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Abstract

Chung et al. have proposed a graphical model that cap-
tures the inter-dependencies between design alternatives
in terms of synergy and tradeoffs. This model can assist in
identifying quality/risk trade-offs early in the life cycle of
software development, such as architectural design and
testing process choices. The Chung et.al. method is an
analysis framework only: their technique does not include
an execution or analysis module. This paper presents
a simulation tool developed to analyze such a model,
and techniques to facilitate decision making by reducing
the space of options worth considering. Our techniques
combine Monte Carlo simulations to generate options with
a machine learner to determine which option yields the
most/least favorable outcome. Experiments based on the
above methodology were performed on two case studies,
and the results showed that treatment learning success-
fully pinpointed the key attributes among uncertainties in
our test domains.

1. Introduction
Software system must meet all the functional require-

ments in order to provide desired functionalities to users.
In addition, it must exhibit extra non-functional software
quality attributes such as accuracy, security, performance,
and other business goals. As there are no clear-cut criteria
to determine whether these goals are satisfied,Chung,
Nixon, Yu and Mylopoulous[1] used the notion of soft-
goals to represent such goals.Chung et. al.also define an
entire softgoal modeling framework, featuring tradeoffs
and inter-dependencies between system quality attributes
and design alternatives. But their framework is a paper
design only: if an analyst wants to simulate a softgoal
system, they face the problem of simulations across a
space of uncertainties intrinsic to softgoals. For example,
an analyst can connect two softgoals with qualitative
terms such ashelps and saysoftgoal1 helps softgoal2.
Qualitative influences such ashelpsare subjective beliefs,
and are thus prone to be inconsistent. Our goal, therefore,
is to develop a simulation tool that finds stable conclusions
across inconsistencies within softgoal frameworks.

Aside from inconsistent beliefs, another problem with
drawing conclusions from a softgoal framework is the lack
of supportive data. In the current software engineering
practice, there is not much data available to perform
statistical analysis [2]. This is especially true during the
early lifecycle of software development, when decisions
are made based on uncertain and subjective knowledge.
And in the case of advanced technologies and systems,
there is little past experience to learn from. Without
supportive data, the relevance of any conclusion drawn
from a softgoal framework is questionable. In spite of
this, estimations on the potential risks and benefits of
design decisions during the earlier requirement phase is
essential, because these early decisions have the most
leverage to influence the development to follow. The
Softgoal Simulation Toolpresented in this paper, therefore,
is designed to aid decision making in times such as
early software development lifecycle, a time when domain
knowledge is incomplete and inconsistent.

The premise of our methodology is that within a large
space of uncertainties generated from a model, there
often exist emergent stable properties [3]. If isolated,
these properties can be used to drive a system towards
the more/less preferred direction. In order to find such
consistent behaviors, we apply “bounded” randomness to
handle imprecise knowledge, and utilizeMonte Carlosim-
ulation [4] to explore a wide range of system behaviors.
TAR2 treatment learner [5] is employed to automatically
summarize these behaviors, and return recommendations
that can drive the system to some preferred mode.

As for the implementation of the Softgoal Simulation
Tool, it is designed to be light-weight and highly cus-
tomizable to different business goals. In our approach:
(i) a model is defined that is a set of logical constraints
between variables;(ii) a solution is generated from that
model that satisfies those constraints. In the ideal case,
all model constraints can be satisfied. However, in the
case of models generated from competing stakeholders,
this may not be possible. Hence, our approach offers a
range of operators which tries to satisfying all, many,
or one of a set of constraints. The appropriate selection
of operators depends on the business at hand. Examples
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Fig. 1. KWIC framework

and discussions on using these operators are presented in
sections 3 and 4.

2. Softgoal Modeling and Simulation
This section outlines our modeling and simulation

approach, which involves the softgoal framework,Monte
Carlo simulation, and treatment learning.

2.1 Overview of the Softgoal Framework
Softgoal framework consists of three types of soft-

goals: theNon-Functional-Requirement(NFR) softgoals,
the operationalizing softgoals, and theclaim softgoals.
NFR softgoalsrepresent quality requirements such as
“time-performance”.Operationalizing softgoalscomprise
of possible solutions or design alternatives to achieve
the NFR softgoals(e.g. “incorporate javascript in online
storefront”). Claim softgoalsargue the rationale and ex-
plain the context for a softgoal or interdependency link
(e.g. a claim may argue that “client-side scripting loads
faster”). As there are no clear cut criteria for success,NFR
softgoalsmay not be absolutely achieved, yet they can be
sufficiently satisficed [6], meaning that they are achieved
with acceptable limits.

To explain the notion of softgoal modeling, we used
the Keyword in Context (KWIC) Systemto illustrate how
the softgoal framework captures design alternatives and
quality attributes. TheKWIC framework, as shown in
figure 1, defines the tradeoffs amongNFRs and the archi-
tectural design alternatives within theKWIC domain. The
top-levelNFR softgoals- Comprehensibility, Modifiability,
Performance, Reusability- are the quality requirements
to be satisficed. The design alternatives -Shared Data,
Abstract Data Type, Implicit Invocation, Pipes and Filters

- populate the bottom-level asoperationalizing softgoals.
The sub-softgoals at the mid-level of the framework are
obtained by decomposing the top-levelNFR softgoals.
The inter-dependencies between softgoals are specified in
the framework with symbols such as “−−” and “+”. In
addition, softgoals can have associated priorities, denoted
by “!”, “!!” in the figure.

The KWIC framework described above demonstrates
how similar technique can be applied to other systems
to capture the tradeoffs/synergy between quality attributes
and design alternatives. After a framework is constructed,
it is encoded into text format and fed to theSoftgoal
Simulation Toolfor automatic inference.

2.2 Softgoal Simulation Tool
1) Inference and Cost/Benefit Calculation:Each

search performed on the softgoal framework generates
a consistent “world” - a scenario where the top-level
softgoal is satisficed when a set of softgoals are sat-
isficed/denied. This “world” can be different for each
search, depending on the combination logics between
softgoals and randomness embedded in the framework
definition. Different business concerns can be addressed
by using different combinations of logical operators in
the analysis of softgoal frameworks. The logic operators
supported by the tool are AND, OR, and ANY1.

After a “world” is generated, its desirability is rated
by computing the “benefit” and “cost” based on user-
configured parameters. These ratings, once obtained by
performing Monte Carlo process, are used by TAR2
treatment learner for classification.

2) Treatment Learning:TAR2 treatment learner clas-
sifies each “world” according to its “cost” and “benefit”
scores. Different preference scheme can be configured by
modifying a user-defined ranking scheme that maps ranges
of costs & benefits to appropriate classes2. With this rank-
ing scheme, TAR2 searches the datasets for the candidate
attribute ranges, i.e., ranges that are more common in the
highly ranked classes than the other classes. Knowing this
range of attributes can greatly assist in making design
decisions, as the space of considerations is narrowed down
to only the attributes that would assert significant impacts
to the system.

3. Experiments and Results on theKWIC
system

This section presents the study on theKWIC framework
as detailed in section 2.1. The objective of this study is
to look for design alternatives that would significantly

1Logic ANY is similar to OR in its satisficing criteria, except that
the inference engine would try to prove more than one of the chained
softgoals .

2For example, thehigh-benefit/low-costclass has a higher rank than
the low-benefit/high-costclass.



impact theKWIC system among inconsistent knowledge.
This study is performed on two logical interpretations,
representing the rigorous and weak quality assurance
scheme. Details on these experiments are given below.

I. Rigorous quality assurance II. Weak quality assurance
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Fig. 2. Logic configurations for the KWIC Framework

3.1 Experiment 1: Rigorous Quality Assurance
Modeling

TABLE 1 . Rigorous quality assurance Percentage distributions

of benefits and costs seen in 10,000 runs of fig 2.I

Benefit
Cost <5.5 <11 <17 ≥17 total

0

1 3.9 3.9

2 33 33

3 10 3.4 13

4 6.7 23 5.9 36

5 1.1 6.7 4.9 1.0 14

total 55 33 11 1.4 100

Benefit
Cost <5.5 <11 <17 ≥17 total

0
1
2
3

4 10 25 3.5 39

5 4.7 31 22 3.6 61

total 15 56 25 3.7 100

a. No treatment b. Treatments applied
(Shared Data=y; Abstract Data Type=y;

Implicit Invocation=y; c3=y)

This experiment is intended for system designs which
strict quality assurance is mandatory. The goal is to
find out what design alternatives would optimize system
quality attributes. The logic composition, as shown in
figure 2.I, enforced strict constraints (with the use of
ANDs) to satisfice the overall system quality. The ranking
scheme takes account on both benefit and cost, with slight
preference towards lower cost3. Results from theSoftgoal
Simulation process are presented in table 1. Table 1.a
shows the cost/benefit distributions of samples without
treatment. Table 1.b shows the distributions after applying
treatment to theKWIC system. These results shows that
variance in behavior decreased and the mean benefit scores
improved after treatment applied. The mean benefit drifted
from <5.5 before treatment(table 1.a) to<11 after treat-
ment(table 1.b). Moreover, the number of samples fell into

3E.g. classCost=zero/Benefit=highhas a higher ranking than class
Cost=one/Benefit=veryhigh.

the high benefit ranges (≥17) increased after treatment.
Base on this result, developers may focus on key issues
that would greatly impact overall software quality, such as
whether or not to implementShared Datafor the system.
Alternatively, if in some dispute situation, an analyst could
use c2; c4; c5 as bargaining chips. Since these claims
have little overall impact, analyst could offer them in
any configuration as part of some compromise deal in
exchange for the other key decisions being endorsed.

3.2 Experiment 2: Weak Quality Assurance Mod-
eling

Often, when outside consultants are called in to offer a
rapid assessment on how to improve a problematic project,
they seek the fewest actions that offer the most benefit.
To handle this situation, we defined a variation of the
KWIC framework(figure 2.II) to simulate a weaker form
of quality assurance.

TABLE 2 . Weak quality assurance Percentage distributions of

benefits and costs seen in 10,000 runs of fig 2.II

Benefit
Cost <15 <29 <44 ≥58.67 total

0

1 3.1 3.1

2 7.0 10 .62 18

3 4.2 25 12 1.4 43

4 1.7 13 13 4.0 32

5 1.6 1.8 .6 4.3

total 16 50 28 6.0 100

Benefit
Cost <15 <29 <44 ≥58.67 total

0

1 20 20

2 8.4 28 4.6 41

3 1.8 16 16 4.8 39

4
5

total 30 44 21 4.8 100

a. No treatment b. Treatments applied
(Pipe & Filter=n;c2=y;c3=y;c4=y)

The goal of this experiment is to determine what
would negatively impact software quality in the most
liberal quality assurance scheme. To handle this, the class
rankings are reversed as opposed to that of the rigorous
quality assurance scheme. The results are shown in table
2. Comparing table 2.b (after treatments) with table 2.a
(before treatments), the number of samples fell into the
lowest benefit range (<15) increased, which showed that
benefit suffered as treatments accumulated. The results
also suggest that, using the weaker form of quality as-
surance scheme, the overall software quality of theKWIC
system suffers ifPipe & Filter is not implemented. Hence,
users may center their discussions on the possibilities of
implementing thePipe & Filter option.

4. Case Study: NASA IV&V Activity Priori-
tization (SR-1 Project)

The experiment discussed in section III demonstrates
our simulation technique working on a small example,
albeit one often cited in the literature. The SR-1 Project
presents in this section shows how theSoftgoal Simulation
Tool scales up to modern real world software.
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Fig. 3. Segment of the SR-1 framework

4.1 The SR-1 Project

The NASASR-1 [7] project refers to the technologies
involved in advance satellite design.NASA IV&V Facility
is one of the organizations performing Verification &
Validation(V&V)4 on software projects such as SR-1.
The Criticality Analysis and Risk Assessment(CARA) [7]
process is a quantitative analysis used by theNASA IV&V
personnel to determine the appropriate scope of V&V on
a project.

Like many other companies, project managers atNASA
IV&V Facility has to deal with business issues such as
delivery deadlines and resource allocations. It is every
manager’s goal to optimize resource usage, reduce project
costs while meeting deadline dates. On the other hand,
eachIV&V analysis activities consumes different degree
of resources, and some of these activities perform better
in the V&V process than the others. Finding out which of
these V&V activities are more powerful, and less costly
at the same time, would be helpful for project resource
management and task prioritization. The objective of our
study, therefore, is to look for the analysis activities that
are more cost-effective than others.

In our study of the SR-1 project, we applied the soft-
goal framework idea to sketch out the inter-dependencies
betweenIV&V analysis activities and theCARARatings
on SR-1 functions. Figure 3 shows the resulting SR-1
framework.

As we proceeded on our analysis, we found that the
SR-1 softgoal framework displayed typical features of real
world systems - lack of domain knowledge and supporting
data. We were unable to obtain any expert opinions
regarding to the effectiveness of each analysis activities.
Therefore, we could not define theinter-dependencies

4Verification & Validation is a process to evaluate the correctness and
quality of a software product throughout its life cycle [8]. Independent
V&V (IV&V) is performed by organization that are independent of the
development organization.

TABLE 3 . SR-1 Variant 1 Percentage distributions of benefits

and costs seen in 10,000 runs of fig 4.I

Benefit
Cost vlow low high vhigh Total

vlow 34 34

low 4.0 6.3 5.6 16

high 6.2 10 8.8 25

vhigh 5.6 8.8 11 25

Total 34 16 25 25 100

a. No treatment

Benefit
Cost vlow low high vhigh Total
vlow

low 4.7 7.7 7.3 20

high 10 16 14 40

vhigh 9.1 14 17 40

total 24 38 39 100

Benefit
Cost vlow low high vhigh Total
vlow
low

high 5.2 9.5 8.6 23

vhigh 17 27 33 77

Total 22 36 41 100

b. Most preferred system c. Least preferred system
(activity: tav09=y) (activity: cav10=y)

betweenIV&V analysis activities and the SR-1 s/w func-
tions. Similarly, we have no information on thepriorities
of SR-1 s/w functions. Moreover, there are discrepancies
in the scaling factors for cost calculations. Nonetheless,
by making adjustments to the unknowns, we were able to
perform analysis and draw useful conclusions. Results are
detailed in the next section.

4.2 Experiments and Results

I. Variant 1 II. Variant 2
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Fig. 4. SR-1 framework variants

We constructed and performed experiments on two
variations of the SR-1 framework that differed in their
logical compositions. Figure 4.I shows the weakest qual-
ity assurance scheme, whereas figure 4.II represents the
strongest. The class ranking scheme used for these frame-
works is similar to that of theKWIC framework discussed
in section 2.1. Two studies were conducted on each
variant, based on the same ranking function:

• In the most preferred study, TAR2 looks for be-
haviors that would contribute to the integrity of the
SR-1 functions;

• Conversely, in theleast preferredstudy, we reversed
the order of class ranks to find treatments that would
assert negative impacts;



TABLE 4 . SR-1 Variant 2 Percentage distributions of benefits

and costs seen in 10,000 runs of fig 4.II

Benefit
Cost vlow low high vhigh Total

vlow 18 2.2 2.7 2.5 25

low 3.8 8.8 6.2 6.2 25

high 2.5 8 7.1 7.4 25

vhigh 1.1 6 9.1 8.9 25

Total 25 25 25 25 100

a. No treatment

Benefit
Cost vlow low high vhigh Total

vlow 25 3.1 3.8 3.6 36

low 4.9 12 8.4 8.7 34

high 2.3 7.7 6.7 7.6 24

vhigh 1.6 2.2 2.3 6.4

Total 33 24 21 22 100

Benefit
Cost vlow low high vhigh Total
vlow

low 3.4 5.7 1.7 2.1 13

high 5.5 16 7.7 7.0 36

vhigh 4.1 13 17 17 51

Total 13 34 26 26 100

b. Most preferred system c. Least preferred system
(activity: dav12=n) (activity: cav07=y)

Monte Carlosimulations were applied to each frame-
work variant twice, each time with different cost functions.
Treatment learning was then applied to each set of data in
finding the most/least favorable treatments. The effects of
these treatments were compared with the control situations
(i.e. no treatment) in terms of costs and benefits. Results
from these experimentations are presented in two groups:
table 3 for weak quality assurance; and table 4 for rigorous
quality assurance.

Similar to that of theKWIC framework, the class
ranking scheme for SR-1 accounted on both benefit and
cost with slight preference towards lower cost. As a result,
treatment learner recommended treatments that sacrifice a
lower benefit for a lower cost. Our result sets in tables 3
and 4 reflected this particular setting.

Several features of these results deserve comment.
Consider the results on SR-1 framework variant 1 for
weak quality assurance(figure 4.I): firstly, treatment elimi-
nated samples within theCost=vlow, Benefit=vlowrange,
from 34% to 0%. Secondly, for themost preferred
system(table 3.b), treatment learning drove the sam-
ple distributions towards a higher benefit range (Bene-
fit=[high,vhigh] occupied 77%, as opposed to 50% with
no treatment). Third, the distributions of benefit received
after treatments were roughly the same for bothmost
preferred andleast preferred system. However, theleast
preferred system (table 3.c) suffered from very high cost
(77% in Cost=vhigh), compared to themost preferred
system (40%).

The result for the rigorous quality assurance (figure
4.II) scheme is presented in a similar fashion. First of
all, treatments for themost preferred system(table 4.b)
resulted in an increase of samples in theCost=[vlow,low]
range (from 50% to 70%. However, the samples within
the rangeBenefit=[vlow,low] also increased (from 50%
to 57%), a clear indication on the proportionality of cost

and benefit. On the other hand, treatment for theleast
preferred system(table 4.c) resulted in very high cost
(87% in theCost=[high,vhigh]range) compared to that of
no treatment (50%). The benefit increased only slightly,
from 50% to 52% in theBenefit=[high,vhigh]range.

To sum up the SR-1 case study:
• The use of logic components significantly affected

the treatments that TAR2 recommended;
• Variation on cost functions was found to have no ob-

servable effect to the resulting treatment recommen-
dations from all SR-1 framework variants studied;

• For all experimentations on the SR-1 framework,
TAR2’s treatment recommendations have been 10-
way cross-validated [9] and their trustworthiness
ensured. In other words, all of TAR2’s treatment
recommendation remained stable, in spite of the
uncertainties lay within the framework;

• For the results shown in table 4.b, TAR2 suggested
not to do activitydav12 would be beneficial. Our
treatment learning method can give advice on which
activities not to be done in order to receive the most
preferred outcome;

5. Conclusion
From what we have observed in our experiments

on both KWIC and SR-1 frameworks, our simulation
tool successfully discovered consistent behaviors within
each framework despite various uncertainty factors, and
provided treatment recommendations relevant to business
concerns. As this approach does not require much con-
crete domain knowledge, time and expenses dedicated to
data collection (e.g. appointments with domain experts,
gathering surveys) can be minimized. Moreover, TAR2’s
treatments found the most critical decision towards the
problem domain, thus users can focus on this key issue
and allot less time in discussing the non-critical ones.
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