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a b s t r a c t 

Quantitative ultrasound (QUS) offers a non-invasive and objective way to quantify tissue health. We re- 

cently presented a spatially adaptive regularization method for reconstruction of a single QUS param- 

eter, limited to a two dimensional region. That proof-of-concept study showed that regularization us- 

ing homogeneity prior improves the fundamental precision-resolution trade-off in QUS estimation. Based 

on the weighted regularization scheme, we now present a multiparametric 3D weighted QUS (3D QUS) 

method, involving the reconstruction of three QUS parameters: attenuation coefficient estimate (ACE), in- 

tegrated backscatter coefficient (IBC) and effective scatterer diameter (ESD). With the phantom studies, 

we demonstrate that our proposed method accurately reconstructs QUS parameters, resulting in high re- 

construction contrast and therefore improved diagnostic utility. Additionally, the proposed method offers 

the ability to analyze the spatial distribution of QUS parameters in 3D, which allows for superior tissue 

characterization. We apply a three-dimensional total variation regularization method for the volumetric 

QUS reconstruction. The 3D regularization involving N planes results in a high QUS estimation precision, 

with an improvement of standard deviation over the theoretical 1 / 
√ 

N rate achievable by compound- 

ing N independent realizations. In the in vivo liver study, we demonstrate the advantage of adopting a 

multiparametric approach over the single parametric counterpart, where a simple quadratic discriminant 

classifier using feature combination of three QUS parameters was able to attain a perfect classification 

performance to distinguish between normal and fatty liver cases. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The role of ultrasound, as a portable triage and monitoring 

ool, is becoming increasingly important, especially in the current 

ontext of a global pandemic. Conventional ultrasound images are 

ormed from backscattered radio frequency echo signals created as 

 result of interaction with macro- and micro scale tissue struc- 

ures. The B-mode image processing, including envelope detection 
Abbreviations: QUS, quantitative ultrasound; ACE, attenuation coefficient es- 

imate; IBC, integrated backscatter coefficient; ESD, effective scatterer diameter; 

PM, reference phantom method; TV, total variation; MRI-PDFF, magnetic reso- 

ance imaging proton density fat fraction; AUROC, area under the receiver opertor 

haracteristic curve. 
∗ Corresponding author. 

E-mail address: farahdeeba@ece.ubc.ca (F. Deeba). 
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nd log compression, highlights the large-scale ( > ultrasound wave- 

ength) features such as the organ boundaries, while discarding 

he frequency-dependent smaller scale ( < ultrasound wavelength) 

tructural information. The speckle pattern and echogenecity of 

he B-mode image, though related to the complex organization 

f smaller scale tissue structure and their averaging scattering 

trength, render the US imaging qualitative, system-dependent and 

pen to user interpretation. Three decades of research in the field 

f quantitative ultrasound (QUS), followed by the pioneering works 

y Insana et al. (1990a) and Coleman and Lizzi (1983) , established 

ystem and user independent techniques to quantify acoustic and 

icrostructural properties by parametrizing the frequency depen- 

ent contents in the backscattered echo. Due to the reduced de- 

endence on user interpretation as well as the efficacy for tissue 

yping and monitoring disease progression substantiated by exten- 

ive experimental research ( Mamou and Oelze, 2013; Oelze and 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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amou, 2016 ), QUS imaging promises to further enhance the clin- 

cal utility of ultrasound. 

Spectral based parametric imaging forms a major branch of 

US, which includes measurement of attenuation coefficient es- 

imate (ACE), backscatter coefficient and scatterer properties such 

s effective scatterer diameter (ESD) and effective acoustic concen- 

ration (EAC) of scatterers. ACE is a frequency dependent acous- 

ic property that measures the ultrasound energy loss with prop- 

gation depth due to the combined effect of scattering and ab- 

orption. Backscatter coefficient, on the hand, measures the ultra- 

ound intensity that is scattered in the backward direction (nor- 

alized ultrasound backscattered power per unit volume of scat- 

erers). The integrated backscatter coefficient (IBC) is a measure 

f the backscatter strength, which is estimated by integrating the 

ackscatter coefficient in the effective frequency band of the trans- 

ucer. Backscatter coefficient can further be used to estimate the 

SD of the dominant sub-resolution ( < wavelength) scatterer, with 

he effective scale being determined by the incident ultrasound 

requency. The spectral based QUS parameters have been suc- 

essfully used in numerous clinical applications, including can- 

er detection in prostrate and lymph nodes ( Feleppa et al., 2011 ), 

one health assessment ( Laugier and Haïat, 2011 ), cervical ripen- 

ng detection ( Feltovich et al., 2012 ), breast lesion characteriza- 

ion ( Nam et al., 2013 ), and placenta characterization ( Deeba et al.,

019 ). 

Liver steatosis quantification using QUS has undergone a recent 

urge in an effort to address the alarming increase in non-alcoholic 

atty liver disease prevalence rate (25% globally) ( Loomba and 

anyal, 2013 ). Previous works demonstrated that the cellular bal- 

ooning due to fat infiltration in the fatty liver affects the ultrasonic 

cattering process, resulting in an increase in ACE and Backscat- 

er coefficient ( Pohlhammer and O’Brien, 1980; Bamber and Hill, 

981 ). Several clinical studies on QUS showed promising results to 

uantify the fat content in liver, with efficacy comparable to mag- 

etic resonance imaging proton density fat fraction (MRI-PDFF) and 

iopsy, the current gold standard for steatosis grading ( Andre et al., 

014a; Lin et al., 2015; Fujiwara et al., 2018; Deeba et al., 2019b ). 

Current challenges towards the clinical translation of QUS imag- 

ng include large estimation bias and variance due to tissue in- 

omogeneity and precision-resolution trade-off ( Liu et al., 2010; 

elze and O’Brien, 2004 ). The resolution-precision trade-off is par- 

icularly critical for thin (e.g. dermis) and heterogeneous (e.g. pla- 

enta) tissue characterization. Available smaller windows result in 

oisy power spectral estimates due to limited spectral resolution 

nd spatial variation noise inherent in ultrasound scattering. Devi- 

tion from the homogeneity assumption arising from the variation 

n underlying scatterer statistics ( Pawlicki and O’Brien, 2013 ), on 

he other hand, is likely to affect most biological tissue to differ- 

nt extent. Rubert et al. demonstrated that the high variance (with 

tandard deviation being around 50% of the mean value) in ACE for 

x vivo bovine liver is attributed to the deviation from the Rayleigh 

istribution, rather to the biological variability ( Rubert and Vargh- 

se, 2014 ). A large variance due to spatial heterogeneity was also 

eported for a cervix remodelling assessment study, where the dif- 

erence in QUS parameters between early and late pregnant cervix 

ere obscured by the intra-class variation ( McFarlin et al., 2015; 

uerrero et al., 2018 ). The reliability of Controlled Attenuation Pa- 

ameter (CAP, Fibroscan, Echosens, France), a promising commer- 

ial tool to detect and quantify hepatic steatosis, has been reported 

o be compromised due to the variability in attenuation estimates. 

or example, an IQR > 40 dBm was found to be indicative of poor 

iagnostic accuracy ( Wong et al., 2017 ). 

Large axial window lengths and averaging over lateral and el- 

vational RF lines reduce the spatial variation noise due to ran- 

om scatterer positioning. These approaches offer improved ac- 

uracy and precision, assuming uniform scattering within inter- 
2 
ogated volume. Averaging also improves the power spectral es- 

imation ( Liu et al., 2010 ). Studies show that the Welch method, 

 refined periodogram that estimates the averaged periodogram 

f overlapped subwindows, was superior compared to rectangular, 

amming and Hanning windowing ( Liu et al., 2010 ). While these 

echniques attain an improved estimation at the expense of spa- 

ial resolution, more recent works explore the possibility of ex- 

ending the precision-resolution trade-off. Regularization incorpo- 

ating a spatial prior was successful in simultaneously improving 

he resolution and the precision of QUS estimation for homoge- 

eous regions ( Coila and Lavarello, 2017a; Vajihi et al., 2018; Rau 

t al., 2020 ). However, uniform regularization, which was used in 

oila and Lavarello (2017a) ; Vajihi et al. (2018) ; Rau et al. (2020) ,

ight not be appropriate for biological tissue with the presence 

f inhomogeneities, as it will lead to oversmoothing in homoge- 

eous regions in an attempt to compensate for the local inhomo- 

eneities. In our previous work, we presented a proof-of-concept 

tudy based on a spatially weighted total variation regularization 

ethod, where the adaptive regularization parameter was a func- 

ion of local inhomogeneity ( Deeba et al., 2019b ). The study was 

imited to the measurement of a single QUS parameter, ACE, in a 

D region-of-interest and was validated using a small in-vivo liver 

tudy. 

Another factor that might affect the clinical uptake of QUS 

maging is the provision of visual guidance. CAP, which is per- 

ormed in A-mode, lacks visual guidance, limiting ability to se- 

ect the optimum region-of-interest. Several recent works on liver 

maging have addressed the importance of B-mode and paramet- 

ic image guidance to select an appropriate region-of-interest (ROI) 

hat excludes vessels and extrahepatic areas ( Fujiwara et al., 2018; 

anayama et al., 2013 ). 3D QUS imaging can further be advanta- 

eous over the 1-D or 2-D counterpart, allowing volumetric recon- 

truction, multimodal registration along with enhanced visualiza- 

ion and interpretation. 

In this work, we present a multiparametric 3D weighted QUS 

3D QUS) method using a 3D total variation regularization incor- 

orating spatially variable regularization parameters. The proposed 

D adaptive total variation (TV) regularization exploits the spatial 

onsistency information while preserving the variation in scatter- 

ng properties in all three directions, thus would provide a rich 

patial description of the tissue properties. The adaptive regular- 

zation is particularly important for QUS reconstruction in tissue 

egions with backscatter variation. We perform phantom valida- 

ion, using phantoms with uniform and variable backscatter prop- 

rties and demonstrate the superior QUS reconstruction perfor- 

ance of the proposed method compared to the baseline methods. 

urthermore, the proposed method simultaneously generates mul- 

iple QUS maps, including ACE, IBC, and ESD, and therefore pro- 

ides complementary information regarding the underlying tissue 

tructure. The multiparametric approach could improve the class 

eparability between normal and pathological tissue in the fea- 

ure space. Toward this goal, we evaluate the benefit of a multi- 

arametric approach over the single QUS counterpart in an in vivo 

iver study including healthy volunteers and patients with hepatic 

teatosis. 

. Methodology 

.1. 3D QUS: proposed volumetric quantitative ultrasound parameter 

stimation algorithm 

In our previous work ( Deeba et al., 2019b ), we presented a 

ingle QUS parameter estimation method limited to a 2D region- 

f-interest. In the problem formulation, we utilized a simplified 

odel for the backscatter coefficient, ignoring the frequency de- 

endent term. Herein, we introduce a 3D multiparametric QUS 
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ethod, using an adaptive three-dimensional total variation reg- 

larization method ( Section 2.1.1 ). As the adaptive regularization 

arameter, we utilize a 3D spatially weighted matrix as a function 

f envelope SNR (signal-to-noise ratio) deviation ( Section 2.1.2 ). 

e further adopt an improved model of the backscatter coef- 

cient considering its frequency dependence. Using this model, 

e formulate equations to extract scatterer statistics, such as 

ffective scatterer diameter and effective acoustic concentration 

 Section 2.1.3 ). 

.1.1. Attenuation coefficient estimate and integrated backscatter 

oefficient measurement 

A pulse-echo ultrasound system, with the assumption of weak 

cattering (i.e. the Born approximation) and negligible effect of 

iffraction and refraction, can be modeled as a simple frequency 

omain multiplication of pulse characteristics and backscatter 

haracteristics ( Treece et al., 2005 ). The backscattered signal inten- 

ity, S( f, z) obtained from a time-gated radio frequency signal win- 

ow centered at depth z from the transducer surface at frequency 

f can be written as: 

( f, z) = G ( f ) A ( f, z) B ( f ) , (1)

here G ( f ) represents the transducer transfer function and trans- 

it pulse. A ( f, z) represents the total attenuation effect from the 

ransducer surface to the center of the respective time-gated win- 

ow at depth z and B ( f ) is the backscatter term. For most soft tis- 

ue, A ( f, z) is approximately linearly proportional to the frequency 

 Wear, 2002 ): 

 ( f, z) = e −4 α f z , (2) 

here α (Np/cm/MHz) is the effective amplitude attenuation coef- 

cient estimate for the round trip of the depth z. 

The backscatter term, B ( f ) , in its simplest form, can be ex- 

ressed as a scalar parameter, as has been adopted in the scatter- 

ng model used by Field II ( Jensen, 1996 ) and previous ACE com-

utation works ( Deeba, Schneider, Mohammed, Honarvar, Tam, Sal- 

udean, Rohling, 2019 , ( Coila, Lavarello, 2017 ). However, a more ap- 

ropriate model is required to capture the non-linear frequency 

ependence of the BSC term ( Treece et al., 2005; Vajihi et al., 

018 ): 

 ( f ) = β f n , (3) 

here β and n are backscatter parameters. 

The reference phantom method ( Yao et al., 1990 ), a widely 

dopted method for QUS estimation, removes the system depen- 

ence (e.g. cancels out the system dependent term, G ( f ) ) by nor- 

alizing the signal intensity backscattered from the tissue sam- 

le utilizing the one obtained from a well-characterized reference 

hantom under the same transducer and system settings. There- 

ore, the ratio of the intensity backscattered from the tissue sam- 

le to that from the reference at (i, j, k ) location at frequency f p 
an be written as: 

S( f, z) = 

S s ( f,z) 
S r ( f,z) 

= 

A s ( f,z) B s ( f ) 
A r ( f,z) B r ( f ) 

= 

βs f 
n s 

βr f n r 
e −4(αs −αr ) f z , 

(4) 

here s and r denote sample under experiment and the reference, 

espectively. Taking the natural logarithm of Eq. (4) leads to 

n RS( f, z) = −4(αs − αr ) f z + ln 

βs 

βr 
+ (n s − n r ) ln f (5) 

ubstituting the following variables in Eq. (5) as 

n RS( f, z) = y, 4 f z = φ, αr − αs = α, ln 

βs 

βr 
= β, n s − n r = n, 

(6) 
3 
e obtain, 

 = φα + β + n ln f (7) 

he system is defined in a N 1 × N 2 × N 3 (N = N 1 N 2 N 3 ) spatial grid

nd a frequency band discretized at M points is considered. We can 

epresent the volumetric variables in vector format, for any vari- 

ble a ∈ R 

N with elements a i, j,k ( i ∈ [1 , N 1 ] , j ∈ [1 , N 2 ] , k ∈ [1 , N 3 ] ) , 

educing the forward model in Eq. (7) to 

 = Ax + N (0 , σN ) , (8) 

here 

 = 

⎡ 

⎢ ⎢ ⎣ 

φ1 I ln f 1 I 
φ2 I ln f 2 I 
. . . 

. . . 
. . . 

φM 

I ln f M 

I 

⎤ 

⎥ ⎥ ⎦ 

, y = 

⎡ 

⎢ ⎢ ⎣ 

y 1 
y 2 
. . . 

y M 

⎤ 

⎥ ⎥ ⎦ 

, x = 

[ 

α
β
n 

] 

. 

ere, φm 

∈ R 

N×N is a diagonal matrix, with the diagonal elements 

valuated at propagation depth z ∈ R 

N for frequency f m 

(m ∈ 

1 , M]) is given by 

m 

= 4 f m 

diag (z ) . (9) 

he vector y ∈ R 

NM concatenates M sub-vectors y m 

∈ R 

N , with each 

 m 

representing the volumetric power spectra ratio term evaluated 

t frequency f m 

and I ∈ R 

N×N is a identity matrix. N (0 , σN ) is the

aussian noise present in the measurement of y . 

QUS parameters α, β , and n can abruptly change at the inter- 

ace between two different tissue types, but these parameters will 

ndergo gradual change (i.e. sparse spatial variation) within each 

issue type. Therefore, with the piece-wise continuous assumption 

n all three spatial direction, we propose a 3D total variation regu- 

arization approach for the reconstruction of x = [ α, β, n] from the 

oisy estimation y : 

ˆ  = arg min 

x 
‖ 

y − Ax ‖ 

2 
2 + λ1 || α|| TV + λ2 || β|| TV + λ3 || n || TV , (10) 

here the first term is the data fidelity term, the last three terms 

re the anisotropic 3D total variation regularization terms, and λ1 , 

2 and λ3 are the regularization weights. 

The 3D spatially weighted TV regularizer for a variable η is de- 

ned as 

| η|| T V = 

∑ 

i, j,k W i, j,k 

(
1 

(h i +1 ,i ) jk 
| ηi +1 , j,k − ηi, j,k | 

+ 

1 
(h j+1 , j ) ik 

| ηi, j+1 ,k − ηi, j,k | ) + 

1 
(h k +1 ,k ) i j 

| ηi, j,k +1 − ηi, j,k | 
), 

(11) 

here the 3D weighted matrix W i, j,k is uniform for α, and spatially 

ariable for β and n . h i +1 ,i , h j+1 , j , h k +1 ,k are distances between the 

djacent axial, lateral and elevational pixels respectively at corre- 

ponding spatial positions. The TV regularizer ( Rudin et al., 1992 ) 

inimizes the sum of the gradients by imposing sparsity promot- 

ng l 1 - penalty in all three directions of the reconstructed QUS vol- 

me. By promoting signals with sparse gradients, TV minimization 

ecovers piecewise-constant volumetric parameters. 

Solving (10) and (6) will give the values of volumetric αs , βs 

nd n s . From the effective attenuation coefficient estimate, α ob- 

ained at depth z, the local attenuation coefficient estimate, αlocal 

an be computed as: 

local 
i, j,k = 

αi, j,k z i, j,k − αi −1 , j,k z i −1 , j,k 

z i, j,k − z i −1 , j,k 

. 

The integrated backscatter coefficient (IBC) at (i, j, k ) location 

an be computed as: 

BC = 

1 

∫ f M 

β f n df . 

f M 

− f 1 f 1 
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Table 1 

Ground truth values for the phantoms. 

Phantom ACE (dB/cm/MHz) IBC (dB) ESD ( μm) 

Phantom 1 Zone 1 0.54 −28.60 51 

Zone 2 1.3 −29.96 51 

Phantom 2 Background 0.84 −29.67 51 

Inclusion 1 0.37 −30.83 51 

Inclusion 2 0.74 −29.43 51 

Inclusion 3 1.18 −30.42 51 

Phantom 3 Background 0.72 −35.40 90 

Inclusion 1 0.70 −35.11 342 

Inclusion 2 0.65 −31.01 158 

Inclusion 3 0.77 −28.72 51 
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.1.2. Selection of the spatially weighted regularization parameter 

Spectral-based methods, such as the reference phantom 

ethod, make the assumption that RF signal generation is a sta- 

ionary scattering process, arising from a large number of ran- 

omly distributed scatterers identical in size. The RF envelope of 

uch speckle pattern (namely fully developed speckle) can be mod- 

lled using the Rayleigh distribution ( Goodman, 1985 ). There will 

e large measurement error and variance in QUS estimation when 

he underlying assumption for Rayleigh distribution is violated. 

uch conditions occur for ROIs with varying backscatter proper- 

ies or finite scatterer density ( < 10 scatterers per resolution cell) 

 Pawlicki and O’Brien, 2013; Rubert and Varghese, 2014 ). Therefore 

n adaptive regularization parameter is required, which is sensi- 

ive to the conditions leading to the underlying assumption for 

ayleigh distribution. 

Envelope SNR ( SNR en v ), defined as the ratio of the mean to 

he standard deviation of the RF signal envelope, is constant for 

 Rayleigh distribution and equals to SNR opt = 1.91. The SNR en v 

alue deviates from the Rayleigh level of 1.91 for conditions in- 

olving finite scatterer density ( < 10 scatterers per resolution cell) 

r reduced degree of randomness (due to the presence of periodic- 

ty or clustering). Therefore, SNR en v can be used to identify media 

ith low scatterer density, a source of large variance in ACE mea- 

urement ( Rubert and Varghese, 2014 ). Though SNR en v cannot dis- 

riminate media with different backscatter characteristic for large 

catterer densities ( > 10 scatterers per resolution cell), it can iden- 

ify the boundary of two such media, as the Rayleigh assumptions 

f identical diameter and random distribution do not hold at the 

oundary. 

We define a normalized SNR en v parameter, envelope SNR de- 

iation ( �SNR en v ) ( Deeba et al., 2019 ), given at a spatial location

i, j, k ) by 

SNR 

en v 
i, j,k = 

| SNR 

en v 
i, j,k − SNR 

opt | 
SNR 

opt 
× 100% . (12) 

revious works qualitatively demonstrated the association between 

SNR en v and backscatter variation from the visual inspection of in- 

omogeneity, lacking the quantitative description of BSC parame- 

ers ( Deeba et al., 2019a,b ). In this work, we investigate the depen-

ence of �SNR en v on the quantitative backscatter parameters (i.e. 

BC) and therefore validate the efficacy of �SNR en v to detect the 

ackscatter variation within the Region-of-interest (ROI). 

We perform a feasibility analysis on RF data acquired from a 

ustom built ultrasound phantom ( Table 1 ) with three inclusions 

f similar ACE and different backscatter characteristic, manufac- 

ured by CIRS (Norfolk, VA, USA). Inclusion 1 (with low scatterer 

ensity) can be identified from the background with significantly 

igh �SNR en v , whereas inclusion 2 and inclusion 3 have similar 

SNR en v as the background ( Fig. 1 b). However, the boundaries for 

ll three inclusions are highlighted with increased �SNR en v . This 

rend is also evident in the Rayleigh distribution fit to the RF en- 

elope amplitude for selected ROIs, where the envelope amplitude 
4 
n the ROIs on the boundaries deviate from the Rayleigh distribu- 

ion ( Fig. 1 c). The spatial variation in �SNR en v correlates with the 

hange in decibel scaled IBC (dB) ( Fig. 1 d). Therefore, �SNR en v is 

 suitable regularization parameter which can identify backscatter 

ariation as well as sufficiently low scatterer density. 

We propose a 3D spatially weighted matrix, { W i, j,k } ∈ R 

N as a

unction of �SNR en v to adaptively regularize the backscatter pa- 

ameters, n and β: 

 i, j,k 

(
�SN R 

en v 
i, j,k 

)
= 

a 

1 + exp 

[
b. 
(
�SN R 

en v 
i, j,k 

− �SNR 

en v 
min 

)] , (13) 

here a and b are constants and �SNR en v 
min is a nominal �SNR en v 

alue for homogeneous region. For �SNR en v 
<< �SNR en v 

min , the 

eighting has little effect on the regularization. As the weight de- 

reases with the increase in �SNR en v , the regularization effect on 

he backscatter terms is relaxed. 

.1.3. Effective scatterer diameter (ESD) measurement 

The backscatter coefficient, when expressed in terms of an 

coustic intensity form factor, can be used to extract the effec- 

ive scatterer diameter (ESD) and effective acoustic concentration 

EAC). We utilize a Gaussian form factor F gauss = exp (−0 . 827 k 2 a 2 
e f f 

)

 Insana et al., 1990b ), which assumes scattering sources with con- 

inuously varying acoustic properties randomly suspended in a 

uid-like media. The backscatter coefficient, B can be written as: 

 ( f ) = 

1 

9 

k 4 a 6 e f f n ̄γ 2 
0 F gauss . (14) 

ere, k = 2 π f/c is the wave number, c is the sound speed, and 

 e f f is the effective scatterer radius. n ̄γ 2 
0 is the net scattering 

trength, which is the product of the concentration of scatterers 

 times the relative impedance difference between the scatterers 

nd surrounding tissues, γ̄ 2 
0 

. B ( f ) (= β f n ) is the backscatter co- 

fficient measured using the 3D adaptive regularization method 

 Section 2.1.1 ). 

Dividing by f 4 and then taking the natural logarithm on both 

ides of (14) we get: 

n B s ( f ) · f −4 = ln 

(
1 

9 

(
2 π

c 

)4 

a 6 e f f n ̄γ 2 
0 

)
− 0 . 827 

(
2 π f 

c 

)2 

a 2 e f f 

(15) 

e can estimate a e f f and n ̄γ 2 
0 by fitting a regression line, y = mx +

, where y = ln B s ( f ) · f −4 , x = f 2 , and 

 = −0 . 827 

(
2 π

c 

)2 

a 2 e f f , (16) 

 = ln 

(
1 

9 

(
2 π

c 

)4 

a 6 e f f n ̄γ 2 
0 

)
. (17) 

The effective scatterer diameter ( ESD = 2 a e f f ) can be estimated 

rom (16) and effective acoustic concentration ( EAC = 10 log (n ̄γ 2 
0 ) ) 

an be obtained solving (16) and (17) ( Rohrbach et al., 2018 ). 

he ‘Model Inversion’ technique ( Oelze et al., 2002 ) of measur- 

ng scattering properties by comparing measured backscatter spec- 

rum to the theoretical one and fitting a regression line has been 

tilized in several previous works ( Rohrbach et al., 2018; Nizam 

t al., 2020 ). This technique is computationally efficient over the 

raditional minimum average squared deviation (MASD) technique 

 Insana et al., 1990b ). However, both of these techniques employ 

ingle time-gated window-based backscatter coefficient measures, 

hich are prone to large measurement error. A previous work 

howed an improvement in QUS estimation using a nearest neigh- 

orhood averaging, which exploits the similarity among QUS mea- 

ures of neighbouring windows ( Nizam et al., 2020 ). In the pro- 

osed method, ESD is derived from a TV regularized backscatter 
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Fig. 1. Efficacy of the adaptive regularization parameter �SNR en v to identify BSC variation within the ROI. (a) B-mode image with dashed white line outlining the three 

inclusions. Four color-coded ROIs are selected at the boundaries of the inclusions and the background. Inclusion 1 - red, inclusion 2 - green, inclusion 3 - blue, and background 

- gray. (b) The adaptive regularization parameter �SNR en v map. (c) Rayleigh distribution fit associated to the selected ROIs. (d) IBC and �SNR en v along the curve shown in 

(b). The dashed lines correspond to the center point of the selected ROIs. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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easure and therefore exploits the sparse spatial variation of QUS 

arameters. 

.2. Data sets 

.2.1. Phantoms 

The method was validated on three custom-built phantoms 

anufactured by CIRS (Norfolk, VA, USA). All three phantoms con- 

isted of proprietary Zerdine hydrogel polymer and glass bead 

catterers (Potter Industries, Malvern, PA, USA). Phantom 1 (as 

ketched in Fig. 2 a) has two vertical homogeneous zones with sim- 

lar backscatter properties and variable ACE. Zone 1 of phantom 

 is used as the reference phantom. Phantom 2 and phantom 3 

sketched in Fig. 2 b) both include three spherical inclusions. The 

coustic properties within the inclusion and the background were 

djusted by adding soda lime glass microspheres (Spheriglass®, 

otters Industries Inc., PA, USA) of varying diameter and concen- 

ration. The inclusions in phantom 2 have variable ACE properties 

nd similar backscatter and scatterer size properties, whereas the 

nclusions in phantom 3 have similar ACE with variable backscatter 

nd scatterer size properties. The ground truth values for the QUS 

arameters reported by CIRS have been listed in Table 1 . For all 

he experiments, zone 1 of phantom 1 was used as the reference 

hantom. 

.2.2. In vivo liver 

A cross-sectional study was performed, which included a cohort 

f twenty-one adult participants, with 13 healthy controls (defined 

s MRI-PDFF < 5%) and 8 NAFLD patients (MRI-PDFF > 5%). This 

tudy (H14-01964) was performed under written informed con- 

ent after approval by the UBC Clinical Research Ethics Board. All 
5 
he participants underwent MRI and ultrasound examination be- 

ween May 2017 and May 2018. MRI was performed on a 3.0 T 

ystem (Philips Achieva, Philips Medical Systems) with a dual- 

ual-echo (DDE) sequence ( Mashhood et al., 2013 ), where im- 

ges are acquired in two dual-echo sequences at three time-points 

orresponding to nominal out-of-phase and in phase time (im- 

ges at first in-phase time are acquired in both sequences). The 

rst sequence acquires two images at sequential echo times of 

.15/2.3 msec and the second sequence acquires two more im- 

ges at sequential echo times of 2.3/4.6 msec. A three-point Dixon 

ethod was used to determine the MRI-PDFF (proton density 

at fraction). MRI-PDFF computed from the MRI data has been 

ound to be strongly correlated with histological steatosis grading 

 Noureddin et al., 2013 ). Therefore, MRI-PDFF was used as a gold 

tandard for hepatic steatosis detection, where an MRI-PDFF > 5% 

as defined as presence of hepatic steatosis. The ultrasound data 

ere acquired from the right lateral intercostal window of the vol- 

nteer, laid in a supine position on a shaker board propagating the 

echanical excitation. 

.3. Data acquisition and processing 

.3.1. 3D QUS method overview 

The proposed volumetric QUS imaging technique was imple- 

ented on a standard 3D ultrasound system, which comprises an 

ltrasonix SonixTouch ultrasound machine (Analogic, Richmond, 

C, Canada), and a m4DC7-3/40 4D transducer. The transducer cen- 

er transmit frequency was set to 3.33 MHz whereas the imaging 

epth was set to 15 cm with a focus at 13 cm. The customized 

otor control module allows the acquisition of volumetric RF data 

onsisting of 15 planes spaced at 1 ◦ angular distance, with 25 

rames acquired at each plane location at an effective frame rate 
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Fig. 2. Diagram of the custom-made CIRS phantoms.(a) Phantom 1 with two ver- 

tical layers; and (b) phantom 2 with three spherical inclusions (variable ACE and 

similar backscatter (IBC) and scatterer diameter (ESD) property) and (c) phantom 

3 with three spherical inclusions (similar ACE and variable backscatter (IBC) and 

scatterer diameter (ESD) property). 
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f 250 frame-per-second (fps). Each 2-D frame in the 3-D volume 

onsists of 64 RF scanlines covering a lateral field-of-view of 79 ◦. 

he sampling rate was 20 MHz, resulting in 3870 samples in each 

canline. 

.3.2. RF data processing and analysis 

The proposed method was implemented in MATLAB 2018a (The 

athWorks Inc., Natick, MA, USA). The optimization problem was 

olved using the convex optimization toolbox CVX in MATLAB 

 Grant et al., 2009 ). We compare the performance of the proposed 

D QUS method against the baseline reference phantom method 

RPM) and a uniform 2D QUS method utilizing 2D uniform to- 

al variation regularization ( Coila and Lavarello, 2017a ), applied on 

ach of the elevational planes separately. 

We manually selected ROIs within the tissue or phantom, ex- 

luding the near-field data suffering from ringdown and other ar- 

ifacts associated with transducer-to-phantom interface. Each ROI 

ncluded 25 temporal frames. Each frame within the ROIs were di- 

ided into time-gated windows with 80% overlap in both lateral 
6 
nd axial direction. The optimum dimensions for the time-gated 

indows for RPM were found to be 20 scan lines laterally and 50 

avelength ( λ) (600 samples or 2.3 cm) axially. Here, the axial ex- 

ent of one wavelength is approximately 0.46 mm. On the other 

and, the dimensions for the time-gated windows for the regular- 

zation methods were selected as 5 scanlines laterally and 1.2 cm 

300 samples or 25 λ) axially. The Welch method ( Welch, 1967 ) was

sed to obtain the power spectrum from the RF scan lines within 

ach time-gated window. We considered the −20 dB bandwidth of 

he received power spectrum as the usable frequency range. 

The power spectra obtained from a single realization suffers 

rom large variance due to statistical fluctuations arising from 

 random media. Compounding n statistically independent but 

quivalent realizations have been found to improve the power 

pectral estimate by reducing the standard deviation proportional 

o 1 / 
√ 

n . Previously, different spatial and angular compounding 

ased on spatial translations or rotations have been adopted to 

ecorrelate the signal allowing independent realizations of RF data 

 Li and Odonnell, 1994; Gerig et al., 2004; Herd et al., 2012 ). In

he proposed method, we perform averaging of the periodograms 

patially and temporally, using 5 lateral scanlines and 25 temporal 

rames, to compute the power spectral density. To further improve 

he QUS estimation using RPM, we average the periodograms over 

he elevational planes resulting in a single QUS plane. The 2D QUS 

ethod applies 2D uniform regularization on each of the eleva- 

ional planes separately, whereas the 3D QUS method applies 3D 

daptive regularization using all the elevational planes. Specifically, 

he use of RF data from different elevational planes in 3D QUS al- 

ows independent realizations of signal data to be averaged. Several 

revious studies have utilized the correlation coefficient to mea- 

ure the degree of change in the speckle pattern between different 

ealizations, and consequently the effectiveness of ultrasound com- 

ounding ( Herd et al., 2012; Rosado-Mendez et al., 2013; Liu et al., 

010 ). We compute the correlation, ρ between two planes sepa- 

ated by �N planes: 

(�N) = 

∑ N 1 
i =1 

∑ N 2 
j=1 

(X i, j,k − X k )(X i, j,k +�N − X k +�N ) √ ∑ N 1 
i =1 

∑ N 2 
j=1 

(X i, j,k − X k ) 2 (X i, j,k +�N − X k +�N ) 2 
, 

here X i, j,k denotes the i th axial RF data point of the j th scanline 

n the k th plane for a volume-of-interest with N 1 , N 2 and N 3 data

oints in the axial, lateral and elevational directions, respectively. 

wo planes, for which the correlation is low (< 0 . 2) , are consid-

red to be sufficiently independent required for improving QUS es- 

imation precision ( Herd et al., 2012; Rosado-Mendez et al., 2013 ). 

The initial guesses for parameters a and b in Eq. (13) were de- 

ermines as follows: first we plotted the IBC error for phantom 3 

similar ACE and variable IBC) as a function of �SNR en v and fit a 

urve with an equation form given in Eq. (13) . The curve fitting 

ives an estimate of the parameters a and b, which were further 

uned to match the ground truth QUS values of the phantoms. We 

une the regularization weights λ1 , λ2 and λ3 to obtain optimum 

US reconstruction results for the homogeneous phantom (phan- 

om 1) and the variable ACE phantom (phantom 2). The regular- 

zation weights used for all QUS results presented in this paper us- 

ng the 2D QUS method were λ1 = 2 0 , λ2 = 2 −2 , λ3 = 2 −3 , whereas

1 = 2 0 . 5 , λ2 = 2 0 , λ3 = 2 −0 . 5 were used for the 3D QUS method.

lso, we empirically select a = mean ( �SNR en v ) and b = 0 . 09 in

q. (13) for all experiments in this paper. 

.4. Evaluation metrics 

The mean and standard deviation of ACE, IBC and ESD were 

easured and reported. The accuracy and precision were assessed 

sing the mean absolute percentage error and standard deviation 
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Fig. 3. (a) �SNR en v map, ground truth ACE map and reconstructed ACE map using different methods for inclusion 1 in phantom 2 (variable ACE and approximately uniform 

backscatter and scatterer size property) and (b) the profile of the reconstructed ACE along the axially central line through the inclusion. 
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f absolute percentage error, respectively. Absolute percentage er- 

or of a quantity a ∈ R 

N , is defined as: 

P E = 

| a estimated − a actual | 
a actual 

× 100% , (18) 

here AP E is the absolute percentage error, a estimated and a actual 

epresent the reconstructed and the ground truth measure of a 

US quantity, respectively. 

The detectability of an inclusion in a QUS map was evaluated 

sing contrast-to-noise ratio (CNR) ratio: 

NR = 

| μinc − μbg | √ 

σ 2 
inc 

+ σ 2 
bg 

, (19) 

here μ and σ are the mean and standard deviation of a QUS 

uantity within the inclusion and the background denoted by the 

ubscripts inc and bg, respectively. The inclusions were delineated 

rom the B-mode images, refined using the position and dimension 

nformation provided by the manufacturer. 

To evaluate steatosis detection performance for in vivo liver, the 

orrelation between MRI-PDFF and QUS measures were calculated 

sing Spearman’s rank correlation coefficient. Also, the classifica- 

ion accuracy and the area under the ROC curve (AUROC) were 

easured to evaluate the classification performance using differ- 

nt combination of QUS parameters. 

. Experiments and results 

.1. Phantom validation 

The ACE reconstruction results for phantom 2 (variable ACE 

nd similar backscatter and scatterer size properties) are shown in 

ig. 3 . From the �SNR en v map, it is evident that the variation in 

CE does not cause deviation of SNR en v values from SNR opt . With 

SNR en v 
< �SNR en v 

min , the spatial weighting has little effect on the 

egularization. Therefore, QUS reconstruction results from the 2D 

US method with uniform regularization and the 3D QUS with 

daptive regularization are similar, where both methods clearly 

dentify the low attenuation inclusion from the high attenuation 

ackground. The RPM, on the other hand, detects the variation in 

CE with a poorer resolution compared to the regularization meth- 

ds. 
7 
Fig. 4 shows the results for phantom 3 (approximately uniform 

CE and variable backscatter and scatterer size properties). As pre- 

iously discussed in Section 2.1.2 , the variation in backscatter char- 

cteristic is associated with a variation in �SNR en v map. The 3D 

US method, that incorporates the �SNR en v information for en- 

bling adaptive regularization, yields more accurate reconstruction 

f the IBC map compared to its uniform regularization counterpart, 

D QUS ( Fig. 4 (a)). The RPM failed to generate a reasonable IBC 

esult. The ACE maps obtained from the three methods have also 

een shown in Fig. 4 (c). Both the RPM and the 2D QUS method 

xhibit consecutive undershoot and overshoot in ACE measure- 

ent at the boundary between medium with different backscatter 

roperties, a trend described in previous literature ( Pawlicki and 

’Brien, 2013; Deeba et al., 2019b ). The proposed 3D QUS method, 

n the contrary, was able to overcome the issue, yielding accurate 

CE results. 

The ESD map for phantom 3 has been shown in Fig. 5 . The RPM

nd the 2D QUS method using uniform regularization were not 

uccessful to reconstruct the ESD map, as were expected from the 

naccurate estimation of IBC map. The proposed 3D QUS method 

esults in improved ESD reconstruction. 

For the quantitative comparison of the QUS parameters, we 

ompare the mean and standard deviation of the ACE in phantom 

 and IBC and ESD in phantom 3 for the inclusions and the back- 

round. For IBC, we compute the standard deviation of the IBC er- 

or expressed in dB. The results are shown in Fig. 6 . 

We also report the mean absolute percentage error and stan- 

ard deviation of absolute percentage error results in Tables 2 and 

 . We include the results obtained using 2D adaptive QUS along 

ith 2D QUS and 3D QUS to highlight the effect of 3D regular- 

zation compared to the 2D regularization and adaptive regular- 

zation compared to the uniform regularization. In case of ACE, 

oth the 2D QUS method and the 3D QUS method reach close to 

he ground truth value with high precision with mean and stan- 

ard deviation of absolute percentage error below 10% , enabling 

ccurate ACE characterization. However, for IBC and ESD estima- 

ion, the proposed 3D QUS method consistently outperforms the 

ther methods, where the mean absolute percentage error in IBC 

emained below 25% and standard deviation of absolute percentage 

rror in IBC was below 11% for 3D QUS. 2D adaptive QUS yield im- 

roved result compared to its uniform counterpart (2D QUS), how- 

ver, was outperformed by the 3D counterpart (3D QUS). 
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Fig. 4. (a) �SNR en v map, ground truth IBC map and reconstructed IBC maps using different methods for phantom 3 (similar ACE and variable backscatter and scatterer size 

property). Inclusion 1, 2, and 3 have been annotated in all the maps. (b) The profile of the reconstructed IBC along the axial central line through inclusion 2. (c) Reconstructed 

ACE maps using different methods for phantom 3 and (d) the profile of the reconstructed ACE along the axial central line through inclusion 2. 

Fig. 5. (a) �SNR en v map and reconstructed ESD maps using different methods for phantom 3 (approximately uniform ACE and variable backscatter and scatterer size 

property) with inclusion 1, 2, and 3. (b) The profile of the reconstructed ESD along the axial central line through inclusion 2. 
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We evaluate the CNR of the QUS parameters for different meth- 

ds. Fig. 7 shows the mean and standard deviation computed over 

he three inclusions in respective phantom. The mean CNR val- 

es obtained using the proposed 3D QUS method were larger than 

he other two methods. Compared to the baseline RPM, the 3D 

US method results in around 4.2 fold, 1.8 fold and 2.9 fold in- 

rease in the CNR for ACE, IBC, and ESD, respectively. Also, the 

D QUS improves the CNR by 1.4 times and 1.9 times compared 

o the 2D QUS method (uniform regularization) for IBC and ESD, 

espectively. 
8 
.2. Effect of compounding using three-dimensional regularization 

Unlike conventional QUS method, we acquire multiple eleva- 

ional planes of RF data in the proposed method. We perform a 

hree-dimensional adaptive TV regularization to obtain the volu- 

etric QUS maps. Previous studies used different ultrasound com- 

ounding techniques, such as angular compounding and deforma- 

ion compounding to reduce the standard deviation in QUS esti- 

ation, such as scatterer size [3] and backscatter coefficient [4]. 

o study the effect of the proposed compounding using three di- 
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Fig. 6. Mean and standard deviation of ACE in phantom 2 (left), IBC (middle) and ESD (right) in phantom 3 using different methods. 

Table 2 

Estimated mean and standard deviation of absolute percentage error for the reconstructed ACE and IBC maps for the ex- 

perimental phantoms. 

Phantom 

ACE (dB/cm/MHz) 

Mean absolute percentage error (%) Std. of absolute percentage error (%) 

RPM 2D QUS 2D adaptive QUS 3D QUS RPM 2D QUS 2D adaptive QUS 3D QUS 

1 7.43 2.97 4.34 2.96 4.61 0.35 0.80 0.71 

2 23.05 8.23 10.62 9.68 16.75 6.77 6.92 6.06 

3 61.15 19.93 9.61 7.34 37.52 8.90 0.65 2.3e −6 

Phantom IBC (dB) 

Mean absolute percentage error (%) Std. of absolute percentage error (%) 

RPM 2D QUS 2D adaptive QUS 3D QUS RPM 2D QUS 2D adaptive QUS 3D QUS 

1 6.30 24.94 9.45 23.29 3.55 3.61 5.83 0.37 

2 135.97 34.15 20.72 24.15 125.17 7.39 12.60 10.66 

3 2247.2 64.11 31.69 22.83 866.25 2.42 9.73 10.48 

Table 3 

Estimated mean and standard deviation of absolute percentage error for the reconstructed ESD map for phantom 3. 

Region Mean absolute percentage error (%) Standard deviation of absolute percentage error (%) 

RPM 2D QUS 2D adaptive QUS 3D QUS RPM 2D QUS 2D adaptive QUS 3D QUS 

Inclusion 1 51.71 51.14 46.62 28.35 1.56 0.34 3.85 6.44 

Inclusion 2 8.11 3.78 32.38 18.36 7.36 0.62 6.42 4.78 

Inclusion 3 192.18 213.16 106.09 45.08 55.81 0.19 65.02 33.80 

Background 154.76 111.19 82.02 30.95 36.58 11.24 32.53 40.32 

Fig. 7. CNR for ACE, IBC and ESD measures obtained from different methods. 
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Fig. 8. Standard deviation of absolute percentage error in IBC and ESD measure 

obtained using three-dimensional TV regularization and two-dimensional TV reg- 

ularization vs. the number of planes used in the computation. The dashed lines 

represent the theoretical ( 1 / 
√ 

N ) curves obtained by averaging N completely uncor- 

related planes. 
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A

ensional regularization, we vary the number of planes and eval- 

ate the precision by computing standard deviation of absolute 

ercentage error for ACE, IBC and ESD measures. We also investi- 

ate whether compounding obtained by three dimensional regular- 

zation has any advantage over the two-dimensional counterpart, 

wo-demensional regularization followed by averaging over eleva- 

ional planes). Therefore, we perform 2-dimensional adaptive reg- 

larization after averaging the estimated power spectra from mul- 

iple planes. The results have been shown in Fig. 8 . Also, the 1 / 
√ 

N 
9 
urves for IBC and ESD have been superimposed on the graphs, 

here N represents the number of planes used in the computa- 

ion. For uncorrelated planes, the standard deviation of absolute 

ercentage error curves theoretically follow the 1 / 
√ 

N curve. The 

CE variance remains unaffected (standard deviation of absolute 
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Fig. 9. Correlation coefficient between two 2-D radio-frequency (RF) signals sepa- 

rated by �N planes for a phantom and an in vivo liver example. 
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ercentage error < 0.5%) as the number of planes increases for 

his particular example of homogeneous phantom. For IBC and ESD 

easures, increasing the number of planes improve the estimation 

ariance for compounding elevational planes using both 2D and 3D 

egularization methods. However, the compounding using 3D reg- 

larization not only outperforms the 2D regularization estimation 

recision, but the reduction in standard deviation of absolute per- 

entage error measure improves over the 1 / 
√ 

N rate, which is the 

heoretical rate obtained by averaging N uncorrelated realizations. 

Fig. 9 shows that the radio-frequency data in subsequent ele- 

atonal planes obtained from in vivo liver are more decorrelated 

ompared to the one obtained from the phantom. Improvement 

n QUS precision requires compounding of independent realiza- 

ions. Ultrasound planes are considered to be sufficiently inde- 

endent when the corresponding correlation is low (< 0 . 2) ( Herd 

t al., 2012; Rosado-Mendez et al., 2013 ). Therefore, the improved 

ecorrelation between subsequent planes is an effective indicator 

f improvement in QUS measurement for in vivo liver compared 

o phantom. 

.3. Effect of spatial weighting in total variation regularization 

The phantom study demonstrates that the spatial weighting in 

he proposed 3D QUS method improves the QUS estimation, even 

n regions with high backscatter variation. In this section, we in- 

estigate the effect of spatial weighting on the selection of regu- 

arization parameter and QUS estimation performance. In 10 (a) and 

b), we compare the cost function value for different values of reg- 

larization parameters obtained at the ground truth QUS measures 

or the 3D adaptive QUS and 2D uniform QUS method. As it is dif-

cult to visualize a 4-dimensional cost function, we set the val- 

es of λ2 and λ3 equal. We found that the spatial weighting keeps 

he optimum cost comparatively less variable for different λ2 and 

3 values for variable ACE region-of-interest (homogeneous as dic- 

ated by low �SNR en v ). The effect is more pronounced for phantom 

 with variable backscatter property (high �SNR en v ). 

Fig. 10 (c) demonstrates that the error in QUS parameter estima- 

ion can be optimized by choosing a suitable regularization param- 

ter set for both the 3D QUS and the 2D QUS method. However, for 

he 3D QUS, the optimum ranges for regularization parameter co- 

ncide, whereas for the 2D QUS with uniform regularization, the 

anges do not overlap. Therefore, it is possible to select an opti- 

um regularization parameter for the 3D QUS method to optimize 

US parameter estimation irrespective of homogeneity (backscat- 

er variation). On the contrary, the 2D QUS with uniform regular- 

zation would require different parameters set depending on the 

nderlying tissue characteristic, which would not be feasible for 

linical application. 
10 
.4. In vivo liver: steatosis detection performance 

The correlation results between MRI-PDFF and QUS measures 

ave been displayed in Fig. 11 . The ACE and IBC measures demon- 

trated significant positive associations with MRI-PDFF, whereas 

SD was negatively associated to MRI-PDFF. The proposed 3D QUS 

ethod yields stronger correlation between ACE and MRI-PDFF 

 r = 0 . 877 , p < 0 . 001 ) compared to the RPM ( r = 0 . 415 , p = 0 . 062 )

nd the 2D QUS ( r = 0 . 645 , p = 0 . 002 ) method. The IBC measure

ad similar and significantly strong association with MRI-PDFF for 

oth the 2D QUS ( r = 0 . 914 , p < 0 . 001 ) and the 3D QUS method

 r = 0 . 912 , p = 0 . 004 ) and a moderate correlation for the RPM ( r =
 . 602 , p < 0 . 001 ). On the other hand, the 2D QUS ( r = −0 . 731 , p <

 . 001 ) and 3D QUS method ( r = −0 . 51 , p = 0 . 02 ) yield strong to

oderate negative association, whereas the noisy ESD results ob- 

ained by the RPM ( r = −0 . 265 , p = 0 . 53 ) almost obscures the cor-

elation. 

From the correlation analysis, the 2D QUS and the 3D QUS 

ethod exhibit comparable performance. However, a feature anal- 

sis plot including all three QUS features in Fig. 12 shows that the 

D QUS results in an improved separability between the steatosis 

nd non-steatosis group compared to the 2D QUS method. 

We utilize a quadratic discriminant analysis (QDA) classifica- 

ion to classify the cases into steatosis and non-steatosis group. 

he classification accuracy, the area under the ROC curve (AUROC) 

nd the pair-wise p value of the difference between the AUROC 

easures ( DeLong et al., 1988 ) from 2D QUS and 3D QUS were re-

orted in Table 4 . IBC, as a single feature, exhibits superior ability 

o discriminate while using the regularization methods: 2D QUS 

nd 3D QUS, with AUROC close to 1 and statistically significant 

 p < 0 . 05 ) improvement compared to the RPM. Among different

eature combination, ACE and IBC, ACE and ESD, and all three fea- 

ure combination yield comparable performance, for which AUROC 

ere significantly different com pared to the one obtained from 

PM. Compared to 2D QUS, 3D QUS yields better accuracy and AU- 

OC for all feature combinations, which were, however, not statis- 

ically significant, except the case for ACE. 

. Discussion 

Adopting a total variation regularization scheme extends the 

rade-off between estimation accuracy, precision, and spatial reso- 

ution. A window dimension of 30 scanlines (10 uncorrelated scan- 

ines) and 35 λ (13 pulse lengths) was found to be the minimum 

eliable dimension without incorporating regularization. This find- 

ngs lie within the range of 7–15 pulse lengths and 10–20 uncor- 

elated scanlines, which are presented as the dimensions offering 

he best trade-off between spatial resolution, accuracy, and pre- 

ision ( Rosado-Mendez et al., 2013 ) for QUS estimation. In con- 

rast, incorporating the total variation regularization into the 2D 

nd the 3D QUS methods results in a dramatic improvement in 

recision of both ACE and IBC, where standard deviation of abso- 

ute percentage error remains below 5% for a window dimension 

f 10 λ ( � 3 . 75 pulse lengths) and 25 λ ( � 9 . 40 pulse lengths) axi-

lly and 5 ( � 2 uncorrelated) scanlines, laterally. The mean of the 

bsolute error of ACE and IBC remained below 6% and 40% , respec- 

ively for both the regularization methods. We can compare the 

ccuracy performance with the previous work ( Vajihi et al., 2018 ) 

sing a regularization method, which was able to achieve a mean 

ercentage error (MPE) of 0.46% in ACE and 327% MPE and 19.7% 

PE in estimation of backscatter parameters, b and n . Our results 

emain consistent with the previous studies ( Wear et al., 2005 ), 

here backscatter estimations have been found to suffer from sig- 

ificant measurement error, ranging within 2 orders of magnitude. 

Both 2D QUS and 3D QUS methods yield similar performance 

or the homogeneous phantom (phantom 1) and variable ACE 
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Fig. 10. Effect of spatial weighting using phantom 2 (variable ACE) and phantom 3 (variable backscatter and scatterer diameter property). (a) Cost evaluated at ground truth 

values of QUS paramters using the 2D QUS and the 3D QUS for different values of regularization parameters, λ1 , λ2 and λ3 . For both cases, the upper surface is obtained 

from the 2D QUS and the lower one is from the 3D QUS. (b) Cost evaluated at ground truth values using the 2D QUS and the 3D QUS for different values of regularization 

parameter, λ2 , when λ1 = 2 −4 and λ3 = λ2 . The shaded regions indicate the range of �SNR en v , where the mid line is the mean �SNR en v and the upper and lower lines are 

the standard deviation. (c) Error in QUS parameters estimation resulted from the 2D QUS and the 3D QUS for different values of regularization parameters, λ1 , λ2 and λ3 . 

11 
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Fig. 11. In vivo human liver QUS measures from twenty-one patients and their correlation with proton density fat fraction. The vertical and horizontal error bars show the 

standard deviation in QUS measure and PDFF measure, respectively, whereas the square represents the mean calculated over a region-of-interest. 

Table 4 

Steatosis classification results for different QUS feature combination. 

Features Accuracy AUROC p - value 

RPM 2D QUS 3D QUS RPM 2D QUS 3D QUS 2D ∼ 3D 

ACE 0.62 0.71 0.95 0.70 0.68 0.93 0.01 

IBC 0.67 0.81 0.95 0.40 0.97 1.00 0.37 

ESD 0.67 0.81 0.76 0.53 0.75 0.76 0.94 

ACE & IBC 0.67 0.81 0.95 0.72 0.97 1.00 0.37 

IBC & ESD 0.57 0.81 0.86 0.77 0.85 0.93 0.71 

ACE & ESD 0.67 0.81 0.95 0.52 0.97 1.00 0.48 

ACE & IBC & ESD 0.76 0.86 1.00 0.70 0.97 1.00 0.48 
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hantom (phantom 2), as can be seen in Figs. 3 and 4 . 2D adaptive

US also show similar results for phantom 1 and phantom 2. With 

 similar scatterer properties (including IBC and ESD), the �SNR en v 

alues of both of these phantoms remain below �SNR en v 
min , with lit- 

le effect of spatial weighting. Therefore, the uniform QUS and the 

eighted QUS methods are essentially similar when the tissue un- 

er experiment is homogeneous in terms of backscatter properties. 

he 3D QUS and 2D adaptive QUS method outperform the 2D QUS 

hen the underlying tissue has variable backscatter properties, as 

s the case of phantom 3. Fig. 4 shows that the �SNR en v map was 

ble to identify the boundaries where backscatter properties vary. 

ncorporating the �SNR en v information in the 3D QUS (as well as 

n 2D adaptive QUS) enables adaptive regularization, and therefore 

esults in more accurate reconstruction of the ACE and IBC map 

ompared to the uniform regularization in 2D QUS. It should be 

oted that both the RPM and the 2D QUS method exhibit an un- 

erestimation and an overestimation of ACE centring the bound- 

ry between medium with different backscatter properties, a trend 
12 
escribed in previous literature ( Pawlicki and O’Brien, 2013; Deeba 

t al., 2019b ). Both 3D QUS and 2D adaptive QUS method were 

ble to overcome the issue. Additionally, the 3D regularization in 

D QUS further improves the QUS estimation quality compared to 

he 2D adaptive QUS, yielding accurate ACE and IBC results with 

lose agreement to the values reported by the manufacturer. 

For ESD computation, a Gaussian form factor has been used as 

t can successfully model the scattering properties of many soft 

issues, including liver ( Nguyen et al., 2019; Insana et al., 1990a ). 

owever, a spherical shell form factor is more appropriate for 

pherical glass beads, as were used in the phantoms in our ex- 

eriments ( Insana and Hall, 1990; Insana et al., 1990a ). The Gaus- 

ian form factor would consistently overestimate the sphere size, 

esulting in an effective diameter greater than the physical diame- 

er ( Insana and Hall, 1990; Liu et al., 2010 ). The effective diameter 

f the glass beads can be found by comparing the Gaussian form 

actor to the spherical shell form factor and computing the con- 

ersion factor for the particular physical diameter within the us- 
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Fig. 12. Scatter plot of QUS measures representing normal and steatosis cases. 
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ble frequency range ( Liu et al., 2010 ). The physical diameters for 

nclusion 1, inclusion 2, inclusion 3 and the background medium 

n phantom 3 are: 220 μm, 120 μm, 40 μm, and 70 μm, respec-

ively. With conversion factors 1.27, 1.31, 1.56, and 1.28, respec- 

ively, the effective diameters have been found to be : 342, 158, 

1, and 90 μm. The accuracy of ESD estimation depends on the 

stimation accuracy of the backscatter parameter, n . Therefore, the 

ccurate backscatter parameter estimation obtained by the 3D QUS 

urther is translated to accurate ESD estimation as can be seen in 

ig. 5 . 

The CIRS phantom was specifically designed to cover the wide 

ange of QUS parameters to be expected in human liver in vivo 

ith different stage of steatosis. the 2D QUS method and the 3D 

US method both reach close to the ground truth value with high 

recision for the entire range of ACE from 0.37 to 1.18 dB/cm/MHz. 

he accuracy and precision of ESD estimation further depends on 

he range of ka e f f , the product of the wave number k and the ef-

ective scatterer radius a e f f , which should be within 0.5 to 1.2 for 

ptimum results ( Insana et al., 1990a ). For the frequency range of 

 MHz to 3.5 MHz used in our experiments, the ka e f f values for 

he scatterers in inclusion 1, 2, 3 and the background are: 1.40–

.44, 0.64–1.13, 0.21–0.36, and 0.37–0.64, respectively. Accordingly, 

e obtain high estimation error and variance for inclusion 1 and 

, as the corresponding ka e f f values are well outside of the opti- 

al range. The high variance in the ESD estimation for background 

catterers can partly be attributed to the boundary artifacts. Finally, 

he ka e f f for the scatterers in inclusion 2 is within the optimal 
13 
ange, resulting in an accurate and precise ESD estimation ( Fig. 5, 

ig. 6 c and Table 3 ). 

The advantage of using spatial weighting in the proposed 3D 

US over the uniform QUS and the baseline RPM is further evi- 

ent from the CNR study. The 3D QUS improves the contrast sig- 

ificantly for all three QUS parameters compared to the 2D QUS 

nd baseline RPM. This improved CNR would translate into better 

dentification of abnormality in clinical application. The processing 

s done using a standard personal computer (Intel(R) Core(TM) i5- 

0210U CPU at 1.6 GHz with 16 GB RAM). The computation time 

or the proposed algorithm depends on the ROI size. For a volume- 

f-interest with lateral dimension of 35 scanlines, axial dimension 

f 6 cm (1450 samples or 122 λ) and elevational dimension of 5 

lanes, the computation time was 203.30 s. The bulk of the com- 

utation time (180.67 s) was used for computing power spectrum 

stimates, whereas the rest (22.6 s) was used for 3D TV regular- 

zation. 

The proposed QUS method utilizes the volumetric RF data ac- 

uired by a motorized 3D transducer. The use of a 3D system al- 

ows the volumetric QUS reconstruction, using a three-dimensional 

otal variation regularization. Fig. 8 shows that 3D regularization 

mproves the estimation variance at a faster rate than the theoret- 

cal 1 / 
√ 

N curve obtained from averaging N uncorrelated realiza- 

ions. The advantage of utilizing volumetric data could be further 

nhanced in case of in vivo liver data. The correlation between two 

adio-frequency signal data separated by �N planes, gives a mea- 

ure of effectiveness of spatial compounding ( Herd et al., 2012 ), 

here a low normalized correlation coefficient value ( < 0 . 2 ) indi- 

ates independent data realizations. Fig. 9 shows that the radio- 

requency data obtained from in vivo liver get decorrelated at 

 faster rate with the increasing plane separation compared to 

he one obtained from the phantom. As the ground truth val- 

es for QUS variance in in vivo liver is unknown, we cannot ob- 

ain the exact measures of improvement with increasing data real- 

zations. Nevertheless, the improved decorrelation between subse- 

uent planes is an effective indicator of improvement in QUS mea- 

urement for in vivo liver compared to phantom. 

Our QUS estimation results for liver in vivo were compa- 

able to the MRI-PDFF performance, the current gold standard. 

he presence of hepatic steatosis was defined as MRI-PDFF > 5% 

 Caussy et al., 2018 ). From the correlation analysis, it was found 

hat the ACE and IBC obtained using the proposed method have 

trong positive association with MRI-PDFF, whereas the ESD was 

ound to be negatively correlated to MRI-PDFF ( Fig. 11 ). The ACE 

nd IBC correlation results are in agreement with previous stud- 

es on human liver in vivo ( Andre et al., 2014b; Tada et al., 2019 ),

dditionally with an improved correlation. On the other hand, this 

s the first work to report the correlation between ESD of human 

iver and MRI-PDFF. Nevertheless, previous studies on rabbit fatty 

iver found negative correlation between ESD and fat content of 

he liver ( Nguyen et al., 2019 ). Using different combination of these 

hree QUS parameters estimated using the proposed method with 

 simple QDA classifier, we were able to discriminate between the 

teatosis and the non-steatosis class with an accuracy up to 100% 

nd area under the receiver operating characteristic (AUROC) of 1. 

mong the QUS features, ESD was least effective to classify the two 

roups. However, the high contrast achievable using ESD ( Fig. 7 ) 

uggests that ESD, though exhibit inferior performance to identify 

teatosis which is a diffuse condition, might be effective in charac- 

erizing focal diseases. 

Using Youden index, the optimal threshold for ACE, IBC and 

SD to detect the presence of steatosis were found to be 

.77 dB/cm/mHz, 8 . 5 e −4 1/(sr.cm), and 146.3 μm. The ACE and IBC 

ut-off agree with the previous findings, where the ACE and IBC 

ut-off values were equal to 0.76 dB/cm/MHz and 2 . 7 e −3 1/(sr.cm) 

 Andre et al., 2014b ). Among the limitations of our study is the 
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SD values obtained for steatosis participants, which partially lie 

ithin non-optimal ka e f f < 0 . 5 range. Future work will involve ap- 

lication of comparatively higher frequency range to mitigate the 

roblem. Also, we observe high variance in the ESD estimation 

or the liver study, which can be due to the presence of coher- 

nt component in the backscatter RF data. Therefore, we will fur- 

her explore different signal decomposition techniques to separate 

he diffuse component from the coherent component ( Nizam et al., 

020 ). Also, instead of using a Gaussian form factor, tissue-specific 

orm factors can be derived from the impedance maps of under- 

ying tissue and could be used for improved ESD computation 

 Mamou et al., 2005 ). Another limitation of the in vivo liver study 

s that the MRI-PDFF images and the ultrasound images are not 

egistered. Though care has been taken to ensure that the planes- 

f-interest in MRI and ultrasound roughly coincide, a registration 

cheme would allow direct comparison with possible identification 

f focal lesions. Finally, we have demonstrated through phantom 

tudies that the proposed method is able to attain improved recon- 

truction of QUS parameters for heterogeneous regions-of-interest. 

owever, validation of current study is limited to in vivo liver, 

hich involves large homogeneous parenchyma. Further studies 

re required for validating the efficacy of the proposed method for 

eterogeneous and thin tissue, such as the placenta, kidney and 

ermis. 

. Conclusion 

In this paper, we present a multiparametric 3D weighted QUS 

ethod, which simultaneously measures three biomarkers for tis- 

ue characterization including ACE, IBC and ESD. The method incor- 

orating a spatially adaptive regularization was able to achieve im- 

roved precision-resolution trade-off in QUS reconstruction in the 

resence of underlying tissue homogeneity. The three-dimensional 

egularization further improves the QUS estimation precision with 

 standard deviation reduction faster than the theoretical 1 / 
√ 

N 

ate achievable by averaging of N uncorrelated realizations. With 

trong correlation to the current gold standard MRI-PDFF, each of 

he three parameters demonstrate the potential to detect hepatic 

teatosis. The combination of the QUS parameters further improve 

he steatosis classification performance. The proposed volumetric 

US method therefore promises a comprehensive assessment tool 

or non-alcoholic fatty liver disease. 
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