).

There have also been prior research on techniques to facilitate the process
of localization, including Gregg (2016), whose article discusses the usefulness of
performance timelines in this process. Similarly, Rogora et al (2020) proposed
techniques to add probabilistic performance annotations to help debug detected
performance issues. Additionally, Alcocer et al (2019) suggest a way to visualize
performance variations along software versions.

Even though the goal of the above techniques is the same as that of bisection at
a high level, they are not panaceas. In particular, they are either localized to work
for specific types of performance regressions, or make some limiting assumptions
about the code base (e.g., the existence of a repository of previous performance
regression root causes). Bisection, in contrast, is a general-purpose approach ap-
plicable to any repository with a commit history; its wide usage, along with the
costs associated with running it, makes bisection warrant its own study regarding
its effectiveness, which this paper has demonstrated.

8.3 Empirical Study of Performance Issues

Finally, we discuss empirical studies that have been conducted on performance-
related issues. Some of these prior works studied performance issues based on an
analysis of bug reports, while others based their study on other components, such
as developer commits.

Many researchers have previously conducted these empirical studies, includ-
ing Selakovic and Pradel (2016), who analyzed the characteristics of fixed perfor-
mance issues in popular JavaScript projects; Linares-Vásquez et al (2015), who
studied performance bottlenecks in Android apps based on how they are detected
and fixed; Chen et al (2019), who extracted performance bug patterns based on
commits; Sánchez et al (2020), who proposed a taxonomy of performance issues
based on real-world performance bugs; and Leitner and Bezemer (2017), who stud-
ied how performance testing is conducted on open source software. Han et al (2019)
studied performance bug reports with the goal of analyzing their replicability from
a resesarch standpoint; this study was a follow-up to another empirical study con-
ducted by the same authors on highly configurable software systems (Han and Yu,
2016). Harkening back to the variance in performance measurements mentioned
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earlier, Arif et al (2018) studied the discrepancy between performance test results.
These works, however, do not specifically study performance regressions, which is
the main fault model of interest in this current work.

Chen and Shang (2017) conducted an exploratory study of code changes that
introduced performance regressions. This study focused exclusively on analyzing
commits, as opposed to bug reports. In addition, it was more interested in un-
derstanding how performance regressions come about, as opposed to studying
techniques to localize them post-facto.

Lastly, Nistor et al (2013) looked at performance bugs from different code
bases, and analyzed how they are detected, reported, and fixed, in comparison to
non-performance bugs. For instance, the authors found that performance bugs are
generally more difficult to fix compared to non-performance bugs, and conclude
the need for better tool support for the former. In a similar vein, Zhao et al
(2020) studied how performance issues are caused and resolved. While their goal
of understanding the characteristics of performance bugs is shared with this paper,
this current work differs in many respects. First, the focus of this paper is on
performance regressions, which entail different localization requirements compared
to other types of performance issues. Further, the bug reports in this current study
are analyzed within the context of bisection, which is outside of the scope of these
other studies.

9 Conclusion

In the preceding sections, we discussed the need to understand the effectiveness
of bisection when applied to performance regressions. After introducing a metric
to quantify this effectiveness, an empirical study was conducted to help us under-
stand the sensitivity of this effectiveness measure to its contributing properties, as
well as the real-world characteristics of these contributing properties in reported
performance regressions. The results presented in Section 5 and the discussion that
follows it should help developers better assess the suitability of bisection for spe-
cific performance regressions, make more informed decisions about what baseline
value and bisection metrics to use, and put measures in place to fill the informa-
tion gap currently present in bug reports. The results should also help researchers
better understand key properties of bisection for performance regressions, and
thereby formulate solutions to improve or extend it. Future work includes improv-
ing the performance of the effectiveness measure computation, deriving internal
effectiveness measures and studying their properties, and understanding how to
make bisection work best when used with detection techniques (e.g., change-point
detection).
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Sánchez AB, Delgado-Pérez P, Medina-Bulo I, Segura S (2020) Tandem: A tax-
onomy and a dataset of real-world performance bugs. IEEE Access 8:107,214–
107,228

Sandoval Alcocer JP, Bergel A, Valente MT (2016) Learning from source code
history to identify performance failures. In: Proceedings of the International
Conference on Performance Engineering (ICPE), ACM, pp 37–48

Sasaki H, Su FH, Tanimoto T, Sethumadhavan S (2017) Why do programs have
heavy tails? In: Proceedings of the International Symposium on Workload Char-
acterization (IISWC), IEEE, pp 135–145

https://www.github.com/NixOS/nixpkgs
https://www.youtube.com/watch?v=gNa247IaaGM
https://www.youtube.com/watch?v=gNa247IaaGM
https://www.github.com/ansible/ansible
https://www.github.com/openshift/origin


On the Effectiveness of Bisection in Performance Regression Localization 51

Selakovic M, Pradel M (2016) Performance issues and optimizations in JavaScript:
an empirical study. In: Proceedings of the International Conference on Software
Engineering (ICSE), ACM, pp 61–72

Shang W, Hassan AE, Nasser M, Flora P (2015) Automated detection of perfor-
mance regressions using regression models on clustered performance counters.
In: Proceedings of the International Conference on Performance Engineering
(ICPE), ACM, pp 15–26

The Rust Foundation (2021) Rust. https://www.github.com/rust-lang/rust (Ac-
cessed: July 20, 2021)

Tizpaz-Niari S, Cerny P, Chang BYE, Trivedi A (2018) Differential performance
debugging with discriminant regression trees. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence, AAAI

Tizpaz-Niari S, Černỳ P, Trivedi A (2020) Detecting and understanding real-world
differential performance bugs in machine learning libraries. In: Proceedings of
the International Symposium on Software Testing and Analysis (ISSTA), ACM,
pp 189–199

Tsiligkaridis T (2016) Asynchronous decentralized algorithms for the noisy 20
questions problem. In: Proceedings of the International Symposium on Infor-
mation Theory (ISIT), IEEE, pp 2699–2703

Waeber R, Frazier PI, Henderson SG (2013) Bisection search with noisy responses.
SIAM Journal on Control and Optimization 51(3):2261–2279

Weitzman MS (1970) Measures of overlap of income distributions of white and
Negro families in the United States, vol 3. US Bureau of the Census

YourKit (2018) YourKit. https://www.yourkit.com/ (Accessed: July 2, 2018)
Zaman S, Adams B, Hassan AE (2012) A qualitative study on performance bugs.

In: Proceedings of the IEEE Working Conference on Mining Software Reposito-
ries (MSR), IEEE Computer Society, pp 199–208

Zeller A (1999) Yesterday, my program worked. today, it does not. why? In: Pro-
ceedings of the Joint Meeting of the European Software Engineering Conference
and the Symposium on the Foundations of Software Engineering (ESEC/FSE),
ACM, pp 253–266

Zhao Y, Xiao L, Wang X, Sun L, Chen B, Liu Y, Bondi AB (2020) How are perfor-
mance issues caused and resolved?-an empirical study from a design perspective.
In: Proceedings of the International Conference on Performance Engineering
(ICPE), ACM, pp 181–192

Author Biography

IEE
E P

ro
of

[38] K. Goseva-Popstojanova, S. Mazimdar, and A. D. Singh, “Empirical
study of session-based workload and reliability for web servers,” in
Proc. 15th Int. Symp. Softw. Reliab. Eng., 2004, pp. 403–414.

[39] J. Tian, S. Rudraraju, andZ. Li, “Evaluatingweb software reliability
based on workload and failure data extracted from server logs,”
IEEE Trans. Softw. Eng., vol. 30, no. 11, pp. 754–769, Nov. 2004.

[40] S. Pertet and P. Narasimhan, “Causes of failure in web
applications,” Parallel Data Laboratory, Carnegie Mellon Univ.,
Pittsburgh, PA USA, Tech. Rep. CMU-PDL-05-109, 2005.

[41] B. Braun, P. Gemein, H. P. Reiser, and J. Posegga, “Control-flow
integrity in web applications,” in Proc. 5th Int. Symp. Eng. Secure
Softw. Syst., 2013, pp. 1–16.

[42] M. Kalyanakrishnan, R. Iyer, and J. Patel, “Reliability of internet
hosts: A case study from the end user’s perspective,” Comput.
Netw., vol. 31, no. 1/2, pp. 47–57, 1999.

[43] V. N. Padmanabhan, S. Ramabhadran, S. Agarwal, and J. Padhye,
“A study of end-to-end web access failures,” in Proc. Conf. Emerg-
ing Netw. Exp. Technol., 2006, pp. 15:1–15:13.

[44] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock, “Automated
replay and failure detection for web applications,” in Proc. 20th
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2005, pp. 253–262.

[45] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher, “Leveraging
user-session data to support web application testing,” IEEE Trans.
Softw. Eng., vol. 31, no. 3, pp. 187–202, Mar. 2005.

[46] A. Marchetto, F. Ricca, and P. Tonella, “An empirical validation of
a web fault taxonomy and its usage for web testing,” J. Web Eng.,
vol. 8, no. 4, pp. 316–345, 2009.

[47] P. Ratanaworabhan, B. Livshits, and B. Zorn, “JSMeter: Compar-
ing the behavior of JavaScript benchmarks with real web
applications,” in Proc. USENIX Conf. Web Appl. Develop., 2010,
pp. 3–3.

[48] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of the
dynamic behavior of JavaScript programs,” in Proc. 31st ACM SIG-
PLAN Int. Conf. Program. Lang. Des. Implementation, 2010, pp. 1–12.

[49] J. Martinsen, H. Grahn, and A. Isberg, “A comparative evaluation
of JavaScript execution behavior,” in Proc. 11th Int. Conf. Web Eng.,
2011, pp. 399–402.

[50] E. Fortuna, O. Anderson, L. Ceze, and S. Eggers, “A limit study of
JavaScript parallelism,” in Proc. Int. Symp. Workload Characteriza-
tion, 2010, pp. 1–10.

[51] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and
D. Song, “An empirical analysis of XSS sanitization in web
application frameworks,” Univ. California, Berkeley, CA, USA,
Tech. Rep. EECS-2011-11, 2011.

[52] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An empirical study
of privacy-violating information flows in JavaScript web
applications,” in Proc. 17th ACM Conf. Comput. Commun. Secur.,
2010, pp. 270–283.

[53] N. Nikiforakis, et al., “You are what you include: Large-scale eval-
uation of remote JavaScript inclusions,” in Proc. ACM Conf. Com-
put. Commun. Secur., 2012, pp. 736–747.

[54] C. Yue and H. Wang, “Characterizing insecure JavaScript practi-
ces on the web,” in Proc. 18th Int. Conf. World Wide Web, 2009,
pp. 961–970.

[55] S. Bae, H. Cho, I. Lim, and S. Ryu, “SAFEWAPI: Web API misuse
detector for web applications,” in Proc. 22nd Int. Symp. Found.
Softw. Eng., 2014, pp. 507–517.

Frolin S. Ocariza, Jr. received the BASc degree
(with honours) from the University of Toronto in
2010, and the MASc degree from the University
of British Columbia in 2012. Currently, he is work-
ing toward the PhD degree at the University of
British Columbia. His main area of research is in
software engineering, with emphasis on web
applications, software code analysis, empirical
software engineering, software fault localization
and repair, and software fault detection. He
received a nomination for the Best Paper Award

at the IEEE International Conference on Software Testing, Verification
and Validation (ICST), 2012. He was awarded the NSERC Canada
Graduate Scholarship (CGS-D) in 2014, and he received two ACM
CAPS-GRAD travel grants from 2014 to 2015 to attend and present his
papers at the International Conference on Software Engineering (ICSE).
He is a student member of the IEEE Computer Society.

Kartik Bajaj received the master’s degree in
electrical and computer engineering from the Uni-
versity of British Columbia in 2015. His research
interests include machine learning, program syn-
thesis and analysis, web applications, and soft-
ware testing. He has published papers at the
International Conference on Mining Software
Repositories (MSR), 2013, and the International
Conference on Automated Software Engineering
(ASE), 2014-2015. He was awarded the MITACS
Globalink Fellowship in 2013. He is a student
member of the IEEE.

Karthik Pattabiraman received the MS and the
PhD degrees from the University of Illinois at
Urbana-Champaign (UIUC) in 2004 and 2009
respectively. After a post-doctoral stint at Micro-
soft Research (Redmond), he joined the Univer-
sity of British Columbia (UBC) as an assistant
professor of electrical and computer engineering.
His research interests include dependable soft-
ware systems and web applications. He has won
best paper or runner up awards at the IEEE Inter-
national Conference on Dependable Systems

and Networks (DSN), 2008, the IEEE International Conference on Soft-
ware Testing (ICST), 2013 and the IEEE/ACM International Conference
on Software Engineering (ICSE), 2014. He was also awarded the
NSERC Discovery Accelerator Supplement award in Canada. He is a
member of the Steering Committee of the IEEE Pacific Rim International
Symposium on Dependable Computing (PRDC), 2013 and the IFIP WG
10.4 on Dependable Computing and Fault Tolerance. He is a senior
member of the IEEE.

Ali Mesbah received the PhD degree in com-
puter science from the Delft University of Tech-
nology in 2009. He is an assistant professor at
the University of British Columbia (UBC) where
he leads the Software Analysis and Testing
(SALT) research lab. His main area of research is
in software engineering and his research inter-
ests include software analysis and testing, web-
based systems, software maintenance and evo-
lution, fault localization and repair, and empirical
software engineering. He has received two ACM

Distinguished Paper Awards at the International Conference on Soft-
ware Engineering (ICSE 2009 and ICSE 2014), a Best Paper Award at
the International Symposium on Empirical Software Engineering and
Measurement (ESEM 2015), and a Best Paper Award at the Interna-
tional Conference on Web Engineering (ICWE 2013). He was awarded
the NSERC Discovery Accelerator Supplement (DAS) award in 2016.
He serves on the program committees of software engineering conferen-
ces such as ICSE17, ISSTA17, and ICST17. He is a member of the
IEEE Computer Society.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

OCARIZA ET AL.: A STUDY OF CAUSES AND CONSEQUENCES OF CLIENT-SIDE JAVASCRIPT BUGS 17

Frolin S. Ocariza, Jr. received his BASc degree (with hon-
ours) from the University of Toronto in 2010, and his MASc
and PhD degrees from the University of British Columbia
(UBC) in 2012 and 2016, respectively. He currently works in
SAP Vancouver with the performance and reliability (P&R)
team. His main area of research is in software engineering,
with emphasis on software performance engineering, web ap-
plications, code analysis, fault localization and repair, and
fault detection. He received a nomination for the Best Paper

https://www.github.com/rust-lang/rust
https://www.yourkit.com/


52 Frolin S. Ocariza, Jr.

Award at the IEEE International Conference on Software
Testing, Verification and Validation (ICST), 2012. He was
awarded the NSERC Canada Graduate Scholarship (CGS-

D) in 2014, and he received two ACM CAPS-GRAD travel grants from 2014 to
2015 to attend and present his papers at the International Conference on Software
Engineering (ICSE). He has served in the program committees of the International
Conference on Dependable Systems and Networks (DSN’19) and the International
Symposium on Software Reliability Engineering (ISSRE’17) among others, and has
reviewed for many reputable software engineering journals, including JSS, EMSE,
TDSC, SPE, and STVR. He is a member of the IEEE Computer Society.



On the Effectiveness of Bisection in Performance Regression Localization 53

This version of the article has been accepted for publication, after peer review
(when applicable) and is subject to Springer Nature’s AM terms of use, but is not
the Version of Record and does not reflect post-acceptance improvements, or any
corrections. The Version of Record is available online at: http://dx.doi.org/10.
1007/s10664-022-10152-3

http://dx.doi.org/10.1007/s10664-022-10152-3
http://dx.doi.org/10.1007/s10664-022-10152-3

	Introduction
	Background and Motivation
	Effectiveness Measure
	Experimental Methodology
	Results
	Discussion
	Threats to Validity
	Related Work
	Conclusion

